dmaengine updates for v5.1-rc1

- dmatest updates for modularizing common struct and code
  - remove SG support for VDMA xilinx IP and updates to driver
  - Update to dw driver to support Intel iDMA controllers
    multi-block support
  - tegra updates for proper reporting of residue
  - Add Snow Ridge ioatdma device id and support for IOATDMA v3.4
  - struct_size() usage and useless LIST_HEAD cleanups in subsystem.
  - qDMA controller driver for Layerscape SoCs
  - stm32-dma PM Runtime support
  - And usual updates to imx-sdma, sprd, Documentation, fsl-edma,
    bcm2835, qcom_hidma etc
 -----BEGIN PGP SIGNATURE-----
 
 iQIcBAABAgAGBQJciVhkAAoJEHwUBw8lI4NHdVoQANDfaY1eruozJobfWX0w1b8U
 0eSCN4M/gRzL/K1nOTWTV9dZFGycGokPBn25lryX6d6VIL+yO7Ptpwls/w0inn0e
 RgVtESQodLZyxcD4iWACVfTGxqxe74/bXCRAq0OCrjt5oX+5KdsBsTrhHvB8dQin
 JWT7Mq6tii5wZHZHl9b4Ds/crxM9+pIHmlzbu5MQiPDL37X9HX4KUoLQCKrVGgZt
 3FjlKEiSS6CnBWP1cs/aHgANr/PjOIwL8SD1t5NPS3i7/2k9z1u16TmmI8SbcyHf
 y9hVy1QPlxC5V85EPYK7JW7JLILotkMToxlX/QhfaFN0PWQq04rp6PCLvObKJuB2
 36QJTwSXBM2/f9bWwkddPyo9Szb3L30K80Vx8zlxzgoXYWtFFB2BXAV57M/I48j2
 gMnxEMZpHD3IupeqlykCmssClVVmCRT8qUZHLNHTdDNu48rLuNlZestFGyBS2Ma2
 D4UcJPiA/IxENy1rz54XoCajL/BIJOsFXXVRikjj3vfbV0Uir0uB9puzwfemMtKz
 tCrJbKwnnDtN30vBZtU7hVu/t4lFYYnl2c945+SpeQC69dysz3IFQGem0kxVHKnH
 INdQH4Od7nQbVQer1EXg4+h3n/rUbcYx/0iLE6JAYyOT80wE+KSlrQ5etqyJ3/qh
 1BxvU49PkUUPzw7aUGgS
 =Ykvn
 -----END PGP SIGNATURE-----

Merge tag 'dmaengine-5.1-rc1' of git://git.infradead.org/users/vkoul/slave-dma

Pull dmaengine updates from Vinod Koul:

 - dmatest updates for modularizing common struct and code

 - remove SG support for VDMA xilinx IP and updates to driver

 - Update to dw driver to support Intel iDMA controllers multi-block
   support

 - tegra updates for proper reporting of residue

 - Add Snow Ridge ioatdma device id and support for IOATDMA v3.4

 - struct_size() usage and useless LIST_HEAD cleanups in subsystem.

 - qDMA controller driver for Layerscape SoCs

 - stm32-dma PM Runtime support

 - And usual updates to imx-sdma, sprd, Documentation, fsl-edma,
   bcm2835, qcom_hidma etc

* tag 'dmaengine-5.1-rc1' of git://git.infradead.org/users/vkoul/slave-dma: (81 commits)
  dmaengine: imx-sdma: fix consistent dma test failures
  dmaengine: imx-sdma: add a test for imx8mq multi sdma devices
  dmaengine: imx-sdma: add clock ratio 1:1 check
  dmaengine: dmatest: move test data alloc & free into functions
  dmaengine: dmatest: add short-hand `buf_size` var in dmatest_func()
  dmaengine: dmatest: wrap src & dst data into a struct
  dmaengine: ioatdma: support latency tolerance report (LTR) for v3.4
  dmaengine: ioatdma: add descriptor pre-fetch support for v3.4
  dmaengine: ioatdma: disable DCA enabling on IOATDMA v3.4
  dmaengine: ioatdma: Add Snow Ridge ioatdma device id
  dmaengine: sprd: Change channel id to slave id for DMA cell specifier
  dt-bindings: dmaengine: sprd: Change channel id to slave id for DMA cell specifier
  dmaengine: mv_xor: Use correct device for DMA API
  Documentation :dmaengine: clarify DMA desc. pointer after submission
  Documentation: dmaengine: fix dmatest.rst warning
  dmaengine: k3dma: Add support for dma-channel-mask
  dmaengine: k3dma: Delete axi_config
  dmaengine: k3dma: Upgrade k3dma driver to support hisi_asp_dma hardware
  Documentation: bindings: dma: Add binding for dma-channel-mask
  Documentation: bindings: k3dma: Extend the k3dma driver binding to support hisi-asp
  ...
This commit is contained in:
Linus Torvalds 2019-03-14 09:11:54 -07:00
commit 31ef489a02
61 changed files with 2597 additions and 659 deletions

View File

@ -16,6 +16,9 @@ Optional properties:
- dma-channels: Number of DMA channels supported by the controller. - dma-channels: Number of DMA channels supported by the controller.
- dma-requests: Number of DMA request signals supported by the - dma-requests: Number of DMA request signals supported by the
controller. controller.
- dma-channel-mask: Bitmask of available DMA channels in ascending order
that are not reserved by firmware and are available to
the kernel. i.e. first channel corresponds to LSB.
Example: Example:
@ -29,6 +32,7 @@ Example:
#dma-cells = <1>; #dma-cells = <1>;
dma-channels = <32>; dma-channels = <32>;
dma-requests = <127>; dma-requests = <127>;
dma-channel-mask = <0xfffe>
}; };
* DMA router * DMA router

View File

@ -0,0 +1,57 @@
NXP Layerscape SoC qDMA Controller
==================================
This device follows the generic DMA bindings defined in dma/dma.txt.
Required properties:
- compatible: Must be one of
"fsl,ls1021a-qdma": for LS1021A Board
"fsl,ls1043a-qdma": for ls1043A Board
"fsl,ls1046a-qdma": for ls1046A Board
- reg: Should contain the register's base address and length.
- interrupts: Should contain a reference to the interrupt used by this
device.
- interrupt-names: Should contain interrupt names:
"qdma-queue0": the block0 interrupt
"qdma-queue1": the block1 interrupt
"qdma-queue2": the block2 interrupt
"qdma-queue3": the block3 interrupt
"qdma-error": the error interrupt
- fsl,dma-queues: Should contain number of queues supported.
- dma-channels: Number of DMA channels supported
- block-number: the virtual block number
- block-offset: the offset of different virtual block
- status-sizes: status queue size of per virtual block
- queue-sizes: command queue size of per virtual block, the size number
based on queues
Optional properties:
- dma-channels: Number of DMA channels supported by the controller.
- big-endian: If present registers and hardware scatter/gather descriptors
of the qDMA are implemented in big endian mode, otherwise in little
mode.
Examples:
qdma: dma-controller@8390000 {
compatible = "fsl,ls1021a-qdma";
reg = <0x0 0x8388000 0x0 0x1000>, /* Controller regs */
<0x0 0x8389000 0x0 0x1000>, /* Status regs */
<0x0 0x838a000 0x0 0x2000>; /* Block regs */
interrupts = <GIC_SPI 185 IRQ_TYPE_LEVEL_HIGH>,
<GIC_SPI 76 IRQ_TYPE_LEVEL_HIGH>,
<GIC_SPI 77 IRQ_TYPE_LEVEL_HIGH>;
interrupt-names = "qdma-error",
"qdma-queue0", "qdma-queue1";
dma-channels = <8>;
block-number = <2>;
block-offset = <0x1000>;
fsl,dma-queues = <2>;
status-sizes = <64>;
queue-sizes = <64 64>;
big-endian;
};
DMA clients must use the format described in dma/dma.txt file.

View File

@ -3,7 +3,9 @@
See dma.txt first See dma.txt first
Required properties: Required properties:
- compatible: Should be "hisilicon,k3-dma-1.0" - compatible: Must be one of
- "hisilicon,k3-dma-1.0"
- "hisilicon,hisi-pcm-asp-dma-1.0"
- reg: Should contain DMA registers location and length. - reg: Should contain DMA registers location and length.
- interrupts: Should contain one interrupt shared by all channel - interrupts: Should contain one interrupt shared by all channel
- #dma-cells: see dma.txt, should be 1, para number - #dma-cells: see dma.txt, should be 1, para number

View File

@ -23,8 +23,6 @@ Deprecated properties:
Optional properties: Optional properties:
- is_private: The device channels should be marked as private and not for by the
general purpose DMA channel allocator. False if not passed.
- multi-block: Multi block transfers supported by hardware. Array property with - multi-block: Multi block transfers supported by hardware. Array property with
one cell per channel. 0: not supported, 1 (default): supported. one cell per channel. 0: not supported, 1 (default): supported.
- snps,dma-protection-control: AHB HPROT[3:1] protection setting. - snps,dma-protection-control: AHB HPROT[3:1] protection setting.

View File

@ -31,7 +31,7 @@ DMA clients connected to the Spreadtrum DMA controller must use the format
described in the dma.txt file, using a two-cell specifier for each channel. described in the dma.txt file, using a two-cell specifier for each channel.
The two cells in order are: The two cells in order are:
1. A phandle pointing to the DMA controller. 1. A phandle pointing to the DMA controller.
2. The channel id. 2. The slave id.
spi0: spi@70a00000{ spi0: spi@70a00000{
... ...

View File

@ -37,10 +37,11 @@ Required properties:
Required properties for VDMA: Required properties for VDMA:
- xlnx,num-fstores: Should be the number of framebuffers as configured in h/w. - xlnx,num-fstores: Should be the number of framebuffers as configured in h/w.
Optional properties:
- xlnx,include-sg: Tells configured for Scatter-mode in
the hardware.
Optional properties for AXI DMA: Optional properties for AXI DMA:
- xlnx,sg-length-width: Should be set to the width in bits of the length
register as configured in h/w. Takes values {8...26}. If the property
is missing or invalid then the default value 23 is used. This is the
maximum value that is supported by all IP versions.
- xlnx,mcdma: Tells whether configured for multi-channel mode in the hardware. - xlnx,mcdma: Tells whether configured for multi-channel mode in the hardware.
Optional properties for VDMA: Optional properties for VDMA:
- xlnx,flush-fsync: Tells which channel to Flush on Frame sync. - xlnx,flush-fsync: Tells which channel to Flush on Frame sync.

View File

@ -172,7 +172,7 @@ The details of these operations are:
After calling ``dmaengine_submit()`` the submitted transfer descriptor After calling ``dmaengine_submit()`` the submitted transfer descriptor
(``struct dma_async_tx_descriptor``) belongs to the DMA engine. (``struct dma_async_tx_descriptor``) belongs to the DMA engine.
Consequentially, the client must consider invalid the pointer to that Consequently, the client must consider invalid the pointer to that
descriptor. descriptor.
5. Issue pending DMA requests and wait for callback notification 5. Issue pending DMA requests and wait for callback notification

View File

@ -59,6 +59,7 @@ parameter, that specific channel is requested using the dmaengine and a thread
is created with the existing parameters. This thread is set as pending is created with the existing parameters. This thread is set as pending
and will be executed once run is set to 1. Any parameters set after the thread and will be executed once run is set to 1. Any parameters set after the thread
is created are not applied. is created are not applied.
.. hint:: .. hint::
available channel list could be extracted by running the following command:: available channel list could be extracted by running the following command::

View File

@ -218,6 +218,20 @@ config FSL_EDMA
multiplexing capability for DMA request sources(slot). multiplexing capability for DMA request sources(slot).
This module can be found on Freescale Vybrid and LS-1 SoCs. This module can be found on Freescale Vybrid and LS-1 SoCs.
config FSL_QDMA
tristate "NXP Layerscape qDMA engine support"
depends on ARM || ARM64
select DMA_ENGINE
select DMA_VIRTUAL_CHANNELS
select DMA_ENGINE_RAID
select ASYNC_TX_ENABLE_CHANNEL_SWITCH
help
Support the NXP Layerscape qDMA engine with command queue and legacy mode.
Channel virtualization is supported through enqueuing of DMA jobs to,
or dequeuing DMA jobs from, different work queues.
This module can be found on NXP Layerscape SoCs.
The qdma driver only work on SoCs with a DPAA hardware block.
config FSL_RAID config FSL_RAID
tristate "Freescale RAID engine Support" tristate "Freescale RAID engine Support"
depends on FSL_SOC && !ASYNC_TX_ENABLE_CHANNEL_SWITCH depends on FSL_SOC && !ASYNC_TX_ENABLE_CHANNEL_SWITCH

View File

@ -33,6 +33,7 @@ obj-$(CONFIG_EP93XX_DMA) += ep93xx_dma.o
obj-$(CONFIG_FSL_DMA) += fsldma.o obj-$(CONFIG_FSL_DMA) += fsldma.o
obj-$(CONFIG_FSL_EDMA) += fsl-edma.o fsl-edma-common.o obj-$(CONFIG_FSL_EDMA) += fsl-edma.o fsl-edma-common.o
obj-$(CONFIG_MCF_EDMA) += mcf-edma.o fsl-edma-common.o obj-$(CONFIG_MCF_EDMA) += mcf-edma.o fsl-edma-common.o
obj-$(CONFIG_FSL_QDMA) += fsl-qdma.o
obj-$(CONFIG_FSL_RAID) += fsl_raid.o obj-$(CONFIG_FSL_RAID) += fsl_raid.o
obj-$(CONFIG_HSU_DMA) += hsu/ obj-$(CONFIG_HSU_DMA) += hsu/
obj-$(CONFIG_IMG_MDC_DMA) += img-mdc-dma.o obj-$(CONFIG_IMG_MDC_DMA) += img-mdc-dma.o

View File

@ -134,7 +134,6 @@ static struct at_desc *atc_desc_get(struct at_dma_chan *atchan)
struct at_desc *ret = NULL; struct at_desc *ret = NULL;
unsigned long flags; unsigned long flags;
unsigned int i = 0; unsigned int i = 0;
LIST_HEAD(tmp_list);
spin_lock_irqsave(&atchan->lock, flags); spin_lock_irqsave(&atchan->lock, flags);
list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) { list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) {
@ -1387,8 +1386,6 @@ static int atc_pause(struct dma_chan *chan)
int chan_id = atchan->chan_common.chan_id; int chan_id = atchan->chan_common.chan_id;
unsigned long flags; unsigned long flags;
LIST_HEAD(list);
dev_vdbg(chan2dev(chan), "%s\n", __func__); dev_vdbg(chan2dev(chan), "%s\n", __func__);
spin_lock_irqsave(&atchan->lock, flags); spin_lock_irqsave(&atchan->lock, flags);
@ -1408,8 +1405,6 @@ static int atc_resume(struct dma_chan *chan)
int chan_id = atchan->chan_common.chan_id; int chan_id = atchan->chan_common.chan_id;
unsigned long flags; unsigned long flags;
LIST_HEAD(list);
dev_vdbg(chan2dev(chan), "%s\n", __func__); dev_vdbg(chan2dev(chan), "%s\n", __func__);
if (!atc_chan_is_paused(atchan)) if (!atc_chan_is_paused(atchan))

View File

@ -2,9 +2,6 @@
/* /*
* BCM2835 DMA engine support * BCM2835 DMA engine support
* *
* This driver only supports cyclic DMA transfers
* as needed for the I2S module.
*
* Author: Florian Meier <florian.meier@koalo.de> * Author: Florian Meier <florian.meier@koalo.de>
* Copyright 2013 * Copyright 2013
* *
@ -42,7 +39,6 @@
struct bcm2835_dmadev { struct bcm2835_dmadev {
struct dma_device ddev; struct dma_device ddev;
spinlock_t lock;
void __iomem *base; void __iomem *base;
struct device_dma_parameters dma_parms; struct device_dma_parameters dma_parms;
}; };
@ -64,7 +60,6 @@ struct bcm2835_cb_entry {
struct bcm2835_chan { struct bcm2835_chan {
struct virt_dma_chan vc; struct virt_dma_chan vc;
struct list_head node;
struct dma_slave_config cfg; struct dma_slave_config cfg;
unsigned int dreq; unsigned int dreq;
@ -312,8 +307,7 @@ static struct bcm2835_desc *bcm2835_dma_create_cb_chain(
return NULL; return NULL;
/* allocate and setup the descriptor. */ /* allocate and setup the descriptor. */
d = kzalloc(sizeof(*d) + frames * sizeof(struct bcm2835_cb_entry), d = kzalloc(struct_size(d, cb_list, frames), gfp);
gfp);
if (!d) if (!d)
return NULL; return NULL;
@ -406,7 +400,7 @@ static void bcm2835_dma_fill_cb_chain_with_sg(
} }
} }
static int bcm2835_dma_abort(struct bcm2835_chan *c) static void bcm2835_dma_abort(struct bcm2835_chan *c)
{ {
void __iomem *chan_base = c->chan_base; void __iomem *chan_base = c->chan_base;
long int timeout = 10000; long int timeout = 10000;
@ -416,7 +410,7 @@ static int bcm2835_dma_abort(struct bcm2835_chan *c)
* (The ACTIVE flag in the CS register is not a reliable indicator.) * (The ACTIVE flag in the CS register is not a reliable indicator.)
*/ */
if (!readl(chan_base + BCM2835_DMA_ADDR)) if (!readl(chan_base + BCM2835_DMA_ADDR))
return 0; return;
/* Write 0 to the active bit - Pause the DMA */ /* Write 0 to the active bit - Pause the DMA */
writel(0, chan_base + BCM2835_DMA_CS); writel(0, chan_base + BCM2835_DMA_CS);
@ -432,7 +426,6 @@ static int bcm2835_dma_abort(struct bcm2835_chan *c)
"failed to complete outstanding writes\n"); "failed to complete outstanding writes\n");
writel(BCM2835_DMA_RESET, chan_base + BCM2835_DMA_CS); writel(BCM2835_DMA_RESET, chan_base + BCM2835_DMA_CS);
return 0;
} }
static void bcm2835_dma_start_desc(struct bcm2835_chan *c) static void bcm2835_dma_start_desc(struct bcm2835_chan *c)
@ -504,8 +497,12 @@ static int bcm2835_dma_alloc_chan_resources(struct dma_chan *chan)
dev_dbg(dev, "Allocating DMA channel %d\n", c->ch); dev_dbg(dev, "Allocating DMA channel %d\n", c->ch);
/*
* Control blocks are 256 bit in length and must start at a 256 bit
* (32 byte) aligned address (BCM2835 ARM Peripherals, sec. 4.2.1.1).
*/
c->cb_pool = dma_pool_create(dev_name(dev), dev, c->cb_pool = dma_pool_create(dev_name(dev), dev,
sizeof(struct bcm2835_dma_cb), 0, 0); sizeof(struct bcm2835_dma_cb), 32, 0);
if (!c->cb_pool) { if (!c->cb_pool) {
dev_err(dev, "unable to allocate descriptor pool\n"); dev_err(dev, "unable to allocate descriptor pool\n");
return -ENOMEM; return -ENOMEM;
@ -774,17 +771,11 @@ static int bcm2835_dma_slave_config(struct dma_chan *chan,
static int bcm2835_dma_terminate_all(struct dma_chan *chan) static int bcm2835_dma_terminate_all(struct dma_chan *chan)
{ {
struct bcm2835_chan *c = to_bcm2835_dma_chan(chan); struct bcm2835_chan *c = to_bcm2835_dma_chan(chan);
struct bcm2835_dmadev *d = to_bcm2835_dma_dev(c->vc.chan.device);
unsigned long flags; unsigned long flags;
LIST_HEAD(head); LIST_HEAD(head);
spin_lock_irqsave(&c->vc.lock, flags); spin_lock_irqsave(&c->vc.lock, flags);
/* Prevent this channel being scheduled */
spin_lock(&d->lock);
list_del_init(&c->node);
spin_unlock(&d->lock);
/* stop DMA activity */ /* stop DMA activity */
if (c->desc) { if (c->desc) {
vchan_terminate_vdesc(&c->desc->vd); vchan_terminate_vdesc(&c->desc->vd);
@ -817,7 +808,6 @@ static int bcm2835_dma_chan_init(struct bcm2835_dmadev *d, int chan_id,
c->vc.desc_free = bcm2835_dma_desc_free; c->vc.desc_free = bcm2835_dma_desc_free;
vchan_init(&c->vc, &d->ddev); vchan_init(&c->vc, &d->ddev);
INIT_LIST_HEAD(&c->node);
c->chan_base = BCM2835_DMA_CHANIO(d->base, chan_id); c->chan_base = BCM2835_DMA_CHANIO(d->base, chan_id);
c->ch = chan_id; c->ch = chan_id;
@ -920,7 +910,6 @@ static int bcm2835_dma_probe(struct platform_device *pdev)
od->ddev.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; od->ddev.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
od->ddev.dev = &pdev->dev; od->ddev.dev = &pdev->dev;
INIT_LIST_HEAD(&od->ddev.channels); INIT_LIST_HEAD(&od->ddev.channels);
spin_lock_init(&od->lock);
platform_set_drvdata(pdev, od); platform_set_drvdata(pdev, od);

View File

@ -367,8 +367,7 @@ static struct axi_dmac_desc *axi_dmac_alloc_desc(unsigned int num_sgs)
struct axi_dmac_desc *desc; struct axi_dmac_desc *desc;
unsigned int i; unsigned int i;
desc = kzalloc(sizeof(struct axi_dmac_desc) + desc = kzalloc(struct_size(desc, sg, num_sgs), GFP_NOWAIT);
sizeof(struct axi_dmac_sg) * num_sgs, GFP_NOWAIT);
if (!desc) if (!desc)
return NULL; return NULL;

View File

@ -838,9 +838,8 @@ static int jz4780_dma_probe(struct platform_device *pdev)
if (!soc_data) if (!soc_data)
return -EINVAL; return -EINVAL;
jzdma = devm_kzalloc(dev, sizeof(*jzdma) jzdma = devm_kzalloc(dev, struct_size(jzdma, chan,
+ sizeof(*jzdma->chan) * soc_data->nb_channels, soc_data->nb_channels), GFP_KERNEL);
GFP_KERNEL);
if (!jzdma) if (!jzdma)
return -ENOMEM; return -ENOMEM;

