sched/deadline: Add SCHED_DEADLINE inheritance logic
Some method to deal with rt-mutexes and make sched_dl interact with the current PI-coded is needed, raising all but trivial issues, that needs (according to us) to be solved with some restructuring of the pi-code (i.e., going toward a proxy execution-ish implementation). This is under development, in the meanwhile, as a temporary solution, what this commits does is: - ensure a pi-lock owner with waiters is never throttled down. Instead, when it runs out of runtime, it immediately gets replenished and it's deadline is postponed; - the scheduling parameters (relative deadline and default runtime) used for that replenishments --during the whole period it holds the pi-lock-- are the ones of the waiting task with earliest deadline. Acting this way, we provide some kind of boosting to the lock-owner, still by using the existing (actually, slightly modified by the previous commit) pi-architecture. We would stress the fact that this is only a surely needed, all but clean solution to the problem. In the end it's only a way to re-start discussion within the community. So, as always, comments, ideas, rants, etc.. are welcome! :-) Signed-off-by: Dario Faggioli <raistlin@linux.it> Signed-off-by: Juri Lelli <juri.lelli@gmail.com> [ Added !RT_MUTEXES build fix. ] Signed-off-by: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1383831828-15501-11-git-send-email-juri.lelli@gmail.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
This commit is contained in:
parent
fb00aca474
commit
2d3d891d33
|
@ -1124,8 +1124,12 @@ struct sched_dl_entity {
|
|||
* @dl_new tells if a new instance arrived. If so we must
|
||||
* start executing it with full runtime and reset its absolute
|
||||
* deadline;
|
||||
*
|
||||
* @dl_boosted tells if we are boosted due to DI. If so we are
|
||||
* outside bandwidth enforcement mechanism (but only until we
|
||||
* exit the critical section).
|
||||
*/
|
||||
int dl_throttled, dl_new;
|
||||
int dl_throttled, dl_new, dl_boosted;
|
||||
|
||||
/*
|
||||
* Bandwidth enforcement timer. Each -deadline task has its
|
||||
|
@ -1359,6 +1363,8 @@ struct task_struct {
|
|||
struct rb_node *pi_waiters_leftmost;
|
||||
/* Deadlock detection and priority inheritance handling */
|
||||
struct rt_mutex_waiter *pi_blocked_on;
|
||||
/* Top pi_waiters task */
|
||||
struct task_struct *pi_top_task;
|
||||
#endif
|
||||
|
||||
#ifdef CONFIG_DEBUG_MUTEXES
|
||||
|
|
|
@ -35,6 +35,7 @@ static inline int rt_task(struct task_struct *p)
|
|||
#ifdef CONFIG_RT_MUTEXES
|
||||
extern int rt_mutex_getprio(struct task_struct *p);
|
||||
extern void rt_mutex_setprio(struct task_struct *p, int prio);
|
||||
extern struct task_struct *rt_mutex_get_top_task(struct task_struct *task);
|
||||
extern void rt_mutex_adjust_pi(struct task_struct *p);
|
||||
static inline bool tsk_is_pi_blocked(struct task_struct *tsk)
|
||||
{
|
||||
|
@ -45,6 +46,10 @@ static inline int rt_mutex_getprio(struct task_struct *p)
|
|||
{
|
||||
return p->normal_prio;
|
||||
}
|
||||
static inline struct task_struct *rt_mutex_get_top_task(struct task_struct *task)
|
||||
{
|
||||
return NULL;
|
||||
}
|
||||
# define rt_mutex_adjust_pi(p) do { } while (0)
|
||||
static inline bool tsk_is_pi_blocked(struct task_struct *tsk)
|
||||
{
|
||||
|
|
|
@ -1090,6 +1090,7 @@ static void rt_mutex_init_task(struct task_struct *p)
|
|||
p->pi_waiters = RB_ROOT;
|
||||
p->pi_waiters_leftmost = NULL;
|
||||
p->pi_blocked_on = NULL;
|
||||
p->pi_top_task = NULL;
|
||||
#endif
|
||||
}
|
||||
|
||||
|
|
|
@ -96,13 +96,16 @@ static inline int
|
|||
rt_mutex_waiter_less(struct rt_mutex_waiter *left,
|
||||
struct rt_mutex_waiter *right)
|
||||
{
|
||||
if (left->task->prio < right->task->prio)
|
||||
if (left->prio < right->prio)
|
||||
return 1;
|
||||
|
||||
/*
|
||||
* If both tasks are dl_task(), we check their deadlines.
