Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs

Pull vfs pile 4 from Al Viro:
 "list_lru pile, mostly"

This came out of Andrew's pile, Al ended up doing the merge work so that
Andrew didn't have to.

Additionally, a few fixes.

* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (42 commits)
  super: fix for destroy lrus
  list_lru: dynamically adjust node arrays
  shrinker: Kill old ->shrink API.
  shrinker: convert remaining shrinkers to count/scan API
  staging/lustre/libcfs: cleanup linux-mem.h
  staging/lustre/ptlrpc: convert to new shrinker API
  staging/lustre/obdclass: convert lu_object shrinker to count/scan API
  staging/lustre/ldlm: convert to shrinkers to count/scan API
  hugepage: convert huge zero page shrinker to new shrinker API
  i915: bail out earlier when shrinker cannot acquire mutex
  drivers: convert shrinkers to new count/scan API
  fs: convert fs shrinkers to new scan/count API
  xfs: fix dquot isolation hang
  xfs-convert-dquot-cache-lru-to-list_lru-fix
  xfs: convert dquot cache lru to list_lru
  xfs: rework buffer dispose list tracking
  xfs-convert-buftarg-lru-to-generic-code-fix
  xfs: convert buftarg LRU to generic code
  fs: convert inode and dentry shrinking to be node aware
  vmscan: per-node deferred work
  ...
This commit is contained in:
Linus Torvalds 2013-09-12 15:01:38 -07:00
commit 26935fb06e
56 changed files with 1786 additions and 1170 deletions

View File

@ -451,3 +451,7 @@ in your dentry operations instead.
--
[mandatory]
->readdir() is gone now; switch to ->iterate()
[mandatory]
vfs_follow_link has been removed. Filesystems must use nd_set_link
from ->follow_link for normal symlinks, or nd_jump_link for magic
/proc/<pid> style links.

View File

@ -4421,13 +4421,12 @@ void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm)
}
}
static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
static unsigned long
mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
{
struct kvm *kvm;
int nr_to_scan = sc->nr_to_scan;
if (nr_to_scan == 0)
goto out;
unsigned long freed = 0;
raw_spin_lock(&kvm_lock);
@ -4462,25 +4461,37 @@ static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
goto unlock;
}
prepare_zap_oldest_mmu_page(kvm, &invalid_list);
if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
freed++;
kvm_mmu_commit_zap_page(kvm, &invalid_list);
unlock:
spin_unlock(&kvm->mmu_lock);
srcu_read_unlock(&kvm->srcu, idx);
/*
* unfair on small ones
* per-vm shrinkers cry out
* sadness comes quickly
*/
list_move_tail(&kvm->vm_list, &vm_list);
break;
}
raw_spin_unlock(&kvm_lock);
return freed;
out:
}
static unsigned long
mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
{
return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
}
static struct shrinker mmu_shrinker = {
.shrink = mmu_shrink,
.count_objects = mmu_shrink_count,
.scan_objects = mmu_shrink_scan,
.seeks = DEFAULT_SEEKS * 10,
};

View File

@ -1676,7 +1676,7 @@ int i915_driver_load(struct drm_device *dev, unsigned long flags)
return 0;
out_gem_unload:
if (dev_priv->mm.inactive_shrinker.shrink)
if (dev_priv->mm.inactive_shrinker.scan_objects)
unregister_shrinker(&dev_priv->mm.inactive_shrinker);
if (dev->pdev->msi_enabled)
@ -1715,7 +1715,7 @@ int i915_driver_unload(struct drm_device *dev)
i915_teardown_sysfs(dev);
if (dev_priv->mm.inactive_shrinker.shrink)
if (dev_priv->mm.inactive_shrinker.scan_objects)
unregister_shrinker(&dev_priv->mm.inactive_shrinker);
mutex_lock(&dev->struct_mutex);

View File

@ -57,10 +57,12 @@ static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
struct drm_i915_fence_reg *fence,
bool enable);
static int i915_gem_inactive_shrink(struct shrinker *shrinker,
struct shrink_control *sc);
static unsigned long i915_gem_inactive_count(struct shrinker *shrinker,
struct shrink_control *sc);
static unsigned long i915_gem_inactive_scan(struct shrinker *shrinker,
struct shrink_control *sc);
static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
static long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
static bool cpu_cache_is_coherent(struct drm_device *dev,
@ -1769,16 +1771,21 @@ i915_gem_purge(struct drm_i915_private *dev_priv, long target)
return __i915_gem_shrink(dev_priv, target, true);
}
static void
static long
i915_gem_shrink_all(struct drm_i915_private *dev_priv)
{
struct drm_i915_gem_object *obj, *next;
long freed = 0;
i915_gem_evict_everything(dev_priv->dev);
list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
global_list)
global_list) {
if (obj->pages_pin_count == 0)
freed += obj->base.size >> PAGE_SHIFT;
i915_gem_object_put_pages(obj);
}
return freed;
}
static int
@ -4558,7 +4565,8 @@ i915_gem_load(struct drm_device *dev)
dev_priv->mm.interruptible = true;
dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
dev_priv->mm.inactive_shrinker.scan_objects = i915_gem_inactive_scan;
dev_priv->mm.inactive_shrinker.count_objects = i915_gem_inactive_count;
dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
register_shrinker(&dev_priv->mm.inactive_shrinker);
}
@ -4781,8 +4789,8 @@ static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
#endif
}
static int
i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
static unsigned long
i915_gem_inactive_count(struct shrinker *shrinker, struct shrink_control *sc)
{
struct drm_i915_private *dev_priv =
container_of(shrinker,
@ -4790,45 +4798,35 @@ i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
mm.inactive_shrinker);
struct drm_device *dev = dev_priv->dev;
struct drm_i915_gem_object *obj;
int nr_to_scan = sc->nr_to_scan;
bool unlock = true;
int cnt;
unsigned long count;
if (!mutex_trylock(&dev->struct_mutex)) {
if (!mutex_is_locked_by(&dev->struct_mutex, current))
return 0;
return SHRINK_STOP;
if (dev_priv->mm.shrinker_no_lock_stealing)
return 0;
return SHRINK_STOP;
unlock = false;
}
if (nr_to_scan) {
nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
if (nr_to_scan > 0)
nr_to_scan -= __i915_gem_shrink(dev_priv, nr_to_scan,
false);
if (nr_to_scan > 0)
i915_gem_shrink_all(dev_priv);
}
cnt = 0;
count = 0;
list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
if (obj->pages_pin_count == 0)
cnt += obj->base.size >> PAGE_SHIFT;
count += obj->base.size >> PAGE_SHIFT;
list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
if (obj->active)
continue;
if (obj->pin_count == 0 && obj->pages_pin_count == 0)
cnt += obj->base.size >> PAGE_SHIFT;
count += obj->base.size >> PAGE_SHIFT;
}
if (unlock)
mutex_unlock(&dev->struct_mutex);
return cnt;
return count;
}
/* All the new VM stuff */
@ -4892,6 +4890,40 @@ unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
return 0;
}
static unsigned long
i915_gem_inactive_scan(struct shrinker *shrinker, struct shrink_control *sc)
{
struct drm_i915_private *dev_priv =
container_of(shrinker,
struct drm_i915_private,
mm.inactive_shrinker);
struct drm_device *dev = dev_priv->dev;
int nr_to_scan = sc->nr_to_scan;
unsigned long freed;
bool unlock = true;
if (!mutex_trylock(&dev->struct_mutex)) {
if (!mutex_is_locked_by(&dev->struct_mutex, current))
return 0;
if (dev_priv->mm.shrinker_no_lock_stealing)
return 0;
unlock = false;
}
freed = i915_gem_purge(dev_priv, nr_to_scan);
if (freed < nr_to_scan)
freed += __i915_gem_shrink(dev_priv, nr_to_scan,
false);
if (freed < nr_to_scan)
freed += i915_gem_shrink_all(dev_priv);
if (unlock)
mutex_unlock(&dev->struct_mutex);
return freed;
}
struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
struct i915_address_space *vm)
{

View File

@ -377,28 +377,26 @@ out:
return nr_free;
}
/* Get good estimation how many pages are free in pools */
static int ttm_pool_get_num_unused_pages(void)
{
unsigned i;
int total = 0;
for (i = 0; i < NUM_POOLS; ++i)
total += _manager->pools[i].npages;
return total;
}
/**
* Callback for mm to request pool to reduce number of page held.
*
* XXX: (dchinner) Deadlock warning!
*
* ttm_page_pool_free() does memory allocation using GFP_KERNEL. that means
* this can deadlock when called a sc->gfp_mask that is not equal to
* GFP_KERNEL.
*
* This code is crying out for a shrinker per pool....
*/
static int ttm_pool_mm_shrink(struct shrinker *shrink,
struct shrink_control *sc)
static unsigned long
ttm_pool_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
{
static atomic_t start_pool = ATOMIC_INIT(0);
unsigned i;
unsigned pool_offset = atomic_add_return(1, &start_pool);
struct ttm_page_pool *pool;
int shrink_pages = sc->nr_to_scan;
unsigned long freed = 0;
pool_offset = pool_offset % NUM_POOLS;
/* select start pool in round robin fashion */
@ -408,14 +406,28 @@ static int ttm_pool_mm_shrink(struct shrinker *shrink,
break;
pool = &_manager->pools[(i + pool_offset)%NUM_POOLS];
shrink_pages = ttm_page_pool_free(pool, nr_free);
freed += nr_free - shrink_pages;
}
/* return estimated number of unused pages in pool */
return ttm_pool_get_num_unused_pages();
return freed;
}
static unsigned long
ttm_pool_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
{
unsigned i;
unsigned long count = 0;
for (i = 0; i < NUM_POOLS; ++i)
count += _manager->pools[i].npages;
return count;
}
static void ttm_pool_mm_shrink_init(struct ttm_pool_manager *manager)
{
manager->mm_shrink.shrink = &ttm_pool_mm_shrink;
manager->mm_shrink.count_objects = ttm_pool_shrink_count;
manager->mm_shrink.scan_objects = ttm_pool_shrink_scan;
manager->mm_shrink.seeks = 1;
register_shrinker(&manager->mm_shrink);
}