View File

@ -200,15 +200,20 @@ struct dmatest_done {
wait_queue_head_t *wait; wait_queue_head_t *wait;
}; };
struct dmatest_data {
u8 **raw;
u8 **aligned;
unsigned int cnt;
unsigned int off;
};
struct dmatest_thread { struct dmatest_thread {
struct list_head node; struct list_head node;
struct dmatest_info *info; struct dmatest_info *info;
struct task_struct *task; struct task_struct *task;
struct dma_chan *chan; struct dma_chan *chan;
u8 **srcs; struct dmatest_data src;
u8 **usrcs; struct dmatest_data dst;
u8 **dsts;
u8 **udsts;
enum dma_transaction_type type; enum dma_transaction_type type;
wait_queue_head_t done_wait; wait_queue_head_t done_wait;
struct dmatest_done test_done; struct dmatest_done test_done;
@ -481,6 +486,53 @@ static unsigned long long dmatest_KBs(s64 runtime, unsigned long long len)
return FIXPT_TO_INT(dmatest_persec(runtime, len >> 10)); return FIXPT_TO_INT(dmatest_persec(runtime, len >> 10));
} }
static void __dmatest_free_test_data(struct dmatest_data *d, unsigned int cnt)
{
unsigned int i;
for (i = 0; i < cnt; i++)
kfree(d->raw[i]);
kfree(d->aligned);
kfree(d->raw);
}
static void dmatest_free_test_data(struct dmatest_data *d)
{
__dmatest_free_test_data(d, d->cnt);
}
static int dmatest_alloc_test_data(struct dmatest_data *d,
unsigned int buf_size, u8 align)
{
unsigned int i = 0;
d->raw = kcalloc(d->cnt + 1, sizeof(u8 *), GFP_KERNEL);
if (!d->raw)
return -ENOMEM;
d->aligned = kcalloc(d->cnt + 1, sizeof(u8 *), GFP_KERNEL);
if (!d->aligned)
goto err;
for (i = 0; i < d->cnt; i++) {
d->raw[i] = kmalloc(buf_size + align, GFP_KERNEL);
if (!d->raw[i])
goto err;
/* align to alignment restriction */
if (align)
d->aligned[i] = PTR_ALIGN(d->raw[i], align);
else
d->aligned[i] = d->raw[i];
}
return 0;
err:
__dmatest_free_test_data(d, i);
return -ENOMEM;
}
/* /*
* This function repeatedly tests DMA transfers of various lengths and * This function repeatedly tests DMA transfers of various lengths and
* offsets for a given operation type until it is told to exit by * offsets for a given operation type until it is told to exit by
@ -511,8 +563,9 @@ static int dmatest_func(void *data)
enum dma_ctrl_flags flags; enum dma_ctrl_flags flags;
u8 *pq_coefs = NULL; u8 *pq_coefs = NULL;
int ret; int ret;
int src_cnt; unsigned int buf_size;
int dst_cnt; struct dmatest_data *src;
struct dmatest_data *dst;
int i; int i;
ktime_t ktime, start, diff; ktime_t ktime, start, diff;
ktime_t filltime = 0; ktime_t filltime = 0;
@ -535,25 +588,27 @@ static int dmatest_func(void *data)
params = &info->params; params = &info->params;
chan = thread->chan; chan = thread->chan;
dev = chan->device; dev = chan->device;
src = &thread->src;
dst = &thread->dst;
if (thread->type == DMA_MEMCPY) { if (thread->type == DMA_MEMCPY) {
align = params->alignment < 0 ? dev->copy_align : align = params->alignment < 0 ? dev->copy_align :
params->alignment; params->alignment;
src_cnt = dst_cnt = 1; src->cnt = dst->cnt = 1;
} else if (thread->type == DMA_MEMSET) { } else if (thread->type == DMA_MEMSET) {
align = params->alignment < 0 ? dev->fill_align : align = params->alignment < 0 ? dev->fill_align :
params->alignment; params->alignment;
src_cnt = dst_cnt = 1; src->cnt = dst->cnt = 1;
is_memset = true; is_memset = true;
} else if (thread->type == DMA_XOR) { } else if (thread->type == DMA_XOR) {
/* force odd to ensure dst = src */ /* force odd to ensure dst = src */
src_cnt = min_odd(params->xor_sources | 1, dev->max_xor); src->cnt = min_odd(params->xor_sources | 1, dev->max_xor);
dst_cnt = 1; dst->cnt = 1;
align = params->alignment < 0 ? dev->xor_align : align = params->alignment < 0 ? dev->xor_align :
params->alignment; params->alignment;
} else if (thread->type == DMA_PQ) { } else if (thread->type == DMA_PQ) {
/* force odd to ensure dst = src */ /* force odd to ensure dst = src */
src_cnt = min_odd(params->pq_sources | 1, dma_maxpq(dev, 0)); src->cnt = min_odd(params->pq_sources | 1, dma_maxpq(dev, 0));
dst_cnt = 2; dst->cnt = 2;
align = params->alignment < 0 ? dev->pq_align : align = params->alignment < 0 ? dev->pq_align :
params->alignment; params->alignment;
@ -561,75 +616,38 @@ static int dmatest_func(void *data)
if (!pq_coefs) if (!pq_coefs)
goto err_thread_type; goto err_thread_type;
for (i = 0; i < src_cnt; i++) for (i = 0; i < src->cnt; i++)
pq_coefs[i] = 1; pq_coefs[i] = 1;
} else } else
goto err_thread_type; goto err_thread_type;
/* Check if buffer count fits into map count variable (u8) */ /* Check if buffer count fits into map count variable (u8) */
if ((src_cnt + dst_cnt) >= 255) { if ((src->cnt + dst->cnt) >= 255) {
pr_err("too many buffers (%d of 255 supported)\n", pr_err("too many buffers (%d of 255 supported)\n",
src_cnt + dst_cnt); src->cnt + dst->cnt);
goto err_free_coefs; goto err_free_coefs;
} }
if (1 << align > params->buf_size) { buf_size = params->buf_size;
if (1 << align > buf_size) {
pr_err("%u-byte buffer too small for %d-byte alignment\n", pr_err("%u-byte buffer too small for %d-byte alignment\n",
params->buf_size, 1 << align); buf_size, 1 << align);
goto err_free_coefs; goto err_free_coefs;
} }
thread->srcs = kcalloc(src_cnt + 1, sizeof(u8 *), GFP_KERNEL); if (dmatest_alloc_test_data(src, buf_size, align) < 0)
if (!thread->srcs)
goto err_free_coefs; goto err_free_coefs;
thread->usrcs = kcalloc(src_cnt + 1, sizeof(u8 *), GFP_KERNEL); if (dmatest_alloc_test_data(dst, buf_size, align) < 0)
if (!thread->usrcs) goto err_src;
goto err_usrcs;
for (i = 0; i < src_cnt; i++) {
thread->usrcs[i] = kmalloc(params->buf_size + align,
GFP_KERNEL);
if (!thread->usrcs[i])
goto err_srcbuf;
/* align srcs to alignment restriction */
if (align)
thread->srcs[i] = PTR_ALIGN(thread->usrcs[i], align);
else
thread->srcs[i] = thread->usrcs[i];
}
thread->srcs[i] = NULL;
thread->dsts = kcalloc(dst_cnt + 1, sizeof(u8 *), GFP_KERNEL);
if (!thread->dsts)
goto err_dsts;
thread->udsts = kcalloc(dst_cnt + 1, sizeof(u8 *), GFP_KERNEL);
if (!thread->udsts)
goto err_udsts;
for (i = 0; i < dst_cnt; i++) {
thread->udsts[i] = kmalloc(params->buf_size + align,
GFP_KERNEL);
if (!thread->udsts[i])
goto err_dstbuf;
/* align dsts to alignment restriction */
if (align)
thread->dsts[i] = PTR_ALIGN(thread->udsts[i], align);
else
thread->dsts[i] = thread->udsts[i];
}
thread->dsts[i] = NULL;
set_user_nice(current, 10); set_user_nice(current, 10);
srcs = kcalloc(src_cnt, sizeof(dma_addr_t), GFP_KERNEL); srcs = kcalloc(src->cnt, sizeof(dma_addr_t), GFP_KERNEL);
if (!srcs) if (!srcs)
goto err_dstbuf; goto err_dst;
dma_pq = kcalloc(dst_cnt, sizeof(dma_addr_t), GFP_KERNEL); dma_pq = kcalloc(dst->cnt, sizeof(dma_addr_t), GFP_KERNEL);
if (!dma_pq) if (!dma_pq)
goto err_srcs_array; goto err_srcs_array;
@ -644,21 +662,21 @@ static int dmatest_func(void *data)
struct dma_async_tx_descriptor *tx = NULL; struct dma_async_tx_descriptor *tx = NULL;
struct dmaengine_unmap_data *um; struct dmaengine_unmap_data *um;
dma_addr_t *dsts; dma_addr_t *dsts;
unsigned int src_off, dst_off, len; unsigned int len;
total_tests++; total_tests++;
if (params->transfer_size) { if (params->transfer_size) {
if (params->transfer_size >= params->buf_size) { if (params->transfer_size >= buf_size) {
pr_err("%u-byte transfer size must be lower than %u-buffer size\n", pr_err("%u-byte transfer size must be lower than %u-buffer size\n",
params->transfer_size, params->buf_size); params->transfer_size, buf_size);
break; break;
} }
len = params->transfer_size; len = params->transfer_size;
} else if (params->norandom) { } else if (params->norandom) {
len = params->buf_size; len = buf_size;
} else { } else {
len = dmatest_random() % params->buf_size + 1; len = dmatest_random() % buf_size + 1;
} }
/* Do not alter transfer size explicitly defined by user */ /* Do not alter transfer size explicitly defined by user */
@ -670,57 +688,57 @@ static int dmatest_func(void *data)
total_len += len; total_len += len;
if (params->norandom) { if (params->norandom) {
src_off = 0; src->off = 0;
dst_off = 0; dst->off = 0;
} else { } else {
src_off = dmatest_random() % (params->buf_size - len + 1); src->off = dmatest_random() % (buf_size - len + 1);
dst_off = dmatest_random() % (params->buf_size - len + 1); dst->off = dmatest_random() % (buf_size - len + 1);
src_off = (src_off >> align) << align; src->off = (src->off >> align) << align;
dst_off = (dst_off >> align) << align; dst->off = (dst->off >> align) << align;
} }
if (!params->noverify) { if (!params->noverify) {
start = ktime_get(); start = ktime_get();
dmatest_init_srcs(thread->srcs, src_off, len, dmatest_init_srcs(src->aligned, src->off, len,
params->buf_size, is_memset); buf_size, is_memset);
dmatest_init_dsts(thread->dsts, dst_off, len, dmatest_init_dsts(dst->aligned, dst->off, len,
params->buf_size, is_memset); buf_size, is_memset);
diff = ktime_sub(ktime_get(), start); diff = ktime_sub(ktime_get(), start);
filltime = ktime_add(filltime, diff); filltime = ktime_add(filltime, diff);
} }
um = dmaengine_get_unmap_data(dev->dev, src_cnt + dst_cnt, um = dmaengine_get_unmap_data(dev->dev, src->cnt + dst->cnt,
GFP_KERNEL); GFP_KERNEL);
if (!um) { if (!um) {
failed_tests++; failed_tests++;
result("unmap data NULL", total_tests, result("unmap data NULL", total_tests,
src_off, dst_off, len, ret); src->off, dst->off, len, ret);
continue; continue;
} }
um->len = params->buf_size; um->len = buf_size;
for (i = 0; i < src_cnt; i++) { for (i = 0; i < src->cnt; i++) {
void *buf = thread->srcs[i]; void *buf = src->aligned[i];
struct page *pg = virt_to_page(buf); struct page *pg = virt_to_page(buf);
unsigned long pg_off = offset_in_page(buf); unsigned long pg_off = offset_in_page(buf);
um->addr[i] = dma_map_page(dev->dev, pg, pg_off, um->addr[i] = dma_map_page(dev->dev, pg, pg_off,
um->len, DMA_TO_DEVICE); um->len, DMA_TO_DEVICE);
srcs[i] = um->addr[i] + src_off; srcs[i] = um->addr[i] + src->off;
ret = dma_mapping_error(dev->dev, um->addr[i]); ret = dma_mapping_error(dev->dev, um->addr[i]);
if (ret) { if (ret) {
result("src mapping error", total_tests, result("src mapping error", total_tests,
src_off, dst_off, len, ret); src->off, dst->off, len, ret);
goto error_unmap_continue; goto error_unmap_continue;
} }
um->to_cnt++; um->to_cnt++;
} }
/* map with DMA_BIDIRECTIONAL to force writeback/invalidate */ /* map with DMA_BIDIRECTIONAL to force writeback/invalidate */
dsts = &um->addr[src_cnt]; dsts = &um->addr[src->cnt];
for (i = 0; i < dst_cnt; i++) { for (i = 0; i < dst->cnt; i++) {
void *buf = thread->dsts[i]; void *buf = dst->aligned[i];
struct page *pg = virt_to_page(buf); struct page *pg = virt_to_page(buf);
unsigned long pg_off = offset_in_page(buf); unsigned long pg_off = offset_in_page(buf);
@ -729,7 +747,7 @@ static int dmatest_func(void *data)
ret = dma_mapping_error(dev->dev, dsts[i]); ret = dma_mapping_error(dev->dev, dsts[i]);
if (ret) { if (ret) {
result("dst mapping error", total_tests, result("dst mapping error", total_tests,
src_off, dst_off, len, ret); src->off, dst->off, len, ret);
goto error_unmap_continue; goto error_unmap_continue;
} }
um->bidi_cnt++; um->bidi_cnt++;
@ -737,29 +755,29 @@ static int dmatest_func(void *data)
if (thread->type == DMA_MEMCPY) if (thread->type == DMA_MEMCPY)
tx = dev->device_prep_dma_memcpy(chan, tx = dev->device_prep_dma_memcpy(chan,
dsts[0] + dst_off, dsts[0] + dst->off,
srcs[0], len, flags); srcs[0], len, flags);
else if (thread->type == DMA_MEMSET) else if (thread->type == DMA_MEMSET)
tx = dev->device_prep_dma_memset(chan, tx = dev->device_prep_dma_memset(chan,
dsts[0] + dst_off, dsts[0] + dst->off,
*(thread->srcs[0] + src_off), *(src->aligned[0] + src->off),
len, flags); len, flags);
else if (thread->type == DMA_XOR) else if (thread->type == DMA_XOR)
tx = dev->device_prep_dma_xor(chan, tx = dev->device_prep_dma_xor(chan,
dsts[0] + dst_off, dsts[0] + dst->off,
srcs, src_cnt, srcs, src->cnt,
len, flags); len, flags);
else if (thread->type == DMA_PQ) { else if (thread->type == DMA_PQ) {
for (i = 0; i < dst_cnt; i++) for (i = 0; i < dst->cnt; i++)
dma_pq[i] = dsts[i] + dst_off; dma_pq[i] = dsts[i] + dst->off;
tx = dev->device_prep_dma_pq(chan, dma_pq, srcs, tx = dev->device_prep_dma_pq(chan, dma_pq, srcs,
src_cnt, pq_coefs, src->cnt, pq_coefs,
len, flags); len, flags);
} }
if (!tx) { if (!tx) {
result("prep error", total_tests, src_off, result("prep error", total_tests, src->off,
dst_off, len, ret); dst->off, len, ret);
msleep(100); msleep(100);
goto error_unmap_continue; goto error_unmap_continue;
} }
@ -770,8 +788,8 @@ static int dmatest_func(void *data)
cookie = tx->tx_submit(tx); cookie = tx->tx_submit(tx);
if (dma_submit_error(cookie)) { if (dma_submit_error(cookie)) {
result("submit error", total_tests, src_off, result("submit error", total_tests, src->off,
dst_off, len, ret); dst->off, len, ret);
msleep(100); msleep(100);
goto error_unmap_continue; goto error_unmap_continue;
} }
@ -783,58 +801,58 @@ static int dmatest_func(void *data)
status = dma_async_is_tx_complete(chan, cookie, NULL, NULL); status = dma_async_is_tx_complete(chan, cookie, NULL, NULL);
if (!done->done) { if (!done->done) {
result("test timed out", total_tests, src_off, dst_off, result("test timed out", total_tests, src->off, dst->off,
len, 0); len, 0);
goto error_unmap_continue; goto error_unmap_continue;
} else if (status != DMA_COMPLETE) { } else if (status != DMA_COMPLETE) {
result(status == DMA_ERROR ? result(status == DMA_ERROR ?
"completion error status" : "completion error status" :
"completion busy status", total_tests, src_off, "completion busy status", total_tests, src->off,
dst_off, len, ret); dst->off, len, ret);
goto error_unmap_continue; goto error_unmap_continue;
} }
dmaengine_unmap_put(um); dmaengine_unmap_put(um);
if (params->noverify) { if (params->noverify) {
verbose_result("test passed", total_tests, src_off, verbose_result("test passed", total_tests, src->off,
dst_off, len, 0); dst->off, len, 0);
continue; continue;
} }
start = ktime_get(); start = ktime_get();
pr_debug("%s: verifying source buffer...\n", current->comm); pr_debug("%s: verifying source buffer...\n", current->comm);
error_count = dmatest_verify(thread->srcs, 0, src_off, error_count = dmatest_verify(src->aligned, 0, src->off,
0, PATTERN_SRC, true, is_memset); 0, PATTERN_SRC, true, is_memset);
error_count += dmatest_verify(thread->srcs, src_off, error_count += dmatest_verify(src->aligned, src->off,
src_off + len, src_off, src->off + len, src->off,
PATTERN_SRC | PATTERN_COPY, true, is_memset); PATTERN_SRC | PATTERN_COPY, true, is_memset);
error_count += dmatest_verify(thread->srcs, src_off + len, error_count += dmatest_verify(src->aligned, src->off + len,
params->buf_size, src_off + len, buf_size, src->off + len,
PATTERN_SRC, true, is_memset); PATTERN_SRC, true, is_memset);
pr_debug("%s: verifying dest buffer...\n", current->comm); pr_debug("%s: verifying dest buffer...\n", current->comm);
error_count += dmatest_verify(thread->dsts, 0, dst_off, error_count += dmatest_verify(dst->aligned, 0, dst->off,
0, PATTERN_DST, false, is_memset); 0, PATTERN_DST, false, is_memset);
error_count += dmatest_verify(thread->dsts, dst_off, error_count += dmatest_verify(dst->aligned, dst->off,
dst_off + len, src_off, dst->off + len, src->off,
PATTERN_SRC | PATTERN_COPY, false, is_memset); PATTERN_SRC | PATTERN_COPY, false, is_memset);
error_count += dmatest_verify(thread->dsts, dst_off + len, error_count += dmatest_verify(dst->aligned, dst->off + len,
params->buf_size, dst_off + len, buf_size, dst->off + len,
PATTERN_DST, false, is_memset); PATTERN_DST, false, is_memset);
diff = ktime_sub(ktime_get(), start); diff = ktime_sub(ktime_get(), start);
comparetime = ktime_add(comparetime, diff); comparetime = ktime_add(comparetime, diff);
if (error_count) { if (error_count) {
result("data error", total_tests, src_off, dst_off, result("data error", total_tests, src->off, dst->off,
len, error_count); len, error_count);
failed_tests++; failed_tests++;
} else { } else {
verbose_result("test passed", total_tests, src_off, verbose_result("test passed", total_tests, src->off,
dst_off, len, 0); dst->off, len, 0);
} }
continue; continue;
@ -852,19 +870,10 @@ error_unmap_continue:
kfree(dma_pq); kfree(dma_pq);
err_srcs_array: err_srcs_array:
kfree(srcs); kfree(srcs);
err_dstbuf: err_dst:
for (i = 0; thread->udsts[i]; i++) dmatest_free_test_data(dst);
kfree(thread->udsts[i]); err_src:
kfree(thread->udsts); dmatest_free_test_data(src);
err_udsts:
kfree(thread->dsts);
err_dsts:
err_srcbuf:
for (i = 0; thread->usrcs[i]; i++)
kfree(thread->usrcs[i]);
kfree(thread->usrcs);
err_usrcs:
kfree(thread->srcs);
err_free_coefs: err_free_coefs:
kfree(pq_coefs); kfree(pq_coefs);
err_thread_type: err_thread_type:

View File

@ -75,7 +75,7 @@ struct __packed axi_dma_lli {
__le32 sstat; __le32 sstat;
__le32 dstat; __le32 dstat;
__le32 status_lo; __le32 status_lo;
__le32 ststus_hi; __le32 status_hi;
__le32 reserved_lo; __le32 reserved_lo;
__le32 reserved_hi; __le32 reserved_hi;
}; };

View File

@ -1,3 +1,5 @@
# SPDX-License-Identifier: GPL-2.0
# #
# DMA engine configuration for dw # DMA engine configuration for dw
# #

View File

@ -1,6 +1,6 @@
# SPDX-License-Identifier: GPL-2.0 # SPDX-License-Identifier: GPL-2.0
obj-$(CONFIG_DW_DMAC_CORE) += dw_dmac_core.o obj-$(CONFIG_DW_DMAC_CORE) += dw_dmac_core.o
dw_dmac_core-objs := core.o dw_dmac_core-objs := core.o dw.o idma32.o
obj-$(CONFIG_DW_DMAC) += dw_dmac.o obj-$(CONFIG_DW_DMAC) += dw_dmac.o
dw_dmac-objs := platform.o dw_dmac-objs := platform.o