|
||||
* If both waiters have dl_prio(), we check the deadlines of the
|
||||
* associated tasks.
|
||||
* If left waiter has a dl_prio(), and we didn't return 1 above,
|
||||
* then right waiter has a dl_prio() too.
|
||||
*/
|
||||
if (dl_prio(left->task->prio) && dl_prio(right->task->prio))
|
||||
if (dl_prio(left->prio))
|
||||
return (left->task->dl.deadline < right->task->dl.deadline);
|
||||
|
||||
return 0;
|
||||
|
@ -197,10 +200,18 @@ int rt_mutex_getprio(struct task_struct *task)
|
|||
if (likely(!task_has_pi_waiters(task)))
|
||||
return task->normal_prio;
|
||||
|
||||
return min(task_top_pi_waiter(task)->task->prio,
|
||||
return min(task_top_pi_waiter(task)->prio,
|
||||
task->normal_prio);
|
||||
}
|
||||
|
||||
struct task_struct *rt_mutex_get_top_task(struct task_struct *task)
|
||||
{
|
||||
if (likely(!task_has_pi_waiters(task)))
|
||||
return NULL;
|
||||
|
||||
return task_top_pi_waiter(task)->task;
|
||||
}
|
||||
|
||||
/*
|
||||
* Adjust the priority of a task, after its pi_waiters got modified.
|
||||
*
|
||||
|
@ -210,7 +221,7 @@ static void __rt_mutex_adjust_prio(struct task_struct *task)
|
|||
{
|
||||
int prio = rt_mutex_getprio(task);
|
||||
|
||||
if (task->prio != prio)
|
||||
if (task->prio != prio || dl_prio(prio))
|
||||
rt_mutex_setprio(task, prio);
|
||||
}
|
||||
|
||||
|
@ -328,7 +339,7 @@ static int rt_mutex_adjust_prio_chain(struct task_struct *task,
|
|||
* When deadlock detection is off then we check, if further
|
||||
* priority adjustment is necessary.
|
||||
*/
|
||||
if (!detect_deadlock && waiter->task->prio == task->prio)
|
||||
if (!detect_deadlock && waiter->prio == task->prio)
|
||||
goto out_unlock_pi;
|
||||
|
||||
lock = waiter->lock;
|
||||
|
@ -350,7 +361,7 @@ static int rt_mutex_adjust_prio_chain(struct task_struct *task,
|
|||
|
||||
/* Requeue the waiter */
|
||||
rt_mutex_dequeue(lock, waiter);
|
||||
waiter->task->prio = task->prio;
|
||||
waiter->prio = task->prio;
|
||||
rt_mutex_enqueue(lock, waiter);
|
||||
|
||||
/* Release the task */
|
||||
|
@ -448,7 +459,7 @@ static int try_to_take_rt_mutex(struct rt_mutex *lock, struct task_struct *task,
|
|||
* 3) it is top waiter
|
||||
*/
|
||||
if (rt_mutex_has_waiters(lock)) {
|
||||
if (task->prio >= rt_mutex_top_waiter(lock)->task->prio) {
|
||||
if (task->prio >= rt_mutex_top_waiter(lock)->prio) {
|
||||
if (!waiter || waiter != rt_mutex_top_waiter(lock))
|
||||
return 0;
|
||||
}
|
||||
|
@ -508,6 +519,7 @@ static int task_blocks_on_rt_mutex(struct rt_mutex *lock,
|
|||
__rt_mutex_adjust_prio(task);
|
||||
waiter->task = task;
|
||||
waiter->lock = lock;
|
||||
waiter->prio = task->prio;
|
||||
|
||||
/* Get the top priority waiter on the lock */
|
||||
if (rt_mutex_has_waiters(lock))
|
||||
|
@ -653,7 +665,8 @@ void rt_mutex_adjust_pi(struct task_struct *task)
|
|||
raw_spin_lock_irqsave(&task->pi_lock, flags);
|
||||
|
||||
waiter = task->pi_blocked_on;
|
||||
if (!waiter || waiter->task->prio == task->prio) {
|
||||
if (!waiter || (waiter->prio == task->prio &&