View File

@ -918,19 +918,6 @@ int ttm_dma_populate(struct ttm_dma_tt *ttm_dma, struct device *dev)
}
EXPORT_SYMBOL_GPL(ttm_dma_populate);
/* Get good estimation how many pages are free in pools */
static int ttm_dma_pool_get_num_unused_pages(void)
{
struct device_pools *p;
unsigned total = 0;
mutex_lock(&_manager->lock);
list_for_each_entry(p, &_manager->pools, pools)
total += p->pool->npages_free;
mutex_unlock(&_manager->lock);
return total;
}
/* Put all pages in pages list to correct pool to wait for reuse */
void ttm_dma_unpopulate(struct ttm_dma_tt *ttm_dma, struct device *dev)
{
@ -1002,18 +989,29 @@ EXPORT_SYMBOL_GPL(ttm_dma_unpopulate);
/**
* Callback for mm to request pool to reduce number of page held.
*
* XXX: (dchinner) Deadlock warning!
*
* ttm_dma_page_pool_free() does GFP_KERNEL memory allocation, and so attention
* needs to be paid to sc->gfp_mask to determine if this can be done or not.
* GFP_KERNEL memory allocation in a GFP_ATOMIC reclaim context woul dbe really
* bad.
*
* I'm getting sadder as I hear more pathetical whimpers about needing per-pool
* shrinkers
*/
static int ttm_dma_pool_mm_shrink(struct shrinker *shrink,
struct shrink_control *sc)
static unsigned long
ttm_dma_pool_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
{
static atomic_t start_pool = ATOMIC_INIT(0);
unsigned idx = 0;
unsigned pool_offset = atomic_add_return(1, &start_pool);
unsigned shrink_pages = sc->nr_to_scan;
struct device_pools *p;
unsigned long freed = 0;
if (list_empty(&_manager->pools))
return 0;
return SHRINK_STOP;
mutex_lock(&_manager->lock);
pool_offset = pool_offset % _manager->npools;
@ -1029,18 +1027,33 @@ static int ttm_dma_pool_mm_shrink(struct shrinker *shrink,
continue;
nr_free = shrink_pages;
shrink_pages = ttm_dma_page_pool_free(p->pool, nr_free);
freed += nr_free - shrink_pages;
pr_debug("%s: (%s:%d) Asked to shrink %d, have %d more to go\n",
p->pool->dev_name, p->pool->name, current->pid,
nr_free, shrink_pages);
}
mutex_unlock(&_manager->lock);
/* return estimated number of unused pages in pool */
return ttm_dma_pool_get_num_unused_pages();
return freed;
}
static unsigned long
ttm_dma_pool_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
{
struct device_pools *p;
unsigned long count = 0;
mutex_lock(&_manager->lock);
list_for_each_entry(p, &_manager->pools, pools)
count += p->pool->npages_free;
mutex_unlock(&_manager->lock);
return count;
}
static void ttm_dma_pool_mm_shrink_init(struct ttm_pool_manager *manager)
{
manager->mm_shrink.shrink = &ttm_dma_pool_mm_shrink;
manager->mm_shrink.count_objects = ttm_dma_pool_shrink_count;
manager->mm_shrink.scan_objects = &ttm_dma_pool_shrink_scan;
manager->mm_shrink.seeks = 1;
register_shrinker(&manager->mm_shrink);
}

View File

@ -597,24 +597,19 @@ static int mca_reap(struct btree *b, struct closure *cl, unsigned min_order)
return 0;
}
static int bch_mca_shrink(struct shrinker *shrink, struct shrink_control *sc)
static unsigned long bch_mca_scan(struct shrinker *shrink,
struct shrink_control *sc)
{
struct cache_set *c = container_of(shrink, struct cache_set, shrink);
struct btree *b, *t;
unsigned long i, nr = sc->nr_to_scan;
unsigned long freed = 0;
if (c->shrinker_disabled)
return 0;
return SHRINK_STOP;
if (c->try_harder)
return 0;
/*
* If nr == 0, we're supposed to return the number of items we have
* cached. Not allowed to return -1.
*/
if (!nr)
return mca_can_free(c) * c->btree_pages;
return SHRINK_STOP;
/* Return -1 if we can't do anything right now */
if (sc->gfp_mask & __GFP_WAIT)
@ -634,14 +629,14 @@ static int bch_mca_shrink(struct shrinker *shrink, struct shrink_control *sc)
i = 0;
list_for_each_entry_safe(b, t, &c->btree_cache_freeable, list) {
if (!nr)
if (freed >= nr)
break;
if (++i > 3 &&
!mca_reap(b, NULL, 0)) {
mca_data_free(b);
rw_unlock(true, b);
--nr;
freed++;
}
}
@ -652,7 +647,7 @@ static int bch_mca_shrink(struct shrinker *shrink, struct shrink_control *sc)
if (list_empty(&c->btree_cache))
goto out;
for (i = 0; nr && i < c->bucket_cache_used; i++) {
for (i = 0; (nr--) && i < c->bucket_cache_used; i++) {
b = list_first_entry(&c->btree_cache, struct btree, list);
list_rotate_left(&c->btree_cache);
@ -661,14 +656,27 @@ static int bch_mca_shrink(struct shrinker *shrink, struct shrink_control *sc)
mca_bucket_free(b);
mca_data_free(b);
rw_unlock(true, b);
--nr;
freed++;
} else
b->accessed = 0;
}
out:
nr = mca_can_free(c) * c->btree_pages;
mutex_unlock(&c->bucket_lock);
return nr;
return freed;
}
static unsigned long bch_mca_count(struct shrinker *shrink,
struct shrink_control *sc)
{
struct cache_set *c = container_of(shrink, struct cache_set, shrink);
if (c->shrinker_disabled)
return 0;
if (c->try_harder)
return 0;
return mca_can_free(c) * c->btree_pages;
}
void bch_btree_cache_free(struct cache_set *c)
@ -737,7 +745,8 @@ int bch_btree_cache_alloc(struct cache_set *c)
c->verify_data = NULL;
#endif
c->shrink.shrink = bch_mca_shrink;
c->shrink.count_objects = bch_mca_count;
c->shrink.scan_objects = bch_mca_scan;
c->shrink.seeks = 4;
c->shrink.batch = c->btree_pages * 2;
register_shrinker(&c->shrink);

View File

@ -556,7 +556,7 @@ STORE(__bch_cache_set)
struct shrink_control sc;
sc.gfp_mask = GFP_KERNEL;
sc.nr_to_scan = strtoul_or_return(buf);
c->shrink.shrink(&c->shrink, &sc);
c->shrink.scan_objects(&c->shrink, &sc);
}
sysfs_strtoul(congested_read_threshold_us,

View File

@ -1425,62 +1425,75 @@ static int __cleanup_old_buffer(struct dm_buffer *b, gfp_t gfp,
unsigned long max_jiffies)
{
if (jiffies - b->last_accessed < max_jiffies)
return 1;
return 0;
if (!(gfp & __GFP_IO)) {
if (test_bit(B_READING, &b->state) ||
test_bit(B_WRITING, &b->state) ||
test_bit(B_DIRTY, &b->state))
return 1;
return 0;
}
if (b->hold_count)
return 1;
return 0;
__make_buffer_clean(b);
__unlink_buffer(b);
__free_buffer_wake(b);
return 0;
return 1;
}
static void __scan(struct dm_bufio_client *c, unsigned long nr_to_scan,
struct shrink_control *sc)
static long __scan(struct dm_bufio_client *c, unsigned long nr_to_scan,
gfp_t gfp_mask)
{
int l;
struct dm_buffer *b, *tmp;
long freed = 0;
for (l = 0; l < LIST_SIZE; l++) {
list_for_each_entry_safe_reverse(b, tmp, &c->lru[l], lru_list)
if (!__cleanup_old_buffer(b, sc->gfp_mask, 0) &&
!--nr_to_scan)
return;
list_for_each_entry_safe_reverse(b, tmp, &c->lru[l], lru_list) {
freed += __cleanup_old_buffer(b, gfp_mask, 0);
if (!--nr_to_scan)
break;
}
dm_bufio_cond_resched();
}
return freed;
}
static int shrink(struct shrinker *shrinker, struct shrink_control *sc)
static unsigned long
dm_bufio_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
{
struct dm_bufio_client *c =
container_of(shrinker, struct dm_bufio_client, shrinker);
unsigned long r;
unsigned long nr_to_scan = sc->nr_to_scan;
struct dm_bufio_client *c;
unsigned long freed;
c = container_of(shrink, struct dm_bufio_client, shrinker);
if (sc->gfp_mask & __GFP_IO)
dm_bufio_lock(c);
else if (!dm_bufio_trylock(c))
return !nr_to_scan ? 0 : -1;
if (nr_to_scan)
__scan(c, nr_to_scan, sc);
r = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY];
if (r > INT_MAX)
r = INT_MAX;
return SHRINK_STOP;
freed = __scan(c, sc->nr_to_scan, sc->gfp_mask);
dm_bufio_unlock(c);
return freed;
}
return r;
static unsigned long
dm_bufio_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
{
struct dm_bufio_client *c;
unsigned long count;
c = container_of(shrink, struct dm_bufio_client, shrinker);
if (sc->gfp_mask & __GFP_IO)
dm_bufio_lock(c);
else if (!dm_bufio_trylock(c))
return 0;
count = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY];
dm_bufio_unlock(c);
return count;
}
/*
@ -1582,7 +1595,8 @@ struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsign
__cache_size_refresh();
mutex_unlock(&dm_bufio_clients_lock);
c->shrinker.shrink = shrink;
c->shrinker.count_objects = dm_bufio_shrink_count;
c->shrinker.scan_objects = dm_bufio_shrink_scan;
c->shrinker.seeks = 1;
c->shrinker.batch = 0;
register_shrinker(&c->shrinker);
@ -1669,7 +1683,7 @@ static void cleanup_old_buffers(void)
struct dm_buffer *b;
b = list_entry(c->lru[LIST_CLEAN].prev,
struct dm_buffer, lru_list);
if (__cleanup_old_buffer(b, 0, max_age * HZ))
if (!__cleanup_old_buffer(b, 0, max_age * HZ))
break;
dm_bufio_cond_resched();
}

