Merge branch 'topic/stm' into for-linus

This commit is contained in:
Vinod Koul 2018-04-10 08:55:58 +05:30
commit 2ffb850e23
2 changed files with 243 additions and 50 deletions

View File

@ -62,14 +62,14 @@ channel: a phandle to the DMA controller plus the following four integer cells:
0x1: medium 0x1: medium
0x2: high 0x2: high
0x3: very high 0x3: very high
4. A 32bit mask specifying the DMA FIFO threshold configuration which are device 4. A 32bit bitfield value specifying DMA features which are device dependent:
dependent: -bit 0-1: DMA FIFO threshold selection
-bit 0-1: Fifo threshold
0x0: 1/4 full FIFO 0x0: 1/4 full FIFO
0x1: 1/2 full FIFO 0x1: 1/2 full FIFO
0x2: 3/4 full FIFO 0x2: 3/4 full FIFO
0x3: full FIFO 0x3: full FIFO
Example: Example:
usart1: serial@40011000 { usart1: serial@40011000 {

View File

@ -5,6 +5,7 @@
* *
* Copyright (C) M'boumba Cedric Madianga 2015 * Copyright (C) M'boumba Cedric Madianga 2015
* Author: M'boumba Cedric Madianga <cedric.madianga@gmail.com> * Author: M'boumba Cedric Madianga <cedric.madianga@gmail.com>
* Pierre-Yves Mordret <pierre-yves.mordret@st.com>
* *
* License terms: GNU General Public License (GPL), version 2 * License terms: GNU General Public License (GPL), version 2
*/ */
@ -33,9 +34,14 @@
#define STM32_DMA_LIFCR 0x0008 /* DMA Low Int Flag Clear Reg */ #define STM32_DMA_LIFCR 0x0008 /* DMA Low Int Flag Clear Reg */
#define STM32_DMA_HIFCR 0x000c /* DMA High Int Flag Clear Reg */ #define STM32_DMA_HIFCR 0x000c /* DMA High Int Flag Clear Reg */
#define STM32_DMA_TCI BIT(5) /* Transfer Complete Interrupt */ #define STM32_DMA_TCI BIT(5) /* Transfer Complete Interrupt */
#define STM32_DMA_HTI BIT(4) /* Half Transfer Interrupt */
#define STM32_DMA_TEI BIT(3) /* Transfer Error Interrupt */ #define STM32_DMA_TEI BIT(3) /* Transfer Error Interrupt */
#define STM32_DMA_DMEI BIT(2) /* Direct Mode Error Interrupt */ #define STM32_DMA_DMEI BIT(2) /* Direct Mode Error Interrupt */
#define STM32_DMA_FEI BIT(0) /* FIFO Error Interrupt */ #define STM32_DMA_FEI BIT(0) /* FIFO Error Interrupt */
#define STM32_DMA_MASKI (STM32_DMA_TCI \
| STM32_DMA_TEI \
| STM32_DMA_DMEI \
| STM32_DMA_FEI)
/* DMA Stream x Configuration Register */ /* DMA Stream x Configuration Register */
#define STM32_DMA_SCR(x) (0x0010 + 0x18 * (x)) /* x = 0..7 */ #define STM32_DMA_SCR(x) (0x0010 + 0x18 * (x)) /* x = 0..7 */
@ -60,7 +66,8 @@
#define STM32_DMA_SCR_PINC BIT(9) /* Peripheral increment mode */ #define STM32_DMA_SCR_PINC BIT(9) /* Peripheral increment mode */
#define STM32_DMA_SCR_CIRC BIT(8) /* Circular mode */ #define STM32_DMA_SCR_CIRC BIT(8) /* Circular mode */
#define STM32_DMA_SCR_PFCTRL BIT(5) /* Peripheral Flow Controller */ #define STM32_DMA_SCR_PFCTRL BIT(5) /* Peripheral Flow Controller */
#define STM32_DMA_SCR_TCIE BIT(4) /* Transfer Cplete Int Enable*/ #define STM32_DMA_SCR_TCIE BIT(4) /* Transfer Complete Int Enable
*/
#define STM32_DMA_SCR_TEIE BIT(2) /* Transfer Error Int Enable */ #define STM32_DMA_SCR_TEIE BIT(2) /* Transfer Error Int Enable */