|
||||
!dl_prio(task->prio))) {
|
||||
raw_spin_unlock_irqrestore(&task->pi_lock, flags);
|
||||
return;
|
||||
}
|
||||
|
|
|
@ -54,6 +54,7 @@ struct rt_mutex_waiter {
|
|||
struct pid *deadlock_task_pid;
|
||||
struct rt_mutex *deadlock_lock;
|
||||
#endif
|
||||
int prio;
|
||||
};
|
||||
|
||||
/*
|
||||
|
|
|
@ -947,7 +947,7 @@ static inline void check_class_changed(struct rq *rq, struct task_struct *p,
|
|||
if (prev_class->switched_from)
|
||||
prev_class->switched_from(rq, p);
|
||||
p->sched_class->switched_to(rq, p);
|
||||
} else if (oldprio != p->prio)
|
||||
} else if (oldprio != p->prio || dl_task(p))
|
||||
p->sched_class->prio_changed(rq, p, oldprio);
|
||||
}
|
||||
|
||||
|
@ -2781,7 +2781,7 @@ EXPORT_SYMBOL(sleep_on_timeout);
|
|||
*/
|
||||
void rt_mutex_setprio(struct task_struct *p, int prio)
|
||||
{
|
||||
int oldprio, on_rq, running;
|
||||
int oldprio, on_rq, running, enqueue_flag = 0;
|
||||
struct rq *rq;
|
||||
const struct sched_class *prev_class;
|
||||
|
||||
|
@ -2808,6 +2808,7 @@ void rt_mutex_setprio(struct task_struct *p, int prio)
|
|||
}
|
||||
|
||||
trace_sched_pi_setprio(p, prio);
|
||||
p->pi_top_task = rt_mutex_get_top_task(p);
|
||||
oldprio = p->prio;
|
||||
prev_class = p->sched_class;
|
||||
on_rq = p->on_rq;
|
||||
|
@ -2817,19 +2818,42 @@ void rt_mutex_setprio(struct task_struct *p, int prio)
|
|||
if (running)
|
||||
p->sched_class->put_prev_task(rq, p);
|
||||
|
||||
if (dl_prio(prio))
|
||||
/*
|
||||
* Boosting condition are:
|
||||
* 1. -rt task is running and holds mutex A
|
||||
* --> -dl task blocks on mutex A
|
||||
*
|
||||
* 2. -dl task is running and holds mutex A
|
||||
* --> -dl task blocks on mutex A and could preempt the
|
||||
* running task
|
||||
*/
|
||||
if (dl_prio(prio)) {
|
||||
if (!dl_prio(p->normal_prio) || (p->pi_top_task &&
|
||||
dl_entity_preempt(&p->pi_top_task->dl, &p->dl))) {
|
||||
p->dl.dl_boosted = 1;
|
||||
p->dl.dl_throttled = 0;
|
||||
enqueue_flag = ENQUEUE_REPLENISH;
|
||||
} else
|
||||
p->dl.dl_boosted = 0;
|
||||
p->sched_class = &dl_sched_class;
|
||||
else if (rt_prio(prio))
|
||||
} else if (rt_prio(prio)) {
|
||||
if (dl_prio(oldprio))
|
||||
p->dl.dl_boosted = 0;
|
||||
if (oldprio < prio)
|
||||
enqueue_flag = ENQUEUE_HEAD;
|
||||
p->sched_class = &rt_sched_class;
|
||||
else
|
||||
} else {
|
||||
if (dl_prio(oldprio))
|
||||
p->dl.dl_boosted = 0;
|
||||
p->sched_class = &fair_sched_class;
|
||||
}
|
||||
|
||||
p->prio = prio;
|
||||
|
||||
if (running)
|
||||
p->sched_class->set_curr_task(rq);
|
||||
if (on_rq)
|
||||
enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
|
||||
enqueue_task(rq, p, enqueue_flag);
|
||||
|
||||
check_class_changed(rq, p, prev_class, oldprio);
|
||||
out_unlock:
|
||||
|
|
|
@ -16,20 +16,6 @@
|
|||
*/
|
||||
#include "sched.h"
|
||||
|
||||
static inline int dl_time_before(u64 a, u64 b)
|
||||
{
|
||||
return (s64)(a - b) < 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Tells if entity @a should preempt entity @b.