View File

@ -1,13 +1,10 @@
// SPDX-License-Identifier: GPL-2.0
/* /*
* Core driver for the Synopsys DesignWare DMA Controller * Core driver for the Synopsys DesignWare DMA Controller
* *
* Copyright (C) 2007-2008 Atmel Corporation * Copyright (C) 2007-2008 Atmel Corporation
* Copyright (C) 2010-2011 ST Microelectronics * Copyright (C) 2010-2011 ST Microelectronics
* Copyright (C) 2013 Intel Corporation * Copyright (C) 2013 Intel Corporation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/ */
#include <linux/bitops.h> #include <linux/bitops.h>
@ -37,27 +34,6 @@
* support descriptor writeback. * support descriptor writeback.
*/ */
#define DWC_DEFAULT_CTLLO(_chan) ({ \
struct dw_dma_chan *_dwc = to_dw_dma_chan(_chan); \
struct dma_slave_config *_sconfig = &_dwc->dma_sconfig; \
bool _is_slave = is_slave_direction(_dwc->direction); \
u8 _smsize = _is_slave ? _sconfig->src_maxburst : \
DW_DMA_MSIZE_16; \
u8 _dmsize = _is_slave ? _sconfig->dst_maxburst : \
DW_DMA_MSIZE_16; \
u8 _dms = (_dwc->direction == DMA_MEM_TO_DEV) ? \
_dwc->dws.p_master : _dwc->dws.m_master; \
u8 _sms = (_dwc->direction == DMA_DEV_TO_MEM) ? \
_dwc->dws.p_master : _dwc->dws.m_master; \
\
(DWC_CTLL_DST_MSIZE(_dmsize) \
| DWC_CTLL_SRC_MSIZE(_smsize) \
| DWC_CTLL_LLP_D_EN \
| DWC_CTLL_LLP_S_EN \
| DWC_CTLL_DMS(_dms) \
| DWC_CTLL_SMS(_sms)); \
})
/* The set of bus widths supported by the DMA controller */ /* The set of bus widths supported by the DMA controller */
#define DW_DMA_BUSWIDTHS \ #define DW_DMA_BUSWIDTHS \
BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \ BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \
@ -138,44 +114,6 @@ static void dwc_desc_put(struct dw_dma_chan *dwc, struct dw_desc *desc)
dwc->descs_allocated--; dwc->descs_allocated--;
} }
static void dwc_initialize_chan_idma32(struct dw_dma_chan *dwc)
{
u32 cfghi = 0;
u32 cfglo = 0;
/* Set default burst alignment */
cfglo |= IDMA32C_CFGL_DST_BURST_ALIGN | IDMA32C_CFGL_SRC_BURST_ALIGN;
/* Low 4 bits of the request lines */
cfghi |= IDMA32C_CFGH_DST_PER(dwc->dws.dst_id & 0xf);
cfghi |= IDMA32C_CFGH_SRC_PER(dwc->dws.src_id & 0xf);
/* Request line extension (2 bits) */
cfghi |= IDMA32C_CFGH_DST_PER_EXT(dwc->dws.dst_id >> 4 & 0x3);
cfghi |= IDMA32C_CFGH_SRC_PER_EXT(dwc->dws.src_id >> 4 & 0x3);
channel_writel(dwc, CFG_LO, cfglo);
channel_writel(dwc, CFG_HI, cfghi);
}
static void dwc_initialize_chan_dw(struct dw_dma_chan *dwc)
{
struct dw_dma *dw = to_dw_dma(dwc->chan.device);
u32 cfghi = DWC_CFGH_FIFO_MODE;
u32 cfglo = DWC_CFGL_CH_PRIOR(dwc->priority);
bool hs_polarity = dwc->dws.hs_polarity;
cfghi |= DWC_CFGH_DST_PER(dwc->dws.dst_id);
cfghi |= DWC_CFGH_SRC_PER(dwc->dws.src_id);
cfghi |= DWC_CFGH_PROTCTL(dw->pdata->protctl);
/* Set polarity of handshake interface */
cfglo |= hs_polarity ? DWC_CFGL_HS_DST_POL | DWC_CFGL_HS_SRC_POL : 0;
channel_writel(dwc, CFG_LO, cfglo);
channel_writel(dwc, CFG_HI, cfghi);
}
static void dwc_initialize(struct dw_dma_chan *dwc) static void dwc_initialize(struct dw_dma_chan *dwc)
{ {
struct dw_dma *dw = to_dw_dma(dwc->chan.device); struct dw_dma *dw = to_dw_dma(dwc->chan.device);
@ -183,10 +121,7 @@ static void dwc_initialize(struct dw_dma_chan *dwc)
if (test_bit(DW_DMA_IS_INITIALIZED, &dwc->flags)) if (test_bit(DW_DMA_IS_INITIALIZED, &dwc->flags))
return; return;
if (dw->pdata->is_idma32) dw->initialize_chan(dwc);
dwc_initialize_chan_idma32(dwc);
else
dwc_initialize_chan_dw(dwc);
/* Enable interrupts */ /* Enable interrupts */
channel_set_bit(dw, MASK.XFER, dwc->mask); channel_set_bit(dw, MASK.XFER, dwc->mask);
@ -215,37 +150,6 @@ static inline void dwc_chan_disable(struct dw_dma *dw, struct dw_dma_chan *dwc)
cpu_relax(); cpu_relax();
} }
static u32 bytes2block(struct dw_dma_chan *dwc, size_t bytes,
unsigned int width, size_t *len)
{
struct dw_dma *dw = to_dw_dma(dwc->chan.device);
u32 block;
/* Always in bytes for iDMA 32-bit */
if (dw->pdata->is_idma32)
width = 0;
if ((bytes >> width) > dwc->block_size) {
block = dwc->block_size;
*len = block << width;
} else {
block = bytes >> width;
*len = bytes;
}
return block;
}
static size_t block2bytes(struct dw_dma_chan *dwc, u32 block, u32 width)
{
struct dw_dma *dw = to_dw_dma(dwc->chan.device);
if (dw->pdata->is_idma32)
return IDMA32C_CTLH_BLOCK_TS(block);
return DWC_CTLH_BLOCK_TS(block) << width;
}
/*----------------------------------------------------------------------*/ /*----------------------------------------------------------------------*/
/* Perform single block transfer */ /* Perform single block transfer */
@ -391,10 +295,11 @@ static void dwc_complete_all(struct dw_dma *dw, struct dw_dma_chan *dwc)
/* Returns how many bytes were already received from source */ /* Returns how many bytes were already received from source */
static inline u32 dwc_get_sent(struct dw_dma_chan *dwc) static inline u32 dwc_get_sent(struct dw_dma_chan *dwc)
{ {
struct dw_dma *dw = to_dw_dma(dwc->chan.device);
u32 ctlhi = channel_readl(dwc, CTL_HI); u32 ctlhi = channel_readl(dwc, CTL_HI);
u32 ctllo = channel_readl(dwc, CTL_LO); u32 ctllo = channel_readl(dwc, CTL_LO);
return block2bytes(dwc, ctlhi, ctllo >> 4 & 7); return dw->block2bytes(dwc, ctlhi, ctllo >> 4 & 7);
} }
static void dwc_scan_descriptors(struct dw_dma *dw, struct dw_dma_chan *dwc) static void dwc_scan_descriptors(struct dw_dma *dw, struct dw_dma_chan *dwc)
@ -651,7 +556,7 @@ dwc_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
unsigned int src_width; unsigned int src_width;
unsigned int dst_width; unsigned int dst_width;
unsigned int data_width = dw->pdata->data_width[m_master]; unsigned int data_width = dw->pdata->data_width[m_master];
u32 ctllo; u32 ctllo, ctlhi;
u8 lms = DWC_LLP_LMS(m_master); u8 lms = DWC_LLP_LMS(m_master);
dev_vdbg(chan2dev(chan), dev_vdbg(chan2dev(chan),
@ -667,7 +572,7 @@ dwc_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
src_width = dst_width = __ffs(data_width | src | dest | len); src_width = dst_width = __ffs(data_width | src | dest | len);
ctllo = DWC_DEFAULT_CTLLO(chan) ctllo = dw->prepare_ctllo(dwc)
| DWC_CTLL_DST_WIDTH(dst_width) | DWC_CTLL_DST_WIDTH(dst_width)
| DWC_CTLL_SRC_WIDTH(src_width) | DWC_CTLL_SRC_WIDTH(src_width)
| DWC_CTLL_DST_INC | DWC_CTLL_DST_INC
@ -680,10 +585,12 @@ dwc_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
if (!desc) if (!desc)
goto err_desc_get; goto err_desc_get;
ctlhi = dw->bytes2block(dwc, len - offset, src_width, &xfer_count);
lli_write(desc, sar, src + offset); lli_write(desc, sar, src + offset);
lli_write(desc, dar, dest + offset); lli_write(desc, dar, dest + offset);
lli_write(desc, ctllo, ctllo); lli_write(desc, ctllo, ctllo);
lli_write(desc, ctlhi, bytes2block(dwc, len - offset, src_width, &xfer_count)); lli_write(desc, ctlhi, ctlhi);
desc->len = xfer_count; desc->len = xfer_count;
if (!first) { if (!first) {
@ -721,7 +628,7 @@ dwc_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
struct dma_slave_config *sconfig = &dwc->dma_sconfig; struct dma_slave_config *sconfig = &dwc->dma_sconfig;
struct dw_desc *prev; struct dw_desc *prev;
struct dw_desc *first; struct dw_desc *first;
u32 ctllo; u32 ctllo, ctlhi;
u8 m_master = dwc->dws.m_master; u8 m_master = dwc->dws.m_master;
u8 lms = DWC_LLP_LMS(m_master); u8 lms = DWC_LLP_LMS(m_master);
dma_addr_t reg; dma_addr_t reg;
@ -745,10 +652,10 @@ dwc_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
case DMA_MEM_TO_DEV: case DMA_MEM_TO_DEV:
reg_width = __ffs(sconfig->dst_addr_width); reg_width = __ffs(sconfig->dst_addr_width);
reg = sconfig->dst_addr; reg = sconfig->dst_addr;
ctllo = (DWC_DEFAULT_CTLLO(chan) ctllo = dw->prepare_ctllo(dwc)
| DWC_CTLL_DST_WIDTH(reg_width) | DWC_CTLL_DST_WIDTH(reg_width)
| DWC_CTLL_DST_FIX | DWC_CTLL_DST_FIX
| DWC_CTLL_SRC_INC); | DWC_CTLL_SRC_INC;
ctllo |= sconfig->device_fc ? DWC_CTLL_FC(DW_DMA_FC_P_M2P) : ctllo |= sconfig->device_fc ? DWC_CTLL_FC(DW_DMA_FC_P_M2P) :
DWC_CTLL_FC(DW_DMA_FC_D_M2P); DWC_CTLL_FC(DW_DMA_FC_D_M2P);
@ -768,9 +675,11 @@ slave_sg_todev_fill_desc:
if (!desc) if (!desc)
goto err_desc_get; goto err_desc_get;
ctlhi = dw->bytes2block(dwc, len, mem_width, &dlen);
lli_write(desc, sar, mem); lli_write(desc, sar, mem);
lli_write(desc, dar, reg); lli_write(desc, dar, reg);
lli_write(desc, ctlhi, bytes2block(dwc, len, mem_width, &dlen)); lli_write(desc, ctlhi, ctlhi);
lli_write(desc, ctllo, ctllo | DWC_CTLL_SRC_WIDTH(mem_width)); lli_write(desc, ctllo, ctllo | DWC_CTLL_SRC_WIDTH(mem_width));
desc->len = dlen; desc->len = dlen;
@ -793,10 +702,10 @@ slave_sg_todev_fill_desc:
case DMA_DEV_TO_MEM: case DMA_DEV_TO_MEM:
reg_width = __ffs(sconfig->src_addr_width); reg_width = __ffs(sconfig->src_addr_width);
reg = sconfig->src_addr; reg = sconfig->src_addr;
ctllo = (DWC_DEFAULT_CTLLO(chan) ctllo = dw->prepare_ctllo(dwc)
| DWC_CTLL_SRC_WIDTH(reg_width) | DWC_CTLL_SRC_WIDTH(reg_width)
| DWC_CTLL_DST_INC | DWC_CTLL_DST_INC
| DWC_CTLL_SRC_FIX); | DWC_CTLL_SRC_FIX;
ctllo |= sconfig->device_fc ? DWC_CTLL_FC(DW_DMA_FC_P_P2M) : ctllo |= sconfig->device_fc ? DWC_CTLL_FC(DW_DMA_FC_P_P2M) :
DWC_CTLL_FC(DW_DMA_FC_D_P2M); DWC_CTLL_FC(DW_DMA_FC_D_P2M);
@ -814,9 +723,11 @@ slave_sg_fromdev_fill_desc:
if (!desc) if (!desc)
goto err_desc_get; goto err_desc_get;
ctlhi = dw->bytes2block(dwc, len, reg_width, &dlen);
lli_write(desc, sar, reg); lli_write(desc, sar, reg);
lli_write(desc, dar, mem); lli_write(desc, dar, mem);
lli_write(desc, ctlhi, bytes2block(dwc, len, reg_width, &dlen)); lli_write(desc, ctlhi, ctlhi);
mem_width = __ffs(data_width | mem | dlen); mem_width = __ffs(data_width | mem | dlen);
lli_write(desc, ctllo, ctllo | DWC_CTLL_DST_WIDTH(mem_width)); lli_write(desc, ctllo, ctllo | DWC_CTLL_DST_WIDTH(mem_width));
desc->len = dlen; desc->len = dlen;
@ -876,22 +787,12 @@ EXPORT_SYMBOL_GPL(dw_dma_filter);
static int dwc_config(struct dma_chan *chan, struct dma_slave_config *sconfig) static int dwc_config(struct dma_chan *chan, struct dma_slave_config *sconfig)
{ {
struct dw_dma_chan *dwc = to_dw_dma_chan(chan); struct dw_dma_chan *dwc = to_dw_dma_chan(chan);
struct dma_slave_config *sc = &dwc->dma_sconfig;
struct dw_dma *dw = to_dw_dma(chan->device); struct dw_dma *dw = to_dw_dma(chan->device);
/*
* Fix sconfig's burst size according to dw_dmac. We need to convert
* them as:
* 1 -> 0, 4 -> 1, 8 -> 2, 16 -> 3.
*
* NOTE: burst size 2 is not supported by DesignWare controller.
* iDMA 32-bit supports it.
*/
u32 s = dw->pdata->is_idma32 ? 1 : 2;
memcpy(&dwc->dma_sconfig, sconfig, sizeof(*sconfig)); memcpy(&dwc->dma_sconfig, sconfig, sizeof(*sconfig));
sc->src_maxburst = sc->src_maxburst > 1 ? fls(sc->src_maxburst) - s : 0; dw->encode_maxburst(dwc, &dwc->dma_sconfig.src_maxburst);
sc->dst_maxburst = sc->dst_maxburst > 1 ? fls(sc->dst_maxburst) - s : 0; dw->encode_maxburst(dwc, &dwc->dma_sconfig.dst_maxburst);
return 0; return 0;
} }
@ -900,16 +801,9 @@ static void dwc_chan_pause(struct dw_dma_chan *dwc, bool drain)
{ {
struct dw_dma *dw = to_dw_dma(dwc->chan.device); struct dw_dma *dw = to_dw_dma(dwc->chan.device);
unsigned int count = 20; /* timeout iterations */ unsigned int count = 20; /* timeout iterations */
u32 cfglo;
cfglo = channel_readl(dwc, CFG_LO); dw->suspend_chan(dwc, drain);
if (dw->pdata->is_idma32) {
if (drain)
cfglo |= IDMA32C_CFGL_CH_DRAIN;
else
cfglo &= ~IDMA32C_CFGL_CH_DRAIN;
}
channel_writel(dwc, CFG_LO, cfglo | DWC_CFGL_CH_SUSP);
while (!(channel_readl(dwc, CFG_LO) & DWC_CFGL_FIFO_EMPTY) && count--) while (!(channel_readl(dwc, CFG_LO) & DWC_CFGL_FIFO_EMPTY) && count--)
udelay(2); udelay(2);
@ -928,11 +822,11 @@ static int dwc_pause(struct dma_chan *chan)
return 0; return 0;
} }
static inline void dwc_chan_resume(struct dw_dma_chan *dwc) static inline void dwc_chan_resume(struct dw_dma_chan *dwc, bool drain)
{ {
u32 cfglo = channel_readl(dwc, CFG_LO); struct dw_dma *dw = to_dw_dma(dwc->chan.device);
channel_writel(dwc, CFG_LO, cfglo & ~DWC_CFGL_CH_SUSP); dw->resume_chan(dwc, drain);
clear_bit(DW_DMA_IS_PAUSED, &dwc->flags); clear_bit(DW_DMA_IS_PAUSED, &dwc->flags);
} }
@ -945,7 +839,7 @@ static int dwc_resume(struct dma_chan *chan)
spin_lock_irqsave(&dwc->lock, flags); spin_lock_irqsave(&dwc->lock, flags);
if (test_bit(DW_DMA_IS_PAUSED, &dwc->flags)) if (test_bit(DW_DMA_IS_PAUSED, &dwc->flags))
dwc_chan_resume(dwc); dwc_chan_resume(dwc, false);
spin_unlock_irqrestore(&dwc->lock, flags); spin_unlock_irqrestore(&dwc->lock, flags);
@ -968,7 +862,7 @@ static int dwc_terminate_all(struct dma_chan *chan)
dwc_chan_disable(dw, dwc); dwc_chan_disable(dw, dwc);
dwc_chan_resume(dwc); dwc_chan_resume(dwc, true);
/* active_list entries will end up before queued entries */ /* active_list entries will end up before queued entries */
list_splice_init(&dwc->queue, &list); list_splice_init(&dwc->queue, &list);
@ -1058,33 +952,7 @@ static void dwc_issue_pending(struct dma_chan *chan)
/*----------------------------------------------------------------------*/ /*----------------------------------------------------------------------*/
/* void do_dw_dma_off(struct dw_dma *dw)
* Program FIFO size of channels.
*
* By default full FIFO (512 bytes) is assigned to channel 0. Here we
* slice FIFO on equal parts between channels.
*/
static void idma32_fifo_partition(struct dw_dma *dw)
{
u64 value = IDMA32C_FP_PSIZE_CH0(64) | IDMA32C_FP_PSIZE_CH1(64) |
IDMA32C_FP_UPDATE;
u64 fifo_partition = 0;
if (!dw->pdata->is_idma32)
return;
/* Fill FIFO_PARTITION low bits (Channels 0..1, 4..5) */
fifo_partition |= value << 0;
/* Fill FIFO_PARTITION high bits (Channels 2..3, 6..7) */
fifo_partition |= value << 32;
/* Program FIFO Partition registers - 64 bytes per channel */
idma32_writeq(dw, FIFO_PARTITION1, fifo_partition);
idma32_writeq(dw, FIFO_PARTITION0, fifo_partition);
}
static void dw_dma_off(struct dw_dma *dw)
{ {
unsigned int i; unsigned int i;
@ -1103,7 +971,7 @@ static void dw_dma_off(struct dw_dma *dw)
clear_bit(DW_DMA_IS_INITIALIZED, &dw->chan[i].flags); clear_bit(DW_DMA_IS_INITIALIZED, &dw->chan[i].flags);
} }
static void dw_dma_on(struct dw_dma *dw) void do_dw_dma_on(struct dw_dma *dw)
{ {
dma_writel(dw, CFG, DW_CFG_DMA_EN); dma_writel(dw, CFG, DW_CFG_DMA_EN);
} }
@ -1139,7 +1007,7 @@ static int dwc_alloc_chan_resources(struct dma_chan *chan)
/* Enable controller here if needed */ /* Enable controller here if needed */
if (!dw->in_use) if (!dw->in_use)
dw_dma_on(dw); do_dw_dma_on(dw);
dw->in_use |= dwc->mask; dw->in_use |= dwc->mask;
return 0; return 0;
@ -1150,7 +1018,6 @@ static void dwc_free_chan_resources(struct dma_chan *chan)
struct dw_dma_chan *dwc = to_dw_dma_chan(chan); struct dw_dma_chan *dwc = to_dw_dma_chan(chan);
struct dw_dma *dw = to_dw_dma(chan->device); struct dw_dma *dw = to_dw_dma(chan->device);
unsigned long flags; unsigned long flags;
LIST_HEAD(list);
dev_dbg(chan2dev(chan), "%s: descs allocated=%u\n", __func__, dev_dbg(chan2dev(chan), "%s: descs allocated=%u\n", __func__,
dwc->descs_allocated); dwc->descs_allocated);
@ -1177,30 +1044,25 @@ static void dwc_free_chan_resources(struct dma_chan *chan)
/* Disable controller in case it was a last user */ /* Disable controller in case it was a last user */
dw->in_use &= ~dwc->mask; dw->in_use &= ~dwc->mask;
if (!dw->in_use) if (!dw->in_use)
dw_dma_off(dw); do_dw_dma_off(dw);
dev_vdbg(chan2dev(chan), "%s: done\n", __func__); dev_vdbg(chan2dev(chan), "%s: done\n", __func__);
} }
int dw_dma_probe(struct dw_dma_chip *chip) int do_dma_probe(struct dw_dma_chip *chip)
{ {
struct dw_dma *dw = chip->dw;
struct dw_dma_platform_data *pdata; struct dw_dma_platform_data *pdata;
struct dw_dma *dw;
bool autocfg = false; bool autocfg = false;
unsigned int dw_params; unsigned int dw_params;
unsigned int i; unsigned int i;
int err; int err;
dw = devm_kzalloc(chip->dev, sizeof(*dw), GFP_KERNEL);
if (!dw)
return -ENOMEM;
dw->pdata = devm_kzalloc(chip->dev, sizeof(*dw->pdata), GFP_KERNEL); dw->pdata = devm_kzalloc(chip->dev, sizeof(*dw->pdata), GFP_KERNEL);
if (!dw->pdata) if (!dw->pdata)
return -ENOMEM; return -ENOMEM;
dw->regs = chip->regs; dw->regs = chip->regs;
chip->dw = dw;
pm_runtime_get_sync(chip->dev); pm_runtime_get_sync(chip->dev);
@ -1227,8 +1089,6 @@ int dw_dma_probe(struct dw_dma_chip *chip)
pdata->block_size = dma_readl(dw, MAX_BLK_SIZE); pdata->block_size = dma_readl(dw, MAX_BLK_SIZE);
/* Fill platform data with the default values */ /* Fill platform data with the default values */
pdata->is_private = true;
pdata->is_memcpy = true;
pdata->chan_allocation_order = CHAN_ALLOCATION_ASCENDING; pdata->chan_allocation_order = CHAN_ALLOCATION_ASCENDING;
pdata->chan_priority = CHAN_PRIORITY_ASCENDING; pdata->chan_priority = CHAN_PRIORITY_ASCENDING;
} else if (chip->pdata->nr_channels > DW_DMA_MAX_NR_CHANNELS) { } else if (chip->pdata->nr_channels > DW_DMA_MAX_NR_CHANNELS) {
@ -1252,15 +1112,10 @@ int dw_dma_probe(struct dw_dma_chip *chip)
dw->all_chan_mask = (1 << pdata->nr_channels) - 1; dw->all_chan_mask = (1 << pdata->nr_channels) - 1;
/* Force dma off, just in case */ /* Force dma off, just in case */
dw_dma_off(dw); dw->disable(dw);
idma32_fifo_partition(dw);
/* Device and instance ID for IRQ and DMA pool */ /* Device and instance ID for IRQ and DMA pool */
if (pdata->is_idma32) dw->set_device_name(dw, chip->id);
snprintf(dw->name, sizeof(dw->name), "idma32:dmac%d", chip->id);
else
snprintf(dw->name, sizeof(dw->name), "dw:dmac%d", chip->id);
/* Create a pool of consistent memory blocks for hardware descriptors */ /* Create a pool of consistent memory blocks for hardware descriptors */
dw->desc_pool = dmam_pool_create(dw->name, chip->dev, dw->desc_pool = dmam_pool_create(dw->name, chip->dev,
@ -1340,10 +1195,8 @@ int dw_dma_probe(struct dw_dma_chip *chip)
/* Set capabilities */ /* Set capabilities */
dma_cap_set(DMA_SLAVE, dw->dma.cap_mask); dma_cap_set(DMA_SLAVE, dw->dma.cap_mask);
if (pdata->is_private) dma_cap_set(DMA_PRIVATE, dw->dma.cap_mask);
dma_cap_set(DMA_PRIVATE, dw->dma.cap_mask); dma_cap_set(DMA_MEMCPY, dw->dma.cap_mask);
if (pdata->is_memcpy)
dma_cap_set(DMA_MEMCPY, dw->dma.cap_mask);
dw->dma.dev = chip->dev; dw->dma.dev = chip->dev;
dw->dma.device_alloc_chan_resources = dwc_alloc_chan_resources; dw->dma.device_alloc_chan_resources = dwc_alloc_chan_resources;
@ -1384,16 +1237,15 @@ err_pdata:
pm_runtime_put_sync_suspend(chip->dev); pm_runtime_put_sync_suspend(chip->dev);
return err; return err;
} }
EXPORT_SYMBOL_GPL(dw_dma_probe);
int dw_dma_remove(struct dw_dma_chip *chip) int do_dma_remove(struct dw_dma_chip *chip)
{ {
struct dw_dma *dw = chip->dw; struct dw_dma *dw = chip->dw;
struct dw_dma_chan *dwc, *_dwc; struct dw_dma_chan *dwc, *_dwc;
pm_runtime_get_sync(chip->dev); pm_runtime_get_sync(chip->dev);
dw_dma_off(dw); do_dw_dma_off(dw);
dma_async_device_unregister(&dw->dma); dma_async_device_unregister(&dw->dma);
free_irq(chip->irq, dw); free_irq(chip->irq, dw);
@ -1408,27 +1260,24 @@ int dw_dma_remove(struct dw_dma_chip *chip)
pm_runtime_put_sync_suspend(chip->dev); pm_runtime_put_sync_suspend(chip->dev);
return 0; return 0;
} }
EXPORT_SYMBOL_GPL(dw_dma_remove);
int dw_dma_disable(struct dw_dma_chip *chip) int do_dw_dma_disable(struct dw_dma_chip *chip)
{ {
struct dw_dma *dw = chip->dw; struct dw_dma *dw = chip->dw;
dw_dma_off(dw); dw->disable(dw);
return 0; return 0;
} }
EXPORT_SYMBOL_GPL(dw_dma_disable); EXPORT_SYMBOL_GPL(do_dw_dma_disable);
int dw_dma_enable(struct dw_dma_chip *chip) int do_dw_dma_enable(struct dw_dma_chip *chip)
{ {
struct dw_dma *dw = chip->dw; struct dw_dma *dw = chip->dw;
idma32_fifo_partition(dw); dw->enable(dw);
dw_dma_on(dw);
return 0; return 0;
} }
EXPORT_SYMBOL_GPL(dw_dma_enable); EXPORT_SYMBOL_GPL(do_dw_dma_enable);
MODULE_LICENSE("GPL v2"); MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("Synopsys DesignWare DMA Controller core driver"); MODULE_DESCRIPTION("Synopsys DesignWare DMA Controller core driver");

138
drivers/dma/dw/dw.c Normal file
View File

@ -0,0 +1,138 @@
// SPDX-License-Identifier: GPL-2.0
// Copyright (C) 2007-2008 Atmel Corporation
// Copyright (C) 2010-2011 ST Microelectronics
// Copyright (C) 2013,2018 Intel Corporation
#include <linux/bitops.h>
#include <linux/dmaengine.h>
#include <linux/errno.h>
#include <linux/slab.h>
#include <linux/types.h>
#include "internal.h"
static void dw_dma_initialize_chan(struct dw_dma_chan *dwc)
{
struct dw_dma *dw = to_dw_dma(dwc->chan.device);
u32 cfghi = DWC_CFGH_FIFO_MODE;
u32 cfglo = DWC_CFGL_CH_PRIOR(dwc->priority);
bool hs_polarity = dwc->dws.hs_polarity;
cfghi |= DWC_CFGH_DST_PER(dwc->dws.dst_id);
cfghi |= DWC_CFGH_SRC_PER(dwc->dws.src_id);
cfghi |= DWC_CFGH_PROTCTL(dw->pdata->protctl);
/* Set polarity of handshake interface */
cfglo |= hs_polarity ? DWC_CFGL_HS_DST_POL | DWC_CFGL_HS_SRC_POL : 0;
channel_writel(dwc, CFG_LO, cfglo);
channel_writel(dwc, CFG_HI, cfghi);
}
static void dw_dma_suspend_chan(struct dw_dma_chan *dwc, bool drain)
{
u32 cfglo = channel_readl(dwc, CFG_LO);
channel_writel(dwc, CFG_LO, cfglo | DWC_CFGL_CH_SUSP);
}
static void dw_dma_resume_chan(struct dw_dma_chan *dwc, bool drain)
{
u32 cfglo = channel_readl(dwc, CFG_LO);
channel_writel(dwc, CFG_LO, cfglo & ~DWC_CFGL_CH_SUSP);
}
static u32 dw_dma_bytes2block(struct dw_dma_chan *dwc,
size_t bytes, unsigned int width, size_t *len)
{
u32 block;
if ((bytes >> width) > dwc->block_size) {
block = dwc->block_size;
*len = dwc->block_size << width;
} else {
block = bytes >> width;
*len = bytes;
}
return block;
}
static size_t dw_dma_block2bytes(struct dw_dma_chan *dwc, u32 block, u32 width)
{
return DWC_CTLH_BLOCK_TS(block) << width;
}
static u32 dw_dma_prepare_ctllo(struct dw_dma_chan *dwc)
{
struct dma_slave_config *sconfig = &dwc->dma_sconfig;
bool is_slave = is_slave_direction(dwc->direction);
u8 smsize = is_slave ? sconfig->src_maxburst : DW_DMA_MSIZE_16;
u8 dmsize = is_slave ? sconfig->dst_maxburst : DW_DMA_MSIZE_16;
u8 p_master = dwc->dws.p_master;
u8 m_master = dwc->dws.m_master;
u8 dms = (dwc->direction == DMA_MEM_TO_DEV) ? p_master : m_master;
u8 sms = (dwc->direction == DMA_DEV_TO_MEM) ? p_master : m_master;
return DWC_CTLL_LLP_D_EN | DWC_CTLL_LLP_S_EN |
DWC_CTLL_DST_MSIZE(dmsize) | DWC_CTLL_SRC_MSIZE(smsize) |
DWC_CTLL_DMS(dms) | DWC_CTLL_SMS(sms);
}
static void dw_dma_encode_maxburst(struct dw_dma_chan *dwc, u32 *maxburst)
{
/*
* Fix burst size according to dw_dmac. We need to convert them as:
* 1 -> 0, 4 -> 1, 8 -> 2, 16 -> 3.
*/
*maxburst = *maxburst > 1 ? fls(*maxburst) - 2 : 0;
}
static void dw_dma_set_device_name(struct dw_dma *dw, int id)
{
snprintf(dw->name, sizeof(dw->name), "dw:dmac%d", id);
}
static void dw_dma_disable(struct dw_dma *dw)
{
do_dw_dma_off(dw);
}
static void dw_dma_enable(struct dw_dma *dw)
{
do_dw_dma_on(dw);
}
int dw_dma_probe(struct dw_dma_chip *chip)
{
struct dw_dma *dw;
dw = devm_kzalloc(chip->dev, sizeof(*dw), GFP_KERNEL);
if (!dw)
return -ENOMEM;
/* Channel operations */
dw->initialize_chan = dw_dma_initialize_chan;
dw->suspend_chan = dw_dma_suspend_chan;
dw->resume_chan = dw_dma_resume_chan;
dw->prepare_ctllo = dw_dma_prepare_ctllo;
dw->encode_maxburst = dw_dma_encode_maxburst;
dw->bytes2block = dw_dma_bytes2block;
dw->block2bytes = dw_dma_block2bytes;
/* Device operations */
dw->set_device_name = dw_dma_set_device_name;
dw->disable = dw_dma_disable;
dw->enable = dw_dma_enable;
chip->dw = dw;
return do_dma_probe(chip);
}
EXPORT_SYMBOL_GPL(dw_dma_probe);
int dw_dma_remove(struct dw_dma_chip *chip)
{
return do_dma_remove(chip);
}
EXPORT_SYMBOL_GPL(dw_dma_remove);

