x86: cosmetic fixes fault_{32|64}.c
First step towards unifying these files. - Checkpatch trailing whitespace fixes - Checkpatch indentation of switch statement fixes - Checkpatch single statement ifs need no braces fixes - Checkpatch consistent spacing after comma fixes - Introduce defines for pagefault error bits from X86_64 and add useful comment from X86_32. Use these defines in X86_32 where obvious. - Unify comments between 32|64 bit - Small ifdef movement for CONFIG_KPROBES in notify_page_fault() - Introduce X86_64 only case statement No Functional Changes. Signed-off-by: Harvey Harrison <harvey.harrison@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
This commit is contained in:
parent
1d16b53e38
commit
33cb524383
|
@ -1,6 +1,4 @@
|
|||
/*
|
||||
* linux/arch/i386/mm/fault.c
|
||||
*
|
||||
* Copyright (C) 1995 Linus Torvalds
|
||||
*/
|
||||
|
||||
|
@ -30,11 +28,25 @@
|
|||
#include <asm/desc.h>
|
||||
#include <asm/segment.h>
|
||||
|
||||
extern void die(const char *,struct pt_regs *,long);
|
||||
/*
|
||||
* Page fault error code bits
|
||||
* bit 0 == 0 means no page found, 1 means protection fault
|
||||
* bit 1 == 0 means read, 1 means write
|
||||
* bit 2 == 0 means kernel, 1 means user-mode
|
||||
* bit 3 == 1 means use of reserved bit detected
|
||||
* bit 4 == 1 means fault was an instruction fetch
|
||||
*/
|
||||
#define PF_PROT (1<<0)
|
||||
#define PF_WRITE (1<<1)
|
||||
#define PF_USER (1<<2)
|
||||
#define PF_RSVD (1<<3)
|
||||
#define PF_INSTR (1<<4)
|
||||
|
||||
extern void die(const char *, struct pt_regs *, long);
|
||||
|
||||
#ifdef CONFIG_KPROBES
|
||||
static inline int notify_page_fault(struct pt_regs *regs)
|
||||
{
|
||||
#ifdef CONFIG_KPROBES
|
||||
int ret = 0;
|
||||
|
||||
/* kprobe_running() needs smp_processor_id() */
|
||||
|
@ -46,13 +58,10 @@ static inline int notify_page_fault(struct pt_regs *regs)
|
|||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
#else
|
||||
static inline int notify_page_fault(struct pt_regs *regs)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
/*
|
||||
* Return EIP plus the CS segment base. The segment limit is also
|
||||
|
@ -65,7 +74,7 @@ static inline int notify_page_fault(struct pt_regs *regs)
|
|||
* If CS is no longer a valid code segment, or if EIP is beyond the
|
||||
* limit, or if it is a kernel address when CS is not a kernel segment,
|
||||
* then the returned value will be greater than *eip_limit.
|
||||
*
|
||||
*
|
||||
* This is slow, but is very rarely executed.
|
||||
*/
|
||||
static inline unsigned long get_segment_eip(struct pt_regs *regs,
|
||||
|
@ -84,7 +93,7 @@ static inline unsigned long get_segment_eip(struct pt_regs *regs,
|
|||
|
||||
/* The standard kernel/user address space limit. */
|
||||
*eip_limit = user_mode(regs) ? USER_DS.seg : KERNEL_DS.seg;
|
||||
|
||||
|
||||
/* By far the most common cases. */
|
||||
if (likely(SEGMENT_IS_FLAT_CODE(seg)))
|
||||
return ip;
|
||||
|
@ -99,7 +108,7 @@ static inline unsigned long get_segment_eip(struct pt_regs *regs,
|
|||
return 1; /* So that returned ip > *eip_limit. */
|
||||
}
|
||||
|
||||
/* Get the GDT/LDT descriptor base.
|
||||
/* Get the GDT/LDT descriptor base.