View File

@ -341,27 +341,26 @@ out:
/*
* ashmem_shrink - our cache shrinker, called from mm/vmscan.c :: shrink_slab
*
* 'nr_to_scan' is the number of objects (pages) to prune, or 0 to query how
* many objects (pages) we have in total.
* 'nr_to_scan' is the number of objects to scan for freeing.
*
* 'gfp_mask' is the mask of the allocation that got us into this mess.
*
* Return value is the number of objects (pages) remaining, or -1 if we cannot
* Return value is the number of objects freed or -1 if we cannot
* proceed without risk of deadlock (due to gfp_mask).
*
* We approximate LRU via least-recently-unpinned, jettisoning unpinned partial
* chunks of ashmem regions LRU-wise one-at-a-time until we hit 'nr_to_scan'
* pages freed.
*/
static int ashmem_shrink(struct shrinker *s, struct shrink_control *sc)
static unsigned long
ashmem_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
{
struct ashmem_range *range, *next;
unsigned long freed = 0;
/* We might recurse into filesystem code, so bail out if necessary */
if (sc->nr_to_scan && !(sc->gfp_mask & __GFP_FS))
return -1;
if (!sc->nr_to_scan)
return lru_count;
if (!(sc->gfp_mask & __GFP_FS))
return SHRINK_STOP;
mutex_lock(&ashmem_mutex);
list_for_each_entry_safe(range, next, &ashmem_lru_list, lru) {
@ -374,17 +373,32 @@ static int ashmem_shrink(struct shrinker *s, struct shrink_control *sc)
range->purged = ASHMEM_WAS_PURGED;
lru_del(range);
sc->nr_to_scan -= range_size(range);
if (sc->nr_to_scan <= 0)
freed += range_size(range);
if (--sc->nr_to_scan <= 0)
break;
}
mutex_unlock(&ashmem_mutex);
return freed;
}
static unsigned long
ashmem_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
{
/*
* note that lru_count is count of pages on the lru, not a count of
* objects on the list. This means the scan function needs to return the
* number of pages freed, not the number of objects scanned.
*/
return lru_count;
}
static struct shrinker ashmem_shrinker = {
.shrink = ashmem_shrink,
.count_objects = ashmem_shrink_count,
.scan_objects = ashmem_shrink_scan,
/*
* XXX (dchinner): I wish people would comment on why they need on
* significant changes to the default value here
*/
.seeks = DEFAULT_SEEKS * 4,
};
@ -690,11 +704,11 @@ static long ashmem_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
if (capable(CAP_SYS_ADMIN)) {
struct shrink_control sc = {
.gfp_mask = GFP_KERNEL,
.nr_to_scan = 0,
.nr_to_scan = LONG_MAX,
};
ret = ashmem_shrink(&ashmem_shrinker, &sc);
sc.nr_to_scan = ret;
ashmem_shrink(&ashmem_shrinker, &sc);
nodes_setall(sc.nodes_to_scan);
ashmem_shrink_scan(&ashmem_shrinker, &sc);
}
break;
}

View File

@ -66,11 +66,20 @@ static unsigned long lowmem_deathpending_timeout;
pr_info(x); \
} while (0)
static int lowmem_shrink(struct shrinker *s, struct shrink_control *sc)
static unsigned long lowmem_count(struct shrinker *s,
struct shrink_control *sc)
{
return global_page_state(NR_ACTIVE_ANON) +
global_page_state(NR_ACTIVE_FILE) +
global_page_state(NR_INACTIVE_ANON) +
global_page_state(NR_INACTIVE_FILE);
}
static unsigned long lowmem_scan(struct shrinker *s, struct shrink_control *sc)
{
struct task_struct *tsk;
struct task_struct *selected = NULL;
int rem = 0;
unsigned long rem = 0;
int tasksize;
int i;
short min_score_adj = OOM_SCORE_ADJ_MAX + 1;
@ -92,19 +101,17 @@ static int lowmem_shrink(struct shrinker *s, struct shrink_control *sc)
break;
}
}
if (sc->nr_to_scan > 0)
lowmem_print(3, "lowmem_shrink %lu, %x, ofree %d %d, ma %hd\n",
sc->nr_to_scan, sc->gfp_mask, other_free,
other_file, min_score_adj);
rem = global_page_state(NR_ACTIVE_ANON) +
global_page_state(NR_ACTIVE_FILE) +
global_page_state(NR_INACTIVE_ANON) +
global_page_state(NR_INACTIVE_FILE);
if (sc->nr_to_scan <= 0 || min_score_adj == OOM_SCORE_ADJ_MAX + 1) {
lowmem_print(5, "lowmem_shrink %lu, %x, return %d\n",
sc->nr_to_scan, sc->gfp_mask, rem);
return rem;
lowmem_print(3, "lowmem_scan %lu, %x, ofree %d %d, ma %hd\n",
sc->nr_to_scan, sc->gfp_mask, other_free,
other_file, min_score_adj);
if (min_score_adj == OOM_SCORE_ADJ_MAX + 1) {
lowmem_print(5, "lowmem_scan %lu, %x, return 0\n",
sc->nr_to_scan, sc->gfp_mask);
return 0;
}
selected_oom_score_adj = min_score_adj;
rcu_read_lock();
@ -154,16 +161,18 @@ static int lowmem_shrink(struct shrinker *s, struct shrink_control *sc)
lowmem_deathpending_timeout = jiffies + HZ;
send_sig(SIGKILL, selected, 0);
set_tsk_thread_flag(selected, TIF_MEMDIE);
rem -= selected_tasksize;
rem += selected_tasksize;
}
lowmem_print(4, "lowmem_shrink %lu, %x, return %d\n",
lowmem_print(4, "lowmem_scan %lu, %x, return %lu\n",
sc->nr_to_scan, sc->gfp_mask, rem);
rcu_read_unlock();
return rem;
}
static struct shrinker lowmem_shrinker = {
.shrink = lowmem_shrink,
.scan_objects = lowmem_scan,
.count_objects = lowmem_count,
.seeks = DEFAULT_SEEKS * 16
};

View File

@ -79,42 +79,4 @@
do { __oldfs = get_fs(); set_fs(get_ds());} while(0)
#define MMSPACE_CLOSE set_fs(__oldfs)
/*
* Shrinker
*/
# define SHRINKER_ARGS(sc, nr_to_scan, gfp_mask) \
struct shrinker *shrinker, \
struct shrink_control *sc
# define shrink_param(sc, var) ((sc)->var)
typedef int (*shrinker_t)(SHRINKER_ARGS(sc, nr_to_scan, gfp_mask));
static inline
struct shrinker *set_shrinker(int seek, shrinker_t func)
{
struct shrinker *s;
s = kmalloc(sizeof(*s), GFP_KERNEL);
if (s == NULL)
return (NULL);
s->shrink = func;
s->seeks = seek;
register_shrinker(s);
return s;
}
static inline
void remove_shrinker(struct shrinker *shrinker)
{
if (shrinker == NULL)
return;
unregister_shrinker(shrinker);
kfree(shrinker);
}
#endif /* __LINUX_CFS_MEM_H__ */

