mm: prevent kswapd from freeing excessive amounts of lowmem

The current VM can get itself into trouble fairly easily on systems with a
small ZONE_HIGHMEM, which is common on i686 computers with 1GB of memory.

On one side, page_alloc() will allocate down to zone->pages_low, while on
the other side, kswapd() and balance_pgdat() will try to free memory from
every zone, until every zone has more free pages than zone->pages_high.

Highmem can be filled up to zone->pages_low with page tables, ramfs,
vmalloc allocations and other unswappable things quite easily and without
many bad side effects, since we still have a huge ZONE_NORMAL to do future
allocations from.

However, as long as the number of free pages in the highmem zone is below
zone->pages_high, kswapd will continue swapping things out from
ZONE_NORMAL, too!

Sami Farin managed to get his system into a stage where kswapd had freed
about 700MB of low memory and was still "going strong".

The attached patch will make kswapd stop paging out data from zones when
there is more than enough memory free.  We do go above zone->pages_high in
order to keep pressure between zones equal in normal circumstances, but the
patch should prevent the kind of excesses that made Sami's computer totally
unusable.

Signed-off-by: Rik van Riel <riel@redhat.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This commit is contained in:
Rik van Riel 2007-10-16 01:24:50 -07:00 committed by Linus Torvalds
parent 8691f3a72f
commit 32a4330d41
1 changed files with 7 additions and 1 deletions

View File

@ -1371,7 +1371,13 @@ loop_again:
temp_priority[i] = priority; temp_priority[i] = priority;
sc.nr_scanned = 0; sc.nr_scanned = 0;
note_zone_scanning_priority(zone, priority); note_zone_scanning_priority(zone, priority);
nr_reclaimed += shrink_zone(priority, zone, &sc); /*
* We put equal pressure on every zone, unless one
* zone has way too many pages free already.
*/
if (!zone_watermark_ok(zone, order, 8*zone->pages_high,
end_zone, 0))
nr_reclaimed += shrink_zone(priority, zone, &sc);
reclaim_state->reclaimed_slab = 0; reclaim_state->reclaimed_slab = 0;
nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL, nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
lru_pages); lru_pages);