|
||||
When you look for races in this code remember that
|
||||
LDT and other horrors are only used in user space. */
|
||||
if (seg & (1<<2)) {
|
||||
|
@ -109,16 +118,16 @@ static inline unsigned long get_segment_eip(struct pt_regs *regs,
|
|||
desc = (void *)desc + (seg & ~7);
|
||||
} else {
|
||||
/* Must disable preemption while reading the GDT. */
|
||||
desc = (u32 *)get_cpu_gdt_table(get_cpu());
|
||||
desc = (u32 *)get_cpu_gdt_table(get_cpu());
|
||||
desc = (void *)desc + (seg & ~7);
|
||||
}
|
||||
|
||||
/* Decode the code segment base from the descriptor */
|
||||
base = get_desc_base((struct desc_struct *)desc);
|
||||
|
||||
if (seg & (1<<2)) {
|
||||
if (seg & (1<<2))
|
||||
mutex_unlock(¤t->mm->context.lock);
|
||||
} else
|
||||
else
|
||||
put_cpu();
|
||||
|
||||
/* Adjust EIP and segment limit, and clamp at the kernel limit.
|
||||
|
@ -129,19 +138,19 @@ static inline unsigned long get_segment_eip(struct pt_regs *regs,
|
|||
return ip + base;
|
||||
}
|
||||
|
||||
/*
|
||||
/*
|
||||
* Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
|
||||
* Check that here and ignore it.
|
||||
*/
|
||||
static int __is_prefetch(struct pt_regs *regs, unsigned long addr)
|
||||
{
|
||||
{
|
||||
unsigned long limit;
|
||||
unsigned char *instr = (unsigned char *)get_segment_eip (regs, &limit);
|
||||
unsigned char *instr = (unsigned char *)get_segment_eip(regs, &limit);
|
||||
int scan_more = 1;
|
||||
int prefetch = 0;
|
||||
int prefetch = 0;
|
||||
int i;
|
||||
|
||||
for (i = 0; scan_more && i < 15; i++) {
|
||||
for (i = 0; scan_more && i < 15; i++) {
|
||||
unsigned char opcode;
|
||||
unsigned char instr_hi;
|
||||
unsigned char instr_lo;
|
||||
|
@ -149,27 +158,43 @@ static int __is_prefetch(struct pt_regs *regs, unsigned long addr)
|
|||
if (instr > (unsigned char *)limit)
|
||||
break;
|
||||
if (probe_kernel_address(instr, opcode))
|
||||
break;
|
||||
break;
|
||||
|
||||
instr_hi = opcode & 0xf0;
|
||||
instr_lo = opcode & 0x0f;
|
||||
instr_hi = opcode & 0xf0;
|
||||
instr_lo = opcode & 0x0f;
|
||||
instr++;
|
||||
|
||||
switch (instr_hi) {
|
||||
switch (instr_hi) {
|
||||
case 0x20:
|
||||
case 0x30:
|
||||
/* Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes. */
|
||||
/*
|
||||
* Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
|
||||
* In X86_64 long mode, the CPU will signal invalid
|
||||
* opcode if some of these prefixes are present so
|
||||
* X86_64 will never get here anyway
|
||||
*/
|
||||
scan_more = ((instr_lo & 7) == 0x6);
|
||||
break;
|
||||
|
||||
#ifdef CONFIG_X86_64
|
||||
case 0x40:
|
||||
/*
|
||||
* In AMD64 long mode 0x40..0x4F are valid REX prefixes
|
||||
* Need to figure out under what instruction mode the
|
||||
* instruction was issued. Could check the LDT for lm,
|
||||
* but for now it's good enough to assume that long
|
||||
* mode only uses well known segments or kernel.