#define STM32_DMA_SCR_DMEIE BIT(1) /* Direct Mode Err Int Enable */ #define STM32_DMA_SCR_DMEIE BIT(1) /* Direct Mode Err Int Enable */
#define STM32_DMA_SCR_EN BIT(0) /* Stream Enable */ #define STM32_DMA_SCR_EN BIT(0) /* Stream Enable */
@ -111,11 +118,24 @@
#define STM32_DMA_FIFO_THRESHOLD_FULL 0x03 #define STM32_DMA_FIFO_THRESHOLD_FULL 0x03
#define STM32_DMA_MAX_DATA_ITEMS 0xffff #define STM32_DMA_MAX_DATA_ITEMS 0xffff
/*
* Valid transfer starts from @0 to @0xFFFE leading to unaligned scatter
* gather at boundary. Thus it's safer to round down this value on FIFO
* size (16 Bytes)
*/
#define STM32_DMA_ALIGNED_MAX_DATA_ITEMS \
ALIGN_DOWN(STM32_DMA_MAX_DATA_ITEMS, 16)
#define STM32_DMA_MAX_CHANNELS 0x08 #define STM32_DMA_MAX_CHANNELS 0x08
#define STM32_DMA_MAX_REQUEST_ID 0x08 #define STM32_DMA_MAX_REQUEST_ID 0x08
#define STM32_DMA_MAX_DATA_PARAM 0x03 #define STM32_DMA_MAX_DATA_PARAM 0x03
#define STM32_DMA_FIFO_SIZE 16 /* FIFO is 16 bytes */
#define STM32_DMA_MIN_BURST 4
#define STM32_DMA_MAX_BURST 16 #define STM32_DMA_MAX_BURST 16
/* DMA Features */
#define STM32_DMA_THRESHOLD_FTR_MASK GENMASK(1, 0)
#define STM32_DMA_THRESHOLD_FTR_GET(n) ((n) & STM32_DMA_THRESHOLD_FTR_MASK)
enum stm32_dma_width { enum stm32_dma_width {
STM32_DMA_BYTE, STM32_DMA_BYTE,
STM32_DMA_HALF_WORD, STM32_DMA_HALF_WORD,
@ -129,11 +149,18 @@ enum stm32_dma_burst_size {
STM32_DMA_BURST_INCR16, STM32_DMA_BURST_INCR16,
}; };
/**
* struct stm32_dma_cfg - STM32 DMA custom configuration
* @channel_id: channel ID
* @request_line: DMA request
* @stream_config: 32bit mask specifying the DMA channel configuration
* @features: 32bit mask specifying the DMA Feature list
*/
struct stm32_dma_cfg { struct stm32_dma_cfg {
u32 channel_id; u32 channel_id;
u32 request_line; u32 request_line;
u32 stream_config; u32 stream_config;
u32 threshold; u32 features;
}; };
struct stm32_dma_chan_reg { struct stm32_dma_chan_reg {
@ -171,6 +198,9 @@ struct stm32_dma_chan {
u32 next_sg; u32 next_sg;
struct dma_slave_config dma_sconfig; struct dma_slave_config dma_sconfig;
struct stm32_dma_chan_reg chan_reg; struct stm32_dma_chan_reg chan_reg;
u32 threshold;
u32 mem_burst;
u32 mem_width;
}; };
struct stm32_dma_device { struct stm32_dma_device {
@ -235,6 +265,85 @@ static int stm32_dma_get_width(struct stm32_dma_chan *chan,
} }
} }
static enum dma_slave_buswidth stm32_dma_get_max_width(u32 buf_len,
u32 threshold)
{
enum dma_slave_buswidth max_width;
if (threshold == STM32_DMA_FIFO_THRESHOLD_FULL)
max_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
else
max_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
while ((buf_len < max_width || buf_len % max_width) &&
max_width > DMA_SLAVE_BUSWIDTH_1_BYTE)
max_width = max_width >> 1;
return max_width;
}
static bool stm32_dma_fifo_threshold_is_allowed(u32 burst, u32 threshold,
enum dma_slave_buswidth width)
{
u32 remaining;
if (width != DMA_SLAVE_BUSWIDTH_UNDEFINED) {
if (burst != 0) {
/*
* If number of beats fit in several whole bursts
* this configuration is allowed.