View File

@ -521,7 +521,7 @@ static int ldlm_cli_pool_shrink(struct ldlm_pool *pl,
int nr, unsigned int gfp_mask)
{
struct ldlm_namespace *ns;
int canceled = 0, unused;
int unused;
ns = ldlm_pl2ns(pl);
@ -540,14 +540,10 @@ static int ldlm_cli_pool_shrink(struct ldlm_pool *pl,
unused = ns->ns_nr_unused;
spin_unlock(&ns->ns_lock);
if (nr) {
canceled = ldlm_cancel_lru(ns, nr, LCF_ASYNC,
LDLM_CANCEL_SHRINK);
}
/*
* Return the number of potentially reclaimable locks.
*/
return ((unused - canceled) / 100) * sysctl_vfs_cache_pressure;
if (nr == 0)
return (unused / 100) * sysctl_vfs_cache_pressure;
else
return ldlm_cancel_lru(ns, nr, LCF_ASYNC, LDLM_CANCEL_SHRINK);
}
struct ldlm_pool_ops ldlm_srv_pool_ops = {
@ -601,9 +597,10 @@ int ldlm_pool_recalc(struct ldlm_pool *pl)
return recalc_interval_sec;
}
/**
/*
* Pool shrink wrapper. Will call either client or server pool recalc callback
* depending what pool \a pl is used.
* depending what pool pl is used. When nr == 0, just return the number of
* freeable locks. Otherwise, return the number of canceled locks.
*/
int ldlm_pool_shrink(struct ldlm_pool *pl, int nr,
unsigned int gfp_mask)
@ -1017,29 +1014,24 @@ static int ldlm_pool_granted(struct ldlm_pool *pl)
}
static struct ptlrpc_thread *ldlm_pools_thread;
static struct shrinker *ldlm_pools_srv_shrinker;
static struct shrinker *ldlm_pools_cli_shrinker;
static struct completion ldlm_pools_comp;
/*
* Cancel \a nr locks from all namespaces (if possible). Returns number of
* cached locks after shrink is finished. All namespaces are asked to
* cancel approximately equal amount of locks to keep balancing.
* count locks from all namespaces (if possible). Returns number of
* cached locks.
*/
static int ldlm_pools_shrink(ldlm_side_t client, int nr,
unsigned int gfp_mask)
static unsigned long ldlm_pools_count(ldlm_side_t client, unsigned int gfp_mask)
{
int total = 0, cached = 0, nr_ns;
int total = 0, nr_ns;
struct ldlm_namespace *ns;
struct ldlm_namespace *ns_old = NULL; /* loop detection */
void *cookie;
if (client == LDLM_NAMESPACE_CLIENT && nr != 0 &&
!(gfp_mask & __GFP_FS))
return -1;
if (client == LDLM_NAMESPACE_CLIENT && !(gfp_mask & __GFP_FS))
return 0;
CDEBUG(D_DLMTRACE, "Request to shrink %d %s locks from all pools\n",
nr, client == LDLM_NAMESPACE_CLIENT ? "client" : "server");
CDEBUG(D_DLMTRACE, "Request to count %s locks from all pools\n",
client == LDLM_NAMESPACE_CLIENT ? "client" : "server");
cookie = cl_env_reenter();
@ -1047,8 +1039,7 @@ static int ldlm_pools_shrink(ldlm_side_t client, int nr,
* Find out how many resources we may release.
*/
for (nr_ns = ldlm_namespace_nr_read(client);
nr_ns > 0; nr_ns--)
{
nr_ns > 0; nr_ns--) {
mutex_lock(ldlm_namespace_lock(client));
if (list_empty(ldlm_namespace_list(client))) {
mutex_unlock(ldlm_namespace_lock(client));
@ -1078,17 +1069,27 @@ static int ldlm_pools_shrink(ldlm_side_t client, int nr,
ldlm_namespace_put(ns);
}
if (nr == 0 || total == 0) {
cl_env_reexit(cookie);
return total;
}
cl_env_reexit(cookie);
return total;
}
static unsigned long ldlm_pools_scan(ldlm_side_t client, int nr, unsigned int gfp_mask)
{
unsigned long freed = 0;
int tmp, nr_ns;
struct ldlm_namespace *ns;
void *cookie;
if (client == LDLM_NAMESPACE_CLIENT && !(gfp_mask & __GFP_FS))
return -1;
cookie = cl_env_reenter();
/*
* Shrink at least ldlm_namespace_nr(client) namespaces.
* Shrink at least ldlm_namespace_nr_read(client) namespaces.
*/
for (nr_ns = ldlm_namespace_nr_read(client) - nr_ns;
nr_ns > 0; nr_ns--)
{
for (tmp = nr_ns = ldlm_namespace_nr_read(client);
tmp > 0; tmp--) {
int cancel, nr_locks;
/*
@ -1097,12 +1098,6 @@ static int ldlm_pools_shrink(ldlm_side_t client, int nr,
mutex_lock(ldlm_namespace_lock(client));
if (list_empty(ldlm_namespace_list(client))) {
mutex_unlock(ldlm_namespace_lock(client));
/*
* If list is empty, we can't return any @cached > 0,
* that probably would cause needless shrinker
* call.
*/
cached = 0;
break;
}
ns = ldlm_namespace_first_locked(client);
@ -1111,29 +1106,42 @@ static int ldlm_pools_shrink(ldlm_side_t client, int nr,
mutex_unlock(ldlm_namespace_lock(client));
nr_locks = ldlm_pool_granted(&ns->ns_pool);
cancel = 1 + nr_locks * nr / total;
ldlm_pool_shrink(&ns->ns_pool, cancel, gfp_mask);
cached += ldlm_pool_granted(&ns->ns_pool);
/*
* We use to shrink propotionally but with new shrinker API,
* we lost the total number of freeable locks.
*/
cancel = 1 + min_t(int, nr_locks, nr / nr_ns);
freed += ldlm_pool_shrink(&ns->ns_pool, cancel, gfp_mask);
ldlm_namespace_put(ns);
}
cl_env_reexit(cookie);
/* we only decrease the SLV in server pools shrinker, return -1 to
* kernel to avoid needless loop. LU-1128 */
return (client == LDLM_NAMESPACE_SERVER) ? -1 : cached;
/*
* we only decrease the SLV in server pools shrinker, return
* SHRINK_STOP to kernel to avoid needless loop. LU-1128
*/
return (client == LDLM_NAMESPACE_SERVER) ? SHRINK_STOP : freed;
}
static int ldlm_pools_srv_shrink(SHRINKER_ARGS(sc, nr_to_scan, gfp_mask))
static unsigned long ldlm_pools_srv_count(struct shrinker *s, struct shrink_control *sc)
{
return ldlm_pools_shrink(LDLM_NAMESPACE_SERVER,
shrink_param(sc, nr_to_scan),
shrink_param(sc, gfp_mask));
return ldlm_pools_count(LDLM_NAMESPACE_SERVER, sc->gfp_mask);
}
static int ldlm_pools_cli_shrink(SHRINKER_ARGS(sc, nr_to_scan, gfp_mask))
static unsigned long ldlm_pools_srv_scan(struct shrinker *s, struct shrink_control *sc)
{
return ldlm_pools_shrink(LDLM_NAMESPACE_CLIENT,
shrink_param(sc, nr_to_scan),
shrink_param(sc, gfp_mask));
return ldlm_pools_scan(LDLM_NAMESPACE_SERVER, sc->nr_to_scan,
sc->gfp_mask);
}
static unsigned long ldlm_pools_cli_count(struct shrinker *s, struct shrink_control *sc)
{
return ldlm_pools_count(LDLM_NAMESPACE_CLIENT, sc->gfp_mask);
}
static unsigned long ldlm_pools_cli_scan(struct shrinker *s, struct shrink_control *sc)
{
return ldlm_pools_scan(LDLM_NAMESPACE_CLIENT, sc->nr_to_scan,
sc->gfp_mask);
}
int ldlm_pools_recalc(ldlm_side_t client)
@ -1216,7 +1224,7 @@ int ldlm_pools_recalc(ldlm_side_t client)
}
/*
* Recalc at least ldlm_namespace_nr(client) namespaces.
* Recalc at least ldlm_namespace_nr_read(client) namespaces.
*/
for (nr = ldlm_namespace_nr_read(client); nr > 0; nr--) {
int skip;
@ -1383,18 +1391,26 @@ static void ldlm_pools_thread_stop(void)
ldlm_pools_thread = NULL;
}
static struct shrinker ldlm_pools_srv_shrinker = {
.count_objects = ldlm_pools_srv_count,
.scan_objects = ldlm_pools_srv_scan,
.seeks = DEFAULT_SEEKS,
};
static struct shrinker ldlm_pools_cli_shrinker = {
.count_objects = ldlm_pools_cli_count,
.scan_objects = ldlm_pools_cli_scan,
.seeks = DEFAULT_SEEKS,
};
int ldlm_pools_init(void)
{
int rc;
rc = ldlm_pools_thread_start();
if (rc == 0) {
ldlm_pools_srv_shrinker =
set_shrinker(DEFAULT_SEEKS,
ldlm_pools_srv_shrink);
ldlm_pools_cli_shrinker =
set_shrinker(DEFAULT_SEEKS,
ldlm_pools_cli_shrink);
register_shrinker(&ldlm_pools_srv_shrinker);
register_shrinker(&ldlm_pools_cli_shrinker);
}
return rc;
}
@ -1402,14 +1418,8 @@ EXPORT_SYMBOL(ldlm_pools_init);
void ldlm_pools_fini(void)
{
if (ldlm_pools_srv_shrinker != NULL) {
remove_shrinker(ldlm_pools_srv_shrinker);
ldlm_pools_srv_shrinker = NULL;
}
if (ldlm_pools_cli_shrinker != NULL) {
remove_shrinker(ldlm_pools_cli_shrinker);
ldlm_pools_cli_shrinker = NULL;
}
unregister_shrinker(&ldlm_pools_srv_shrinker);
unregister_shrinker(&ldlm_pools_cli_shrinker);
ldlm_pools_thread_stop();
}
EXPORT_SYMBOL(ldlm_pools_fini);