|
||||
*/
|
||||
scan_more = (!user_mode(regs)) || (regs->cs == __USER_CS);
|
||||
break;
|
||||
#endif
|
||||
case 0x60:
|
||||
/* 0x64 thru 0x67 are valid prefixes in all modes. */
|
||||
scan_more = (instr_lo & 0xC) == 0x4;
|
||||
break;
|
||||
break;
|
||||
case 0xF0:
|
||||
/* 0xF0, 0xF2, and 0xF3 are valid prefixes */
|
||||
/* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
|
||||
scan_more = !instr_lo || (instr_lo>>1) == 1;
|
||||
break;
|
||||
break;
|
||||
case 0x00:
|
||||
/* Prefetch instruction is 0x0F0D or 0x0F18 */
|
||||
scan_more = 0;
|
||||
|
@ -179,11 +204,11 @@ static int __is_prefetch(struct pt_regs *regs, unsigned long addr)
|
|||
break;
|
||||
prefetch = (instr_lo == 0xF) &&
|
||||
(opcode == 0x0D || opcode == 0x18);
|
||||
break;
|
||||
break;
|
||||
default:
|
||||
scan_more = 0;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
return prefetch;
|
||||
}
|
||||
|
@ -199,7 +224,7 @@ static inline int is_prefetch(struct pt_regs *regs, unsigned long addr,
|
|||
return __is_prefetch(regs, addr);
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
static noinline void force_sig_info_fault(int si_signo, int si_code,
|
||||
unsigned long address, struct task_struct *tsk)
|
||||
|
@ -284,19 +309,12 @@ int show_unhandled_signals = 1;
|
|||
* This routine handles page faults. It determines the address,
|
||||
* and the problem, and then passes it off to one of the appropriate
|
||||
* routines.
|
||||
*
|
||||
* error_code:
|
||||
* bit 0 == 0 means no page found, 1 means protection fault
|
||||
* bit 1 == 0 means read, 1 means write
|
||||
* bit 2 == 0 means kernel, 1 means user-mode
|
||||
* bit 3 == 1 means use of reserved bit detected
|
||||
* bit 4 == 1 means fault was an instruction fetch
|
||||
*/
|
||||
void __kprobes do_page_fault(struct pt_regs *regs, unsigned long error_code)
|
||||
{
|
||||
struct task_struct *tsk;
|
||||
struct mm_struct *mm;
|
||||
struct vm_area_struct * vma;
|
||||
struct vm_area_struct *vma;
|
||||
unsigned long address;
|
||||
int write, si_code;
|
||||
int fault;
|
||||
|
@ -307,7 +325,7 @@ void __kprobes do_page_fault(struct pt_regs *regs, unsigned long error_code)
|
|||
trace_hardirqs_fixup();
|
||||
|
||||
/* get the address */
|
||||
address = read_cr2();
|
||||
address = read_cr2();
|
||||
|
||||
tsk = current;
|
||||
|
||||
|
@ -350,7 +368,7 @@ void __kprobes do_page_fault(struct pt_regs *regs, unsigned long error_code)
|
|||
|
||||
/*
|
||||
* If we're in an interrupt, have no user context or are running in an
|
||||
* atomic region then we must not take the fault..
|
||||
* atomic region then we must not take the fault.
|
||||
*/
|
||||
if (in_atomic() || !mm)
|
||||
goto bad_area_nosemaphore;
|
||||
|
@ -371,7 +389,7 @@ void __kprobes do_page_fault(struct pt_regs *regs, unsigned long error_code)
|
|||
* thus avoiding the deadlock.
|
||||
*/
|
||||
if (!down_read_trylock(&mm->mmap_sem)) {
|
||||
if ((error_code & 4) == 0 &&
|
||||
if ((error_code & PF_USER) == 0 &&
|
||||
!search_exception_tables(regs->ip))
|
||||
goto bad_area_nosemaphore;
|
||||
down_read(&mm->mmap_sem);
|
||||
|
@ -384,7 +402,7 @@ void __kprobes do_page_fault(struct pt_regs *regs, unsigned long error_code)
|
|||
goto good_area;
|
||||
if (!(vma->vm_flags & VM_GROWSDOWN))
|
||||
goto bad_area;
|
||||
if (error_code & 4) {
|
||||
if (error_code & PF_USER) {
|
||||
/*
|
||||
* Accessing the stack below %sp is always a bug.