*/
remaining = ((STM32_DMA_FIFO_SIZE / width) *
(threshold + 1) / 4) % burst;
if (remaining == 0)
return true;
} else {
return true;
}
}
return false;
}
static bool stm32_dma_is_burst_possible(u32 buf_len, u32 threshold)
{
switch (threshold) {
case STM32_DMA_FIFO_THRESHOLD_FULL:
if (buf_len >= STM32_DMA_MAX_BURST)
return true;
else
return false;
case STM32_DMA_FIFO_THRESHOLD_HALFFULL:
if (buf_len >= STM32_DMA_MAX_BURST / 2)
return true;
else
return false;
default:
return false;
}
}
static u32 stm32_dma_get_best_burst(u32 buf_len, u32 max_burst, u32 threshold,
enum dma_slave_buswidth width)
{
u32 best_burst = max_burst;
if (best_burst == 1 || !stm32_dma_is_burst_possible(buf_len, threshold))
return 0;
while ((buf_len < best_burst * width && best_burst > 1) ||
!stm32_dma_fifo_threshold_is_allowed(best_burst, threshold,
width)) {
if (best_burst > STM32_DMA_MIN_BURST)
best_burst = best_burst >> 1;
else
best_burst = 0;
}
return best_burst;
}
static int stm32_dma_get_burst(struct stm32_dma_chan *chan, u32 maxburst) static int stm32_dma_get_burst(struct stm32_dma_chan *chan, u32 maxburst)
{ {
switch (maxburst) { switch (maxburst) {
@ -254,12 +363,12 @@ static int stm32_dma_get_burst(struct stm32_dma_chan *chan, u32 maxburst)
} }
static void stm32_dma_set_fifo_config(struct stm32_dma_chan *chan, static void stm32_dma_set_fifo_config(struct stm32_dma_chan *chan,
u32 src_maxburst, u32 dst_maxburst) u32 src_burst, u32 dst_burst)
{ {
chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_MASK; chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_MASK;
chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_DMEIE; chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_DMEIE;
if ((!src_maxburst) && (!dst_maxburst)) { if (!src_burst && !dst_burst) {
/* Using direct mode */ /* Using direct mode */
chan->chan_reg.dma_scr |= STM32_DMA_SCR_DMEIE; chan->chan_reg.dma_scr |= STM32_DMA_SCR_DMEIE;
} else { } else {
@ -300,7 +409,7 @@ static u32 stm32_dma_irq_status(struct stm32_dma_chan *chan)
flags = dma_isr >> (((chan->id & 2) << 3) | ((chan->id & 1) * 6)); flags = dma_isr >> (((chan->id & 2) << 3) | ((chan->id & 1) * 6));
return flags; return flags & STM32_DMA_MASKI;
} }
static void stm32_dma_irq_clear(struct stm32_dma_chan *chan, u32 flags) static void stm32_dma_irq_clear(struct stm32_dma_chan *chan, u32 flags)
@ -315,6 +424,7 @@ static void stm32_dma_irq_clear(struct stm32_dma_chan *chan, u32 flags)
* If (ch % 4) is 2 or 3, left shift the mask by 16 bits. * If (ch % 4) is 2 or 3, left shift the mask by 16 bits.
* If (ch % 4) is 1 or 3, additionally left shift the mask by 6 bits. * If (ch % 4) is 1 or 3, additionally left shift the mask by 6 bits.