160
drivers/dma/dw/idma32.c Normal file
View File

@ -0,0 +1,160 @@
// SPDX-License-Identifier: GPL-2.0
// Copyright (C) 2013,2018 Intel Corporation
#include <linux/bitops.h>
#include <linux/dmaengine.h>
#include <linux/errno.h>
#include <linux/slab.h>
#include <linux/types.h>
#include "internal.h"
static void idma32_initialize_chan(struct dw_dma_chan *dwc)
{
u32 cfghi = 0;
u32 cfglo = 0;
/* Set default burst alignment */
cfglo |= IDMA32C_CFGL_DST_BURST_ALIGN | IDMA32C_CFGL_SRC_BURST_ALIGN;
/* Low 4 bits of the request lines */
cfghi |= IDMA32C_CFGH_DST_PER(dwc->dws.dst_id & 0xf);
cfghi |= IDMA32C_CFGH_SRC_PER(dwc->dws.src_id & 0xf);
/* Request line extension (2 bits) */
cfghi |= IDMA32C_CFGH_DST_PER_EXT(dwc->dws.dst_id >> 4 & 0x3);
cfghi |= IDMA32C_CFGH_SRC_PER_EXT(dwc->dws.src_id >> 4 & 0x3);
channel_writel(dwc, CFG_LO, cfglo);
channel_writel(dwc, CFG_HI, cfghi);
}
static void idma32_suspend_chan(struct dw_dma_chan *dwc, bool drain)
{
u32 cfglo = channel_readl(dwc, CFG_LO);
if (drain)
cfglo |= IDMA32C_CFGL_CH_DRAIN;
channel_writel(dwc, CFG_LO, cfglo | DWC_CFGL_CH_SUSP);
}
static void idma32_resume_chan(struct dw_dma_chan *dwc, bool drain)
{
u32 cfglo = channel_readl(dwc, CFG_LO);
if (drain)
cfglo &= ~IDMA32C_CFGL_CH_DRAIN;
channel_writel(dwc, CFG_LO, cfglo & ~DWC_CFGL_CH_SUSP);
}
static u32 idma32_bytes2block(struct dw_dma_chan *dwc,
size_t bytes, unsigned int width, size_t *len)
{
u32 block;
if (bytes > dwc->block_size) {
block = dwc->block_size;
*len = dwc->block_size;
} else {
block = bytes;
*len = bytes;
}
return block;
}
static size_t idma32_block2bytes(struct dw_dma_chan *dwc, u32 block, u32 width)
{
return IDMA32C_CTLH_BLOCK_TS(block);
}
static u32 idma32_prepare_ctllo(struct dw_dma_chan *dwc)
{
struct dma_slave_config *sconfig = &dwc->dma_sconfig;
bool is_slave = is_slave_direction(dwc->direction);
u8 smsize = is_slave ? sconfig->src_maxburst : IDMA32_MSIZE_8;
u8 dmsize = is_slave ? sconfig->dst_maxburst : IDMA32_MSIZE_8;
return DWC_CTLL_LLP_D_EN | DWC_CTLL_LLP_S_EN |
DWC_CTLL_DST_MSIZE(dmsize) | DWC_CTLL_SRC_MSIZE(smsize);
}
static void idma32_encode_maxburst(struct dw_dma_chan *dwc, u32 *maxburst)
{
*maxburst = *maxburst > 1 ? fls(*maxburst) - 1 : 0;
}
static void idma32_set_device_name(struct dw_dma *dw, int id)
{
snprintf(dw->name, sizeof(dw->name), "idma32:dmac%d", id);
}
/*
* Program FIFO size of channels.
*
* By default full FIFO (512 bytes) is assigned to channel 0. Here we
* slice FIFO on equal parts between channels.
*/
static void idma32_fifo_partition(struct dw_dma *dw)
{
u64 value = IDMA32C_FP_PSIZE_CH0(64) | IDMA32C_FP_PSIZE_CH1(64) |
IDMA32C_FP_UPDATE;
u64 fifo_partition = 0;
/* Fill FIFO_PARTITION low bits (Channels 0..1, 4..5) */
fifo_partition |= value << 0;
/* Fill FIFO_PARTITION high bits (Channels 2..3, 6..7) */
fifo_partition |= value << 32;
/* Program FIFO Partition registers - 64 bytes per channel */
idma32_writeq(dw, FIFO_PARTITION1, fifo_partition);
idma32_writeq(dw, FIFO_PARTITION0, fifo_partition);
}
static void idma32_disable(struct dw_dma *dw)
{
do_dw_dma_off(dw);
idma32_fifo_partition(dw);
}
static void idma32_enable(struct dw_dma *dw)
{
idma32_fifo_partition(dw);
do_dw_dma_on(dw);
}
int idma32_dma_probe(struct dw_dma_chip *chip)
{
struct dw_dma *dw;
dw = devm_kzalloc(chip->dev, sizeof(*dw), GFP_KERNEL);
if (!dw)
return -ENOMEM;
/* Channel operations */
dw->initialize_chan = idma32_initialize_chan;
dw->suspend_chan = idma32_suspend_chan;
dw->resume_chan = idma32_resume_chan;
dw->prepare_ctllo = idma32_prepare_ctllo;
dw->encode_maxburst = idma32_encode_maxburst;
dw->bytes2block = idma32_bytes2block;
dw->block2bytes = idma32_block2bytes;
/* Device operations */
dw->set_device_name = idma32_set_device_name;
dw->disable = idma32_disable;
dw->enable = idma32_enable;
chip->dw = dw;
return do_dma_probe(chip);
}
EXPORT_SYMBOL_GPL(idma32_dma_probe);
int idma32_dma_remove(struct dw_dma_chip *chip)
{
return do_dma_remove(chip);
}
EXPORT_SYMBOL_GPL(idma32_dma_remove);

View File

@ -1,11 +1,8 @@
/* SPDX-License-Identifier: GPL-2.0 */
/* /*
* Driver for the Synopsys DesignWare DMA Controller * Driver for the Synopsys DesignWare DMA Controller
* *
* Copyright (C) 2013 Intel Corporation * Copyright (C) 2013 Intel Corporation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/ */
#ifndef _DMA_DW_INTERNAL_H #ifndef _DMA_DW_INTERNAL_H
@ -15,8 +12,14 @@
#include "regs.h" #include "regs.h"
int dw_dma_disable(struct dw_dma_chip *chip); int do_dma_probe(struct dw_dma_chip *chip);
int dw_dma_enable(struct dw_dma_chip *chip); int do_dma_remove(struct dw_dma_chip *chip);
void do_dw_dma_on(struct dw_dma *dw);
void do_dw_dma_off(struct dw_dma *dw);
int do_dw_dma_disable(struct dw_dma_chip *chip);
int do_dw_dma_enable(struct dw_dma_chip *chip);
extern bool dw_dma_filter(struct dma_chan *chan, void *param); extern bool dw_dma_filter(struct dma_chan *chan, void *param);

View File

@ -1,12 +1,9 @@
// SPDX-License-Identifier: GPL-2.0
/* /*
* PCI driver for the Synopsys DesignWare DMA Controller * PCI driver for the Synopsys DesignWare DMA Controller
* *
* Copyright (C) 2013 Intel Corporation * Copyright (C) 2013 Intel Corporation
* Author: Andy Shevchenko <andriy.shevchenko@linux.intel.com> * Author: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/ */
#include <linux/module.h> #include <linux/module.h>
@ -15,21 +12,33 @@
#include "internal.h" #include "internal.h"
static struct dw_dma_platform_data mrfld_pdata = { struct dw_dma_pci_data {
const struct dw_dma_platform_data *pdata;
int (*probe)(struct dw_dma_chip *chip);
};
static const struct dw_dma_pci_data dw_pci_data = {
.probe = dw_dma_probe,
};
static const struct dw_dma_platform_data idma32_pdata = {
.nr_channels = 8, .nr_channels = 8,
.is_private = true,
.is_memcpy = true,
.is_idma32 = true,
.chan_allocation_order = CHAN_ALLOCATION_ASCENDING, .chan_allocation_order = CHAN_ALLOCATION_ASCENDING,
.chan_priority = CHAN_PRIORITY_ASCENDING, .chan_priority = CHAN_PRIORITY_ASCENDING,
.block_size = 131071, .block_size = 131071,
.nr_masters = 1, .nr_masters = 1,
.data_width = {4}, .data_width = {4},
.multi_block = {1, 1, 1, 1, 1, 1, 1, 1},
};
static const struct dw_dma_pci_data idma32_pci_data = {
.pdata = &idma32_pdata,
.probe = idma32_dma_probe,
}; };
static int dw_pci_probe(struct pci_dev *pdev, const struct pci_device_id *pid) static int dw_pci_probe(struct pci_dev *pdev, const struct pci_device_id *pid)
{ {
const struct dw_dma_platform_data *pdata = (void *)pid->driver_data; const struct dw_dma_pci_data *data = (void *)pid->driver_data;
struct dw_dma_chip *chip; struct dw_dma_chip *chip;
int ret; int ret;
@ -62,9 +71,9 @@ static int dw_pci_probe(struct pci_dev *pdev, const struct pci_device_id *pid)
chip->id = pdev->devfn; chip->id = pdev->devfn;
chip->regs = pcim_iomap_table(pdev)[0]; chip->regs = pcim_iomap_table(pdev)[0];
chip->irq = pdev->irq; chip->irq = pdev->irq;
chip->pdata = pdata; chip->pdata = data->pdata;
ret = dw_dma_probe(chip); ret = data->probe(chip);
if (ret) if (ret)
return ret; return ret;
@ -90,7 +99,7 @@ static int dw_pci_suspend_late(struct device *dev)
struct pci_dev *pci = to_pci_dev(dev); struct pci_dev *pci = to_pci_dev(dev);
struct dw_dma_chip *chip = pci_get_drvdata(pci); struct dw_dma_chip *chip = pci_get_drvdata(pci);
return dw_dma_disable(chip); return do_dw_dma_disable(chip);
}; };
static int dw_pci_resume_early(struct device *dev) static int dw_pci_resume_early(struct device *dev)
@ -98,7 +107,7 @@ static int dw_pci_resume_early(struct device *dev)
struct pci_dev *pci = to_pci_dev(dev); struct pci_dev *pci = to_pci_dev(dev);
struct dw_dma_chip *chip = pci_get_drvdata(pci); struct dw_dma_chip *chip = pci_get_drvdata(pci);
return dw_dma_enable(chip); return do_dw_dma_enable(chip);
}; };
#endif /* CONFIG_PM_SLEEP */ #endif /* CONFIG_PM_SLEEP */
@ -109,24 +118,24 @@ static const struct dev_pm_ops dw_pci_dev_pm_ops = {
static const struct pci_device_id dw_pci_id_table[] = { static const struct pci_device_id dw_pci_id_table[] = {
/* Medfield (GPDMA) */ /* Medfield (GPDMA) */
{ PCI_VDEVICE(INTEL, 0x0827) }, { PCI_VDEVICE(INTEL, 0x0827), (kernel_ulong_t)&dw_pci_data },
/* BayTrail */ /* BayTrail */
{ PCI_VDEVICE(INTEL, 0x0f06) }, { PCI_VDEVICE(INTEL, 0x0f06), (kernel_ulong_t)&dw_pci_data },
{ PCI_VDEVICE(INTEL, 0x0f40) }, { PCI_VDEVICE(INTEL, 0x0f40), (kernel_ulong_t)&dw_pci_data },
/* Merrifield iDMA 32-bit (GPDMA) */ /* Merrifield */
{ PCI_VDEVICE(INTEL, 0x11a2), (kernel_ulong_t)&mrfld_pdata }, { PCI_VDEVICE(INTEL, 0x11a2), (kernel_ulong_t)&idma32_pci_data },
/* Braswell */ /* Braswell */
{ PCI_VDEVICE(INTEL, 0x2286) }, { PCI_VDEVICE(INTEL, 0x2286), (kernel_ulong_t)&dw_pci_data },
{ PCI_VDEVICE(INTEL, 0x22c0) }, { PCI_VDEVICE(INTEL, 0x22c0), (kernel_ulong_t)&dw_pci_data },
/* Haswell */ /* Haswell */
{ PCI_VDEVICE(INTEL, 0x9c60) }, { PCI_VDEVICE(INTEL, 0x9c60), (kernel_ulong_t)&dw_pci_data },
/* Broadwell */ /* Broadwell */
{ PCI_VDEVICE(INTEL, 0x9ce0) }, { PCI_VDEVICE(INTEL, 0x9ce0), (kernel_ulong_t)&dw_pci_data },
{ } { }
}; };

View File

@ -1,3 +1,4 @@
// SPDX-License-Identifier: GPL-2.0
/* /*
* Platform driver for the Synopsys DesignWare DMA Controller * Platform driver for the Synopsys DesignWare DMA Controller
* *
@ -6,10 +7,6 @@
* Copyright (C) 2013 Intel Corporation * Copyright (C) 2013 Intel Corporation
* *
* Some parts of this driver are derived from the original dw_dmac. * Some parts of this driver are derived from the original dw_dmac.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/ */
#include <linux/module.h> #include <linux/module.h>
@ -128,15 +125,6 @@ dw_dma_parse_dt(struct platform_device *pdev)
pdata->nr_masters = nr_masters; pdata->nr_masters = nr_masters;
pdata->nr_channels = nr_channels; pdata->nr_channels = nr_channels;
if (of_property_read_bool(np, "is_private"))
pdata->is_private = true;
/*
* All known devices, which use DT for configuration, support
* memory-to-memory transfers. So enable it by default.
*/
pdata->is_memcpy = true;
if (!of_property_read_u32(np, "chan_allocation_order", &tmp)) if (!of_property_read_u32(np, "chan_allocation_order", &tmp))
pdata->chan_allocation_order = (unsigned char)tmp; pdata->chan_allocation_order = (unsigned char)tmp;
@ -264,7 +252,7 @@ static void dw_shutdown(struct platform_device *pdev)
struct dw_dma_chip *chip = platform_get_drvdata(pdev); struct dw_dma_chip *chip = platform_get_drvdata(pdev);
/* /*
* We have to call dw_dma_disable() to stop any ongoing transfer. On * We have to call do_dw_dma_disable() to stop any ongoing transfer. On
* some platforms we can't do that since DMA device is powered off. * some platforms we can't do that since DMA device is powered off.
* Moreover we have no possibility to check if the platform is affected * Moreover we have no possibility to check if the platform is affected
* or not. That's why we call pm_runtime_get_sync() / pm_runtime_put() * or not. That's why we call pm_runtime_get_sync() / pm_runtime_put()
@ -273,7 +261,7 @@ static void dw_shutdown(struct platform_device *pdev)
* used by the driver. * used by the driver.
*/ */
pm_runtime_get_sync(chip->dev); pm_runtime_get_sync(chip->dev);
dw_dma_disable(chip); do_dw_dma_disable(chip);
pm_runtime_put_sync_suspend(chip->dev); pm_runtime_put_sync_suspend(chip->dev);
clk_disable_unprepare(chip->clk); clk_disable_unprepare(chip->clk);
@ -303,7 +291,7 @@ static int dw_suspend_late(struct device *dev)
{ {
struct dw_dma_chip *chip = dev_get_drvdata(dev); struct dw_dma_chip *chip = dev_get_drvdata(dev);
dw_dma_disable(chip); do_dw_dma_disable(chip);
clk_disable_unprepare(chip->clk); clk_disable_unprepare(chip->clk);
return 0; return 0;
@ -318,7 +306,7 @@ static int dw_resume_early(struct device *dev)
if (ret) if (ret)
return ret; return ret;
return dw_dma_enable(chip); return do_dw_dma_enable(chip);
} }
#endif /* CONFIG_PM_SLEEP */ #endif /* CONFIG_PM_SLEEP */

View File

@ -1,13 +1,10 @@
/* SPDX-License-Identifier: GPL-2.0 */
/* /*
* Driver for the Synopsys DesignWare AHB DMA Controller * Driver for the Synopsys DesignWare AHB DMA Controller
* *
* Copyright (C) 2005-2007 Atmel Corporation * Copyright (C) 2005-2007 Atmel Corporation
* Copyright (C) 2010-2011 ST Microelectronics * Copyright (C) 2010-2011 ST Microelectronics
* Copyright (C) 2016 Intel Corporation * Copyright (C) 2016 Intel Corporation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/ */
#include <linux/bitops.h> #include <linux/bitops.h>
@ -222,6 +219,16 @@ enum dw_dma_msize {
/* iDMA 32-bit support */ /* iDMA 32-bit support */
/* bursts size */
enum idma32_msize {
IDMA32_MSIZE_1,
IDMA32_MSIZE_2,
IDMA32_MSIZE_4,
IDMA32_MSIZE_8,
IDMA32_MSIZE_16,
IDMA32_MSIZE_32,
};
/* Bitfields in CTL_HI */ /* Bitfields in CTL_HI */
#define IDMA32C_CTLH_BLOCK_TS_MASK GENMASK(16, 0) #define IDMA32C_CTLH_BLOCK_TS_MASK GENMASK(16, 0)
#define IDMA32C_CTLH_BLOCK_TS(x) ((x) & IDMA32C_CTLH_BLOCK_TS_MASK) #define IDMA32C_CTLH_BLOCK_TS(x) ((x) & IDMA32C_CTLH_BLOCK_TS_MASK)
@ -312,6 +319,21 @@ struct dw_dma {
u8 all_chan_mask; u8 all_chan_mask;
u8 in_use; u8 in_use;
/* Channel operations */
void (*initialize_chan)(struct dw_dma_chan *dwc);
void (*suspend_chan)(struct dw_dma_chan *dwc, bool drain);
void (*resume_chan)(struct dw_dma_chan *dwc, bool drain);
u32 (*prepare_ctllo)(struct dw_dma_chan *dwc);
void (*encode_maxburst)(struct dw_dma_chan *dwc, u32 *maxburst);
u32 (*bytes2block)(struct dw_dma_chan *dwc, size_t bytes,
unsigned int width, size_t *len);
size_t (*block2bytes)(struct dw_dma_chan *dwc, u32 block, u32 width);
/* Device operations */
void (*set_device_name)(struct dw_dma *dw, int id);
void (*disable)(struct dw_dma *dw);
void (*enable)(struct dw_dma *dw);
/* platform data */ /* platform data */
struct dw_dma_platform_data *pdata; struct dw_dma_platform_data *pdata;
}; };

View File

@ -6,6 +6,7 @@
#include <linux/dmapool.h> #include <linux/dmapool.h>
#include <linux/module.h> #include <linux/module.h>
#include <linux/slab.h> #include <linux/slab.h>
#include <linux/dma-mapping.h>
#include "fsl-edma-common.h" #include "fsl-edma-common.h"
@ -173,12 +174,62 @@ int fsl_edma_resume(struct dma_chan *chan)
} }
EXPORT_SYMBOL_GPL(fsl_edma_resume); EXPORT_SYMBOL_GPL(fsl_edma_resume);
static void fsl_edma_unprep_slave_dma(struct fsl_edma_chan *fsl_chan)
{
if (fsl_chan->dma_dir != DMA_NONE)
dma_unmap_resource(fsl_chan->vchan.chan.device->dev,
fsl_chan->dma_dev_addr,
fsl_chan->dma_dev_size,
fsl_chan->dma_dir, 0);
fsl_chan->dma_dir = DMA_NONE;
}
static bool fsl_edma_prep_slave_dma(struct fsl_edma_chan *fsl_chan,
enum dma_transfer_direction dir)
{
struct device *dev = fsl_chan->vchan.chan.device->dev;
enum dma_data_direction dma_dir;
phys_addr_t addr = 0;
u32 size = 0;
switch (dir) {
case DMA_MEM_TO_DEV:
dma_dir = DMA_FROM_DEVICE;
addr = fsl_chan->cfg.dst_addr;
size = fsl_chan->cfg.dst_maxburst;
break;
case DMA_DEV_TO_MEM:
dma_dir = DMA_TO_DEVICE;
addr = fsl_chan->cfg.src_addr;
size = fsl_chan->cfg.src_maxburst;
break;
default:
dma_dir = DMA_NONE;
break;
}
/* Already mapped for this config? */
if (fsl_chan->dma_dir == dma_dir)
return true;
fsl_edma_unprep_slave_dma(fsl_chan);
fsl_chan->dma_dev_addr = dma_map_resource(dev, addr, size, dma_dir, 0);
if (dma_mapping_error(dev, fsl_chan->dma_dev_addr))
return false;
fsl_chan->dma_dev_size = size;
fsl_chan->dma_dir = dma_dir;
return true;
}
int fsl_edma_slave_config(struct dma_chan *chan, int fsl_edma_slave_config(struct dma_chan *chan,
struct dma_slave_config *cfg) struct dma_slave_config *cfg)
{ {
struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan); struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
memcpy(&fsl_chan->cfg, cfg, sizeof(*cfg)); memcpy(&fsl_chan->cfg, cfg, sizeof(*cfg));
fsl_edma_unprep_slave_dma(fsl_chan);
return 0; return 0;
} }
@ -339,9 +390,7 @@ static struct fsl_edma_desc *fsl_edma_alloc_desc(struct fsl_edma_chan *fsl_chan,
struct fsl_edma_desc *fsl_desc; struct fsl_edma_desc *fsl_desc;
int i; int i;
fsl_desc = kzalloc(sizeof(*fsl_desc) + fsl_desc = kzalloc(struct_size(fsl_desc, tcd, sg_len), GFP_NOWAIT);
sizeof(struct fsl_edma_sw_tcd) *
sg_len, GFP_NOWAIT);
if (!fsl_desc) if (!fsl_desc)
return NULL; return NULL;
@ -378,6 +427,9 @@ struct dma_async_tx_descriptor *fsl_edma_prep_dma_cyclic(
if (!is_slave_direction(direction)) if (!is_slave_direction(direction))
return NULL; return NULL;
if (!fsl_edma_prep_slave_dma(fsl_chan, direction))
return NULL;
sg_len = buf_len / period_len; sg_len = buf_len / period_len;
fsl_desc = fsl_edma_alloc_desc(fsl_chan, sg_len); fsl_desc = fsl_edma_alloc_desc(fsl_chan, sg_len);
if (!fsl_desc) if (!fsl_desc)
@ -409,11 +461,11 @@ struct dma_async_tx_descriptor *fsl_edma_prep_dma_cyclic(
if (direction == DMA_MEM_TO_DEV) { if (direction == DMA_MEM_TO_DEV) {
src_addr = dma_buf_next; src_addr = dma_buf_next;
dst_addr = fsl_chan->cfg.dst_addr; dst_addr = fsl_chan->dma_dev_addr;
soff = fsl_chan->cfg.dst_addr_width; soff = fsl_chan->cfg.dst_addr_width;
doff = 0; doff = 0;
} else { } else {
src_addr = fsl_chan->cfg.src_addr; src_addr = fsl_chan->dma_dev_addr;
dst_addr = dma_buf_next; dst_addr = dma_buf_next;
soff = 0; soff = 0;
doff = fsl_chan->cfg.src_addr_width; doff = fsl_chan->cfg.src_addr_width;
@ -444,6 +496,9 @@ struct dma_async_tx_descriptor *fsl_edma_prep_slave_sg(
if (!is_slave_direction(direction)) if (!is_slave_direction(direction))
return NULL; return NULL;
if (!fsl_edma_prep_slave_dma(fsl_chan, direction))
return NULL;
fsl_desc = fsl_edma_alloc_desc(fsl_chan, sg_len); fsl_desc = fsl_edma_alloc_desc(fsl_chan, sg_len);
if (!fsl_desc) if (!fsl_desc)
return NULL; return NULL;
@ -468,11 +523,11 @@ struct dma_async_tx_descriptor *fsl_edma_prep_slave_sg(
if (direction == DMA_MEM_TO_DEV) { if (direction == DMA_MEM_TO_DEV) {
src_addr = sg_dma_address(sg); src_addr = sg_dma_address(sg);
dst_addr = fsl_chan->cfg.dst_addr; dst_addr = fsl_chan->dma_dev_addr;
soff = fsl_chan->cfg.dst_addr_width; soff = fsl_chan->cfg.dst_addr_width;
doff = 0; doff = 0;
} else { } else {
src_addr = fsl_chan->cfg.src_addr; src_addr = fsl_chan->dma_dev_addr;
dst_addr = sg_dma_address(sg); dst_addr = sg_dma_address(sg);
soff = 0; soff = 0;
doff = fsl_chan->cfg.src_addr_width; doff = fsl_chan->cfg.src_addr_width;
@ -555,6 +610,7 @@ void fsl_edma_free_chan_resources(struct dma_chan *chan)
fsl_edma_chan_mux(fsl_chan, 0, false); fsl_edma_chan_mux(fsl_chan, 0, false);
fsl_chan->edesc = NULL; fsl_chan->edesc = NULL;
vchan_get_all_descriptors(&fsl_chan->vchan, &head); vchan_get_all_descriptors(&fsl_chan->vchan, &head);
fsl_edma_unprep_slave_dma(fsl_chan);
spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags); spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags);
vchan_dma_desc_free_list(&fsl_chan->vchan, &head); vchan_dma_desc_free_list(&fsl_chan->vchan, &head);

View File

@ -6,6 +6,7 @@
#ifndef _FSL_EDMA_COMMON_H_ #ifndef _FSL_EDMA_COMMON_H_
#define _FSL_EDMA_COMMON_H_ #define _FSL_EDMA_COMMON_H_
#include <linux/dma-direction.h>
#include "virt-dma.h" #include "virt-dma.h"
#define EDMA_CR_EDBG BIT(1) #define EDMA_CR_EDBG BIT(1)
@ -120,6 +121,9 @@ struct fsl_edma_chan {
struct dma_slave_config cfg; struct dma_slave_config cfg;
u32 attr; u32 attr;
struct dma_pool *tcd_pool; struct dma_pool *tcd_pool;
dma_addr_t dma_dev_addr;
u32 dma_dev_size;
enum dma_data_direction dma_dir;
}; };
struct fsl_edma_desc { struct fsl_edma_desc {