|
||||
* The large cushion allows instructions like enter
|
||||
|
@ -403,19 +421,19 @@ void __kprobes do_page_fault(struct pt_regs *regs, unsigned long error_code)
|
|||
good_area:
|
||||
si_code = SEGV_ACCERR;
|
||||
write = 0;
|
||||
switch (error_code & 3) {
|
||||
default: /* 3: write, present */
|
||||
/* fall through */
|
||||
case 2: /* write, not present */
|
||||
if (!(vma->vm_flags & VM_WRITE))
|
||||
goto bad_area;
|
||||
write++;
|
||||
break;
|
||||
case 1: /* read, present */
|
||||
switch (error_code & (PF_PROT|PF_WRITE)) {
|
||||
default: /* 3: write, present */
|
||||
/* fall through */
|
||||
case PF_WRITE: /* write, not present */
|
||||
if (!(vma->vm_flags & VM_WRITE))
|
||||
goto bad_area;
|
||||
write++;
|
||||
break;
|
||||
case PF_PROT: /* read, present */
|
||||
goto bad_area;
|
||||
case 0: /* read, not present */
|
||||
if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
|
||||
goto bad_area;
|
||||
case 0: /* read, not present */
|
||||
if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
|
||||
goto bad_area;
|
||||
}
|
||||
|
||||
survive:
|
||||
|
@ -457,14 +475,14 @@ bad_area:
|
|||
|
||||
bad_area_nosemaphore:
|
||||
/* User mode accesses just cause a SIGSEGV */
|
||||
if (error_code & 4) {
|
||||
if (error_code & PF_USER) {
|
||||
/*
|
||||
* It's possible to have interrupts off here.
|
||||
*/
|
||||
local_irq_enable();
|
||||
|
||||
/*
|
||||
* Valid to do another page fault here because this one came
|
||||
/*
|
||||
* Valid to do another page fault here because this one came
|
||||
* from user space.
|
||||
*/
|
||||
if (is_prefetch(regs, address, error_code))
|
||||
|
@ -492,7 +510,7 @@ bad_area_nosemaphore:
|
|||
*/
|
||||
if (boot_cpu_data.f00f_bug) {
|
||||
unsigned long nr;
|
||||
|
||||
|
||||
nr = (address - idt_descr.address) >> 3;
|
||||
|
||||
if (nr == 6) {
|
||||
|
@ -507,13 +525,13 @@ no_context:
|
|||
if (fixup_exception(regs))
|
||||
return;
|
||||
|
||||
/*
|
||||
/*
|
||||
* Valid to do another page fault here, because if this fault
|
||||
* had been triggered by is_prefetch fixup_exception would have
|
||||
* had been triggered by is_prefetch fixup_exception would have
|
||||
* handled it.
|
||||
*/
|
||||
if (is_prefetch(regs, address, error_code))
|
||||
return;
|
||||
if (is_prefetch(regs, address, error_code))
|
||||
return;
|
||||
|
||||
/*
|
||||
* Oops. The kernel tried to access some bad page. We'll have to
|
||||
|
@ -541,7 +559,7 @@ no_context:
|
|||
else
|
||||
printk(KERN_ALERT "BUG: unable to handle kernel paging"
|
||||
" request");
|
||||
printk(" at virtual address %08lx\n",address);
|
||||
printk(" at virtual address %08lx\n", address);
|
||||
printk(KERN_ALERT "printing ip: %08lx ", regs->ip);
|
||||
|
||||
page = read_cr3();
|
||||
|
@ -605,7 +623,7 @@ do_sigbus:
|
|||
up_read(&mm->mmap_sem);
|
||||
|
||||
/* Kernel mode? Handle exceptions or die */
|
||||
if (!(error_code & 4))
|
||||
if (!(error_code & PF_USER))
|
||||
goto no_context;
|
||||
|
||||
/* User space => ok to do another page fault */
|
||||
|
|
|
@ -1,6 +1,4 @@
|
|||
/*
|
||||
* linux/arch/x86-64/mm/fault.c
|
||||
*
|
||||
* Copyright (C) 1995 Linus Torvalds
|
||||
* Copyright (C) 2001,2002 Andi Kleen, SuSE Labs.