*/ */
flags &= STM32_DMA_MASKI;
dma_ifcr = flags << (((chan->id & 2) << 3) | ((chan->id & 1) * 6)); dma_ifcr = flags << (((chan->id & 2) << 3) | ((chan->id & 1) * 6));
if (chan->id & 4) if (chan->id & 4)
@ -429,6 +539,8 @@ static void stm32_dma_dump_reg(struct stm32_dma_chan *chan)
dev_dbg(chan2dev(chan), "SFCR: 0x%08x\n", sfcr); dev_dbg(chan2dev(chan), "SFCR: 0x%08x\n", sfcr);
} }
static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan);
static void stm32_dma_start_transfer(struct stm32_dma_chan *chan) static void stm32_dma_start_transfer(struct stm32_dma_chan *chan)
{ {
struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
@ -471,6 +583,9 @@ static void stm32_dma_start_transfer(struct stm32_dma_chan *chan)
if (status) if (status)
stm32_dma_irq_clear(chan, status); stm32_dma_irq_clear(chan, status);
if (chan->desc->cyclic)
stm32_dma_configure_next_sg(chan);
stm32_dma_dump_reg(chan); stm32_dma_dump_reg(chan);
/* Start DMA */ /* Start DMA */
@ -541,13 +656,29 @@ static irqreturn_t stm32_dma_chan_irq(int irq, void *devid)
status = stm32_dma_irq_status(chan); status = stm32_dma_irq_status(chan);
scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id)); scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
if ((status & STM32_DMA_TCI) && (scr & STM32_DMA_SCR_TCIE)) { if (status & STM32_DMA_TCI) {
stm32_dma_irq_clear(chan, STM32_DMA_TCI); stm32_dma_irq_clear(chan, STM32_DMA_TCI);
if (scr & STM32_DMA_SCR_TCIE)
stm32_dma_handle_chan_done(chan); stm32_dma_handle_chan_done(chan);
status &= ~STM32_DMA_TCI;
} else { }
if (status & STM32_DMA_HTI) {
stm32_dma_irq_clear(chan, STM32_DMA_HTI);
status &= ~STM32_DMA_HTI;
}
if (status & STM32_DMA_FEI) {
stm32_dma_irq_clear(chan, STM32_DMA_FEI);
status &= ~STM32_DMA_FEI;
if (!(scr & STM32_DMA_SCR_EN))
dev_err(chan2dev(chan), "FIFO Error\n");
else
dev_dbg(chan2dev(chan), "FIFO over/underrun\n");
}
if (status) {
stm32_dma_irq_clear(chan, status); stm32_dma_irq_clear(chan, status);
dev_err(chan2dev(chan), "DMA error: status=0x%08x\n", status); dev_err(chan2dev(chan), "DMA error: status=0x%08x\n", status);
if (!(scr & STM32_DMA_SCR_EN))
dev_err(chan2dev(chan), "chan disabled by HW\n");
} }
spin_unlock(&chan->vchan.lock); spin_unlock(&chan->vchan.lock);
@ -564,45 +695,59 @@ static void stm32_dma_issue_pending(struct dma_chan *c)
if (vchan_issue_pending(&chan->vchan) && !chan->desc && !chan->busy) { if (vchan_issue_pending(&chan->vchan) && !chan->desc && !chan->busy) {
dev_dbg(chan2dev(chan), "vchan %p: issued\n", &chan->vchan); dev_dbg(chan2dev(chan), "vchan %p: issued\n", &chan->vchan);
stm32_dma_start_transfer(chan); stm32_dma_start_transfer(chan);
if (chan->desc->cyclic)
stm32_dma_configure_next_sg(chan);
} }
spin_unlock_irqrestore(&chan->vchan.lock, flags); spin_unlock_irqrestore(&chan->vchan.lock, flags);
} }
static int stm32_dma_set_xfer_param(struct stm32_dma_chan *chan, static int stm32_dma_set_xfer_param(struct stm32_dma_chan *chan,
enum dma_transfer_direction direction, enum dma_transfer_direction direction,
enum dma_slave_buswidth *buswidth) enum dma_slave_buswidth *buswidth,
u32 buf_len)
{ {
enum dma_slave_buswidth src_addr_width, dst_addr_width; enum dma_slave_buswidth src_addr_width, dst_addr_width;