View File

@ -1779,7 +1779,6 @@ int lu_env_refill_by_tags(struct lu_env *env, __u32 ctags,
}
EXPORT_SYMBOL(lu_env_refill_by_tags);
static struct shrinker *lu_site_shrinker = NULL;
typedef struct lu_site_stats{
unsigned lss_populated;
@ -1835,59 +1834,66 @@ static void lu_site_stats_get(cfs_hash_t *hs,
* objects without taking the lu_sites_guard lock, but this is not
* possible in the current implementation.
*/
static int lu_cache_shrink(SHRINKER_ARGS(sc, nr_to_scan, gfp_mask))
static unsigned long lu_cache_shrink_count(struct shrinker *sk,
struct shrink_control *sc)
{
lu_site_stats_t stats;
struct lu_site *s;
struct lu_site *tmp;
int cached = 0;
int remain = shrink_param(sc, nr_to_scan);
LIST_HEAD(splice);
unsigned long cached = 0;
if (!(shrink_param(sc, gfp_mask) & __GFP_FS)) {
if (remain != 0)
return -1;
else
/* We must not take the lu_sites_guard lock when
* __GFP_FS is *not* set because of the deadlock
* possibility detailed above. Additionally,
* since we cannot determine the number of
* objects in the cache without taking this
* lock, we're in a particularly tough spot. As
* a result, we'll just lie and say our cache is
* empty. This _should_ be ok, as we can't
* reclaim objects when __GFP_FS is *not* set
* anyways.
*/
return 0;
}
CDEBUG(D_INODE, "Shrink %d objects\n", remain);
if (!(sc->gfp_mask & __GFP_FS))
return 0;
mutex_lock(&lu_sites_guard);
list_for_each_entry_safe(s, tmp, &lu_sites, ls_linkage) {
if (shrink_param(sc, nr_to_scan) != 0) {
remain = lu_site_purge(&lu_shrink_env, s, remain);
/*
* Move just shrunk site to the tail of site list to
* assure shrinking fairness.
*/
list_move_tail(&s->ls_linkage, &splice);
}
memset(&stats, 0, sizeof(stats));
lu_site_stats_get(s->ls_obj_hash, &stats, 0);
cached += stats.lss_total - stats.lss_busy;
if (shrink_param(sc, nr_to_scan) && remain <= 0)
break;
}
mutex_unlock(&lu_sites_guard);
cached = (cached / 100) * sysctl_vfs_cache_pressure;
CDEBUG(D_INODE, "%ld objects cached\n", cached);
return cached;
}
static unsigned long lu_cache_shrink_scan(struct shrinker *sk,
struct shrink_control *sc)
{
struct lu_site *s;
struct lu_site *tmp;
unsigned long remain = sc->nr_to_scan, freed = 0;
LIST_HEAD(splice);
if (!(sc->gfp_mask & __GFP_FS))
/* We must not take the lu_sites_guard lock when
* __GFP_FS is *not* set because of the deadlock
* possibility detailed above. Additionally,
* since we cannot determine the number of
* objects in the cache without taking this
* lock, we're in a particularly tough spot. As
* a result, we'll just lie and say our cache is
* empty. This _should_ be ok, as we can't
* reclaim objects when __GFP_FS is *not* set
* anyways.
*/
return SHRINK_STOP;
mutex_lock(&lu_sites_guard);
list_for_each_entry_safe(s, tmp, &lu_sites, ls_linkage) {
freed = lu_site_purge(&lu_shrink_env, s, remain);
remain -= freed;
/*
* Move just shrunk site to the tail of site list to
* assure shrinking fairness.
*/
list_move_tail(&s->ls_linkage, &splice);
}
list_splice(&splice, lu_sites.prev);
mutex_unlock(&lu_sites_guard);
cached = (cached / 100) * sysctl_vfs_cache_pressure;
if (shrink_param(sc, nr_to_scan) == 0)
CDEBUG(D_INODE, "%d objects cached\n", cached);
return cached;
return sc->nr_to_scan - remain;
}
/*
@ -1913,6 +1919,12 @@ int lu_printk_printer(const struct lu_env *env,
return 0;
}
static struct shrinker lu_site_shrinker = {
.count_objects = lu_cache_shrink_count,
.scan_objects = lu_cache_shrink_scan,
.seeks = DEFAULT_SEEKS,
};
/**
* Initialization of global lu_* data.
*/
@ -1947,9 +1959,7 @@ int lu_global_init(void)
* inode, one for ea. Unfortunately setting this high value results in
* lu_object/inode cache consuming all the memory.
*/
lu_site_shrinker = set_shrinker(DEFAULT_SEEKS, lu_cache_shrink);
if (lu_site_shrinker == NULL)
return -ENOMEM;
register_shrinker(&lu_site_shrinker);
return result;
}
@ -1959,11 +1969,7 @@ int lu_global_init(void)
*/
void lu_global_fini(void)
{
if (lu_site_shrinker != NULL) {
remove_shrinker(lu_site_shrinker);
lu_site_shrinker = NULL;
}
unregister_shrinker(&lu_site_shrinker);
lu_context_key_degister(&lu_global_key);
/*

View File

@ -120,13 +120,6 @@ static struct ptlrpc_enc_page_pool {
struct page ***epp_pools;
} page_pools;
/*
* memory shrinker
*/
const int pools_shrinker_seeks = DEFAULT_SEEKS;
static struct shrinker *pools_shrinker = NULL;
/*
* /proc/fs/lustre/sptlrpc/encrypt_page_pools
*/
@ -226,30 +219,11 @@ static void enc_pools_release_free_pages(long npages)
}
/*
* could be called frequently for query (@nr_to_scan == 0).
* we try to keep at least PTLRPC_MAX_BRW_PAGES pages in the pool.
*/
static int enc_pools_shrink(SHRINKER_ARGS(sc, nr_to_scan, gfp_mask))
static unsigned long enc_pools_shrink_count(struct shrinker *s,
struct shrink_control *sc)
{
if (unlikely(shrink_param(sc, nr_to_scan) != 0)) {
spin_lock(&page_pools.epp_lock);
shrink_param(sc, nr_to_scan) = min_t(unsigned long,
shrink_param(sc, nr_to_scan),
page_pools.epp_free_pages -
PTLRPC_MAX_BRW_PAGES);
if (shrink_param(sc, nr_to_scan) > 0) {
enc_pools_release_free_pages(shrink_param(sc,
nr_to_scan));
CDEBUG(D_SEC, "released %ld pages, %ld left\n",
(long)shrink_param(sc, nr_to_scan),
page_pools.epp_free_pages);
page_pools.epp_st_shrinks++;
page_pools.epp_last_shrink = cfs_time_current_sec();
}
spin_unlock(&page_pools.epp_lock);
}
/*
* if no pool access for a long time, we consider it's fully idle.
* a little race here is fine.
@ -266,6 +240,40 @@ static int enc_pools_shrink(SHRINKER_ARGS(sc, nr_to_scan, gfp_mask))
(IDLE_IDX_MAX - page_pools.epp_idle_idx) / IDLE_IDX_MAX;
}
/*
* we try to keep at least PTLRPC_MAX_BRW_PAGES pages in the pool.
*/
static unsigned long enc_pools_shrink_scan(struct shrinker *s,
struct shrink_control *sc)
{
spin_lock(&page_pools.epp_lock);
sc->nr_to_scan = min_t(unsigned long, sc->nr_to_scan,
page_pools.epp_free_pages - PTLRPC_MAX_BRW_PAGES);
if (sc->nr_to_scan > 0) {
enc_pools_release_free_pages(sc->nr_to_scan);
CDEBUG(D_SEC, "released %ld pages, %ld left\n",
(long)sc->nr_to_scan, page_pools.epp_free_pages);
page_pools.epp_st_shrinks++;
page_pools.epp_last_shrink = cfs_time_current_sec();
}
spin_unlock(&page_pools.epp_lock);
/*
* if no pool access for a long time, we consider it's fully idle.
* a little race here is fine.
*/
if (unlikely(cfs_time_current_sec() - page_pools.epp_last_access >
CACHE_QUIESCENT_PERIOD)) {
spin_lock(&page_pools.epp_lock);
page_pools.epp_idle_idx = IDLE_IDX_MAX;
spin_unlock(&page_pools.epp_lock);
}
LASSERT(page_pools.epp_idle_idx <= IDLE_IDX_MAX);
return sc->nr_to_scan;
}
static inline
int npages_to_npools(unsigned long npages)
{
@ -699,6 +707,12 @@ static inline void enc_pools_free(void)
sizeof(*page_pools.epp_pools));
}
static struct shrinker pools_shrinker = {
.count_objects = enc_pools_shrink_count,
.scan_objects = enc_pools_shrink_scan,
.seeks = DEFAULT_SEEKS,
};
int sptlrpc_enc_pool_init(void)
{
/*
@ -736,12 +750,7 @@ int sptlrpc_enc_pool_init(void)
if (page_pools.epp_pools == NULL)
return -ENOMEM;
pools_shrinker = set_shrinker(pools_shrinker_seeks,
enc_pools_shrink);
if (pools_shrinker == NULL) {
enc_pools_free();
return -ENOMEM;
}
register_shrinker(&pools_shrinker);
return 0;
}
@ -750,11 +759,10 @@ void sptlrpc_enc_pool_fini(void)
{
unsigned long cleaned, npools;
LASSERT(pools_shrinker);
LASSERT(page_pools.epp_pools);
LASSERT(page_pools.epp_total_pages == page_pools.epp_free_pages);
remove_shrinker(pools_shrinker);
unregister_shrinker(&pools_shrinker);
npools = npages_to_npools(page_pools.epp_total_pages);
cleaned = enc_pools_cleanup(page_pools.epp_pools, npools);