|
||||
*/
|
||||
|
@ -33,16 +31,23 @@
|
|||
#include <asm/proto.h>
|
||||
#include <asm-generic/sections.h>
|
||||
|
||||
/* Page fault error code bits */
|
||||
#define PF_PROT (1<<0) /* or no page found */
|
||||
/*
|
||||
* Page fault error code bits
|
||||
* bit 0 == 0 means no page found, 1 means protection fault
|
||||
* bit 1 == 0 means read, 1 means write
|
||||
* bit 2 == 0 means kernel, 1 means user-mode
|
||||
* bit 3 == 1 means use of reserved bit detected
|
||||
* bit 4 == 1 means fault was an instruction fetch
|
||||
*/
|
||||
#define PF_PROT (1<<0)
|
||||
#define PF_WRITE (1<<1)
|
||||
#define PF_USER (1<<2)
|
||||
#define PF_RSVD (1<<3)
|
||||
#define PF_INSTR (1<<4)
|
||||
|
||||
#ifdef CONFIG_KPROBES
|
||||
static inline int notify_page_fault(struct pt_regs *regs)
|
||||
{
|
||||
#ifdef CONFIG_KPROBES
|
||||
int ret = 0;
|
||||
|
||||
/* kprobe_running() needs smp_processor_id() */
|
||||
|
@ -54,75 +59,75 @@ static inline int notify_page_fault(struct pt_regs *regs)
|
|||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
#else
|
||||
static inline int notify_page_fault(struct pt_regs *regs)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
/* Sometimes the CPU reports invalid exceptions on prefetch.
|
||||
Check that here and ignore.
|
||||
Opcode checker based on code by Richard Brunner */
|
||||
static noinline int is_prefetch(struct pt_regs *regs, unsigned long addr,
|
||||
unsigned long error_code)
|
||||
{
|
||||
{
|
||||
unsigned char *instr;
|
||||
int scan_more = 1;
|
||||
int prefetch = 0;
|
||||
int prefetch = 0;
|
||||
unsigned char *max_instr;
|
||||
|
||||
/* If it was a exec fault ignore */
|
||||
if (error_code & PF_INSTR)
|
||||
return 0;
|
||||
|
||||
|
||||
instr = (unsigned char __user *)convert_rip_to_linear(current, regs);
|
||||
max_instr = instr + 15;
|
||||
|
||||
if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE)
|
||||
return 0;
|
||||
|
||||
while (scan_more && instr < max_instr) {
|
||||
while (scan_more && instr < max_instr) {
|
||||
unsigned char opcode;
|
||||
unsigned char instr_hi;
|
||||
unsigned char instr_lo;
|
||||
|
||||
if (probe_kernel_address(instr, opcode))
|
||||
break;
|
||||
break;
|
||||
|
||||
instr_hi = opcode & 0xf0;
|
||||
instr_lo = opcode & 0x0f;
|
||||
instr_hi = opcode & 0xf0;
|
||||
instr_lo = opcode & 0x0f;
|
||||
instr++;
|
||||
|
||||
switch (instr_hi) {
|
||||
switch (instr_hi) {
|
||||
case 0x20:
|
||||
case 0x30:
|
||||
/* Values 0x26,0x2E,0x36,0x3E are valid x86
|
||||
prefixes. In long mode, the CPU will signal
|
||||
invalid opcode if some of these prefixes are
|
||||
present so we will never get here anyway */
|
||||
/*
|
||||
* Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
|
||||
* In X86_64 long mode, the CPU will signal invalid
|
||||
* opcode if some of these prefixes are present so
|
||||
* X86_64 will never get here anyway
|
||||
*/
|
||||
scan_more = ((instr_lo & 7) == 0x6);
|
||||
break;
|
||||
|
||||
#ifdef CONFIG_X86_64
|
||||
case 0x40:
|
||||
/* In AMD64 long mode, 0x40 to 0x4F are valid REX prefixes
|
||||
Need to figure out under what instruction mode the
|
||||
instruction was issued ... */
|
||||
/* Could check the LDT for lm, but for now it's good
|
||||
enough to assume that long mode only uses well known
|
||||
segments or kernel. */
|
||||
/*
|
||||
* In AMD64 long mode 0x40..0x4F are valid REX prefixes
|
||||
* Need to figure out under what instruction mode the
|
||||
* instruction was issued. Could check the LDT for lm,
|
||||
* but for now it's good enough to assume that long
|
||||
* mode only uses well known segments or kernel.