View File

@ -254,6 +254,7 @@ static int fsl_edma_probe(struct platform_device *pdev)
fsl_chan->pm_state = RUNNING; fsl_chan->pm_state = RUNNING;
fsl_chan->slave_id = 0; fsl_chan->slave_id = 0;
fsl_chan->idle = true; fsl_chan->idle = true;
fsl_chan->dma_dir = DMA_NONE;
fsl_chan->vchan.desc_free = fsl_edma_free_desc; fsl_chan->vchan.desc_free = fsl_edma_free_desc;
vchan_init(&fsl_chan->vchan, &fsl_edma->dma_dev); vchan_init(&fsl_chan->vchan, &fsl_edma->dma_dev);

1259
drivers/dma/fsl-qdma.c Normal file

File diff suppressed because it is too large Load Diff

View File

@ -53,42 +53,42 @@ static const char msg_ld_oom[] = "No free memory for link descriptor";
static void set_sr(struct fsldma_chan *chan, u32 val) static void set_sr(struct fsldma_chan *chan, u32 val)
{ {
DMA_OUT(chan, &chan->regs->sr, val, 32); FSL_DMA_OUT(chan, &chan->regs->sr, val, 32);
} }
static u32 get_sr(struct fsldma_chan *chan) static u32 get_sr(struct fsldma_chan *chan)
{ {
return DMA_IN(chan, &chan->regs->sr, 32); return FSL_DMA_IN(chan, &chan->regs->sr, 32);
} }
static void set_mr(struct fsldma_chan *chan, u32 val) static void set_mr(struct fsldma_chan *chan, u32 val)
{ {
DMA_OUT(chan, &chan->regs->mr, val, 32); FSL_DMA_OUT(chan, &chan->regs->mr, val, 32);
} }
static u32 get_mr(struct fsldma_chan *chan) static u32 get_mr(struct fsldma_chan *chan)
{ {
return DMA_IN(chan, &chan->regs->mr, 32); return FSL_DMA_IN(chan, &chan->regs->mr, 32);
} }
static void set_cdar(struct fsldma_chan *chan, dma_addr_t addr) static void set_cdar(struct fsldma_chan *chan, dma_addr_t addr)
{ {
DMA_OUT(chan, &chan->regs->cdar, addr | FSL_DMA_SNEN, 64); FSL_DMA_OUT(chan, &chan->regs->cdar, addr | FSL_DMA_SNEN, 64);
} }
static dma_addr_t get_cdar(struct fsldma_chan *chan) static dma_addr_t get_cdar(struct fsldma_chan *chan)
{ {
return DMA_IN(chan, &chan->regs->cdar, 64) & ~FSL_DMA_SNEN; return FSL_DMA_IN(chan, &chan->regs->cdar, 64) & ~FSL_DMA_SNEN;
} }
static void set_bcr(struct fsldma_chan *chan, u32 val) static void set_bcr(struct fsldma_chan *chan, u32 val)
{ {
DMA_OUT(chan, &chan->regs->bcr, val, 32); FSL_DMA_OUT(chan, &chan->regs->bcr, val, 32);
} }
static u32 get_bcr(struct fsldma_chan *chan) static u32 get_bcr(struct fsldma_chan *chan)
{ {
return DMA_IN(chan, &chan->regs->bcr, 32); return FSL_DMA_IN(chan, &chan->regs->bcr, 32);
} }
/* /*

View File

@ -196,39 +196,67 @@ struct fsldma_chan {
#define to_fsl_desc(lh) container_of(lh, struct fsl_desc_sw, node) #define to_fsl_desc(lh) container_of(lh, struct fsl_desc_sw, node)
#define tx_to_fsl_desc(tx) container_of(tx, struct fsl_desc_sw, async_tx) #define tx_to_fsl_desc(tx) container_of(tx, struct fsl_desc_sw, async_tx)
#ifndef __powerpc64__ #ifdef CONFIG_PPC
static u64 in_be64(const u64 __iomem *addr) #define fsl_ioread32(p) in_le32(p)
#define fsl_ioread32be(p) in_be32(p)
#define fsl_iowrite32(v, p) out_le32(p, v)
#define fsl_iowrite32be(v, p) out_be32(p, v)
#ifdef __powerpc64__
#define fsl_ioread64(p) in_le64(p)
#define fsl_ioread64be(p) in_be64(p)
#define fsl_iowrite64(v, p) out_le64(p, v)
#define fsl_iowrite64be(v, p) out_be64(p, v)
#else
static u64 fsl_ioread64(const u64 __iomem *addr)
{ {
return ((u64)in_be32((u32 __iomem *)addr) << 32) | u32 fsl_addr = lower_32_bits(addr);
(in_be32((u32 __iomem *)addr + 1)); u64 fsl_addr_hi = (u64)in_le32((u32 *)(fsl_addr + 1)) << 32;
return fsl_addr_hi | in_le32((u32 *)fsl_addr);
} }
static void out_be64(u64 __iomem *addr, u64 val) static void fsl_iowrite64(u64 val, u64 __iomem *addr)
{
out_be32((u32 __iomem *)addr, val >> 32);
out_be32((u32 __iomem *)addr + 1, (u32)val);
}
/* There is no asm instructions for 64 bits reverse loads and stores */
static u64 in_le64(const u64 __iomem *addr)
{
return ((u64)in_le32((u32 __iomem *)addr + 1) << 32) |
(in_le32((u32 __iomem *)addr));
}
static void out_le64(u64 __iomem *addr, u64 val)
{ {
out_le32((u32 __iomem *)addr + 1, val >> 32); out_le32((u32 __iomem *)addr + 1, val >> 32);
out_le32((u32 __iomem *)addr, (u32)val); out_le32((u32 __iomem *)addr, (u32)val);
} }
static u64 fsl_ioread64be(const u64 __iomem *addr)
{
u32 fsl_addr = lower_32_bits(addr);
u64 fsl_addr_hi = (u64)in_be32((u32 *)fsl_addr) << 32;
return fsl_addr_hi | in_be32((u32 *)(fsl_addr + 1));
}
static void fsl_iowrite64be(u64 val, u64 __iomem *addr)
{
out_be32((u32 __iomem *)addr, val >> 32);
out_be32((u32 __iomem *)addr + 1, (u32)val);
}
#endif
#endif #endif
#define DMA_IN(fsl_chan, addr, width) \ #if defined(CONFIG_ARM64) || defined(CONFIG_ARM)
(((fsl_chan)->feature & FSL_DMA_BIG_ENDIAN) ? \ #define fsl_ioread32(p) ioread32(p)
in_be##width(addr) : in_le##width(addr)) #define fsl_ioread32be(p) ioread32be(p)
#define DMA_OUT(fsl_chan, addr, val, width) \ #define fsl_iowrite32(v, p) iowrite32(v, p)
(((fsl_chan)->feature & FSL_DMA_BIG_ENDIAN) ? \ #define fsl_iowrite32be(v, p) iowrite32be(v, p)
out_be##width(addr, val) : out_le##width(addr, val)) #define fsl_ioread64(p) ioread64(p)
#define fsl_ioread64be(p) ioread64be(p)
#define fsl_iowrite64(v, p) iowrite64(v, p)
#define fsl_iowrite64be(v, p) iowrite64be(v, p)
#endif
#define FSL_DMA_IN(fsl_dma, addr, width) \
(((fsl_dma)->feature & FSL_DMA_BIG_ENDIAN) ? \
fsl_ioread##width##be(addr) : fsl_ioread##width(addr))
#define FSL_DMA_OUT(fsl_dma, addr, val, width) \
(((fsl_dma)->feature & FSL_DMA_BIG_ENDIAN) ? \
fsl_iowrite##width##be(val, addr) : fsl_iowrite \
##width(val, addr))
#define DMA_TO_CPU(fsl_chan, d, width) \ #define DMA_TO_CPU(fsl_chan, d, width) \
(((fsl_chan)->feature & FSL_DMA_BIG_ENDIAN) ? \ (((fsl_chan)->feature & FSL_DMA_BIG_ENDIAN) ? \

View File

@ -278,14 +278,14 @@ static int imxdma_hw_chain(struct imxdma_channel *imxdmac)
/* /*
* imxdma_sg_next - prepare next chunk for scatter-gather DMA emulation * imxdma_sg_next - prepare next chunk for scatter-gather DMA emulation
*/ */
static inline int imxdma_sg_next(struct imxdma_desc *d) static inline void imxdma_sg_next(struct imxdma_desc *d)
{ {
struct imxdma_channel *imxdmac = to_imxdma_chan(d->desc.chan); struct imxdma_channel *imxdmac = to_imxdma_chan(d->desc.chan);
struct imxdma_engine *imxdma = imxdmac->imxdma; struct imxdma_engine *imxdma = imxdmac->imxdma;
struct scatterlist *sg = d->sg; struct scatterlist *sg = d->sg;
unsigned long now; size_t now;
now = min(d->len, sg_dma_len(sg)); now = min_t(size_t, d->len, sg_dma_len(sg));
if (d->len != IMX_DMA_LENGTH_LOOP) if (d->len != IMX_DMA_LENGTH_LOOP)
d->len -= now; d->len -= now;
@ -303,8 +303,6 @@ static inline int imxdma_sg_next(struct imxdma_desc *d)
imx_dmav1_readl(imxdma, DMA_DAR(imxdmac->channel)), imx_dmav1_readl(imxdma, DMA_DAR(imxdmac->channel)),
imx_dmav1_readl(imxdma, DMA_SAR(imxdmac->channel)), imx_dmav1_readl(imxdma, DMA_SAR(imxdmac->channel)),
imx_dmav1_readl(imxdma, DMA_CNTR(imxdmac->channel))); imx_dmav1_readl(imxdma, DMA_CNTR(imxdmac->channel)));
return now;
} }
static void imxdma_enable_hw(struct imxdma_desc *d) static void imxdma_enable_hw(struct imxdma_desc *d)

View File

@ -377,6 +377,7 @@ struct sdma_channel {
unsigned long watermark_level; unsigned long watermark_level;
u32 shp_addr, per_addr; u32 shp_addr, per_addr;
enum dma_status status; enum dma_status status;
bool context_loaded;
struct imx_dma_data data; struct imx_dma_data data;
struct work_struct terminate_worker; struct work_struct terminate_worker;
}; };
@ -440,6 +441,8 @@ struct sdma_engine {
unsigned int irq; unsigned int irq;
dma_addr_t bd0_phys; dma_addr_t bd0_phys;
struct sdma_buffer_descriptor *bd0; struct sdma_buffer_descriptor *bd0;
/* clock ratio for AHB:SDMA core. 1:1 is 1, 2:1 is 0*/
bool clk_ratio;
}; };
static int sdma_config_write(struct dma_chan *chan, static int sdma_config_write(struct dma_chan *chan,
@ -662,8 +665,11 @@ static int sdma_run_channel0(struct sdma_engine *sdma)
dev_err(sdma->dev, "Timeout waiting for CH0 ready\n"); dev_err(sdma->dev, "Timeout waiting for CH0 ready\n");
/* Set bits of CONFIG register with dynamic context switching */ /* Set bits of CONFIG register with dynamic context switching */
if (readl(sdma->regs + SDMA_H_CONFIG) == 0) reg = readl(sdma->regs + SDMA_H_CONFIG);
writel_relaxed(SDMA_H_CONFIG_CSM, sdma->regs + SDMA_H_CONFIG); if ((reg & SDMA_H_CONFIG_CSM) == 0) {
reg |= SDMA_H_CONFIG_CSM;
writel_relaxed(reg, sdma->regs + SDMA_H_CONFIG);
}
return ret; return ret;
} }
@ -677,7 +683,7 @@ static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
int ret; int ret;
unsigned long flags; unsigned long flags;
buf_virt = dma_alloc_coherent(NULL, size, &buf_phys, GFP_KERNEL); buf_virt = dma_alloc_coherent(sdma->dev, size, &buf_phys, GFP_KERNEL);
if (!buf_virt) { if (!buf_virt) {
return -ENOMEM; return -ENOMEM;
} }
@ -696,7 +702,7 @@ static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
spin_unlock_irqrestore(&sdma->channel_0_lock, flags); spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
dma_free_coherent(NULL, size, buf_virt, buf_phys); dma_free_coherent(sdma->dev, size, buf_virt, buf_phys);
return ret; return ret;
} }
@ -970,6 +976,9 @@ static int sdma_load_context(struct sdma_channel *sdmac)
int ret; int ret;
unsigned long flags; unsigned long flags;
if (sdmac->context_loaded)
return 0;
if (sdmac->direction == DMA_DEV_TO_MEM) if (sdmac->direction == DMA_DEV_TO_MEM)
load_address = sdmac->pc_from_device; load_address = sdmac->pc_from_device;
else if (sdmac->direction == DMA_DEV_TO_DEV) else if (sdmac->direction == DMA_DEV_TO_DEV)
@ -1012,6 +1021,8 @@ static int sdma_load_context(struct sdma_channel *sdmac)
spin_unlock_irqrestore(&sdma->channel_0_lock, flags); spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
sdmac->context_loaded = true;
return ret; return ret;
} }
@ -1051,6 +1062,7 @@ static void sdma_channel_terminate_work(struct work_struct *work)
sdmac->desc = NULL; sdmac->desc = NULL;
spin_unlock_irqrestore(&sdmac->vc.lock, flags); spin_unlock_irqrestore(&sdmac->vc.lock, flags);
vchan_dma_desc_free_list(&sdmac->vc, &head); vchan_dma_desc_free_list(&sdmac->vc, &head);
sdmac->context_loaded = false;
} }
static int sdma_disable_channel_async(struct dma_chan *chan) static int sdma_disable_channel_async(struct dma_chan *chan)
@ -1182,8 +1194,8 @@ static int sdma_request_channel0(struct sdma_engine *sdma)
{ {
int ret = -EBUSY; int ret = -EBUSY;
sdma->bd0 = dma_alloc_coherent(NULL, PAGE_SIZE, &sdma->bd0_phys, sdma->bd0 = dma_alloc_coherent(sdma->dev, PAGE_SIZE, &sdma->bd0_phys,
GFP_NOWAIT); GFP_NOWAIT);
if (!sdma->bd0) { if (!sdma->bd0) {
ret = -ENOMEM; ret = -ENOMEM;
goto out; goto out;
@ -1205,8 +1217,8 @@ static int sdma_alloc_bd(struct sdma_desc *desc)
u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor); u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor);
int ret = 0; int ret = 0;
desc->bd = dma_alloc_coherent(NULL, bd_size, &desc->bd_phys, desc->bd = dma_alloc_coherent(desc->sdmac->sdma->dev, bd_size,
GFP_NOWAIT); &desc->bd_phys, GFP_NOWAIT);
if (!desc->bd) { if (!desc->bd) {
ret = -ENOMEM; ret = -ENOMEM;
goto out; goto out;
@ -1219,7 +1231,8 @@ static void sdma_free_bd(struct sdma_desc *desc)
{ {
u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor); u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor);
dma_free_coherent(NULL, bd_size, desc->bd, desc->bd_phys); dma_free_coherent(desc->sdmac->sdma->dev, bd_size, desc->bd,
desc->bd_phys);
} }
static void sdma_desc_free(struct virt_dma_desc *vd) static void sdma_desc_free(struct virt_dma_desc *vd)
@ -1839,10 +1852,13 @@ static int sdma_init(struct sdma_engine *sdma)
if (ret) if (ret)
goto disable_clk_ipg; goto disable_clk_ipg;
if (clk_get_rate(sdma->clk_ahb) == clk_get_rate(sdma->clk_ipg))
sdma->clk_ratio = 1;
/* Be sure SDMA has not started yet */ /* Be sure SDMA has not started yet */
writel_relaxed(0, sdma->regs + SDMA_H_C0PTR); writel_relaxed(0, sdma->regs + SDMA_H_C0PTR);
sdma->channel_control = dma_alloc_coherent(NULL, sdma->channel_control = dma_alloc_coherent(sdma->dev,
MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) + MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) +
sizeof(struct sdma_context_data), sizeof(struct sdma_context_data),
&ccb_phys, GFP_KERNEL); &ccb_phys, GFP_KERNEL);
@ -1879,8 +1895,10 @@ static int sdma_init(struct sdma_engine *sdma)
writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR); writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR);
/* Set bits of CONFIG register but with static context switching */ /* Set bits of CONFIG register but with static context switching */
/* FIXME: Check whether to set ACR bit depending on clock ratios */ if (sdma->clk_ratio)
writel_relaxed(0, sdma->regs + SDMA_H_CONFIG); writel_relaxed(SDMA_H_CONFIG_ACR, sdma->regs + SDMA_H_CONFIG);
else
writel_relaxed(0, sdma->regs + SDMA_H_CONFIG);
writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR); writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR);
@ -1903,11 +1921,16 @@ disable_clk_ipg:
static bool sdma_filter_fn(struct dma_chan *chan, void *fn_param) static bool sdma_filter_fn(struct dma_chan *chan, void *fn_param)
{ {
struct sdma_channel *sdmac = to_sdma_chan(chan); struct sdma_channel *sdmac = to_sdma_chan(chan);
struct sdma_engine *sdma = sdmac->sdma;
struct imx_dma_data *data = fn_param; struct imx_dma_data *data = fn_param;
if (!imx_dma_is_general_purpose(chan)) if (!imx_dma_is_general_purpose(chan))
return false; return false;
/* return false if it's not the right device */
if (sdma->dev->of_node != data->of_node)
return false;
sdmac->data = *data; sdmac->data = *data;
chan->private = &sdmac->data; chan->private = &sdmac->data;
@ -1935,6 +1958,7 @@ static struct dma_chan *sdma_xlate(struct of_phandle_args *dma_spec,
* be set to sdmac->event_id1. * be set to sdmac->event_id1.
*/ */
data.dma_request2 = 0; data.dma_request2 = 0;
data.of_node = ofdma->of_node;
return dma_request_channel(mask, sdma_filter_fn, &data); return dma_request_channel(mask, sdma_filter_fn, &data);
} }
@ -2097,6 +2121,7 @@ static int sdma_probe(struct platform_device *pdev)
sdma->dma_device.device_prep_dma_memcpy = sdma_prep_memcpy; sdma->dma_device.device_prep_dma_memcpy = sdma_prep_memcpy;
sdma->dma_device.device_issue_pending = sdma_issue_pending; sdma->dma_device.device_issue_pending = sdma_issue_pending;
sdma->dma_device.dev->dma_parms = &sdma->dma_parms; sdma->dma_device.dev->dma_parms = &sdma->dma_parms;
sdma->dma_device.copy_align = 2;
dma_set_max_seg_size(sdma->dma_device.dev, SDMA_BD_MAX_CNT); dma_set_max_seg_size(sdma->dma_device.dev, SDMA_BD_MAX_CNT);
platform_set_drvdata(pdev, sdma); platform_set_drvdata(pdev, sdma);

View File

@ -372,6 +372,7 @@ struct ioat_ring_ent **
ioat_alloc_ring(struct dma_chan *c, int order, gfp_t flags) ioat_alloc_ring(struct dma_chan *c, int order, gfp_t flags)
{ {
struct ioatdma_chan *ioat_chan = to_ioat_chan(c); struct ioatdma_chan *ioat_chan = to_ioat_chan(c);
struct ioatdma_device *ioat_dma = ioat_chan->ioat_dma;
struct ioat_ring_ent **ring; struct ioat_ring_ent **ring;
int total_descs = 1 << order; int total_descs = 1 << order;
int i, chunks; int i, chunks;
@ -437,6 +438,17 @@ ioat_alloc_ring(struct dma_chan *c, int order, gfp_t flags)
} }
ring[i]->hw->next = ring[0]->txd.phys; ring[i]->hw->next = ring[0]->txd.phys;
/* setup descriptor pre-fetching for v3.4 */
if (ioat_dma->cap & IOAT_CAP_DPS) {
u16 drsctl = IOAT_CHAN_DRSZ_2MB | IOAT_CHAN_DRS_EN;
if (chunks == 1)
drsctl |= IOAT_CHAN_DRS_AUTOWRAP;
writew(drsctl, ioat_chan->reg_base + IOAT_CHAN_DRSCTL_OFFSET);
}
return ring; return ring;
} }

View File

@ -27,7 +27,7 @@
#include "registers.h" #include "registers.h"
#include "hw.h" #include "hw.h"
#define IOAT_DMA_VERSION "4.00" #define IOAT_DMA_VERSION "5.00"
#define IOAT_DMA_DCA_ANY_CPU ~0 #define IOAT_DMA_DCA_ANY_CPU ~0

View File

@ -66,11 +66,14 @@
#define PCI_DEVICE_ID_INTEL_IOAT_SKX 0x2021 #define PCI_DEVICE_ID_INTEL_IOAT_SKX 0x2021
#define PCI_DEVICE_ID_INTEL_IOAT_ICX 0x0b00
#define IOAT_VER_1_2 0x12 /* Version 1.2 */ #define IOAT_VER_1_2 0x12 /* Version 1.2 */
#define IOAT_VER_2_0 0x20 /* Version 2.0 */ #define IOAT_VER_2_0 0x20 /* Version 2.0 */
#define IOAT_VER_3_0 0x30 /* Version 3.0 */ #define IOAT_VER_3_0 0x30 /* Version 3.0 */
#define IOAT_VER_3_2 0x32 /* Version 3.2 */ #define IOAT_VER_3_2 0x32 /* Version 3.2 */
#define IOAT_VER_3_3 0x33 /* Version 3.3 */ #define IOAT_VER_3_3 0x33 /* Version 3.3 */
#define IOAT_VER_3_4 0x34 /* Version 3.4 */
int system_has_dca_enabled(struct pci_dev *pdev); int system_has_dca_enabled(struct pci_dev *pdev);

View File

@ -119,6 +119,9 @@ static const struct pci_device_id ioat_pci_tbl[] = {
{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_IOAT_BDXDE2) }, { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_IOAT_BDXDE2) },
{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_IOAT_BDXDE3) }, { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_IOAT_BDXDE3) },
/* I/OAT v3.4 platforms */
{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_IOAT_ICX) },
{ 0, } { 0, }
}; };
MODULE_DEVICE_TABLE(pci, ioat_pci_tbl); MODULE_DEVICE_TABLE(pci, ioat_pci_tbl);
@ -135,10 +138,10 @@ static int ioat3_dma_self_test(struct ioatdma_device *ioat_dma);
static int ioat_dca_enabled = 1; static int ioat_dca_enabled = 1;
module_param(ioat_dca_enabled, int, 0644); module_param(ioat_dca_enabled, int, 0644);
MODULE_PARM_DESC(ioat_dca_enabled, "control support of dca service (default: 1)"); MODULE_PARM_DESC(ioat_dca_enabled, "control support of dca service (default: 1)");
int ioat_pending_level = 4; int ioat_pending_level = 7;
module_param(ioat_pending_level, int, 0644); module_param(ioat_pending_level, int, 0644);
MODULE_PARM_DESC(ioat_pending_level, MODULE_PARM_DESC(ioat_pending_level,
"high-water mark for pushing ioat descriptors (default: 4)"); "high-water mark for pushing ioat descriptors (default: 7)");
static char ioat_interrupt_style[32] = "msix"; static char ioat_interrupt_style[32] = "msix";
module_param_string(ioat_interrupt_style, ioat_interrupt_style, module_param_string(ioat_interrupt_style, ioat_interrupt_style,
sizeof(ioat_interrupt_style), 0644); sizeof(ioat_interrupt_style), 0644);
@ -635,6 +638,11 @@ static void ioat_free_chan_resources(struct dma_chan *c)
ioat_stop(ioat_chan); ioat_stop(ioat_chan);
ioat_reset_hw(ioat_chan); ioat_reset_hw(ioat_chan);
/* Put LTR to idle */
if (ioat_dma->version >= IOAT_VER_3_4)
writeb(IOAT_CHAN_LTR_SWSEL_IDLE,
ioat_chan->reg_base + IOAT_CHAN_LTR_SWSEL_OFFSET);
spin_lock_bh(&ioat_chan->cleanup_lock); spin_lock_bh(&ioat_chan->cleanup_lock);
spin_lock_bh(&ioat_chan->prep_lock); spin_lock_bh(&ioat_chan->prep_lock);
descs = ioat_ring_space(ioat_chan); descs = ioat_ring_space(ioat_chan);
@ -724,6 +732,28 @@ static int ioat_alloc_chan_resources(struct dma_chan *c)
spin_unlock_bh(&ioat_chan->prep_lock); spin_unlock_bh(&ioat_chan->prep_lock);
spin_unlock_bh(&ioat_chan->cleanup_lock); spin_unlock_bh(&ioat_chan->cleanup_lock);
/* Setting up LTR values for 3.4 or later */
if (ioat_chan->ioat_dma->version >= IOAT_VER_3_4) {
u32 lat_val;
lat_val = IOAT_CHAN_LTR_ACTIVE_SNVAL |
IOAT_CHAN_LTR_ACTIVE_SNLATSCALE |
IOAT_CHAN_LTR_ACTIVE_SNREQMNT;
writel(lat_val, ioat_chan->reg_base +
IOAT_CHAN_LTR_ACTIVE_OFFSET);
lat_val = IOAT_CHAN_LTR_IDLE_SNVAL |
IOAT_CHAN_LTR_IDLE_SNLATSCALE |
IOAT_CHAN_LTR_IDLE_SNREQMNT;
writel(lat_val, ioat_chan->reg_base +
IOAT_CHAN_LTR_IDLE_OFFSET);
/* Select to active */
writeb(IOAT_CHAN_LTR_SWSEL_ACTIVE,
ioat_chan->reg_base +
IOAT_CHAN_LTR_SWSEL_OFFSET);
}
ioat_start_null_desc(ioat_chan); ioat_start_null_desc(ioat_chan);
/* check that we got off the ground */ /* check that we got off the ground */
@ -1185,6 +1215,10 @@ static int ioat3_dma_probe(struct ioatdma_device *ioat_dma, int dca)
if (err) if (err)
return err; return err;
if (ioat_dma->cap & IOAT_CAP_DPS)
writeb(ioat_pending_level + 1,
ioat_dma->reg_base + IOAT_PREFETCH_LIMIT_OFFSET);
return 0; return 0;
} }
@ -1350,6 +1384,8 @@ static int ioat_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id)
pci_set_drvdata(pdev, device); pci_set_drvdata(pdev, device);
device->version = readb(device->reg_base + IOAT_VER_OFFSET); device->version = readb(device->reg_base + IOAT_VER_OFFSET);
if (device->version >= IOAT_VER_3_4)
ioat_dca_enabled = 0;
if (device->version >= IOAT_VER_3_0) { if (device->version >= IOAT_VER_3_0) {
if (is_skx_ioat(pdev)) if (is_skx_ioat(pdev))
device->version = IOAT_VER_3_2; device->version = IOAT_VER_3_2;