View File

@ -37,6 +37,7 @@
#include <linux/rculist_bl.h>
#include <linux/prefetch.h>
#include <linux/ratelimit.h>
#include <linux/list_lru.h>
#include "internal.h"
#include "mount.h"
@ -48,7 +49,7 @@
* - the dcache hash table
* s_anon bl list spinlock protects:
* - the s_anon list (see __d_drop)
* dcache_lru_lock protects:
* dentry->d_sb->s_dentry_lru_lock protects:
* - the dcache lru lists and counters
* d_lock protects:
* - d_flags
@ -63,7 +64,7 @@
* Ordering:
* dentry->d_inode->i_lock
* dentry->d_lock
* dcache_lru_lock
* dentry->d_sb->s_dentry_lru_lock
* dcache_hash_bucket lock
* s_anon lock
*
@ -81,7 +82,6 @@
int sysctl_vfs_cache_pressure __read_mostly = 100;
EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lru_lock);
__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
EXPORT_SYMBOL(rename_lock);
@ -146,23 +146,47 @@ struct dentry_stat_t dentry_stat = {
.age_limit = 45,
};
static DEFINE_PER_CPU(unsigned int, nr_dentry);
static DEFINE_PER_CPU(long, nr_dentry);
static DEFINE_PER_CPU(long, nr_dentry_unused);
#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
static int get_nr_dentry(void)
/*
* Here we resort to our own counters instead of using generic per-cpu counters
* for consistency with what the vfs inode code does. We are expected to harvest
* better code and performance by having our own specialized counters.
*
* Please note that the loop is done over all possible CPUs, not over all online
* CPUs. The reason for this is that we don't want to play games with CPUs going
* on and off. If one of them goes off, we will just keep their counters.
*
* glommer: See cffbc8a for details, and if you ever intend to change this,
* please update all vfs counters to match.
*/
static long get_nr_dentry(void)
{
int i;
int sum = 0;
long sum = 0;
for_each_possible_cpu(i)
sum += per_cpu(nr_dentry, i);
return sum < 0 ? 0 : sum;
}
static long get_nr_dentry_unused(void)
{
int i;
long sum = 0;
for_each_possible_cpu(i)
sum += per_cpu(nr_dentry_unused, i);
return sum < 0 ? 0 : sum;
}
int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
size_t *lenp, loff_t *ppos)
{
dentry_stat.nr_dentry = get_nr_dentry();
return proc_dointvec(table, write, buffer, lenp, ppos);
dentry_stat.nr_unused = get_nr_dentry_unused();
return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
}
#endif
@ -333,52 +357,35 @@ static void dentry_unlink_inode(struct dentry * dentry)
}
/*
* dentry_lru_(add|del|prune|move_tail) must be called with d_lock held.
* dentry_lru_(add|del)_list) must be called with d_lock held.
*/
static void dentry_lru_add(struct dentry *dentry)
{
if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST))) {
spin_lock(&dcache_lru_lock);
if (list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru))
this_cpu_inc(nr_dentry_unused);
dentry->d_flags |= DCACHE_LRU_LIST;
list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
dentry->d_sb->s_nr_dentry_unused++;
dentry_stat.nr_unused++;
spin_unlock(&dcache_lru_lock);
}
}
static void __dentry_lru_del(struct dentry *dentry)
{
list_del_init(&dentry->d_lru);
dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
dentry->d_sb->s_nr_dentry_unused--;
dentry_stat.nr_unused--;
}
/*
* Remove a dentry with references from the LRU.
*
* If we are on the shrink list, then we can get to try_prune_one_dentry() and
* lose our last reference through the parent walk. In this case, we need to
* remove ourselves from the shrink list, not the LRU.
*/
static void dentry_lru_del(struct dentry *dentry)
{
if (!list_empty(&dentry->d_lru)) {
spin_lock(&dcache_lru_lock);
__dentry_lru_del(dentry);
spin_unlock(&dcache_lru_lock);
if (dentry->d_flags & DCACHE_SHRINK_LIST) {
list_del_init(&dentry->d_lru);
dentry->d_flags &= ~DCACHE_SHRINK_LIST;
return;
}
}
static void dentry_lru_move_list(struct dentry *dentry, struct list_head *list)
{
spin_lock(&dcache_lru_lock);
if (list_empty(&dentry->d_lru)) {
dentry->d_flags |= DCACHE_LRU_LIST;
list_add_tail(&dentry->d_lru, list);
dentry->d_sb->s_nr_dentry_unused++;
dentry_stat.nr_unused++;
} else {
list_move_tail(&dentry->d_lru, list);
}
spin_unlock(&dcache_lru_lock);
if (list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru))
this_cpu_dec(nr_dentry_unused);
dentry->d_flags &= ~DCACHE_LRU_LIST;
}
/**
@ -474,7 +481,8 @@ EXPORT_SYMBOL(d_drop);
* If ref is non-zero, then decrement the refcount too.
* Returns dentry requiring refcount drop, or NULL if we're done.
*/
static inline struct dentry *dentry_kill(struct dentry *dentry)
static inline struct dentry *
dentry_kill(struct dentry *dentry, int unlock_on_failure)
__releases(dentry->d_lock)
{
struct inode *inode;
@ -483,8 +491,10 @@ static inline struct dentry *dentry_kill(struct dentry *dentry)
inode = dentry->d_inode;
if (inode && !spin_trylock(&inode->i_lock)) {
relock:
spin_unlock(&dentry->d_lock);
cpu_relax();
if (unlock_on_failure) {
spin_unlock(&dentry->d_lock);
cpu_relax();
}
return dentry; /* try again with same dentry */
}
if (IS_ROOT(dentry))
@ -567,7 +577,7 @@ repeat:
return;
kill_it:
dentry = dentry_kill(dentry);
dentry = dentry_kill(dentry, 1);
if (dentry)
goto repeat;
}
@ -787,12 +797,12 @@ EXPORT_SYMBOL(d_prune_aliases);
*
* This may fail if locks cannot be acquired no problem, just try again.
*/
static void try_prune_one_dentry(struct dentry *dentry)
static struct dentry * try_prune_one_dentry(struct dentry *dentry)
__releases(dentry->d_lock)
{
struct dentry *parent;
parent = dentry_kill(dentry);
parent = dentry_kill(dentry, 0);
/*
* If dentry_kill returns NULL, we have nothing more to do.
* if it returns the same dentry, trylocks failed. In either
@ -804,17 +814,18 @@ static void try_prune_one_dentry(struct dentry *dentry)
* fragmentation.
*/
if (!parent)
return;
return NULL;
if (parent == dentry)
return;
return dentry;
/* Prune ancestors. */
dentry = parent;
while (dentry) {
if (lockref_put_or_lock(&dentry->d_lockref))
return;
dentry = dentry_kill(dentry);
return NULL;
dentry = dentry_kill(dentry, 1);
}
return NULL;
}
static void shrink_dentry_list(struct list_head *list)
@ -832,77 +843,144 @@ static void shrink_dentry_list(struct list_head *list)
continue;
}
/*
* The dispose list is isolated and dentries are not accounted
* to the LRU here, so we can simply remove it from the list
* here regardless of whether it is referenced or not.
*/
list_del_init(&dentry->d_lru);
dentry->d_flags &= ~DCACHE_SHRINK_LIST;
/*
* We found an inuse dentry which was not removed from
* the LRU because of laziness during lookup. Do not free
* it - just keep it off the LRU list.
* the LRU because of laziness during lookup. Do not free it.
*/
if (dentry->d_lockref.count) {
dentry_lru_del(dentry);
spin_unlock(&dentry->d_lock);
continue;
}
rcu_read_unlock();
try_prune_one_dentry(dentry);
dentry = try_prune_one_dentry(dentry);
rcu_read_lock();
if (dentry) {
dentry->d_flags |= DCACHE_SHRINK_LIST;
list_add(&dentry->d_lru, list);
spin_unlock(&dentry->d_lock);
}
}
rcu_read_unlock();
}
static enum lru_status
dentry_lru_isolate(struct list_head *item, spinlock_t *lru_lock, void *arg)
{
struct list_head *freeable = arg;
struct dentry *dentry = container_of(item, struct dentry, d_lru);
/*
* we are inverting the lru lock/dentry->d_lock here,
* so use a trylock. If we fail to get the lock, just skip
* it
*/
if (!spin_trylock(&dentry->d_lock))
return LRU_SKIP;
/*
* Referenced dentries are still in use. If they have active
* counts, just remove them from the LRU. Otherwise give them
* another pass through the LRU.
*/
if (dentry->d_lockref.count) {
list_del_init(&dentry->d_lru);
spin_unlock(&dentry->d_lock);
return LRU_REMOVED;
}
if (dentry->d_flags & DCACHE_REFERENCED) {
dentry->d_flags &= ~DCACHE_REFERENCED;
spin_unlock(&dentry->d_lock);
/*
* The list move itself will be made by the common LRU code. At
* this point, we've dropped the dentry->d_lock but keep the
* lru lock. This is safe to do, since every list movement is
* protected by the lru lock even if both locks are held.
*
* This is guaranteed by the fact that all LRU management
* functions are intermediated by the LRU API calls like
* list_lru_add and list_lru_del. List movement in this file
* only ever occur through this functions or through callbacks
* like this one, that are called from the LRU API.
*
* The only exceptions to this are functions like
* shrink_dentry_list, and code that first checks for the
* DCACHE_SHRINK_LIST flag. Those are guaranteed to be
* operating only with stack provided lists after they are
* properly isolated from the main list. It is thus, always a
* local access.
*/
return LRU_ROTATE;
}
dentry->d_flags |= DCACHE_SHRINK_LIST;
list_move_tail(&dentry->d_lru, freeable);
this_cpu_dec(nr_dentry_unused);
spin_unlock(&dentry->d_lock);
return LRU_REMOVED;
}
/**
* prune_dcache_sb - shrink the dcache
* @sb: superblock
* @count: number of entries to try to free
* @nr_to_scan : number of entries to try to free
* @nid: which node to scan for freeable entities
*
* Attempt to shrink the superblock dcache LRU by @count entries. This is
* Attempt to shrink the superblock dcache LRU by @nr_to_scan entries. This is
* done when we need more memory an called from the superblock shrinker
* function.
*
* This function may fail to free any resources if all the dentries are in
* use.
*/
void prune_dcache_sb(struct super_block *sb, int count)
long prune_dcache_sb(struct super_block *sb, unsigned long nr_to_scan,
int nid)
{
struct dentry *dentry;
LIST_HEAD(referenced);
LIST_HEAD(tmp);
LIST_HEAD(dispose);
long freed;
relock:
spin_lock(&dcache_lru_lock);
while (!list_empty(&sb->s_dentry_lru)) {
dentry = list_entry(sb->s_dentry_lru.prev,
struct dentry, d_lru);
BUG_ON(dentry->d_sb != sb);
if (!spin_trylock(&dentry->d_lock)) {
spin_unlock(&dcache_lru_lock);
cpu_relax();
goto relock;
}
if (dentry->d_flags & DCACHE_REFERENCED) {
dentry->d_flags &= ~DCACHE_REFERENCED;
list_move(&dentry->d_lru, &referenced);
spin_unlock(&dentry->d_lock);
} else {
list_move_tail(&dentry->d_lru, &tmp);
dentry->d_flags |= DCACHE_SHRINK_LIST;
spin_unlock(&dentry->d_lock);
if (!--count)
break;
}
cond_resched_lock(&dcache_lru_lock);
}
if (!list_empty(&referenced))
list_splice(&referenced, &sb->s_dentry_lru);
spin_unlock(&dcache_lru_lock);
shrink_dentry_list(&tmp);
freed = list_lru_walk_node(&sb->s_dentry_lru, nid, dentry_lru_isolate,
&dispose, &nr_to_scan);
shrink_dentry_list(&dispose);
return freed;
}
static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
spinlock_t *lru_lock, void *arg)
{
struct list_head *freeable = arg;
struct dentry *dentry = container_of(item, struct dentry, d_lru);
/*
* we are inverting the lru lock/dentry->d_lock here,
* so use a trylock. If we fail to get the lock, just skip
* it
*/
if (!spin_trylock(&dentry->d_lock))
return LRU_SKIP;
dentry->d_flags |= DCACHE_SHRINK_LIST;
list_move_tail(&dentry->d_lru, freeable);
this_cpu_dec(nr_dentry_unused);
spin_unlock(&dentry->d_lock);
return LRU_REMOVED;
}
/**
* shrink_dcache_sb - shrink dcache for a superblock
* @sb: superblock
@ -912,16 +990,17 @@ relock:
*/
void shrink_dcache_sb(struct super_block *sb)
{
LIST_HEAD(tmp);
long freed;
spin_lock(&dcache_lru_lock);
while (!list_empty(&sb->s_dentry_lru)) {
list_splice_init(&sb->s_dentry_lru, &tmp);
spin_unlock(&dcache_lru_lock);
shrink_dentry_list(&tmp);
spin_lock(&dcache_lru_lock);
}
spin_unlock(&dcache_lru_lock);
do {
LIST_HEAD(dispose);
freed = list_lru_walk(&sb->s_dentry_lru,
dentry_lru_isolate_shrink, &dispose, UINT_MAX);
this_cpu_sub(nr_dentry_unused, freed);
shrink_dentry_list(&dispose);
} while (freed > 0);
}
EXPORT_SYMBOL(shrink_dcache_sb);
@ -1283,7 +1362,8 @@ static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
if (dentry->d_lockref.count) {
dentry_lru_del(dentry);
} else if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) {
dentry_lru_move_list(dentry, &data->dispose);
dentry_lru_del(dentry);
list_add_tail(&dentry->d_lru, &data->dispose);
dentry->d_flags |= DCACHE_SHRINK_LIST;
data->found++;
ret = D_WALK_NORETRY;

View File

@ -44,6 +44,7 @@ static void drop_slab(void)
.gfp_mask = GFP_KERNEL,
};
nodes_setall(shrink.nodes_to_scan);
do {
nr_objects = shrink_slab(&shrink, 1000, 1000);
} while (nr_objects > 10);

View File

@ -931,13 +931,15 @@ static int __ext4_es_shrink(struct ext4_sb_info *sbi, int nr_to_scan,
struct ext4_inode_info *ei;
struct list_head *cur, *tmp;
LIST_HEAD(skipped);
int ret, nr_shrunk = 0;
int nr_shrunk = 0;
int retried = 0, skip_precached = 1, nr_skipped = 0;
spin_lock(&sbi->s_es_lru_lock);
retry:
list_for_each_safe(cur, tmp, &sbi->s_es_lru) {
int shrunk;
/*
* If we have already reclaimed all extents from extent
* status tree, just stop the loop immediately.
@ -964,13 +966,13 @@ retry:
continue;
write_lock(&ei->i_es_lock);
ret = __es_try_to_reclaim_extents(ei, nr_to_scan);
shrunk = __es_try_to_reclaim_extents(ei, nr_to_scan);
if (ei->i_es_lru_nr == 0)
list_del_init(&ei->i_es_lru);
write_unlock(&ei->i_es_lock);
nr_shrunk += ret;
nr_to_scan -= ret;
nr_shrunk += shrunk;
nr_to_scan -= shrunk;
if (nr_to_scan == 0)
break;
}
@ -1007,7 +1009,20 @@ retry:
return nr_shrunk;
}
static int ext4_es_shrink(struct shrinker *shrink, struct shrink_control *sc)
static unsigned long ext4_es_count(struct shrinker *shrink,
struct shrink_control *sc)
{
unsigned long nr;
struct ext4_sb_info *sbi;
sbi = container_of(shrink, struct ext4_sb_info, s_es_shrinker);
nr = percpu_counter_read_positive(&sbi->s_extent_cache_cnt);
trace_ext4_es_shrink_enter(sbi->s_sb, sc->nr_to_scan, nr);
return nr;
}
static unsigned long ext4_es_scan(struct shrinker *shrink,
struct shrink_control *sc)
{
struct ext4_sb_info *sbi = container_of(shrink,
struct ext4_sb_info, s_es_shrinker);
@ -1022,9 +1037,8 @@ static int ext4_es_shrink(struct shrinker *shrink, struct shrink_control *sc)
nr_shrunk = __ext4_es_shrink(sbi, nr_to_scan, NULL);
ret = percpu_counter_read_positive(&sbi->s_extent_cache_cnt);
trace_ext4_es_shrink_exit(sbi->s_sb, nr_shrunk, ret);
return ret;
return nr_shrunk;
}
void ext4_es_register_shrinker(struct ext4_sb_info *sbi)
@ -1032,7 +1046,8 @@ void ext4_es_register_shrinker(struct ext4_sb_info *sbi)
INIT_LIST_HEAD(&sbi->s_es_lru);
spin_lock_init(&sbi->s_es_lru_lock);
sbi->s_es_last_sorted = 0;
sbi->s_es_shrinker.shrink = ext4_es_shrink;
sbi->s_es_shrinker.scan_objects = ext4_es_scan;
sbi->s_es_shrinker.count_objects = ext4_es_count;
sbi->s_es_shrinker.seeks = DEFAULT_SEEKS;
register_shrinker(&sbi->s_es_shrinker);
}
@ -1076,7 +1091,7 @@ static int __es_try_to_reclaim_extents(struct ext4_inode_info *ei,
struct ext4_es_tree *tree = &ei->i_es_tree;
struct rb_node *node;
struct extent_status *es;
int nr_shrunk = 0;
unsigned long nr_shrunk = 0;
static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
DEFAULT_RATELIMIT_BURST);