|
||||
*/
|
||||
scan_more = (!user_mode(regs)) || (regs->cs == __USER_CS);
|
||||
break;
|
||||
|
||||
#endif
|
||||
case 0x60:
|
||||
/* 0x64 thru 0x67 are valid prefixes in all modes. */
|
||||
scan_more = (instr_lo & 0xC) == 0x4;
|
||||
break;
|
||||
break;
|
||||
case 0xF0:
|
||||
/* 0xF0, 0xF2, and 0xF3 are valid prefixes in all modes. */
|
||||
scan_more = !instr_lo || (instr_lo>>1) == 1;
|
||||
break;
|
||||
break;
|
||||
case 0x00:
|
||||
/* Prefetch instruction is 0x0F0D or 0x0F18 */
|
||||
scan_more = 0;
|
||||
|
@ -130,20 +135,20 @@ static noinline int is_prefetch(struct pt_regs *regs, unsigned long addr,
|
|||
break;
|
||||
prefetch = (instr_lo == 0xF) &&
|
||||
(opcode == 0x0D || opcode == 0x18);
|
||||
break;
|
||||
break;
|
||||
default:
|
||||
scan_more = 0;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
return prefetch;
|
||||
}
|
||||
|
||||
static int bad_address(void *p)
|
||||
{
|
||||
static int bad_address(void *p)
|
||||
{
|
||||
unsigned long dummy;
|
||||
return probe_kernel_address((unsigned long *)p, dummy);
|
||||
}
|
||||
}
|
||||
|
||||
void dump_pagetable(unsigned long address)
|
||||
{
|
||||
|
@ -154,11 +159,11 @@ void dump_pagetable(unsigned long address)
|
|||
|
||||
pgd = (pgd_t *)read_cr3();
|
||||
|
||||
pgd = __va((unsigned long)pgd & PHYSICAL_PAGE_MASK);
|
||||
pgd = __va((unsigned long)pgd & PHYSICAL_PAGE_MASK);
|
||||
pgd += pgd_index(address);
|
||||
if (bad_address(pgd)) goto bad;
|
||||
printk("PGD %lx ", pgd_val(*pgd));
|
||||
if (!pgd_present(*pgd)) goto ret;
|
||||
if (!pgd_present(*pgd)) goto ret;
|
||||
|
||||
pud = pud_offset(pgd, address);
|
||||
if (bad_address(pud)) goto bad;
|
||||
|
@ -172,7 +177,7 @@ void dump_pagetable(unsigned long address)
|
|||
|
||||
pte = pte_offset_kernel(pmd, address);
|
||||
if (bad_address(pte)) goto bad;
|
||||
printk("PTE %lx", pte_val(*pte));
|
||||
printk("PTE %lx", pte_val(*pte));
|
||||
ret:
|
||||
printk("\n");
|
||||
return;
|
||||
|
@ -180,7 +185,7 @@ bad:
|
|||
printk("BAD\n");
|
||||
}
|
||||
|
||||
static const char errata93_warning[] =
|
||||
static const char errata93_warning[] =
|
||||
KERN_ERR "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
|
||||
KERN_ERR "******* Working around it, but it may cause SEGVs or burn power.\n"
|
||||
KERN_ERR "******* Please consider a BIOS update.\n"
|
||||
|
@ -188,31 +193,31 @@ KERN_ERR "******* Disabling USB legacy in the BIOS may also help.\n";
|
|||
|
||||
/* Workaround for K8 erratum #93 & buggy BIOS.