View File

@ -84,6 +84,9 @@
#define IOAT_CAP_PQ 0x00000200 #define IOAT_CAP_PQ 0x00000200
#define IOAT_CAP_DWBES 0x00002000 #define IOAT_CAP_DWBES 0x00002000
#define IOAT_CAP_RAID16SS 0x00020000 #define IOAT_CAP_RAID16SS 0x00020000
#define IOAT_CAP_DPS 0x00800000
#define IOAT_PREFETCH_LIMIT_OFFSET 0x4C /* CHWPREFLMT */
#define IOAT_CHANNEL_MMIO_SIZE 0x80 /* Each Channel MMIO space is this size */ #define IOAT_CHANNEL_MMIO_SIZE 0x80 /* Each Channel MMIO space is this size */
@ -243,4 +246,25 @@
#define IOAT_CHANERR_MASK_OFFSET 0x2C /* 32-bit Channel Error Register */ #define IOAT_CHANERR_MASK_OFFSET 0x2C /* 32-bit Channel Error Register */
#define IOAT_CHAN_DRSCTL_OFFSET 0xB6
#define IOAT_CHAN_DRSZ_4KB 0x0000
#define IOAT_CHAN_DRSZ_8KB 0x0001
#define IOAT_CHAN_DRSZ_2MB 0x0009
#define IOAT_CHAN_DRS_EN 0x0100
#define IOAT_CHAN_DRS_AUTOWRAP 0x0200
#define IOAT_CHAN_LTR_SWSEL_OFFSET 0xBC
#define IOAT_CHAN_LTR_SWSEL_ACTIVE 0x0
#define IOAT_CHAN_LTR_SWSEL_IDLE 0x1
#define IOAT_CHAN_LTR_ACTIVE_OFFSET 0xC0
#define IOAT_CHAN_LTR_ACTIVE_SNVAL 0x0000 /* 0 us */
#define IOAT_CHAN_LTR_ACTIVE_SNLATSCALE 0x0800 /* 1us scale */
#define IOAT_CHAN_LTR_ACTIVE_SNREQMNT 0x8000 /* snoop req enable */
#define IOAT_CHAN_LTR_IDLE_OFFSET 0xC4
#define IOAT_CHAN_LTR_IDLE_SNVAL 0x0258 /* 600 us */
#define IOAT_CHAN_LTR_IDLE_SNLATSCALE 0x0800 /* 1us scale */
#define IOAT_CHAN_LTR_IDLE_SNREQMNT 0x8000 /* snoop req enable */
#endif /* _IOAT_REGISTERS_H_ */ #endif /* _IOAT_REGISTERS_H_ */

View File

@ -52,8 +52,6 @@
#define CX_SRC 0x814 #define CX_SRC 0x814
#define CX_DST 0x818 #define CX_DST 0x818
#define CX_CFG 0x81c #define CX_CFG 0x81c
#define AXI_CFG 0x820
#define AXI_CFG_DEFAULT 0x201201
#define CX_LLI_CHAIN_EN 0x2 #define CX_LLI_CHAIN_EN 0x2
#define CX_CFG_EN 0x1 #define CX_CFG_EN 0x1
@ -113,9 +111,18 @@ struct k3_dma_dev {
struct dma_pool *pool; struct dma_pool *pool;
u32 dma_channels; u32 dma_channels;
u32 dma_requests; u32 dma_requests;
u32 dma_channel_mask;
unsigned int irq; unsigned int irq;
}; };
#define K3_FLAG_NOCLK BIT(1)
struct k3dma_soc_data {
unsigned long flags;
};
#define to_k3_dma(dmadev) container_of(dmadev, struct k3_dma_dev, slave) #define to_k3_dma(dmadev) container_of(dmadev, struct k3_dma_dev, slave)
static int k3_dma_config_write(struct dma_chan *chan, static int k3_dma_config_write(struct dma_chan *chan,
@ -161,7 +168,6 @@ static void k3_dma_set_desc(struct k3_dma_phy *phy, struct k3_desc_hw *hw)
writel_relaxed(hw->count, phy->base + CX_CNT0); writel_relaxed(hw->count, phy->base + CX_CNT0);
writel_relaxed(hw->saddr, phy->base + CX_SRC); writel_relaxed(hw->saddr, phy->base + CX_SRC);
writel_relaxed(hw->daddr, phy->base + CX_DST); writel_relaxed(hw->daddr, phy->base + CX_DST);
writel_relaxed(AXI_CFG_DEFAULT, phy->base + AXI_CFG);
writel_relaxed(hw->config, phy->base + CX_CFG); writel_relaxed(hw->config, phy->base + CX_CFG);
} }
@ -314,6 +320,9 @@ static void k3_dma_tasklet(unsigned long arg)
/* check new channel request in d->chan_pending */ /* check new channel request in d->chan_pending */
spin_lock_irq(&d->lock); spin_lock_irq(&d->lock);
for (pch = 0; pch < d->dma_channels; pch++) { for (pch = 0; pch < d->dma_channels; pch++) {
if (!(d->dma_channel_mask & (1 << pch)))
continue;
p = &d->phy[pch]; p = &d->phy[pch];
if (p->vchan == NULL && !list_empty(&d->chan_pending)) { if (p->vchan == NULL && !list_empty(&d->chan_pending)) {
@ -331,6 +340,9 @@ static void k3_dma_tasklet(unsigned long arg)
spin_unlock_irq(&d->lock); spin_unlock_irq(&d->lock);
for (pch = 0; pch < d->dma_channels; pch++) { for (pch = 0; pch < d->dma_channels; pch++) {
if (!(d->dma_channel_mask & (1 << pch)))
continue;
if (pch_alloc & (1 << pch)) { if (pch_alloc & (1 << pch)) {
p = &d->phy[pch]; p = &d->phy[pch];
c = p->vchan; c = p->vchan;
@ -790,8 +802,21 @@ static int k3_dma_transfer_resume(struct dma_chan *chan)
return 0; return 0;
} }
static const struct k3dma_soc_data k3_v1_dma_data = {
.flags = 0,
};
static const struct k3dma_soc_data asp_v1_dma_data = {
.flags = K3_FLAG_NOCLK,
};
static const struct of_device_id k3_pdma_dt_ids[] = { static const struct of_device_id k3_pdma_dt_ids[] = {
{ .compatible = "hisilicon,k3-dma-1.0", }, { .compatible = "hisilicon,k3-dma-1.0",
.data = &k3_v1_dma_data
},
{ .compatible = "hisilicon,hisi-pcm-asp-dma-1.0",
.data = &asp_v1_dma_data
},
{} {}
}; };
MODULE_DEVICE_TABLE(of, k3_pdma_dt_ids); MODULE_DEVICE_TABLE(of, k3_pdma_dt_ids);
@ -810,6 +835,7 @@ static struct dma_chan *k3_of_dma_simple_xlate(struct of_phandle_args *dma_spec,
static int k3_dma_probe(struct platform_device *op) static int k3_dma_probe(struct platform_device *op)
{ {
const struct k3dma_soc_data *soc_data;
struct k3_dma_dev *d; struct k3_dma_dev *d;
const struct of_device_id *of_id; const struct of_device_id *of_id;
struct resource *iores; struct resource *iores;
@ -823,6 +849,10 @@ static int k3_dma_probe(struct platform_device *op)
if (!d) if (!d)
return -ENOMEM; return -ENOMEM;
soc_data = device_get_match_data(&op->dev);
if (!soc_data)
return -EINVAL;
d->base = devm_ioremap_resource(&op->dev, iores); d->base = devm_ioremap_resource(&op->dev, iores);
if (IS_ERR(d->base)) if (IS_ERR(d->base))
return PTR_ERR(d->base); return PTR_ERR(d->base);
@ -833,12 +863,21 @@ static int k3_dma_probe(struct platform_device *op)
"dma-channels", &d->dma_channels); "dma-channels", &d->dma_channels);
of_property_read_u32((&op->dev)->of_node, of_property_read_u32((&op->dev)->of_node,
"dma-requests", &d->dma_requests); "dma-requests", &d->dma_requests);
ret = of_property_read_u32((&op->dev)->of_node,
"dma-channel-mask", &d->dma_channel_mask);
if (ret) {
dev_warn(&op->dev,
"dma-channel-mask doesn't exist, considering all as available.\n");
d->dma_channel_mask = (u32)~0UL;
}
} }
d->clk = devm_clk_get(&op->dev, NULL); if (!(soc_data->flags & K3_FLAG_NOCLK)) {
if (IS_ERR(d->clk)) { d->clk = devm_clk_get(&op->dev, NULL);
dev_err(&op->dev, "no dma clk\n"); if (IS_ERR(d->clk)) {
return PTR_ERR(d->clk); dev_err(&op->dev, "no dma clk\n");
return PTR_ERR(d->clk);
}
} }
irq = platform_get_irq(op, 0); irq = platform_get_irq(op, 0);
@ -862,8 +901,12 @@ static int k3_dma_probe(struct platform_device *op)
return -ENOMEM; return -ENOMEM;
for (i = 0; i < d->dma_channels; i++) { for (i = 0; i < d->dma_channels; i++) {
struct k3_dma_phy *p = &d->phy[i]; struct k3_dma_phy *p;
if (!(d->dma_channel_mask & BIT(i)))
continue;
p = &d->phy[i];
p->idx = i; p->idx = i;
p->base = d->base + i * 0x40; p->base = d->base + i * 0x40;
} }

View File

@ -214,6 +214,7 @@ static int mcf_edma_probe(struct platform_device *pdev)
mcf_chan->edma = mcf_edma; mcf_chan->edma = mcf_edma;
mcf_chan->slave_id = i; mcf_chan->slave_id = i;
mcf_chan->idle = true; mcf_chan->idle = true;
mcf_chan->dma_dir = DMA_NONE;
mcf_chan->vchan.desc_free = fsl_edma_free_desc; mcf_chan->vchan.desc_free = fsl_edma_free_desc;
vchan_init(&mcf_chan->vchan, &mcf_edma->dma_dev); vchan_init(&mcf_chan->vchan, &mcf_edma->dma_dev);
iowrite32(0x0, &regs->tcd[i].csr); iowrite32(0x0, &regs->tcd[i].csr);

View File

@ -1059,6 +1059,7 @@ mv_xor_channel_add(struct mv_xor_device *xordev,
mv_chan->op_in_desc = XOR_MODE_IN_DESC; mv_chan->op_in_desc = XOR_MODE_IN_DESC;
dma_dev = &mv_chan->dmadev; dma_dev = &mv_chan->dmadev;
dma_dev->dev = &pdev->dev;
mv_chan->xordev = xordev; mv_chan->xordev = xordev;
/* /*
@ -1091,7 +1092,6 @@ mv_xor_channel_add(struct mv_xor_device *xordev,
dma_dev->device_free_chan_resources = mv_xor_free_chan_resources; dma_dev->device_free_chan_resources = mv_xor_free_chan_resources;
dma_dev->device_tx_status = mv_xor_status; dma_dev->device_tx_status = mv_xor_status;
dma_dev->device_issue_pending = mv_xor_issue_pending; dma_dev->device_issue_pending = mv_xor_issue_pending;
dma_dev->dev = &pdev->dev;
/* set prep routines based on capability */ /* set prep routines based on capability */
if (dma_has_cap(DMA_INTERRUPT, dma_dev->cap_mask)) if (dma_has_cap(DMA_INTERRUPT, dma_dev->cap_mask))
@ -1153,7 +1153,10 @@ mv_xor_channel_add(struct mv_xor_device *xordev,
dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask) ? "cpy " : "", dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask) ? "cpy " : "",
dma_has_cap(DMA_INTERRUPT, dma_dev->cap_mask) ? "intr " : ""); dma_has_cap(DMA_INTERRUPT, dma_dev->cap_mask) ? "intr " : "");
dma_async_device_register(dma_dev); ret = dma_async_device_register(dma_dev);
if (ret)
goto err_free_irq;
return mv_chan; return mv_chan;
err_free_irq: err_free_irq:

View File

@ -2267,7 +2267,6 @@ static int pl330_terminate_all(struct dma_chan *chan)
struct dma_pl330_desc *desc; struct dma_pl330_desc *desc;
unsigned long flags; unsigned long flags;
struct pl330_dmac *pl330 = pch->dmac; struct pl330_dmac *pl330 = pch->dmac;
LIST_HEAD(list);
bool power_down = false; bool power_down = false;
pm_runtime_get_sync(pl330->ddma.dev); pm_runtime_get_sync(pl330->ddma.dev);

View File

@ -636,8 +636,8 @@ static struct dma_async_tx_descriptor *bam_prep_slave_sg(struct dma_chan *chan,
num_alloc += DIV_ROUND_UP(sg_dma_len(sg), BAM_FIFO_SIZE); num_alloc += DIV_ROUND_UP(sg_dma_len(sg), BAM_FIFO_SIZE);
/* allocate enough room to accomodate the number of entries */ /* allocate enough room to accomodate the number of entries */
async_desc = kzalloc(sizeof(*async_desc) + async_desc = kzalloc(struct_size(async_desc, desc, num_alloc),
(num_alloc * sizeof(struct bam_desc_hw)), GFP_NOWAIT); GFP_NOWAIT);
if (!async_desc) if (!async_desc)
goto err_out; goto err_out;

View File

@ -138,24 +138,25 @@ static void hidma_process_completed(struct hidma_chan *mchan)
desc = &mdesc->desc; desc = &mdesc->desc;
last_cookie = desc->cookie; last_cookie = desc->cookie;
llstat = hidma_ll_status(mdma->lldev, mdesc->tre_ch);
spin_lock_irqsave(&mchan->lock, irqflags); spin_lock_irqsave(&mchan->lock, irqflags);
if (llstat == DMA_COMPLETE) {
mchan->last_success = last_cookie;
result.result = DMA_TRANS_NOERROR;
} else {
result.result = DMA_TRANS_ABORTED;
}
dma_cookie_complete(desc); dma_cookie_complete(desc);
spin_unlock_irqrestore(&mchan->lock, irqflags); spin_unlock_irqrestore(&mchan->lock, irqflags);
llstat = hidma_ll_status(mdma->lldev, mdesc->tre_ch);
dmaengine_desc_get_callback(desc, &cb); dmaengine_desc_get_callback(desc, &cb);
dma_run_dependencies(desc); dma_run_dependencies(desc);
spin_lock_irqsave(&mchan->lock, irqflags); spin_lock_irqsave(&mchan->lock, irqflags);
list_move(&mdesc->node, &mchan->free); list_move(&mdesc->node, &mchan->free);
if (llstat == DMA_COMPLETE) {
mchan->last_success = last_cookie;
result.result = DMA_TRANS_NOERROR;
} else
result.result = DMA_TRANS_ABORTED;
spin_unlock_irqrestore(&mchan->lock, irqflags); spin_unlock_irqrestore(&mchan->lock, irqflags);
dmaengine_desc_callback_invoke(&cb, &result); dmaengine_desc_callback_invoke(&cb, &result);
@ -415,6 +416,7 @@ hidma_prep_dma_memcpy(struct dma_chan *dmach, dma_addr_t dest, dma_addr_t src,
if (!mdesc) if (!mdesc)
return NULL; return NULL;
mdesc->desc.flags = flags;
hidma_ll_set_transfer_params(mdma->lldev, mdesc->tre_ch, hidma_ll_set_transfer_params(mdma->lldev, mdesc->tre_ch,
src, dest, len, flags, src, dest, len, flags,
HIDMA_TRE_MEMCPY); HIDMA_TRE_MEMCPY);
@ -447,6 +449,7 @@ hidma_prep_dma_memset(struct dma_chan *dmach, dma_addr_t dest, int value,
if (!mdesc) if (!mdesc)
return NULL; return NULL;
mdesc->desc.flags = flags;
hidma_ll_set_transfer_params(mdma->lldev, mdesc->tre_ch, hidma_ll_set_transfer_params(mdma->lldev, mdesc->tre_ch,
value, dest, len, flags, value, dest, len, flags,
HIDMA_TRE_MEMSET); HIDMA_TRE_MEMSET);

View File

@ -423,9 +423,8 @@ static int __init hidma_mgmt_init(void)
hidma_mgmt_of_populate_channels(child); hidma_mgmt_of_populate_channels(child);
} }
#endif #endif
platform_driver_register(&hidma_mgmt_driver); return platform_driver_register(&hidma_mgmt_driver);
return 0;
} }
module_init(hidma_mgmt_init); module_init(hidma_mgmt_init);
MODULE_LICENSE("GPL v2"); MODULE_LICENSE("GPL v2");

View File

@ -705,7 +705,6 @@ static int sa11x0_dma_device_pause(struct dma_chan *chan)
struct sa11x0_dma_chan *c = to_sa11x0_dma_chan(chan); struct sa11x0_dma_chan *c = to_sa11x0_dma_chan(chan);
struct sa11x0_dma_dev *d = to_sa11x0_dma(chan->device); struct sa11x0_dma_dev *d = to_sa11x0_dma(chan->device);
struct sa11x0_dma_phy *p; struct sa11x0_dma_phy *p;
LIST_HEAD(head);
unsigned long flags; unsigned long flags;
dev_dbg(d->slave.dev, "vchan %p: pause\n", &c->vc); dev_dbg(d->slave.dev, "vchan %p: pause\n", &c->vc);
@ -732,7 +731,6 @@ static int sa11x0_dma_device_resume(struct dma_chan *chan)
struct sa11x0_dma_chan *c = to_sa11x0_dma_chan(chan); struct sa11x0_dma_chan *c = to_sa11x0_dma_chan(chan);
struct sa11x0_dma_dev *d = to_sa11x0_dma(chan->device); struct sa11x0_dma_dev *d = to_sa11x0_dma(chan->device);
struct sa11x0_dma_phy *p; struct sa11x0_dma_phy *p;
LIST_HEAD(head);
unsigned long flags; unsigned long flags;
dev_dbg(d->slave.dev, "vchan %p: resume\n", &c->vc); dev_dbg(d->slave.dev, "vchan %p: resume\n", &c->vc);

View File

@ -694,6 +694,8 @@ static int usb_dmac_runtime_resume(struct device *dev)
#endif /* CONFIG_PM */ #endif /* CONFIG_PM */
static const struct dev_pm_ops usb_dmac_pm = { static const struct dev_pm_ops usb_dmac_pm = {
SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
pm_runtime_force_resume)
SET_RUNTIME_PM_OPS(usb_dmac_runtime_suspend, usb_dmac_runtime_resume, SET_RUNTIME_PM_OPS(usb_dmac_runtime_suspend, usb_dmac_runtime_resume,
NULL) NULL)
}; };

View File

@ -580,15 +580,7 @@ static irqreturn_t dma_irq_handle(int irq, void *dev_id)
static int sprd_dma_alloc_chan_resources(struct dma_chan *chan) static int sprd_dma_alloc_chan_resources(struct dma_chan *chan)
{ {
struct sprd_dma_chn *schan = to_sprd_dma_chan(chan); return pm_runtime_get_sync(chan->device->dev);
int ret;
ret = pm_runtime_get_sync(chan->device->dev);
if (ret < 0)
return ret;
schan->dev_id = SPRD_DMA_SOFTWARE_UID;
return 0;
} }
static void sprd_dma_free_chan_resources(struct dma_chan *chan) static void sprd_dma_free_chan_resources(struct dma_chan *chan)
@ -1021,13 +1013,10 @@ static void sprd_dma_free_desc(struct virt_dma_desc *vd)
static bool sprd_dma_filter_fn(struct dma_chan *chan, void *param) static bool sprd_dma_filter_fn(struct dma_chan *chan, void *param)
{ {
struct sprd_dma_chn *schan = to_sprd_dma_chan(chan); struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
struct sprd_dma_dev *sdev = to_sprd_dma_dev(&schan->vc.chan); u32 slave_id = *(u32 *)param;
u32 req = *(u32 *)param;
if (req < sdev->total_chns) schan->dev_id = slave_id;
return req == schan->chn_num + 1; return true;
else
return false;
} }
static int sprd_dma_probe(struct platform_device *pdev) static int sprd_dma_probe(struct platform_device *pdev)

View File

@ -243,8 +243,7 @@ static struct st_fdma_desc *st_fdma_alloc_desc(struct st_fdma_chan *fchan,
struct st_fdma_desc *fdesc; struct st_fdma_desc *fdesc;
int i; int i;
fdesc = kzalloc(sizeof(*fdesc) + fdesc = kzalloc(struct_size(fdesc, node, sg_len), GFP_NOWAIT);
sizeof(struct st_fdma_sw_node) * sg_len, GFP_NOWAIT);
if (!fdesc) if (!fdesc)
return NULL; return NULL;
@ -294,8 +293,6 @@ static void st_fdma_free_chan_res(struct dma_chan *chan)
struct rproc *rproc = fchan->fdev->slim_rproc->rproc; struct rproc *rproc = fchan->fdev->slim_rproc->rproc;
unsigned long flags; unsigned long flags;
LIST_HEAD(head);
dev_dbg(fchan->fdev->dev, "%s: freeing chan:%d\n", dev_dbg(fchan->fdev->dev, "%s: freeing chan:%d\n",
__func__, fchan->vchan.chan.chan_id); __func__, fchan->vchan.chan.chan_id);
@ -626,7 +623,6 @@ static void st_fdma_issue_pending(struct dma_chan *chan)
static int st_fdma_pause(struct dma_chan *chan) static int st_fdma_pause(struct dma_chan *chan)
{ {
unsigned long flags; unsigned long flags;
LIST_HEAD(head);
struct st_fdma_chan *fchan = to_st_fdma_chan(chan); struct st_fdma_chan *fchan = to_st_fdma_chan(chan);
int ch_id = fchan->vchan.chan.chan_id; int ch_id = fchan->vchan.chan.chan_id;
unsigned long cmd = FDMA_CMD_PAUSE(ch_id); unsigned long cmd = FDMA_CMD_PAUSE(ch_id);