|
||||
*/
|
||||
static inline
|
||||
int dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
|
||||
{
|
||||
return dl_time_before(a->deadline, b->deadline);
|
||||
}
|
||||
|
||||
static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
|
||||
{
|
||||
return container_of(dl_se, struct task_struct, dl);
|
||||
|
@ -242,7 +228,8 @@ static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
|
|||
* one, and to (try to!) reconcile itself with its own scheduling
|
||||
* parameters.
|
||||
*/
|
||||
static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se)
|
||||
static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se,
|
||||
struct sched_dl_entity *pi_se)
|
||||
{
|
||||
struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
|
||||
struct rq *rq = rq_of_dl_rq(dl_rq);
|
||||
|
@ -254,8 +241,8 @@ static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se)
|
|||
* future; in fact, we must consider execution overheads (time
|
||||
* spent on hardirq context, etc.).
|
||||
*/
|
||||
dl_se->deadline = rq_clock(rq) + dl_se->dl_deadline;
|
||||
dl_se->runtime = dl_se->dl_runtime;
|
||||
dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
|
||||
dl_se->runtime = pi_se->dl_runtime;
|
||||
dl_se->dl_new = 0;
|
||||
}
|
||||
|
||||
|
@ -277,11 +264,23 @@ static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se)
|
|||
* could happen are, typically, a entity voluntarily trying to overcome its
|
||||
* runtime, or it just underestimated it during sched_setscheduler_ex().
|
||||
*/
|
||||
static void replenish_dl_entity(struct sched_dl_entity *dl_se)
|
||||
static void replenish_dl_entity(struct sched_dl_entity *dl_se,
|
||||
struct sched_dl_entity *pi_se)
|
||||
{
|
||||
struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
|
||||
struct rq *rq = rq_of_dl_rq(dl_rq);
|
||||
|
||||
BUG_ON(pi_se->dl_runtime <= 0);
|
||||
|
||||
/*
|
||||
* This could be the case for a !-dl task that is boosted.
|
||||
* Just go with full inherited parameters.
|
||||
*/
|
||||
if (dl_se->dl_deadline == 0) {
|
||||
dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
|
||||
dl_se->runtime = pi_se->dl_runtime;
|
||||
}
|
||||
|
||||
/*
|
||||
* We keep moving the deadline away until we get some
|
||||
* available runtime for the entity. This ensures correct
|
||||
|
@ -289,8 +288,8 @@ static void replenish_dl_entity(struct sched_dl_entity *dl_se)
|
|||
* arbitrary large.
|
||||
*/
|
||||
while (dl_se->runtime <= 0) {
|
||||
dl_se->deadline += dl_se->dl_period;
|
||||
dl_se->runtime += dl_se->dl_runtime;
|
||||
dl_se->deadline += pi_se->dl_period;
|
||||
dl_se->runtime += pi_se->dl_runtime;
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -309,8 +308,8 @@ static void replenish_dl_entity(struct sched_dl_entity *dl_se)
|
|||
lag_once = true;
|
||||
printk_sched("sched: DL replenish lagged to much\n");
|
||||
}
|
||||
dl_se->deadline = rq_clock(rq) + dl_se->dl_deadline;
|
||||
dl_se->runtime = dl_se->dl_runtime;
|
||||
dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
|
||||
dl_se->runtime = pi_se->dl_runtime;
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -337,7 +336,8 @@ static void replenish_dl_entity(struct sched_dl_entity *dl_se)
|
|||
* task with deadline equal to period this is the same of using
|
||||
* dl_deadline instead of dl_period in the equation above.
|
||||
*/
|
||||
static bool dl_entity_overflow(struct sched_dl_entity *dl_se, u64 t)
|
||||
static bool dl_entity_overflow(struct sched_dl_entity *dl_se,
|
||||
struct sched_dl_entity *pi_se, u64 t)
|
||||
{
|
||||
u64 left, right;
|
||||
|
||||
|
@ -359,8 +359,8 @@ static bool dl_entity_overflow(struct sched_dl_entity *dl_se, u64 t)
|
|||
* of anything below microseconds resolution is actually fiction
|
||||
* (but still we want to give the user that illusion >;).
|
||||
*/
|
||||
left = (dl_se->dl_period >> 10) * (dl_se->runtime >> 10);
|
||||
right = ((dl_se->deadline - t) >> 10) * (dl_se->dl_runtime >> 10);
|
||||
left = (pi_se->dl_period >> 10) * (dl_se->runtime >> 10);
|
||||
right = ((dl_se->deadline - t) >> 10) * (pi_se->dl_runtime >> 10);
|
||||
|
||||
return dl_time_before(right, left);
|
||||
}
|
||||
|
@ -374,7 +374,8 @@ static bool dl_entity_overflow(struct sched_dl_entity *dl_se, u64 t)
|
|||
* - using the remaining runtime with the current deadline would make
|
||||
* the entity exceed its bandwidth.
|
||||
*/
|
||||
static void update_dl_entity(struct sched_dl_entity *dl_se)
|
||||
static void update_dl_entity(struct sched_dl_entity *dl_se,
|
||||
struct sched_dl_entity *pi_se)
|
||||
{
|
||||
struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
|
||||
struct rq *rq = rq_of_dl_rq(dl_rq);
|
||||
|
@ -384,14 +385,14 @@ static void update_dl_entity(struct sched_dl_entity *dl_se)
|
|||
* the actual scheduling parameters have to be "renewed".
|
||||
*/
|
||||
if (dl_se->dl_new) {
|
||||
setup_new_dl_entity(dl_se);
|
||||
setup_new_dl_entity(dl_se, pi_se);
|
||||
return;
|
||||
}
|
||||
|
||||
if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
|
||||
dl_entity_overflow(dl_se, rq_clock(rq))) {
|
||||
dl_se->deadline = rq_clock(rq) + dl_se->dl_deadline;
|
||||
dl_se->runtime = dl_se->dl_runtime;
|
||||
dl_entity_overflow(dl_se, pi_se, rq_clock(rq))) {
|
||||
dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
|
||||
dl_se->runtime = pi_se->dl_runtime;
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -405,7 +406,7 @@ static void update_dl_entity(struct sched_dl_entity *dl_se)
|
|||
* actually started or not (i.e., the replenishment instant is in
|
||||
* the future or in the past).
|
||||
*/
|
||||
static int start_dl_timer(struct sched_dl_entity *dl_se)
|
||||
static int start_dl_timer(struct sched_dl_entity *dl_se, bool boosted)
|
||||
{
|
||||
struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
|
||||
struct rq *rq = rq_of_dl_rq(dl_rq);
|
||||
|
@ -414,6 +415,8 @@ static int start_dl_timer(struct sched_dl_entity *dl_se)
|
|||
unsigned long range;
|
||||
s64 delta;
|
||||
|
||||
if (boosted)
|
||||
return 0;
|
||||
/*
|
||||
* We want the timer to fire at the deadline, but considering
|
||||
* that it is actually coming from rq->clock and not from
|
||||
|
@ -573,7 +576,7 @@ static void update_curr_dl(struct rq *rq)
|
|||
dl_se->runtime -= delta_exec;
|
||||
if (dl_runtime_exceeded(rq, dl_se)) {
|
||||
__dequeue_task_dl(rq, curr, 0);
|
||||
if (likely(start_dl_timer(dl_se)))
|
||||
if (likely(start_dl_timer(dl_se, curr->dl.dl_boosted)))
|
||||
dl_se->dl_throttled = 1;
|
||||
else
|
||||
enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH);
|
||||
|
@ -728,7 +731,8 @@ static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
|
|||
}
|
||||
|
||||
static void
|
||||
enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags)
|
||||
enqueue_dl_entity(struct sched_dl_entity *dl_se,
|
||||
struct sched_dl_entity *pi_se, int flags)
|
||||
{
|
||||
BUG_ON(on_dl_rq(dl_se));
|
||||
|
||||
|
@ -738,9 +742,9 @@ enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags)
|
|||
* we want a replenishment of its runtime.
|
||||
*/
|
||||
if (!dl_se->dl_new && flags & ENQUEUE_REPLENISH)
|
||||
replenish_dl_entity(dl_se);
|
||||
replenish_dl_entity(dl_se, pi_se);
|
||||
else
|
||||
update_dl_entity(dl_se);
|
||||
update_dl_entity(dl_se, pi_se);
|
||||
|
||||
__enqueue_dl_entity(dl_se);
|
||||
}
|
||||
|
@ -752,6 +756,18 @@ static void dequeue_dl_entity(struct sched_dl_entity *dl_se)
|
|||
|
||||
static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
|
||||
{
|
||||
struct task_struct *pi_task = rt_mutex_get_top_task(p);
|
||||
struct sched_dl_entity *pi_se = &p->dl;
|
||||
|
||||
/*
|
||||
* Use the scheduling parameters of the top pi-waiter
|
||||
* task if we have one and its (relative) deadline is
|
||||
* smaller than our one... OTW we keep our runtime and
|
||||
* deadline.
|
||||
*/
|
||||
if (pi_task && p->dl.dl_boosted && dl_prio(pi_task->normal_prio))
|
||||
pi_se = &pi_task->dl;
|
||||
|
||||
/*
|
||||
* If p is throttled, we do nothing. In fact, if it exhausted
|
||||
* its budget it needs a replenishment and, since it now is on
|
||||
|
@ -761,7 +777,7 @@ static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
|
|||
if (p->dl.dl_throttled)
|
||||
return;
|
||||
|
||||
enqueue_dl_entity(&p->dl, flags);
|
||||
enqueue_dl_entity(&p->dl, pi_se, flags);
|
||||
|
||||
if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
|
||||
enqueue_pushable_dl_task(rq, p);
|
||||
|
@ -985,8 +1001,7 @@ static void task_dead_dl(struct task_struct *p)
|
|||
{
|
||||
struct hrtimer *timer = &p->dl.dl_timer;
|
||||
|
||||
if (hrtimer_active(timer))
|
||||
hrtimer_try_to_cancel(timer);
|
||||
hrtimer_cancel(timer);
|
||||
}
|
||||
|
||||
static void set_curr_task_dl(struct rq *rq)
|
||||
|
|
|
@ -107,6 +107,20 @@ static inline int task_has_dl_policy(struct task_struct *p)
|
|||
return dl_policy(p->policy);
|
||||
}
|
||||
|
||||
static inline int dl_time_before(u64 a, u64 b)
|
||||
{
|
||||
return (s64)(a - b) < 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Tells if entity @a should preempt entity @b.
|
||||
*/
|
||||
static inline
|
||||
int dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
|
||||
{
|
||||
return dl_time_before(a->deadline, b->deadline);
|
||||
}
|
||||
|
||||
/*
|
||||
* This is the priority-queue data structure of the RT scheduling class:
|
||||
*/
|
||||
|
|
|
@ -16,6 +16,7 @@
|
|||
#include <linux/uaccess.h>
|
||||
#include <linux/ftrace.h>
|
||||
#include <linux/sched/rt.h>
|
||||
#include <linux/sched/deadline.h>
|
||||
#include <trace/events/sched.h>
|
||||
#include "trace.h"
|
||||
|
||||
|
|
Loading…
Reference in New Issue