|
||||
BIOS SMM functions are required to use a specific workaround
|
||||
to avoid corruption of the 64bit RIP register on C stepping K8.
|
||||
A lot of BIOS that didn't get tested properly miss this.
|
||||
to avoid corruption of the 64bit RIP register on C stepping K8.
|
||||
A lot of BIOS that didn't get tested properly miss this.
|
||||
The OS sees this as a page fault with the upper 32bits of RIP cleared.
|
||||
Try to work around it here.
|
||||
Note we only handle faults in kernel here. */
|
||||
|
||||
static int is_errata93(struct pt_regs *regs, unsigned long address)
|
||||
static int is_errata93(struct pt_regs *regs, unsigned long address)
|
||||
{
|
||||
static int warned;
|
||||
if (address != regs->ip)
|
||||
return 0;
|
||||
if ((address >> 32) != 0)
|
||||
if ((address >> 32) != 0)
|
||||
return 0;
|
||||
address |= 0xffffffffUL << 32;
|
||||
if ((address >= (u64)_stext && address <= (u64)_etext) ||
|
||||
(address >= MODULES_VADDR && address <= MODULES_END)) {
|
||||
if ((address >= (u64)_stext && address <= (u64)_etext) ||
|
||||
(address >= MODULES_VADDR && address <= MODULES_END)) {
|
||||
if (!warned) {
|
||||
printk(errata93_warning);
|
||||
printk(errata93_warning);
|
||||
warned = 1;
|
||||
}
|
||||
regs->ip = address;
|
||||
return 1;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
static noinline void pgtable_bad(unsigned long address, struct pt_regs *regs,
|
||||
unsigned long error_code)
|
||||
|
@ -296,7 +301,7 @@ asmlinkage void __kprobes do_page_fault(struct pt_regs *regs,
|
|||
{
|
||||
struct task_struct *tsk;
|
||||
struct mm_struct *mm;
|
||||
struct vm_area_struct * vma;
|
||||
struct vm_area_struct *vma;
|
||||
unsigned long address;
|
||||
int write, fault;
|
||||
unsigned long flags;
|
||||
|
@ -360,8 +365,8 @@ asmlinkage void __kprobes do_page_fault(struct pt_regs *regs,
|
|||
pgtable_bad(address, regs, error_code);
|
||||
|
||||
/*
|
||||
* If we're in an interrupt or have no user
|
||||
* context, we must not take the fault..
|
||||
* If we're in an interrupt, have no user context or are running in an
|
||||
* atomic region then we must not take the fault.
|
||||
*/
|
||||
if (unlikely(in_atomic() || !mm))
|
||||
goto bad_area_nosemaphore;
|
||||
|
@ -403,7 +408,7 @@ asmlinkage void __kprobes do_page_fault(struct pt_regs *regs,
|
|||
goto good_area;
|
||||
if (!(vma->vm_flags & VM_GROWSDOWN))
|
||||
goto bad_area;
|
||||
if (error_code & 4) {
|
||||
if (error_code & PF_USER) {
|
||||
/* Allow userspace just enough access below the stack pointer
|
||||
* to let the 'enter' instruction work.