View File

@ -23,6 +23,7 @@
#include <linux/of_device.h> #include <linux/of_device.h>
#include <linux/of_dma.h> #include <linux/of_dma.h>
#include <linux/platform_device.h> #include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/reset.h> #include <linux/reset.h>
#include <linux/sched.h> #include <linux/sched.h>
#include <linux/slab.h> #include <linux/slab.h>
@ -641,12 +642,13 @@ static irqreturn_t stm32_dma_chan_irq(int irq, void *devid)
{ {
struct stm32_dma_chan *chan = devid; struct stm32_dma_chan *chan = devid;
struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
u32 status, scr; u32 status, scr, sfcr;
spin_lock(&chan->vchan.lock); spin_lock(&chan->vchan.lock);
status = stm32_dma_irq_status(chan); status = stm32_dma_irq_status(chan);
scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id)); scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
if (status & STM32_DMA_TCI) { if (status & STM32_DMA_TCI) {
stm32_dma_irq_clear(chan, STM32_DMA_TCI); stm32_dma_irq_clear(chan, STM32_DMA_TCI);
@ -661,10 +663,12 @@ static irqreturn_t stm32_dma_chan_irq(int irq, void *devid)
if (status & STM32_DMA_FEI) { if (status & STM32_DMA_FEI) {
stm32_dma_irq_clear(chan, STM32_DMA_FEI); stm32_dma_irq_clear(chan, STM32_DMA_FEI);
status &= ~STM32_DMA_FEI; status &= ~STM32_DMA_FEI;
if (!(scr & STM32_DMA_SCR_EN)) if (sfcr & STM32_DMA_SFCR_FEIE) {
dev_err(chan2dev(chan), "FIFO Error\n"); if (!(scr & STM32_DMA_SCR_EN))
else dev_err(chan2dev(chan), "FIFO Error\n");
dev_dbg(chan2dev(chan), "FIFO over/underrun\n"); else
dev_dbg(chan2dev(chan), "FIFO over/underrun\n");
}
} }
if (status) { if (status) {
stm32_dma_irq_clear(chan, status); stm32_dma_irq_clear(chan, status);
@ -1112,15 +1116,14 @@ static int stm32_dma_alloc_chan_resources(struct dma_chan *c)
int ret; int ret;
chan->config_init = false; chan->config_init = false;
ret = clk_prepare_enable(dmadev->clk);
if (ret < 0) { ret = pm_runtime_get_sync(dmadev->ddev.dev);
dev_err(chan2dev(chan), "clk_prepare_enable failed: %d\n", ret); if (ret < 0)
return ret; return ret;
}
ret = stm32_dma_disable_chan(chan); ret = stm32_dma_disable_chan(chan);
if (ret < 0) if (ret < 0)
clk_disable_unprepare(dmadev->clk); pm_runtime_put(dmadev->ddev.dev);
return ret; return ret;
} }
@ -1140,7 +1143,7 @@ static void stm32_dma_free_chan_resources(struct dma_chan *c)
spin_unlock_irqrestore(&chan->vchan.lock, flags); spin_unlock_irqrestore(&chan->vchan.lock, flags);
} }
clk_disable_unprepare(dmadev->clk); pm_runtime_put(dmadev->ddev.dev);
vchan_free_chan_resources(to_virt_chan(c)); vchan_free_chan_resources(to_virt_chan(c));
} }
@ -1240,6 +1243,12 @@ static int stm32_dma_probe(struct platform_device *pdev)
return PTR_ERR(dmadev->clk); return PTR_ERR(dmadev->clk);
} }
ret = clk_prepare_enable(dmadev->clk);
if (ret < 0) {
dev_err(&pdev->dev, "clk_prep_enable error: %d\n", ret);
return ret;
}
dmadev->mem2mem = of_property_read_bool(pdev->dev.of_node, dmadev->mem2mem = of_property_read_bool(pdev->dev.of_node,
"st,mem2mem"); "st,mem2mem");
@ -1289,7 +1298,7 @@ static int stm32_dma_probe(struct platform_device *pdev)
ret = dma_async_device_register(dd); ret = dma_async_device_register(dd);
if (ret) if (ret)
return ret; goto clk_free;
for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) { for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) {
chan = &dmadev->chan[i]; chan = &dmadev->chan[i];
@ -1321,20 +1330,58 @@ static int stm32_dma_probe(struct platform_device *pdev)
platform_set_drvdata(pdev, dmadev); platform_set_drvdata(pdev, dmadev);
pm_runtime_set_active(&pdev->dev);
pm_runtime_enable(&pdev->dev);
pm_runtime_get_noresume(&pdev->dev);
pm_runtime_put(&pdev->dev);
dev_info(&pdev->dev, "STM32 DMA driver registered\n"); dev_info(&pdev->dev, "STM32 DMA driver registered\n");
return 0; return 0;
err_unregister: err_unregister:
dma_async_device_unregister(dd); dma_async_device_unregister(dd);
clk_free:
clk_disable_unprepare(dmadev->clk);
return ret; return ret;
} }
#ifdef CONFIG_PM
static int stm32_dma_runtime_suspend(struct device *dev)
{
struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
clk_disable_unprepare(dmadev->clk);
return 0;
}
static int stm32_dma_runtime_resume(struct device *dev)
{
struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
int ret;
ret = clk_prepare_enable(dmadev->clk);
if (ret) {
dev_err(dev, "failed to prepare_enable clock\n");
return ret;
}
return 0;
}
#endif
static const struct dev_pm_ops stm32_dma_pm_ops = {
SET_RUNTIME_PM_OPS(stm32_dma_runtime_suspend,
stm32_dma_runtime_resume, NULL)
};
static struct platform_driver stm32_dma_driver = { static struct platform_driver stm32_dma_driver = {
.driver = { .driver = {
.name = "stm32-dma", .name = "stm32-dma",
.of_match_table = stm32_dma_of_match, .of_match_table = stm32_dma_of_match,
.pm = &stm32_dma_pm_ops,
}, },
}; };

View File

@ -28,6 +28,7 @@
#include <linux/module.h> #include <linux/module.h>
#include <linux/of_device.h> #include <linux/of_device.h>
#include <linux/of_dma.h> #include <linux/of_dma.h>
#include <linux/pm_runtime.h>
#include <linux/reset.h> #include <linux/reset.h>
#include <linux/slab.h> #include <linux/slab.h>
#include <linux/spinlock.h> #include <linux/spinlock.h>
@ -79,8 +80,7 @@ static void stm32_dmamux_free(struct device *dev, void *route_data)
stm32_dmamux_write(dmamux->iomem, STM32_DMAMUX_CCR(mux->chan_id), 0); stm32_dmamux_write(dmamux->iomem, STM32_DMAMUX_CCR(mux->chan_id), 0);
clear_bit(mux->chan_id, dmamux->dma_inuse); clear_bit(mux->chan_id, dmamux->dma_inuse);
if (!IS_ERR(dmamux->clk)) pm_runtime_put_sync(dev);
clk_disable(dmamux->clk);
spin_unlock_irqrestore(&dmamux->lock, flags); spin_unlock_irqrestore(&dmamux->lock, flags);
@ -146,13 +146,10 @@ static void *stm32_dmamux_route_allocate(struct of_phandle_args *dma_spec,
/* Set dma request */ /* Set dma request */
spin_lock_irqsave(&dmamux->lock, flags); spin_lock_irqsave(&dmamux->lock, flags);
if (!IS_ERR(dmamux->clk)) { ret = pm_runtime_get_sync(&pdev->dev);
ret = clk_enable(dmamux->clk); if (ret < 0) {
if (ret < 0) { spin_unlock_irqrestore(&dmamux->lock, flags);
spin_unlock_irqrestore(&dmamux->lock, flags); goto error;
dev_err(&pdev->dev, "clk_prep_enable issue: %d\n", ret);
goto error;
}
} }
spin_unlock_irqrestore(&dmamux->lock, flags); spin_unlock_irqrestore(&dmamux->lock, flags);
@ -254,6 +251,7 @@ static int stm32_dmamux_probe(struct platform_device *pdev)
dev_warn(&pdev->dev, "DMAMUX defaulting on %u requests\n", dev_warn(&pdev->dev, "DMAMUX defaulting on %u requests\n",
stm32_dmamux->dmamux_requests); stm32_dmamux->dmamux_requests);
} }
pm_runtime_get_noresume(&pdev->dev);
res = platform_get_resource(pdev, IORESOURCE_MEM, 0); res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
iomem = devm_ioremap_resource(&pdev->dev, res); iomem = devm_ioremap_resource(&pdev->dev, res);
@ -282,6 +280,8 @@ static int stm32_dmamux_probe(struct platform_device *pdev)
stm32_dmamux->dmarouter.route_free = stm32_dmamux_free; stm32_dmamux->dmarouter.route_free = stm32_dmamux_free;
platform_set_drvdata(pdev, stm32_dmamux); platform_set_drvdata(pdev, stm32_dmamux);
pm_runtime_set_active(&pdev->dev);
pm_runtime_enable(&pdev->dev);
if (!IS_ERR(stm32_dmamux->clk)) { if (!IS_ERR(stm32_dmamux->clk)) {
ret = clk_prepare_enable(stm32_dmamux->clk); ret = clk_prepare_enable(stm32_dmamux->clk);
@ -291,17 +291,52 @@ static int stm32_dmamux_probe(struct platform_device *pdev)
} }
} }
pm_runtime_get_noresume(&pdev->dev);
/* Reset the dmamux */ /* Reset the dmamux */
for (i = 0; i < stm32_dmamux->dma_requests; i++) for (i = 0; i < stm32_dmamux->dma_requests; i++)
stm32_dmamux_write(stm32_dmamux->iomem, STM32_DMAMUX_CCR(i), 0); stm32_dmamux_write(stm32_dmamux->iomem, STM32_DMAMUX_CCR(i), 0);
if (!IS_ERR(stm32_dmamux->clk)) pm_runtime_put(&pdev->dev);
clk_disable(stm32_dmamux->clk);
return of_dma_router_register(node, stm32_dmamux_route_allocate, return of_dma_router_register(node, stm32_dmamux_route_allocate,
&stm32_dmamux->dmarouter); &stm32_dmamux->dmarouter);
} }
#ifdef CONFIG_PM
static int stm32_dmamux_runtime_suspend(struct device *dev)
{
struct platform_device *pdev =
container_of(dev, struct platform_device, dev);
struct stm32_dmamux_data *stm32_dmamux = platform_get_drvdata(pdev);
clk_disable_unprepare(stm32_dmamux->clk);
return 0;
}
static int stm32_dmamux_runtime_resume(struct device *dev)
{
struct platform_device *pdev =
container_of(dev, struct platform_device, dev);
struct stm32_dmamux_data *stm32_dmamux = platform_get_drvdata(pdev);
int ret;
ret = clk_prepare_enable(stm32_dmamux->clk);
if (ret) {
dev_err(&pdev->dev, "failed to prepare_enable clock\n");
return ret;
}
return 0;
}
#endif
static const struct dev_pm_ops stm32_dmamux_pm_ops = {
SET_RUNTIME_PM_OPS(stm32_dmamux_runtime_suspend,
stm32_dmamux_runtime_resume, NULL)
};
static const struct of_device_id stm32_dmamux_match[] = { static const struct of_device_id stm32_dmamux_match[] = {
{ .compatible = "st,stm32h7-dmamux" }, { .compatible = "st,stm32h7-dmamux" },
{}, {},
@ -312,6 +347,7 @@ static struct platform_driver stm32_dmamux_driver = {
.driver = { .driver = {
.name = "stm32-dmamux", .name = "stm32-dmamux",
.of_match_table = stm32_dmamux_match, .of_match_table = stm32_dmamux_match,
.pm = &stm32_dmamux_pm_ops,
}, },
}; };

View File

@ -37,6 +37,7 @@
#include <linux/of_device.h> #include <linux/of_device.h>
#include <linux/of_dma.h> #include <linux/of_dma.h>
#include <linux/platform_device.h> #include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/reset.h> #include <linux/reset.h>
#include <linux/slab.h> #include <linux/slab.h>
@ -1456,15 +1457,13 @@ static int stm32_mdma_alloc_chan_resources(struct dma_chan *c)
return -ENOMEM; return -ENOMEM;
} }
ret = clk_prepare_enable(dmadev->clk); ret = pm_runtime_get_sync(dmadev->ddev.dev);
if (ret < 0) { if (ret < 0)
dev_err(chan2dev(chan), "clk_prepare_enable failed: %d\n", ret);
return ret; return ret;
}
ret = stm32_mdma_disable_chan(chan); ret = stm32_mdma_disable_chan(chan);
if (ret < 0) if (ret < 0)
clk_disable_unprepare(dmadev->clk); pm_runtime_put(dmadev->ddev.dev);
return ret; return ret;
} }
@ -1484,7 +1483,7 @@ static void stm32_mdma_free_chan_resources(struct dma_chan *c)
spin_unlock_irqrestore(&chan->vchan.lock, flags); spin_unlock_irqrestore(&chan->vchan.lock, flags);
} }
clk_disable_unprepare(dmadev->clk); pm_runtime_put(dmadev->ddev.dev);
vchan_free_chan_resources(to_virt_chan(c)); vchan_free_chan_resources(to_virt_chan(c));
dmam_pool_destroy(chan->desc_pool); dmam_pool_destroy(chan->desc_pool);
chan->desc_pool = NULL; chan->desc_pool = NULL;
@ -1579,9 +1578,11 @@ static int stm32_mdma_probe(struct platform_device *pdev)
dmadev->nr_channels = nr_channels; dmadev->nr_channels = nr_channels;
dmadev->nr_requests = nr_requests; dmadev->nr_requests = nr_requests;
device_property_read_u32_array(&pdev->dev, "st,ahb-addr-masks", ret = device_property_read_u32_array(&pdev->dev, "st,ahb-addr-masks",
dmadev->ahb_addr_masks, dmadev->ahb_addr_masks,
count); count);
if (ret)
return ret;
dmadev->nr_ahb_addr_masks = count; dmadev->nr_ahb_addr_masks = count;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0); res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
@ -1597,6 +1598,12 @@ static int stm32_mdma_probe(struct platform_device *pdev)
return ret; return ret;
} }
ret = clk_prepare_enable(dmadev->clk);
if (ret < 0) {
dev_err(&pdev->dev, "clk_prep_enable error: %d\n", ret);
return ret;
}
dmadev->rst = devm_reset_control_get(&pdev->dev, NULL); dmadev->rst = devm_reset_control_get(&pdev->dev, NULL);
if (!IS_ERR(dmadev->rst)) { if (!IS_ERR(dmadev->rst)) {
reset_control_assert(dmadev->rst); reset_control_assert(dmadev->rst);
@ -1668,6 +1675,10 @@ static int stm32_mdma_probe(struct platform_device *pdev)
} }
platform_set_drvdata(pdev, dmadev); platform_set_drvdata(pdev, dmadev);
pm_runtime_set_active(&pdev->dev);
pm_runtime_enable(&pdev->dev);
pm_runtime_get_noresume(&pdev->dev);
pm_runtime_put(&pdev->dev);
dev_info(&pdev->dev, "STM32 MDMA driver registered\n"); dev_info(&pdev->dev, "STM32 MDMA driver registered\n");
@ -1677,11 +1688,42 @@ err_unregister:
return ret; return ret;
} }
#ifdef CONFIG_PM
static int stm32_mdma_runtime_suspend(struct device *dev)
{
struct stm32_mdma_device *dmadev = dev_get_drvdata(dev);
clk_disable_unprepare(dmadev->clk);
return 0;
}
static int stm32_mdma_runtime_resume(struct device *dev)
{
struct stm32_mdma_device *dmadev = dev_get_drvdata(dev);
int ret;
ret = clk_prepare_enable(dmadev->clk);
if (ret) {
dev_err(dev, "failed to prepare_enable clock\n");
return ret;
}
return 0;
}
#endif
static const struct dev_pm_ops stm32_mdma_pm_ops = {
SET_RUNTIME_PM_OPS(stm32_mdma_runtime_suspend,
stm32_mdma_runtime_resume, NULL)
};
static struct platform_driver stm32_mdma_driver = { static struct platform_driver stm32_mdma_driver = {
.probe = stm32_mdma_probe, .probe = stm32_mdma_probe,
.driver = { .driver = {
.name = "stm32-mdma", .name = "stm32-mdma",
.of_match_table = stm32_mdma_of_match, .of_match_table = stm32_mdma_of_match,
.pm = &stm32_mdma_pm_ops,
}, },
}; };

View File

@ -38,6 +38,9 @@
#include "dmaengine.h" #include "dmaengine.h"
#define CREATE_TRACE_POINTS
#include <trace/events/tegra_apb_dma.h>
#define TEGRA_APBDMA_GENERAL 0x0 #define TEGRA_APBDMA_GENERAL 0x0
#define TEGRA_APBDMA_GENERAL_ENABLE BIT(31) #define TEGRA_APBDMA_GENERAL_ENABLE BIT(31)
@ -146,7 +149,7 @@ struct tegra_dma_channel_regs {
}; };
/* /*
* tegra_dma_sg_req: Dma request details to configure hardware. This * tegra_dma_sg_req: DMA request details to configure hardware. This
* contains the details for one transfer to configure DMA hw. * contains the details for one transfer to configure DMA hw.
* The client's request for data transfer can be broken into multiple * The client's request for data transfer can be broken into multiple
* sub-transfer as per requester details and hw support. * sub-transfer as per requester details and hw support.
@ -155,7 +158,7 @@ struct tegra_dma_channel_regs {
*/ */
struct tegra_dma_sg_req { struct tegra_dma_sg_req {
struct tegra_dma_channel_regs ch_regs; struct tegra_dma_channel_regs ch_regs;
int req_len; unsigned int req_len;
bool configured; bool configured;
bool last_sg; bool last_sg;
struct list_head node; struct list_head node;
@ -169,8 +172,8 @@ struct tegra_dma_sg_req {
*/ */
struct tegra_dma_desc { struct tegra_dma_desc {
struct dma_async_tx_descriptor txd; struct dma_async_tx_descriptor txd;
int bytes_requested; unsigned int bytes_requested;
int bytes_transferred; unsigned int bytes_transferred;
enum dma_status dma_status; enum dma_status dma_status;
struct list_head node; struct list_head node;
struct list_head tx_list; struct list_head tx_list;
@ -186,7 +189,7 @@ typedef void (*dma_isr_handler)(struct tegra_dma_channel *tdc,
/* tegra_dma_channel: Channel specific information */ /* tegra_dma_channel: Channel specific information */
struct tegra_dma_channel { struct tegra_dma_channel {
struct dma_chan dma_chan; struct dma_chan dma_chan;
char name[30]; char name[12];
bool config_init; bool config_init;
int id; int id;
int irq; int irq;
@ -574,7 +577,7 @@ static bool handle_continuous_head_request(struct tegra_dma_channel *tdc,
struct tegra_dma_sg_req *hsgreq = NULL; struct tegra_dma_sg_req *hsgreq = NULL;
if (list_empty(&tdc->pending_sg_req)) { if (list_empty(&tdc->pending_sg_req)) {
dev_err(tdc2dev(tdc), "Dma is running without req\n"); dev_err(tdc2dev(tdc), "DMA is running without req\n");
tegra_dma_stop(tdc); tegra_dma_stop(tdc);
return false; return false;
} }
@ -587,7 +590,7 @@ static bool handle_continuous_head_request(struct tegra_dma_channel *tdc,
hsgreq = list_first_entry(&tdc->pending_sg_req, typeof(*hsgreq), node); hsgreq = list_first_entry(&tdc->pending_sg_req, typeof(*hsgreq), node);
if (!hsgreq->configured) { if (!hsgreq->configured) {
tegra_dma_stop(tdc); tegra_dma_stop(tdc);
dev_err(tdc2dev(tdc), "Error in dma transfer, aborting dma\n"); dev_err(tdc2dev(tdc), "Error in DMA transfer, aborting DMA\n");
tegra_dma_abort_all(tdc); tegra_dma_abort_all(tdc);
return false; return false;
} }
@ -636,7 +639,10 @@ static void handle_cont_sngl_cycle_dma_done(struct tegra_dma_channel *tdc,
sgreq = list_first_entry(&tdc->pending_sg_req, typeof(*sgreq), node); sgreq = list_first_entry(&tdc->pending_sg_req, typeof(*sgreq), node);
dma_desc = sgreq->dma_desc; dma_desc = sgreq->dma_desc;
dma_desc->bytes_transferred += sgreq->req_len; /* if we dma for long enough the transfer count will wrap */
dma_desc->bytes_transferred =
(dma_desc->bytes_transferred + sgreq->req_len) %
dma_desc->bytes_requested;
/* Callback need to be call */ /* Callback need to be call */
if (!dma_desc->cb_count) if (!dma_desc->cb_count)
@ -669,6 +675,8 @@ static void tegra_dma_tasklet(unsigned long data)
dmaengine_desc_get_callback(&dma_desc->txd, &cb); dmaengine_desc_get_callback(&dma_desc->txd, &cb);
cb_count = dma_desc->cb_count; cb_count = dma_desc->cb_count;
dma_desc->cb_count = 0; dma_desc->cb_count = 0;
trace_tegra_dma_complete_cb(&tdc->dma_chan, cb_count,
cb.callback);
spin_unlock_irqrestore(&tdc->lock, flags); spin_unlock_irqrestore(&tdc->lock, flags);
while (cb_count--) while (cb_count--)
dmaengine_desc_callback_invoke(&cb, NULL); dmaengine_desc_callback_invoke(&cb, NULL);
@ -685,6 +693,7 @@ static irqreturn_t tegra_dma_isr(int irq, void *dev_id)
spin_lock_irqsave(&tdc->lock, flags); spin_lock_irqsave(&tdc->lock, flags);
trace_tegra_dma_isr(&tdc->dma_chan, irq);
status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS); status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
if (status & TEGRA_APBDMA_STATUS_ISE_EOC) { if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
tdc_write(tdc, TEGRA_APBDMA_CHAN_STATUS, status); tdc_write(tdc, TEGRA_APBDMA_CHAN_STATUS, status);
@ -843,6 +852,7 @@ found:
dma_set_residue(txstate, residual); dma_set_residue(txstate, residual);
} }
trace_tegra_dma_tx_status(&tdc->dma_chan, cookie, txstate);
spin_unlock_irqrestore(&tdc->lock, flags); spin_unlock_irqrestore(&tdc->lock, flags);
return ret; return ret;
} }
@ -919,7 +929,7 @@ static int get_transfer_param(struct tegra_dma_channel *tdc,
return 0; return 0;
default: default:
dev_err(tdc2dev(tdc), "Dma direction is not supported\n"); dev_err(tdc2dev(tdc), "DMA direction is not supported\n");
return -EINVAL; return -EINVAL;
} }
return -EINVAL; return -EINVAL;
@ -952,7 +962,7 @@ static struct dma_async_tx_descriptor *tegra_dma_prep_slave_sg(
enum dma_slave_buswidth slave_bw; enum dma_slave_buswidth slave_bw;
if (!tdc->config_init) { if (!tdc->config_init) {
dev_err(tdc2dev(tdc), "dma channel is not configured\n"); dev_err(tdc2dev(tdc), "DMA channel is not configured\n");
return NULL; return NULL;
} }
if (sg_len < 1) { if (sg_len < 1) {
@ -985,7 +995,7 @@ static struct dma_async_tx_descriptor *tegra_dma_prep_slave_sg(
dma_desc = tegra_dma_desc_get(tdc); dma_desc = tegra_dma_desc_get(tdc);
if (!dma_desc) { if (!dma_desc) {
dev_err(tdc2dev(tdc), "Dma descriptors not available\n"); dev_err(tdc2dev(tdc), "DMA descriptors not available\n");
return NULL; return NULL;
} }
INIT_LIST_HEAD(&dma_desc->tx_list); INIT_LIST_HEAD(&dma_desc->tx_list);
@ -1005,14 +1015,14 @@ static struct dma_async_tx_descriptor *tegra_dma_prep_slave_sg(
if ((len & 3) || (mem & 3) || if ((len & 3) || (mem & 3) ||
(len > tdc->tdma->chip_data->max_dma_count)) { (len > tdc->tdma->chip_data->max_dma_count)) {
dev_err(tdc2dev(tdc), dev_err(tdc2dev(tdc),
"Dma length/memory address is not supported\n"); "DMA length/memory address is not supported\n");
tegra_dma_desc_put(tdc, dma_desc); tegra_dma_desc_put(tdc, dma_desc);
return NULL; return NULL;
} }
sg_req = tegra_dma_sg_req_get(tdc); sg_req = tegra_dma_sg_req_get(tdc);
if (!sg_req) { if (!sg_req) {
dev_err(tdc2dev(tdc), "Dma sg-req not available\n"); dev_err(tdc2dev(tdc), "DMA sg-req not available\n");
tegra_dma_desc_put(tdc, dma_desc); tegra_dma_desc_put(tdc, dma_desc);
return NULL; return NULL;
} }
@ -1087,7 +1097,7 @@ static struct dma_async_tx_descriptor *tegra_dma_prep_dma_cyclic(
* terminating the DMA. * terminating the DMA.
*/ */
if (tdc->busy) { if (tdc->busy) {
dev_err(tdc2dev(tdc), "Request not allowed when dma running\n"); dev_err(tdc2dev(tdc), "Request not allowed when DMA running\n");
return NULL; return NULL;
} }
@ -1144,7 +1154,7 @@ static struct dma_async_tx_descriptor *tegra_dma_prep_dma_cyclic(
while (remain_len) { while (remain_len) {
sg_req = tegra_dma_sg_req_get(tdc); sg_req = tegra_dma_sg_req_get(tdc);
if (!sg_req) { if (!sg_req) {
dev_err(tdc2dev(tdc), "Dma sg-req not available\n"); dev_err(tdc2dev(tdc), "DMA sg-req not available\n");
tegra_dma_desc_put(tdc, dma_desc); tegra_dma_desc_put(tdc, dma_desc);
return NULL; return NULL;
} }
@ -1319,8 +1329,9 @@ static int tegra_dma_probe(struct platform_device *pdev)
return -ENODEV; return -ENODEV;
} }
tdma = devm_kzalloc(&pdev->dev, sizeof(*tdma) + cdata->nr_channels * tdma = devm_kzalloc(&pdev->dev,
sizeof(struct tegra_dma_channel), GFP_KERNEL); struct_size(tdma, channels, cdata->nr_channels),
GFP_KERNEL);
if (!tdma) if (!tdma)
return -ENOMEM; return -ENOMEM;

View File

@ -678,8 +678,9 @@ static int tegra_adma_probe(struct platform_device *pdev)
return -ENODEV; return -ENODEV;
} }
tdma = devm_kzalloc(&pdev->dev, sizeof(*tdma) + cdata->nr_channels * tdma = devm_kzalloc(&pdev->dev,
sizeof(struct tegra_adma_chan), GFP_KERNEL); struct_size(tdma, channels, cdata->nr_channels),
GFP_KERNEL);
if (!tdma) if (!tdma)
return -ENOMEM; return -ENOMEM;

View File

@ -643,8 +643,8 @@ static int td_probe(struct platform_device *pdev)
DRIVER_NAME)) DRIVER_NAME))
return -EBUSY; return -EBUSY;
td = kzalloc(sizeof(struct timb_dma) + td = kzalloc(struct_size(td, channels, pdata->nr_channels),
sizeof(struct timb_dma_chan) * pdata->nr_channels, GFP_KERNEL); GFP_KERNEL);
if (!td) { if (!td) {
err = -ENOMEM; err = -ENOMEM;
goto err_release_region; goto err_release_region;