int src_bus_width, dst_bus_width; int src_bus_width, dst_bus_width;
int src_burst_size, dst_burst_size; int src_burst_size, dst_burst_size;
u32 src_maxburst, dst_maxburst; u32 src_maxburst, dst_maxburst, src_best_burst, dst_best_burst;
u32 dma_scr = 0; u32 dma_scr, threshold;
src_addr_width = chan->dma_sconfig.src_addr_width; src_addr_width = chan->dma_sconfig.src_addr_width;
dst_addr_width = chan->dma_sconfig.dst_addr_width; dst_addr_width = chan->dma_sconfig.dst_addr_width;
src_maxburst = chan->dma_sconfig.src_maxburst; src_maxburst = chan->dma_sconfig.src_maxburst;
dst_maxburst = chan->dma_sconfig.dst_maxburst; dst_maxburst = chan->dma_sconfig.dst_maxburst;
threshold = chan->threshold;
switch (direction) { switch (direction) {
case DMA_MEM_TO_DEV: case DMA_MEM_TO_DEV:
/* Set device data size */
dst_bus_width = stm32_dma_get_width(chan, dst_addr_width); dst_bus_width = stm32_dma_get_width(chan, dst_addr_width);
if (dst_bus_width < 0) if (dst_bus_width < 0)
return dst_bus_width; return dst_bus_width;
dst_burst_size = stm32_dma_get_burst(chan, dst_maxburst); /* Set device burst size */
dst_best_burst = stm32_dma_get_best_burst(buf_len,
dst_maxburst,
threshold,
dst_addr_width);
dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst);
if (dst_burst_size < 0) if (dst_burst_size < 0)
return dst_burst_size; return dst_burst_size;
if (!src_addr_width) /* Set memory data size */
src_addr_width = dst_addr_width; src_addr_width = stm32_dma_get_max_width(buf_len, threshold);
chan->mem_width = src_addr_width;
src_bus_width = stm32_dma_get_width(chan, src_addr_width); src_bus_width = stm32_dma_get_width(chan, src_addr_width);
if (src_bus_width < 0) if (src_bus_width < 0)
return src_bus_width; return src_bus_width;
src_burst_size = stm32_dma_get_burst(chan, src_maxburst); /* Set memory burst size */
src_maxburst = STM32_DMA_MAX_BURST;
src_best_burst = stm32_dma_get_best_burst(buf_len,
src_maxburst,
threshold,
src_addr_width);
src_burst_size = stm32_dma_get_burst(chan, src_best_burst);
if (src_burst_size < 0) if (src_burst_size < 0)
return src_burst_size; return src_burst_size;
@ -612,27 +757,46 @@ static int stm32_dma_set_xfer_param(struct stm32_dma_chan *chan,
STM32_DMA_SCR_PBURST(dst_burst_size) | STM32_DMA_SCR_PBURST(dst_burst_size) |
STM32_DMA_SCR_MBURST(src_burst_size); STM32_DMA_SCR_MBURST(src_burst_size);
/* Set FIFO threshold */
chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK;
chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_FTH(threshold);
/* Set peripheral address */
chan->chan_reg.dma_spar = chan->dma_sconfig.dst_addr; chan->chan_reg.dma_spar = chan->dma_sconfig.dst_addr;
*buswidth = dst_addr_width; *buswidth = dst_addr_width;
break; break;
case DMA_DEV_TO_MEM: case DMA_DEV_TO_MEM:
/* Set device data size */
src_bus_width = stm32_dma_get_width(chan, src_addr_width); src_bus_width = stm32_dma_get_width(chan, src_addr_width);
if (src_bus_width < 0) if (src_bus_width < 0)
return src_bus_width; return src_bus_width;
src_burst_size = stm32_dma_get_burst(chan, src_maxburst); /* Set device burst size */
src_best_burst = stm32_dma_get_best_burst(buf_len,
src_maxburst,
threshold,
src_addr_width);
chan->mem_burst = src_best_burst;
src_burst_size = stm32_dma_get_burst(chan, src_best_burst);
if (src_burst_size < 0) if (src_burst_size < 0)
return src_burst_size; return src_burst_size;
if (!dst_addr_width) /* Set memory data size */
dst_addr_width = src_addr_width; dst_addr_width = stm32_dma_get_max_width(buf_len, threshold);
chan->mem_width = dst_addr_width;
dst_bus_width = stm32_dma_get_width(chan, dst_addr_width); dst_bus_width = stm32_dma_get_width(chan, dst_addr_width);
if (dst_bus_width < 0) if (dst_bus_width < 0)
return dst_bus_width; return dst_bus_width;
dst_burst_size = stm32_dma_get_burst(chan, dst_maxburst); /* Set memory burst size */
dst_maxburst = STM32_DMA_MAX_BURST;
dst_best_burst = stm32_dma_get_best_burst(buf_len,
dst_maxburst,
threshold,
dst_addr_width);
chan->mem_burst = dst_best_burst;
dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst);
if (dst_burst_size < 0) if (dst_burst_size < 0)
return dst_burst_size; return dst_burst_size;
@ -642,6 +806,11 @@ static int stm32_dma_set_xfer_param(struct stm32_dma_chan *chan,
STM32_DMA_SCR_PBURST(src_burst_size) | STM32_DMA_SCR_PBURST(src_burst_size) |
STM32_DMA_SCR_MBURST(dst_burst_size); STM32_DMA_SCR_MBURST(dst_burst_size);
/* Set FIFO threshold */
chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK;
chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_FTH(threshold);
/* Set peripheral address */
chan->chan_reg.dma_spar = chan->dma_sconfig.src_addr; chan->chan_reg.dma_spar = chan->dma_sconfig.src_addr;
*buswidth = chan->dma_sconfig.src_addr_width; *buswidth = chan->dma_sconfig.src_addr_width;
break; break;
@ -651,8 +820,9 @@ static int stm32_dma_set_xfer_param(struct stm32_dma_chan *chan,
return -EINVAL; return -EINVAL;
} }
stm32_dma_set_fifo_config(chan, src_maxburst, dst_maxburst); stm32_dma_set_fifo_config(chan, src_best_burst, dst_best_burst);
/* Set DMA control register */
chan->chan_reg.dma_scr &= ~(STM32_DMA_SCR_DIR_MASK | chan->chan_reg.dma_scr &= ~(STM32_DMA_SCR_DIR_MASK |
STM32_DMA_SCR_PSIZE_MASK | STM32_DMA_SCR_MSIZE_MASK | STM32_DMA_SCR_PSIZE_MASK | STM32_DMA_SCR_MSIZE_MASK |
STM32_DMA_SCR_PBURST_MASK | STM32_DMA_SCR_MBURST_MASK); STM32_DMA_SCR_PBURST_MASK | STM32_DMA_SCR_MBURST_MASK);
@ -692,10 +862,6 @@ static struct dma_async_tx_descriptor *stm32_dma_prep_slave_sg(
if (!desc) if (!desc)
return NULL; return NULL;
ret = stm32_dma_set_xfer_param(chan, direction, &buswidth);
if (ret < 0)
goto err;
/* Set peripheral flow controller */ /* Set peripheral flow controller */
if (chan->dma_sconfig.device_fc) if (chan->dma_sconfig.device_fc)
chan->chan_reg.dma_scr |= STM32_DMA_SCR_PFCTRL; chan->chan_reg.dma_scr |= STM32_DMA_SCR_PFCTRL;
@ -703,10 +869,15 @@ static struct dma_async_tx_descriptor *stm32_dma_prep_slave_sg(
chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL; chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL;
for_each_sg(sgl, sg, sg_len, i) { for_each_sg(sgl, sg, sg_len, i) {
ret = stm32_dma_set_xfer_param(chan, direction, &buswidth,
sg_dma_len(sg));
if (ret < 0)
goto err;
desc->sg_req[i].len = sg_dma_len(sg); desc->sg_req[i].len = sg_dma_len(sg);
nb_data_items = desc->sg_req[i].len / buswidth; nb_data_items = desc->sg_req[i].len / buswidth;