|
||||
*/
|
||||
|
@ -420,18 +425,18 @@ good_area:
|
|||
info.si_code = SEGV_ACCERR;
|
||||
write = 0;
|
||||
switch (error_code & (PF_PROT|PF_WRITE)) {
|
||||
default: /* 3: write, present */
|
||||
/* fall through */
|
||||
case PF_WRITE: /* write, not present */
|
||||
if (!(vma->vm_flags & VM_WRITE))
|
||||
goto bad_area;
|
||||
write++;
|
||||
break;
|
||||
case PF_PROT: /* read, present */
|
||||
default: /* 3: write, present */
|
||||
/* fall through */
|
||||
case PF_WRITE: /* write, not present */
|
||||
if (!(vma->vm_flags & VM_WRITE))
|
||||
goto bad_area;
|
||||
write++;
|
||||
break;
|
||||
case PF_PROT: /* read, present */
|
||||
goto bad_area;
|
||||
case 0: /* read, not present */
|
||||
if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
|
||||
goto bad_area;
|
||||
case 0: /* read, not present */
|
||||
if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
|
||||
goto bad_area;
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -491,7 +496,7 @@ bad_area_nosemaphore:
|
|||
tsk->comm, tsk->pid, address, regs->ip,
|
||||
regs->sp, error_code);
|
||||
}
|
||||
|
||||
|
||||
tsk->thread.cr2 = address;
|
||||
/* Kernel addresses are always protection faults */
|
||||
tsk->thread.error_code = error_code | (address >= TASK_SIZE);
|
||||
|
@ -505,21 +510,19 @@ bad_area_nosemaphore:
|
|||
}
|
||||
|
||||
no_context:
|
||||
|
||||
/* Are we prepared to handle this kernel fault? */
|
||||
if (fixup_exception(regs)) {
|
||||
if (fixup_exception(regs))
|
||||
return;
|
||||
}
|
||||
|
||||
/*
|
||||
/*
|
||||
* Hall of shame of CPU/BIOS bugs.
|
||||
*/
|
||||
|
||||
if (is_prefetch(regs, address, error_code))
|
||||
return;
|
||||
if (is_prefetch(regs, address, error_code))
|
||||
return;
|
||||
|
||||
if (is_errata93(regs, address))
|
||||
return;
|
||||
return;
|
||||
|
||||
/*
|
||||
* Oops. The kernel tried to access some bad page. We'll have to
|
||||
|
@ -532,7 +535,7 @@ no_context:
|
|||
printk(KERN_ALERT "Unable to handle kernel NULL pointer dereference");
|
||||
else
|
||||
printk(KERN_ALERT "Unable to handle kernel paging request");
|
||||
printk(" at %016lx RIP: \n" KERN_ALERT,address);
|
||||
printk(" at %016lx RIP: \n" KERN_ALERT, address);
|
||||
printk_address(regs->ip);
|
||||
dump_pagetable(address);
|
||||
tsk->thread.cr2 = address;
|
||||
|
@ -582,7 +585,7 @@ LIST_HEAD(pgd_list);
|
|||
|
||||
void vmalloc_sync_all(void)
|
||||
{
|
||||
/* Note that races in the updates of insync and start aren't
|
||||
/* Note that races in the updates of insync and start aren't
|
||||
problematic:
|
||||
insync can only get set bits added, and updates to start are only
|
||||
improving performance (without affecting correctness if undone). */
|
||||
|
@ -614,6 +617,6 @@ void vmalloc_sync_all(void)
|
|||
}
|
||||
/* Check that there is no need to do the same for the modules area. */
|
||||
BUILD_BUG_ON(!(MODULES_VADDR > __START_KERNEL));
|
||||
BUILD_BUG_ON(!(((MODULES_END - 1) & PGDIR_MASK) ==
|
||||
BUILD_BUG_ON(!(((MODULES_END - 1) & PGDIR_MASK) ==
|
||||
(__START_KERNEL & PGDIR_MASK)));
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue