Merge branch 'xtensa-dma-fixes' (early part) into xtensa-fixes

This switches xtensa arch to the generic noncoherent direct mapping
operations, adds support for DMA_ATTR_NO_KERNEL_MAPPING attribute and
allows for platform-specific handling of coherent memory.

Signed-off-by: Max Filippov <jcmvbkbc@gmail.com>
This commit is contained in:
Max Filippov 2018-08-20 13:24:24 -07:00
commit 35d231db53
7 changed files with 110 additions and 154 deletions

View File

@ -4,12 +4,15 @@ config ZONE_DMA
config XTENSA config XTENSA
def_bool y def_bool y
select ARCH_HAS_SYNC_DMA_FOR_CPU
select ARCH_HAS_SYNC_DMA_FOR_DEVICE
select ARCH_NO_COHERENT_DMA_MMAP if !MMU select ARCH_NO_COHERENT_DMA_MMAP if !MMU
select ARCH_WANT_FRAME_POINTERS select ARCH_WANT_FRAME_POINTERS
select ARCH_WANT_IPC_PARSE_VERSION select ARCH_WANT_IPC_PARSE_VERSION
select BUILDTIME_EXTABLE_SORT select BUILDTIME_EXTABLE_SORT
select CLONE_BACKWARDS select CLONE_BACKWARDS
select COMMON_CLK select COMMON_CLK
select DMA_NONCOHERENT_OPS
select GENERIC_ATOMIC64 select GENERIC_ATOMIC64
select GENERIC_CLOCKEVENTS select GENERIC_CLOCKEVENTS
select GENERIC_IRQ_SHOW select GENERIC_IRQ_SHOW

View File

@ -3,6 +3,7 @@ generic-y += compat.h
generic-y += device.h generic-y += device.h
generic-y += div64.h generic-y += div64.h
generic-y += dma-contiguous.h generic-y += dma-contiguous.h
generic-y += dma-mapping.h
generic-y += emergency-restart.h generic-y += emergency-restart.h
generic-y += exec.h generic-y += exec.h
generic-y += extable.h generic-y += extable.h

View File

@ -1,26 +0,0 @@
/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (C) 2003 - 2005 Tensilica Inc.
* Copyright (C) 2015 Cadence Design Systems Inc.
*/
#ifndef _XTENSA_DMA_MAPPING_H
#define _XTENSA_DMA_MAPPING_H
#include <asm/cache.h>
#include <asm/io.h>
#include <linux/mm.h>
#include <linux/scatterlist.h>
extern const struct dma_map_ops xtensa_dma_map_ops;
static inline const struct dma_map_ops *get_arch_dma_ops(struct bus_type *bus)
{
return &xtensa_dma_map_ops;
}
#endif /* _XTENSA_DMA_MAPPING_H */

View File

@ -63,12 +63,6 @@
#error XCHAL_KSEG_PADDR is not properly aligned to XCHAL_KSEG_ALIGNMENT #error XCHAL_KSEG_PADDR is not properly aligned to XCHAL_KSEG_ALIGNMENT
#endif #endif
#else
#define XCHAL_KSEG_CACHED_VADDR __XTENSA_UL_CONST(0xd0000000)
#define XCHAL_KSEG_BYPASS_VADDR __XTENSA_UL_CONST(0xd8000000)
#define XCHAL_KSEG_SIZE __XTENSA_UL_CONST(0x08000000)
#endif #endif
#ifndef CONFIG_KASAN #ifndef CONFIG_KASAN

View File

@ -66,6 +66,7 @@
#define FIRST_USER_ADDRESS 0UL #define FIRST_USER_ADDRESS 0UL
#define FIRST_USER_PGD_NR (FIRST_USER_ADDRESS >> PGDIR_SHIFT) #define FIRST_USER_PGD_NR (FIRST_USER_ADDRESS >> PGDIR_SHIFT)
#ifdef CONFIG_MMU
/* /*
* Virtual memory area. We keep a distance to other memory regions to be * Virtual memory area. We keep a distance to other memory regions to be
* on the safe side. We also use this area for cache aliasing. * on the safe side. We also use this area for cache aliasing.
@ -80,6 +81,13 @@
#define TLBTEMP_SIZE ICACHE_WAY_SIZE #define TLBTEMP_SIZE ICACHE_WAY_SIZE
#endif #endif
#else
#define VMALLOC_START __XTENSA_UL_CONST(0)
#define VMALLOC_END __XTENSA_UL_CONST(0xffffffff)
#endif
/* /*
* For the Xtensa architecture, the PTE layout is as follows: * For the Xtensa architecture, the PTE layout is as follows:
* *

View File

@ -75,4 +75,31 @@ extern void platform_calibrate_ccount (void);
*/ */
void cpu_reset(void) __attribute__((noreturn)); void cpu_reset(void) __attribute__((noreturn));
/*
* Memory caching is platform-dependent in noMMU xtensa configurations.
* The following set of functions should be implemented in platform code
* in order to enable coherent DMA memory operations when CONFIG_MMU is not
* enabled. Default implementations do nothing and issue a warning.
*/
/*
* Check whether p points to a cached memory.
*/
bool platform_vaddr_cached(const void *p);
/*
* Check whether p points to an uncached memory.
*/
bool platform_vaddr_uncached(const void *p);
/*
* Return pointer to an uncached view of the cached sddress p.
*/
void *platform_vaddr_to_uncached(void *p);
/*
* Return pointer to a cached view of the uncached sddress p.
*/
void *platform_vaddr_to_cached(void *p);
#endif /* _XTENSA_PLATFORM_H */ #endif /* _XTENSA_PLATFORM_H */

View File

@ -16,26 +16,25 @@
*/ */
#include <linux/dma-contiguous.h> #include <linux/dma-contiguous.h>
#include <linux/dma-noncoherent.h>
#include <linux/dma-direct.h> #include <linux/dma-direct.h>
#include <linux/gfp.h> #include <linux/gfp.h>
#include <linux/highmem.h> #include <linux/highmem.h>
#include <linux/mm.h> #include <linux/mm.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/string.h>
#include <linux/types.h> #include <linux/types.h>
#include <asm/cacheflush.h> #include <asm/cacheflush.h>
#include <asm/io.h> #include <asm/io.h>
#include <asm/platform.h>
static void do_cache_op(dma_addr_t dma_handle, size_t size, static void do_cache_op(phys_addr_t paddr, size_t size,
void (*fn)(unsigned long, unsigned long)) void (*fn)(unsigned long, unsigned long))
{ {
unsigned long off = dma_handle & (PAGE_SIZE - 1); unsigned long off = paddr & (PAGE_SIZE - 1);
unsigned long pfn = PFN_DOWN(dma_handle); unsigned long pfn = PFN_DOWN(paddr);
struct page *page = pfn_to_page(pfn); struct page *page = pfn_to_page(pfn);
if (!PageHighMem(page)) if (!PageHighMem(page))
fn((unsigned long)bus_to_virt(dma_handle), size); fn((unsigned long)phys_to_virt(paddr), size);
else else
while (size > 0) { while (size > 0) {
size_t sz = min_t(size_t, size, PAGE_SIZE - off); size_t sz = min_t(size_t, size, PAGE_SIZE - off);
@ -49,14 +48,13 @@ static void do_cache_op(dma_addr_t dma_handle, size_t size,
} }
} }
static void xtensa_sync_single_for_cpu(struct device *dev, void arch_sync_dma_for_cpu(struct device *dev, phys_addr_t paddr,
dma_addr_t dma_handle, size_t size, size_t size, enum dma_data_direction dir)
enum dma_data_direction dir)
{ {
switch (dir) { switch (dir) {
case DMA_BIDIRECTIONAL: case DMA_BIDIRECTIONAL:
case DMA_FROM_DEVICE: case DMA_FROM_DEVICE:
do_cache_op(dma_handle, size, __invalidate_dcache_range); do_cache_op(paddr, size, __invalidate_dcache_range);
break; break;
case DMA_NONE: case DMA_NONE:
@ -68,15 +66,14 @@ static void xtensa_sync_single_for_cpu(struct device *dev,
} }
} }
static void xtensa_sync_single_for_device(struct device *dev, void arch_sync_dma_for_device(struct device *dev, phys_addr_t paddr,
dma_addr_t dma_handle, size_t size, size_t size, enum dma_data_direction dir)
enum dma_data_direction dir)
{ {
switch (dir) { switch (dir) {
case DMA_BIDIRECTIONAL: case DMA_BIDIRECTIONAL:
case DMA_TO_DEVICE: case DMA_TO_DEVICE:
if (XCHAL_DCACHE_IS_WRITEBACK) if (XCHAL_DCACHE_IS_WRITEBACK)
do_cache_op(dma_handle, size, __flush_dcache_range); do_cache_op(paddr, size, __flush_dcache_range);
break; break;
case DMA_NONE: case DMA_NONE:
@ -88,43 +85,66 @@ static void xtensa_sync_single_for_device(struct device *dev,
} }
} }
static void xtensa_sync_sg_for_cpu(struct device *dev, #ifdef CONFIG_MMU
struct scatterlist *sg, int nents, bool platform_vaddr_cached(const void *p)
enum dma_data_direction dir)
{ {
struct scatterlist *s; unsigned long addr = (unsigned long)p;
int i;
for_each_sg(sg, s, nents, i) { return addr >= XCHAL_KSEG_CACHED_VADDR &&
xtensa_sync_single_for_cpu(dev, sg_dma_address(s), addr - XCHAL_KSEG_CACHED_VADDR < XCHAL_KSEG_SIZE;
sg_dma_len(s), dir);
}
} }
static void xtensa_sync_sg_for_device(struct device *dev, bool platform_vaddr_uncached(const void *p)
struct scatterlist *sg, int nents,
enum dma_data_direction dir)
{ {
struct scatterlist *s; unsigned long addr = (unsigned long)p;
int i;
for_each_sg(sg, s, nents, i) { return addr >= XCHAL_KSEG_BYPASS_VADDR &&
xtensa_sync_single_for_device(dev, sg_dma_address(s), addr - XCHAL_KSEG_BYPASS_VADDR < XCHAL_KSEG_SIZE;
sg_dma_len(s), dir);
} }
void *platform_vaddr_to_uncached(void *p)
{
return p + XCHAL_KSEG_BYPASS_VADDR - XCHAL_KSEG_CACHED_VADDR;
} }
void *platform_vaddr_to_cached(void *p)
{
return p + XCHAL_KSEG_CACHED_VADDR - XCHAL_KSEG_BYPASS_VADDR;
}
#else
bool __attribute__((weak)) platform_vaddr_cached(const void *p)
{
WARN_ONCE(1, "Default %s implementation is used\n", __func__);
return true;
}
bool __attribute__((weak)) platform_vaddr_uncached(const void *p)
{
WARN_ONCE(1, "Default %s implementation is used\n", __func__);
return false;
}
void __attribute__((weak)) *platform_vaddr_to_uncached(void *p)
{
WARN_ONCE(1, "Default %s implementation is used\n", __func__);
return p;
}
void __attribute__((weak)) *platform_vaddr_to_cached(void *p)
{
WARN_ONCE(1, "Default %s implementation is used\n", __func__);
return p;
}
#endif
/* /*
* Note: We assume that the full memory space is always mapped to 'kseg' * Note: We assume that the full memory space is always mapped to 'kseg'
* Otherwise we have to use page attributes (not implemented). * Otherwise we have to use page attributes (not implemented).
*/ */
static void *xtensa_dma_alloc(struct device *dev, size_t size, void *arch_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
dma_addr_t *handle, gfp_t flag, gfp_t flag, unsigned long attrs)
unsigned long attrs)
{ {
unsigned long ret;
unsigned long uncached;
unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT; unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
struct page *page = NULL; struct page *page = NULL;
@ -147,6 +167,10 @@ static void *xtensa_dma_alloc(struct device *dev, size_t size,
*handle = phys_to_dma(dev, page_to_phys(page)); *handle = phys_to_dma(dev, page_to_phys(page));
if (attrs & DMA_ATTR_NO_KERNEL_MAPPING) {
return page;
}
#ifdef CONFIG_MMU #ifdef CONFIG_MMU
if (PageHighMem(page)) { if (PageHighMem(page)) {
void *p; void *p;
@ -161,27 +185,21 @@ static void *xtensa_dma_alloc(struct device *dev, size_t size,
return p; return p;
} }
#endif #endif
ret = (unsigned long)page_address(page); BUG_ON(!platform_vaddr_cached(page_address(page)));
BUG_ON(ret < XCHAL_KSEG_CACHED_VADDR || __invalidate_dcache_range((unsigned long)page_address(page), size);
ret > XCHAL_KSEG_CACHED_VADDR + XCHAL_KSEG_SIZE - 1); return platform_vaddr_to_uncached(page_address(page));
uncached = ret + XCHAL_KSEG_BYPASS_VADDR - XCHAL_KSEG_CACHED_VADDR;
__invalidate_dcache_range(ret, size);
return (void *)uncached;
} }
static void xtensa_dma_free(struct device *dev, size_t size, void *vaddr, void arch_dma_free(struct device *dev, size_t size, void *vaddr,
dma_addr_t dma_handle, unsigned long attrs) dma_addr_t dma_handle, unsigned long attrs)
{ {
unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT; unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
unsigned long addr = (unsigned long)vaddr;
struct page *page; struct page *page;
if (addr >= XCHAL_KSEG_BYPASS_VADDR && if (attrs & DMA_ATTR_NO_KERNEL_MAPPING) {
addr - XCHAL_KSEG_BYPASS_VADDR < XCHAL_KSEG_SIZE) { page = vaddr;
addr += XCHAL_KSEG_CACHED_VADDR - XCHAL_KSEG_BYPASS_VADDR; } else if (platform_vaddr_uncached(vaddr)) {
page = virt_to_page(addr); page = virt_to_page(platform_vaddr_to_cached(vaddr));
} else { } else {
#ifdef CONFIG_MMU #ifdef CONFIG_MMU
dma_common_free_remap(vaddr, size, VM_MAP); dma_common_free_remap(vaddr, size, VM_MAP);
@ -192,72 +210,3 @@ static void xtensa_dma_free(struct device *dev, size_t size, void *vaddr,
if (!dma_release_from_contiguous(dev, page, count)) if (!dma_release_from_contiguous(dev, page, count))
__free_pages(page, get_order(size)); __free_pages(page, get_order(size));
} }
static dma_addr_t xtensa_map_page(struct device *dev, struct page *page,
unsigned long offset, size_t size,
enum dma_data_direction dir,
unsigned long attrs)
{
dma_addr_t dma_handle = page_to_phys(page) + offset;
if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
xtensa_sync_single_for_device(dev, dma_handle, size, dir);
return dma_handle;
}
static void xtensa_unmap_page(struct device *dev, dma_addr_t dma_handle,
size_t size, enum dma_data_direction dir,
unsigned long attrs)
{
if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
xtensa_sync_single_for_cpu(dev, dma_handle, size, dir);
}
static int xtensa_map_sg(struct device *dev, struct scatterlist *sg,
int nents, enum dma_data_direction dir,
unsigned long attrs)
{
struct scatterlist *s;
int i;
for_each_sg(sg, s, nents, i) {
s->dma_address = xtensa_map_page(dev, sg_page(s), s->offset,
s->length, dir, attrs);
}
return nents;
}
static void xtensa_unmap_sg(struct device *dev,
struct scatterlist *sg, int nents,
enum dma_data_direction dir,
unsigned long attrs)
{
struct scatterlist *s;
int i;
for_each_sg(sg, s, nents, i) {
xtensa_unmap_page(dev, sg_dma_address(s),
sg_dma_len(s), dir, attrs);
}
}
int xtensa_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
{
return 0;
}
const struct dma_map_ops xtensa_dma_map_ops = {
.alloc = xtensa_dma_alloc,
.free = xtensa_dma_free,
.map_page = xtensa_map_page,
.unmap_page = xtensa_unmap_page,
.map_sg = xtensa_map_sg,
.unmap_sg = xtensa_unmap_sg,
.sync_single_for_cpu = xtensa_sync_single_for_cpu,
.sync_single_for_device = xtensa_sync_single_for_device,
.sync_sg_for_cpu = xtensa_sync_sg_for_cpu,
.sync_sg_for_device = xtensa_sync_sg_for_device,
.mapping_error = xtensa_dma_mapping_error,
};
EXPORT_SYMBOL(xtensa_dma_map_ops);