View File

@ -86,6 +86,7 @@
#define XILINX_DMA_DMASR_DMA_DEC_ERR BIT(6) #define XILINX_DMA_DMASR_DMA_DEC_ERR BIT(6)
#define XILINX_DMA_DMASR_DMA_SLAVE_ERR BIT(5) #define XILINX_DMA_DMASR_DMA_SLAVE_ERR BIT(5)
#define XILINX_DMA_DMASR_DMA_INT_ERR BIT(4) #define XILINX_DMA_DMASR_DMA_INT_ERR BIT(4)
#define XILINX_DMA_DMASR_SG_MASK BIT(3)
#define XILINX_DMA_DMASR_IDLE BIT(1) #define XILINX_DMA_DMASR_IDLE BIT(1)
#define XILINX_DMA_DMASR_HALTED BIT(0) #define XILINX_DMA_DMASR_HALTED BIT(0)
#define XILINX_DMA_DMASR_DELAY_MASK GENMASK(31, 24) #define XILINX_DMA_DMASR_DELAY_MASK GENMASK(31, 24)
@ -161,7 +162,9 @@
#define XILINX_DMA_REG_BTT 0x28 #define XILINX_DMA_REG_BTT 0x28
/* AXI DMA Specific Masks/Bit fields */ /* AXI DMA Specific Masks/Bit fields */
#define XILINX_DMA_MAX_TRANS_LEN GENMASK(22, 0) #define XILINX_DMA_MAX_TRANS_LEN_MIN 8
#define XILINX_DMA_MAX_TRANS_LEN_MAX 23
#define XILINX_DMA_V2_MAX_TRANS_LEN_MAX 26
#define XILINX_DMA_CR_COALESCE_MAX GENMASK(23, 16) #define XILINX_DMA_CR_COALESCE_MAX GENMASK(23, 16)
#define XILINX_DMA_CR_CYCLIC_BD_EN_MASK BIT(4) #define XILINX_DMA_CR_CYCLIC_BD_EN_MASK BIT(4)
#define XILINX_DMA_CR_COALESCE_SHIFT 16 #define XILINX_DMA_CR_COALESCE_SHIFT 16
@ -412,7 +415,6 @@ struct xilinx_dma_config {
* @dev: Device Structure * @dev: Device Structure
* @common: DMA device structure * @common: DMA device structure
* @chan: Driver specific DMA channel * @chan: Driver specific DMA channel
* @has_sg: Specifies whether Scatter-Gather is present or not
* @mcdma: Specifies whether Multi-Channel is present or not * @mcdma: Specifies whether Multi-Channel is present or not
* @flush_on_fsync: Flush on frame sync * @flush_on_fsync: Flush on frame sync
* @ext_addr: Indicates 64 bit addressing is supported by dma device * @ext_addr: Indicates 64 bit addressing is supported by dma device
@ -425,13 +427,13 @@ struct xilinx_dma_config {
* @rxs_clk: DMA s2mm stream clock * @rxs_clk: DMA s2mm stream clock
* @nr_channels: Number of channels DMA device supports * @nr_channels: Number of channels DMA device supports
* @chan_id: DMA channel identifier * @chan_id: DMA channel identifier
* @max_buffer_len: Max buffer length
*/ */
struct xilinx_dma_device { struct xilinx_dma_device {
void __iomem *regs; void __iomem *regs;
struct device *dev; struct device *dev;
struct dma_device common; struct dma_device common;
struct xilinx_dma_chan *chan[XILINX_DMA_MAX_CHANS_PER_DEVICE]; struct xilinx_dma_chan *chan[XILINX_DMA_MAX_CHANS_PER_DEVICE];
bool has_sg;
bool mcdma; bool mcdma;
u32 flush_on_fsync; u32 flush_on_fsync;
bool ext_addr; bool ext_addr;
@ -444,6 +446,7 @@ struct xilinx_dma_device {
struct clk *rxs_clk; struct clk *rxs_clk;
u32 nr_channels; u32 nr_channels;
u32 chan_id; u32 chan_id;
u32 max_buffer_len;
}; };
/* Macros */ /* Macros */
@ -959,6 +962,34 @@ static int xilinx_dma_alloc_chan_resources(struct dma_chan *dchan)
return 0; return 0;
} }
/**
* xilinx_dma_calc_copysize - Calculate the amount of data to copy
* @chan: Driver specific DMA channel
* @size: Total data that needs to be copied
* @done: Amount of data that has been already copied
*
* Return: Amount of data that has to be copied
*/
static int xilinx_dma_calc_copysize(struct xilinx_dma_chan *chan,
int size, int done)
{
size_t copy;
copy = min_t(size_t, size - done,
chan->xdev->max_buffer_len);
if ((copy + done < size) &&
chan->xdev->common.copy_align) {
/*
* If this is not the last descriptor, make sure
* the next one will be properly aligned
*/
copy = rounddown(copy,
(1 << chan->xdev->common.copy_align));
}
return copy;
}
/** /**
* xilinx_dma_tx_status - Get DMA transaction status * xilinx_dma_tx_status - Get DMA transaction status
* @dchan: DMA channel * @dchan: DMA channel
@ -992,7 +1023,7 @@ static enum dma_status xilinx_dma_tx_status(struct dma_chan *dchan,
list_for_each_entry(segment, &desc->segments, node) { list_for_each_entry(segment, &desc->segments, node) {
hw = &segment->hw; hw = &segment->hw;
residue += (hw->control - hw->status) & residue += (hw->control - hw->status) &
XILINX_DMA_MAX_TRANS_LEN; chan->xdev->max_buffer_len;
} }
} }
spin_unlock_irqrestore(&chan->lock, flags); spin_unlock_irqrestore(&chan->lock, flags);
@ -1070,7 +1101,8 @@ static void xilinx_vdma_start_transfer(struct xilinx_dma_chan *chan)
struct xilinx_vdma_config *config = &chan->config; struct xilinx_vdma_config *config = &chan->config;
struct xilinx_dma_tx_descriptor *desc, *tail_desc; struct xilinx_dma_tx_descriptor *desc, *tail_desc;
u32 reg, j; u32 reg, j;
struct xilinx_vdma_tx_segment *tail_segment; struct xilinx_vdma_tx_segment *segment, *last = NULL;
int i = 0;
/* This function was invoked with lock held */ /* This function was invoked with lock held */
if (chan->err) if (chan->err)
@ -1087,17 +1119,6 @@ static void xilinx_vdma_start_transfer(struct xilinx_dma_chan *chan)
tail_desc = list_last_entry(&chan->pending_list, tail_desc = list_last_entry(&chan->pending_list,
struct xilinx_dma_tx_descriptor, node); struct xilinx_dma_tx_descriptor, node);
tail_segment = list_last_entry(&tail_desc->segments,
struct xilinx_vdma_tx_segment, node);
/*
* If hardware is idle, then all descriptors on the running lists are
* done, start new transfers
*/
if (chan->has_sg)
dma_ctrl_write(chan, XILINX_DMA_REG_CURDESC,
desc->async_tx.phys);
/* Configure the hardware using info in the config structure */ /* Configure the hardware using info in the config structure */
if (chan->has_vflip) { if (chan->has_vflip) {
reg = dma_read(chan, XILINX_VDMA_REG_ENABLE_VERTICAL_FLIP); reg = dma_read(chan, XILINX_VDMA_REG_ENABLE_VERTICAL_FLIP);
@ -1114,15 +1135,11 @@ static void xilinx_vdma_start_transfer(struct xilinx_dma_chan *chan)
else else
reg &= ~XILINX_DMA_DMACR_FRAMECNT_EN; reg &= ~XILINX_DMA_DMACR_FRAMECNT_EN;
/* /* If not parking, enable circular mode */
* With SG, start with circular mode, so that BDs can be fetched.
* In direct register mode, if not parking, enable circular mode
*/
if (chan->has_sg || !config->park)
reg |= XILINX_DMA_DMACR_CIRC_EN;
if (config->park) if (config->park)
reg &= ~XILINX_DMA_DMACR_CIRC_EN; reg &= ~XILINX_DMA_DMACR_CIRC_EN;
else
reg |= XILINX_DMA_DMACR_CIRC_EN;
dma_ctrl_write(chan, XILINX_DMA_REG_DMACR, reg); dma_ctrl_write(chan, XILINX_DMA_REG_DMACR, reg);
@ -1144,49 +1161,39 @@ static void xilinx_vdma_start_transfer(struct xilinx_dma_chan *chan)
return; return;
/* Start the transfer */ /* Start the transfer */
if (chan->has_sg) { if (chan->desc_submitcount < chan->num_frms)
dma_ctrl_write(chan, XILINX_DMA_REG_TAILDESC, i = chan->desc_submitcount;
tail_segment->phys);
list_splice_tail_init(&chan->pending_list, &chan->active_list);
chan->desc_pendingcount = 0;
} else {
struct xilinx_vdma_tx_segment *segment, *last = NULL;
int i = 0;
if (chan->desc_submitcount < chan->num_frms) list_for_each_entry(segment, &desc->segments, node) {
i = chan->desc_submitcount; if (chan->ext_addr)
vdma_desc_write_64(chan,
list_for_each_entry(segment, &desc->segments, node) { XILINX_VDMA_REG_START_ADDRESS_64(i++),
if (chan->ext_addr) segment->hw.buf_addr,
vdma_desc_write_64(chan, segment->hw.buf_addr_msb);
XILINX_VDMA_REG_START_ADDRESS_64(i++), else
segment->hw.buf_addr, vdma_desc_write(chan,
segment->hw.buf_addr_msb);
else
vdma_desc_write(chan,
XILINX_VDMA_REG_START_ADDRESS(i++), XILINX_VDMA_REG_START_ADDRESS(i++),
segment->hw.buf_addr); segment->hw.buf_addr);
last = segment; last = segment;
}
if (!last)
return;
/* HW expects these parameters to be same for one transaction */
vdma_desc_write(chan, XILINX_DMA_REG_HSIZE, last->hw.hsize);
vdma_desc_write(chan, XILINX_DMA_REG_FRMDLY_STRIDE,
last->hw.stride);
vdma_desc_write(chan, XILINX_DMA_REG_VSIZE, last->hw.vsize);
chan->desc_submitcount++;
chan->desc_pendingcount--;
list_del(&desc->node);
list_add_tail(&desc->node, &chan->active_list);
if (chan->desc_submitcount == chan->num_frms)
chan->desc_submitcount = 0;
} }
if (!last)
return;
/* HW expects these parameters to be same for one transaction */
vdma_desc_write(chan, XILINX_DMA_REG_HSIZE, last->hw.hsize);
vdma_desc_write(chan, XILINX_DMA_REG_FRMDLY_STRIDE,
last->hw.stride);
vdma_desc_write(chan, XILINX_DMA_REG_VSIZE, last->hw.vsize);
chan->desc_submitcount++;
chan->desc_pendingcount--;
list_del(&desc->node);
list_add_tail(&desc->node, &chan->active_list);
if (chan->desc_submitcount == chan->num_frms)
chan->desc_submitcount = 0;
chan->idle = false; chan->idle = false;
} }
@ -1254,7 +1261,7 @@ static void xilinx_cdma_start_transfer(struct xilinx_dma_chan *chan)
/* Start the transfer */ /* Start the transfer */
dma_ctrl_write(chan, XILINX_DMA_REG_BTT, dma_ctrl_write(chan, XILINX_DMA_REG_BTT,
hw->control & XILINX_DMA_MAX_TRANS_LEN); hw->control & chan->xdev->max_buffer_len);
} }
list_splice_tail_init(&chan->pending_list, &chan->active_list); list_splice_tail_init(&chan->pending_list, &chan->active_list);
@ -1357,7 +1364,7 @@ static void xilinx_dma_start_transfer(struct xilinx_dma_chan *chan)
/* Start the transfer */ /* Start the transfer */
dma_ctrl_write(chan, XILINX_DMA_REG_BTT, dma_ctrl_write(chan, XILINX_DMA_REG_BTT,
hw->control & XILINX_DMA_MAX_TRANS_LEN); hw->control & chan->xdev->max_buffer_len);
} }
list_splice_tail_init(&chan->pending_list, &chan->active_list); list_splice_tail_init(&chan->pending_list, &chan->active_list);
@ -1718,7 +1725,7 @@ xilinx_cdma_prep_memcpy(struct dma_chan *dchan, dma_addr_t dma_dst,
struct xilinx_cdma_tx_segment *segment; struct xilinx_cdma_tx_segment *segment;
struct xilinx_cdma_desc_hw *hw; struct xilinx_cdma_desc_hw *hw;
if (!len || len > XILINX_DMA_MAX_TRANS_LEN) if (!len || len > chan->xdev->max_buffer_len)
return NULL; return NULL;
desc = xilinx_dma_alloc_tx_descriptor(chan); desc = xilinx_dma_alloc_tx_descriptor(chan);
@ -1808,8 +1815,8 @@ static struct dma_async_tx_descriptor *xilinx_dma_prep_slave_sg(
* Calculate the maximum number of bytes to transfer, * Calculate the maximum number of bytes to transfer,
* making sure it is less than the hw limit * making sure it is less than the hw limit
*/ */
copy = min_t(size_t, sg_dma_len(sg) - sg_used, copy = xilinx_dma_calc_copysize(chan, sg_dma_len(sg),
XILINX_DMA_MAX_TRANS_LEN); sg_used);
hw = &segment->hw; hw = &segment->hw;
/* Fill in the descriptor */ /* Fill in the descriptor */
@ -1913,8 +1920,8 @@ static struct dma_async_tx_descriptor *xilinx_dma_prep_dma_cyclic(
* Calculate the maximum number of bytes to transfer, * Calculate the maximum number of bytes to transfer,
* making sure it is less than the hw limit * making sure it is less than the hw limit
*/ */
copy = min_t(size_t, period_len - sg_used, copy = xilinx_dma_calc_copysize(chan, period_len,
XILINX_DMA_MAX_TRANS_LEN); sg_used);
hw = &segment->hw; hw = &segment->hw;
xilinx_axidma_buf(chan, hw, buf_addr, sg_used, xilinx_axidma_buf(chan, hw, buf_addr, sg_used,
period_len * i); period_len * i);
@ -2389,7 +2396,6 @@ static int xilinx_dma_chan_probe(struct xilinx_dma_device *xdev,
chan->dev = xdev->dev; chan->dev = xdev->dev;
chan->xdev = xdev; chan->xdev = xdev;
chan->has_sg = xdev->has_sg;
chan->desc_pendingcount = 0x0; chan->desc_pendingcount = 0x0;
chan->ext_addr = xdev->ext_addr; chan->ext_addr = xdev->ext_addr;
/* This variable ensures that descriptors are not /* This variable ensures that descriptors are not
@ -2489,6 +2495,15 @@ static int xilinx_dma_chan_probe(struct xilinx_dma_device *xdev,
chan->stop_transfer = xilinx_dma_stop_transfer; chan->stop_transfer = xilinx_dma_stop_transfer;
} }
/* check if SG is enabled (only for AXIDMA and CDMA) */
if (xdev->dma_config->dmatype != XDMA_TYPE_VDMA) {
if (dma_ctrl_read(chan, XILINX_DMA_REG_DMASR) &
XILINX_DMA_DMASR_SG_MASK)
chan->has_sg = true;
dev_dbg(chan->dev, "ch %d: SG %s\n", chan->id,
chan->has_sg ? "enabled" : "disabled");
}
/* Initialize the tasklet */ /* Initialize the tasklet */
tasklet_init(&chan->tasklet, xilinx_dma_do_tasklet, tasklet_init(&chan->tasklet, xilinx_dma_do_tasklet,
(unsigned long)chan); (unsigned long)chan);
@ -2596,7 +2611,7 @@ static int xilinx_dma_probe(struct platform_device *pdev)
struct xilinx_dma_device *xdev; struct xilinx_dma_device *xdev;
struct device_node *child, *np = pdev->dev.of_node; struct device_node *child, *np = pdev->dev.of_node;
struct resource *io; struct resource *io;
u32 num_frames, addr_width; u32 num_frames, addr_width, len_width;
int i, err; int i, err;
/* Allocate and initialize the DMA engine structure */ /* Allocate and initialize the DMA engine structure */
@ -2627,9 +2642,24 @@ static int xilinx_dma_probe(struct platform_device *pdev)
return PTR_ERR(xdev->regs); return PTR_ERR(xdev->regs);
/* Retrieve the DMA engine properties from the device tree */ /* Retrieve the DMA engine properties from the device tree */
xdev->has_sg = of_property_read_bool(node, "xlnx,include-sg"); xdev->max_buffer_len = GENMASK(XILINX_DMA_MAX_TRANS_LEN_MAX - 1, 0);
if (xdev->dma_config->dmatype == XDMA_TYPE_AXIDMA)
if (xdev->dma_config->dmatype == XDMA_TYPE_AXIDMA) {
xdev->mcdma = of_property_read_bool(node, "xlnx,mcdma"); xdev->mcdma = of_property_read_bool(node, "xlnx,mcdma");
if (!of_property_read_u32(node, "xlnx,sg-length-width",
&len_width)) {
if (len_width < XILINX_DMA_MAX_TRANS_LEN_MIN ||
len_width > XILINX_DMA_V2_MAX_TRANS_LEN_MAX) {
dev_warn(xdev->dev,
"invalid xlnx,sg-length-width property value. Using default width\n");
} else {
if (len_width > XILINX_DMA_MAX_TRANS_LEN_MAX)
dev_warn(xdev->dev, "Please ensure that IP supports buffer length > 23 bits\n");
xdev->max_buffer_len =
GENMASK(len_width - 1, 0);
}
}
}
if (xdev->dma_config->dmatype == XDMA_TYPE_VDMA) { if (xdev->dma_config->dmatype == XDMA_TYPE_VDMA) {
err = of_property_read_u32(node, "xlnx,num-fstores", err = of_property_read_u32(node, "xlnx,num-fstores",

View File

@ -153,7 +153,6 @@ static int byt_serial_setup(struct lpss8250 *lpss, struct uart_port *port)
#ifdef CONFIG_SERIAL_8250_DMA #ifdef CONFIG_SERIAL_8250_DMA
static const struct dw_dma_platform_data qrk_serial_dma_pdata = { static const struct dw_dma_platform_data qrk_serial_dma_pdata = {
.nr_channels = 2, .nr_channels = 2,
.is_private = true,
.chan_allocation_order = CHAN_ALLOCATION_ASCENDING, .chan_allocation_order = CHAN_ALLOCATION_ASCENDING,
.chan_priority = CHAN_PRIORITY_ASCENDING, .chan_priority = CHAN_PRIORITY_ASCENDING,
.block_size = 4095, .block_size = 4095,

View File

@ -1,13 +1,10 @@
/* SPDX-License-Identifier: GPL-2.0 */
/* /*
* Driver for the Synopsys DesignWare DMA Controller * Driver for the Synopsys DesignWare DMA Controller
* *
* Copyright (C) 2007 Atmel Corporation * Copyright (C) 2007 Atmel Corporation
* Copyright (C) 2010-2011 ST Microelectronics * Copyright (C) 2010-2011 ST Microelectronics
* Copyright (C) 2014 Intel Corporation * Copyright (C) 2014 Intel Corporation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/ */
#ifndef _DMA_DW_H #ifndef _DMA_DW_H
#define _DMA_DW_H #define _DMA_DW_H
@ -45,9 +42,13 @@ struct dw_dma_chip {
#if IS_ENABLED(CONFIG_DW_DMAC_CORE) #if IS_ENABLED(CONFIG_DW_DMAC_CORE)
int dw_dma_probe(struct dw_dma_chip *chip); int dw_dma_probe(struct dw_dma_chip *chip);
int dw_dma_remove(struct dw_dma_chip *chip); int dw_dma_remove(struct dw_dma_chip *chip);
int idma32_dma_probe(struct dw_dma_chip *chip);
int idma32_dma_remove(struct dw_dma_chip *chip);
#else #else
static inline int dw_dma_probe(struct dw_dma_chip *chip) { return -ENODEV; } static inline int dw_dma_probe(struct dw_dma_chip *chip) { return -ENODEV; }
static inline int dw_dma_remove(struct dw_dma_chip *chip) { return 0; } static inline int dw_dma_remove(struct dw_dma_chip *chip) { return 0; }
static inline int idma32_dma_probe(struct dw_dma_chip *chip) { return -ENODEV; }
static inline int idma32_dma_remove(struct dw_dma_chip *chip) { return 0; }
#endif /* CONFIG_DW_DMAC_CORE */ #endif /* CONFIG_DW_DMAC_CORE */
#endif /* _DMA_DW_H */ #endif /* _DMA_DW_H */

View File

@ -1,12 +1,9 @@
/* SPDX-License-Identifier: GPL-2.0 */
/* /*
* Driver for the Synopsys DesignWare DMA Controller * Driver for the Synopsys DesignWare DMA Controller
* *
* Copyright (C) 2007 Atmel Corporation * Copyright (C) 2007 Atmel Corporation
* Copyright (C) 2010-2011 ST Microelectronics * Copyright (C) 2010-2011 ST Microelectronics
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/ */
#ifndef _PLATFORM_DATA_DMA_DW_H #ifndef _PLATFORM_DATA_DMA_DW_H
#define _PLATFORM_DATA_DMA_DW_H #define _PLATFORM_DATA_DMA_DW_H
@ -38,10 +35,6 @@ struct dw_dma_slave {
/** /**
* struct dw_dma_platform_data - Controller configuration parameters * struct dw_dma_platform_data - Controller configuration parameters
* @nr_channels: Number of channels supported by hardware (max 8) * @nr_channels: Number of channels supported by hardware (max 8)
* @is_private: The device channels should be marked as private and not for
* by the general purpose DMA channel allocator.
* @is_memcpy: The device channels do support memory-to-memory transfers.
* @is_idma32: The type of the DMA controller is iDMA32
* @chan_allocation_order: Allocate channels starting from 0 or 7 * @chan_allocation_order: Allocate channels starting from 0 or 7
* @chan_priority: Set channel priority increasing from 0 to 7 or 7 to 0. * @chan_priority: Set channel priority increasing from 0 to 7 or 7 to 0.
* @block_size: Maximum block size supported by the controller * @block_size: Maximum block size supported by the controller
@ -53,9 +46,6 @@ struct dw_dma_slave {
*/ */
struct dw_dma_platform_data { struct dw_dma_platform_data {
unsigned int nr_channels; unsigned int nr_channels;
bool is_private;
bool is_memcpy;
bool is_idma32;
#define CHAN_ALLOCATION_ASCENDING 0 /* zero to seven */ #define CHAN_ALLOCATION_ASCENDING 0 /* zero to seven */
#define CHAN_ALLOCATION_DESCENDING 1 /* seven to zero */ #define CHAN_ALLOCATION_DESCENDING 1 /* seven to zero */
unsigned char chan_allocation_order; unsigned char chan_allocation_order;

View File

@ -55,6 +55,7 @@ struct imx_dma_data {
int dma_request2; /* secondary DMA request line */ int dma_request2; /* secondary DMA request line */
enum sdma_peripheral_type peripheral_type; enum sdma_peripheral_type peripheral_type;
int priority; int priority;
struct device_node *of_node;
}; };
static inline int imx_dma_is_ipu(struct dma_chan *chan) static inline int imx_dma_is_ipu(struct dma_chan *chan)

View File

@ -0,0 +1,61 @@
#if !defined(_TRACE_TEGRA_APB_DMA_H) || defined(TRACE_HEADER_MULTI_READ)
#define _TRACE_TEGRA_APM_DMA_H
#include <linux/tracepoint.h>
#include <linux/dmaengine.h>
#undef TRACE_SYSTEM
#define TRACE_SYSTEM tegra_apb_dma
TRACE_EVENT(tegra_dma_tx_status,
TP_PROTO(struct dma_chan *dc, dma_cookie_t cookie, struct dma_tx_state *state),
TP_ARGS(dc, cookie, state),
TP_STRUCT__entry(
__string(chan, dev_name(&dc->dev->device))
__field(dma_cookie_t, cookie)
__field(__u32, residue)
),
TP_fast_assign(
__assign_str(chan, dev_name(&dc->dev->device));
__entry->cookie = cookie;
__entry->residue = state ? state->residue : (u32)-1;
),
TP_printk("channel %s: dma cookie %d, residue %u",
__get_str(chan), __entry->cookie, __entry->residue)
);
TRACE_EVENT(tegra_dma_complete_cb,
TP_PROTO(struct dma_chan *dc, int count, void *ptr),
TP_ARGS(dc, count, ptr),
TP_STRUCT__entry(
__string(chan, dev_name(&dc->dev->device))
__field(int, count)
__field(void *, ptr)
),
TP_fast_assign(
__assign_str(chan, dev_name(&dc->dev->device));
__entry->count = count;
__entry->ptr = ptr;
),
TP_printk("channel %s: done %d, ptr %p",
__get_str(chan), __entry->count, __entry->ptr)
);
TRACE_EVENT(tegra_dma_isr,
TP_PROTO(struct dma_chan *dc, int irq),
TP_ARGS(dc, irq),
TP_STRUCT__entry(
__string(chan, dev_name(&dc->dev->device))
__field(int, irq)
),
TP_fast_assign(
__assign_str(chan, dev_name(&dc->dev->device));
__entry->irq = irq;
),
TP_printk("%s: irq %d\n", __get_str(chan), __entry->irq)
);
#endif /* _TRACE_TEGRADMA_H */
/* This part must be outside protection */
#include <trace/define_trace.h>