if (nb_data_items > STM32_DMA_MAX_DATA_ITEMS) { if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) {
dev_err(chan2dev(chan), "nb items not supported\n"); dev_err(chan2dev(chan), "nb items not supported\n");
goto err; goto err;
} }
@ -767,12 +938,12 @@ static struct dma_async_tx_descriptor *stm32_dma_prep_dma_cyclic(
return NULL; return NULL;
} }
ret = stm32_dma_set_xfer_param(chan, direction, &buswidth); ret = stm32_dma_set_xfer_param(chan, direction, &buswidth, period_len);
if (ret < 0) if (ret < 0)
return NULL; return NULL;
nb_data_items = period_len / buswidth; nb_data_items = period_len / buswidth;
if (nb_data_items > STM32_DMA_MAX_DATA_ITEMS) { if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) {
dev_err(chan2dev(chan), "number of items not supported\n"); dev_err(chan2dev(chan), "number of items not supported\n");
return NULL; return NULL;
} }
@ -816,35 +987,45 @@ static struct dma_async_tx_descriptor *stm32_dma_prep_dma_memcpy(
dma_addr_t src, size_t len, unsigned long flags) dma_addr_t src, size_t len, unsigned long flags)
{ {
struct stm32_dma_chan *chan = to_stm32_dma_chan(c); struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
u32 num_sgs; enum dma_slave_buswidth max_width;
struct stm32_dma_desc *desc; struct stm32_dma_desc *desc;
size_t xfer_count, offset; size_t xfer_count, offset;
u32 num_sgs, best_burst, dma_burst, threshold;
int i; int i;
num_sgs = DIV_ROUND_UP(len, STM32_DMA_MAX_DATA_ITEMS); num_sgs = DIV_ROUND_UP(len, STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
desc = stm32_dma_alloc_desc(num_sgs); desc = stm32_dma_alloc_desc(num_sgs);
if (!desc) if (!desc)
return NULL; return NULL;
threshold = chan->threshold;
for (offset = 0, i = 0; offset < len; offset += xfer_count, i++) { for (offset = 0, i = 0; offset < len; offset += xfer_count, i++) {
xfer_count = min_t(size_t, len - offset, xfer_count = min_t(size_t, len - offset,
STM32_DMA_MAX_DATA_ITEMS); STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
desc->sg_req[i].len = xfer_count; /* Compute best burst size */
max_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
best_burst = stm32_dma_get_best_burst(len, STM32_DMA_MAX_BURST,
threshold, max_width);
dma_burst = stm32_dma_get_burst(chan, best_burst);
stm32_dma_clear_reg(&desc->sg_req[i].chan_reg); stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
desc->sg_req[i].chan_reg.dma_scr = desc->sg_req[i].chan_reg.dma_scr =
STM32_DMA_SCR_DIR(STM32_DMA_MEM_TO_MEM) | STM32_DMA_SCR_DIR(STM32_DMA_MEM_TO_MEM) |
STM32_DMA_SCR_PBURST(dma_burst) |
STM32_DMA_SCR_MBURST(dma_burst) |
STM32_DMA_SCR_MINC | STM32_DMA_SCR_MINC |
STM32_DMA_SCR_PINC | STM32_DMA_SCR_PINC |
STM32_DMA_SCR_TCIE | STM32_DMA_SCR_TCIE |
STM32_DMA_SCR_TEIE; STM32_DMA_SCR_TEIE;
desc->sg_req[i].chan_reg.dma_sfcr = STM32_DMA_SFCR_DMDIS | desc->sg_req[i].chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK;
STM32_DMA_SFCR_FTH(STM32_DMA_FIFO_THRESHOLD_FULL) | desc->sg_req[i].chan_reg.dma_sfcr |=
STM32_DMA_SFCR_FEIE; STM32_DMA_SFCR_FTH(threshold);
desc->sg_req[i].chan_reg.dma_spar = src + offset; desc->sg_req[i].chan_reg.dma_spar = src + offset;
desc->sg_req[i].chan_reg.dma_sm0ar = dest + offset; desc->sg_req[i].chan_reg.dma_sm0ar = dest + offset;
desc->sg_req[i].chan_reg.dma_sndtr = xfer_count; desc->sg_req[i].chan_reg.dma_sndtr = xfer_count;
desc->sg_req[i].len = xfer_count;
} }
desc->num_sgs = num_sgs; desc->num_sgs = num_sgs;
@ -869,6 +1050,7 @@ static size_t stm32_dma_desc_residue(struct stm32_dma_chan *chan,
struct stm32_dma_desc *desc, struct stm32_dma_desc *desc,
u32 next_sg) u32 next_sg)
{ {
u32 modulo, burst_size;
u32 residue = 0; u32 residue = 0;
int i; int i;
@ -876,8 +1058,10 @@ static size_t stm32_dma_desc_residue(struct stm32_dma_chan *chan,
* In cyclic mode, for the last period, residue = remaining bytes from * In cyclic mode, for the last period, residue = remaining bytes from
* NDTR * NDTR
*/ */
if (chan->desc->cyclic && next_sg == 0) if (chan->desc->cyclic && next_sg == 0) {
return stm32_dma_get_remaining_bytes(chan); residue = stm32_dma_get_remaining_bytes(chan);
goto end;
}
/* /*
* For all other periods in cyclic mode, and in sg mode, * For all other periods in cyclic mode, and in sg mode,
@ -888,6 +1072,15 @@ static size_t stm32_dma_desc_residue(struct stm32_dma_chan *chan,
residue += desc->sg_req[i].len; residue += desc->sg_req[i].len;
residue += stm32_dma_get_remaining_bytes(chan); residue += stm32_dma_get_remaining_bytes(chan);
end:
if (!chan->mem_burst)
return residue;
burst_size = chan->mem_burst * chan->mem_width;
modulo = residue % burst_size;
if (modulo)
residue = residue - modulo + burst_size;
return residue; return residue;
} }
@ -902,7 +1095,7 @@ static enum dma_status stm32_dma_tx_status(struct dma_chan *c,
u32 residue = 0; u32 residue = 0;
status = dma_cookie_status(c, cookie, state); status = dma_cookie_status(c, cookie, state);
if ((status == DMA_COMPLETE) || (!state)) if (status == DMA_COMPLETE || !state)
return status; return status;
spin_lock_irqsave(&chan->vchan.lock, flags); spin_lock_irqsave(&chan->vchan.lock, flags);
@ -976,7 +1169,7 @@ static void stm32_dma_set_config(struct stm32_dma_chan *chan,
/* Enable Interrupts */ /* Enable Interrupts */
chan->chan_reg.dma_scr |= STM32_DMA_SCR_TEIE | STM32_DMA_SCR_TCIE; chan->chan_reg.dma_scr |= STM32_DMA_SCR_TEIE | STM32_DMA_SCR_TCIE;
chan->chan_reg.dma_sfcr = cfg->threshold & STM32_DMA_SFCR_FTH_MASK; chan->threshold = STM32_DMA_THRESHOLD_FTR_GET(cfg->features);
} }
static struct dma_chan *stm32_dma_of_xlate(struct of_phandle_args *dma_spec, static struct dma_chan *stm32_dma_of_xlate(struct of_phandle_args *dma_spec,
@ -996,10 +1189,10 @@ static struct dma_chan *stm32_dma_of_xlate(struct of_phandle_args *dma_spec,
cfg.channel_id = dma_spec->args[0]; cfg.channel_id = dma_spec->args[0];
cfg.request_line = dma_spec->args[1]; cfg.request_line = dma_spec->args[1];
cfg.stream_config = dma_spec->args[2]; cfg.stream_config = dma_spec->args[2];
cfg.threshold = dma_spec->args[3]; cfg.features = dma_spec->args[3];
if ((cfg.channel_id >= STM32_DMA_MAX_CHANNELS) || if (cfg.channel_id >= STM32_DMA_MAX_CHANNELS ||
(cfg.request_line >= STM32_DMA_MAX_REQUEST_ID)) { cfg.request_line >= STM32_DMA_MAX_REQUEST_ID) {
dev_err(dev, "Bad channel and/or request id\n"); dev_err(dev, "Bad channel and/or request id\n");
return NULL; return NULL;
} }