View File

@ -1427,21 +1427,22 @@ __acquires(&lru_lock)
* gfs2_dispose_glock_lru() above.
*/
static void gfs2_scan_glock_lru(int nr)
static long gfs2_scan_glock_lru(int nr)
{
struct gfs2_glock *gl;
LIST_HEAD(skipped);
LIST_HEAD(dispose);
long freed = 0;
spin_lock(&lru_lock);
while(nr && !list_empty(&lru_list)) {
while ((nr-- >= 0) && !list_empty(&lru_list)) {
gl = list_entry(lru_list.next, struct gfs2_glock, gl_lru);
/* Test for being demotable */
if (!test_and_set_bit(GLF_LOCK, &gl->gl_flags)) {
list_move(&gl->gl_lru, &dispose);
atomic_dec(&lru_count);
nr--;
freed++;
continue;
}
@ -1451,23 +1452,28 @@ static void gfs2_scan_glock_lru(int nr)
if (!list_empty(&dispose))
gfs2_dispose_glock_lru(&dispose);
spin_unlock(&lru_lock);
return freed;
}
static int gfs2_shrink_glock_memory(struct shrinker *shrink,
struct shrink_control *sc)
static unsigned long gfs2_glock_shrink_scan(struct shrinker *shrink,
struct shrink_control *sc)
{
if (sc->nr_to_scan) {
if (!(sc->gfp_mask & __GFP_FS))
return -1;
gfs2_scan_glock_lru(sc->nr_to_scan);
}
if (!(sc->gfp_mask & __GFP_FS))
return SHRINK_STOP;
return gfs2_scan_glock_lru(sc->nr_to_scan);
}
return (atomic_read(&lru_count) / 100) * sysctl_vfs_cache_pressure;
static unsigned long gfs2_glock_shrink_count(struct shrinker *shrink,
struct shrink_control *sc)
{
return vfs_pressure_ratio(atomic_read(&lru_count));
}
static struct shrinker glock_shrinker = {
.shrink = gfs2_shrink_glock_memory,
.seeks = DEFAULT_SEEKS,
.count_objects = gfs2_glock_shrink_count,
.scan_objects = gfs2_glock_shrink_scan,
};
/**

View File

@ -32,7 +32,8 @@
struct workqueue_struct *gfs2_control_wq;
static struct shrinker qd_shrinker = {
.shrink = gfs2_shrink_qd_memory,
.count_objects = gfs2_qd_shrink_count,
.scan_objects = gfs2_qd_shrink_scan,
.seeks = DEFAULT_SEEKS,
};

View File

@ -75,17 +75,16 @@ static LIST_HEAD(qd_lru_list);
static atomic_t qd_lru_count = ATOMIC_INIT(0);
static DEFINE_SPINLOCK(qd_lru_lock);
int gfs2_shrink_qd_memory(struct shrinker *shrink, struct shrink_control *sc)
unsigned long gfs2_qd_shrink_scan(struct shrinker *shrink,
struct shrink_control *sc)
{
struct gfs2_quota_data *qd;
struct gfs2_sbd *sdp;
int nr_to_scan = sc->nr_to_scan;
if (nr_to_scan == 0)
goto out;
long freed = 0;
if (!(sc->gfp_mask & __GFP_FS))
return -1;
return SHRINK_STOP;
spin_lock(&qd_lru_lock);
while (nr_to_scan && !list_empty(&qd_lru_list)) {
@ -110,11 +109,16 @@ int gfs2_shrink_qd_memory(struct shrinker *shrink, struct shrink_control *sc)
kmem_cache_free(gfs2_quotad_cachep, qd);
spin_lock(&qd_lru_lock);
nr_to_scan--;
freed++;
}
spin_unlock(&qd_lru_lock);
return freed;
}
out:
return (atomic_read(&qd_lru_count) * sysctl_vfs_cache_pressure) / 100;
unsigned long gfs2_qd_shrink_count(struct shrinker *shrink,
struct shrink_control *sc)
{
return vfs_pressure_ratio(atomic_read(&qd_lru_count));
}
static u64 qd2index(struct gfs2_quota_data *qd)

View File

@ -53,8 +53,10 @@ static inline int gfs2_quota_lock_check(struct gfs2_inode *ip)
return ret;
}
extern int gfs2_shrink_qd_memory(struct shrinker *shrink,
struct shrink_control *sc);
extern unsigned long gfs2_qd_shrink_count(struct shrinker *shrink,
struct shrink_control *sc);
extern unsigned long gfs2_qd_shrink_scan(struct shrinker *shrink,
struct shrink_control *sc);
extern const struct quotactl_ops gfs2_quotactl_ops;
#endif /* __QUOTA_DOT_H__ */

View File

@ -17,6 +17,7 @@
#include <linux/prefetch.h>
#include <linux/buffer_head.h> /* for inode_has_buffers */
#include <linux/ratelimit.h>
#include <linux/list_lru.h>
#include "internal.h"
/*
@ -24,7 +25,7 @@
*
* inode->i_lock protects:
* inode->i_state, inode->i_hash, __iget()
* inode->i_sb->s_inode_lru_lock protects:
* Inode LRU list locks protect:
* inode->i_sb->s_inode_lru, inode->i_lru
* inode_sb_list_lock protects:
* sb->s_inodes, inode->i_sb_list
@ -37,7 +38,7 @@
*
* inode_sb_list_lock
* inode->i_lock
* inode->i_sb->s_inode_lru_lock
* Inode LRU list locks
*
* bdi->wb.list_lock
* inode->i_lock
@ -70,33 +71,33 @@ EXPORT_SYMBOL(empty_aops);
*/
struct inodes_stat_t inodes_stat;
static DEFINE_PER_CPU(unsigned int, nr_inodes);
static DEFINE_PER_CPU(unsigned int, nr_unused);
static DEFINE_PER_CPU(unsigned long, nr_inodes);
static DEFINE_PER_CPU(unsigned long, nr_unused);
static struct kmem_cache *inode_cachep __read_mostly;
static int get_nr_inodes(void)
static long get_nr_inodes(void)
{
int i;
int sum = 0;
long sum = 0;
for_each_possible_cpu(i)
sum += per_cpu(nr_inodes, i);
return sum < 0 ? 0 : sum;
}
static inline int get_nr_inodes_unused(void)
static inline long get_nr_inodes_unused(void)
{
int i;
int sum = 0;
long sum = 0;
for_each_possible_cpu(i)
sum += per_cpu(nr_unused, i);
return sum < 0 ? 0 : sum;
}
int get_nr_dirty_inodes(void)
long get_nr_dirty_inodes(void)
{
/* not actually dirty inodes, but a wild approximation */
int nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
return nr_dirty > 0 ? nr_dirty : 0;
}
@ -109,7 +110,7 @@ int proc_nr_inodes(ctl_table *table, int write,
{
inodes_stat.nr_inodes = get_nr_inodes();
inodes_stat.nr_unused = get_nr_inodes_unused();
return proc_dointvec(table, write, buffer, lenp, ppos);
return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
}
#endif
@ -401,13 +402,8 @@ EXPORT_SYMBOL(ihold);
static void inode_lru_list_add(struct inode *inode)
{
spin_lock(&inode->i_sb->s_inode_lru_lock);
if (list_empty(&inode->i_lru)) {
list_add(&inode->i_lru, &inode->i_sb->s_inode_lru);
inode->i_sb->s_nr_inodes_unused++;
if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
this_cpu_inc(nr_unused);
}
spin_unlock(&inode->i_sb->s_inode_lru_lock);
}
/*
@ -425,13 +421,9 @@ void inode_add_lru(struct inode *inode)
static void inode_lru_list_del(struct inode *inode)
{
spin_lock(&inode->i_sb->s_inode_lru_lock);
if (!list_empty(&inode->i_lru)) {
list_del_init(&inode->i_lru);
inode->i_sb->s_nr_inodes_unused--;
if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
this_cpu_dec(nr_unused);
}
spin_unlock(&inode->i_sb->s_inode_lru_lock);
}
/**
@ -675,24 +667,8 @@ int invalidate_inodes(struct super_block *sb, bool kill_dirty)
return busy;
}
static int can_unuse(struct inode *inode)
{
if (inode->i_state & ~I_REFERENCED)
return 0;
if (inode_has_buffers(inode))
return 0;
if (atomic_read(&inode->i_count))
return 0;
if (inode->i_data.nrpages)
return 0;
return 1;
}
/*
* Walk the superblock inode LRU for freeable inodes and attempt to free them.
* This is called from the superblock shrinker function with a number of inodes
* to trim from the LRU. Inodes to be freed are moved to a temporary list and
* then are freed outside inode_lock by dispose_list().
* Isolate the inode from the LRU in preparation for freeing it.
*
* Any inodes which are pinned purely because of attached pagecache have their
* pagecache removed. If the inode has metadata buffers attached to
@ -706,89 +682,82 @@ static int can_unuse(struct inode *inode)
* LRU does not have strict ordering. Hence we don't want to reclaim inodes
* with this flag set because they are the inodes that are out of order.
*/
void prune_icache_sb(struct super_block *sb, int nr_to_scan)
static enum lru_status
inode_lru_isolate(struct list_head *item, spinlock_t *lru_lock, void *arg)
{
struct list_head *freeable = arg;
struct inode *inode = container_of(item, struct inode, i_lru);
/*
* we are inverting the lru lock/inode->i_lock here, so use a trylock.
* If we fail to get the lock, just skip it.
*/
if (!spin_trylock(&inode->i_lock))
return LRU_SKIP;
/*
* Referenced or dirty inodes are still in use. Give them another pass
* through the LRU as we canot reclaim them now.
*/
if (atomic_read(&inode->i_count) ||
(inode->i_state & ~I_REFERENCED)) {
list_del_init(&inode->i_lru);
spin_unlock(&inode->i_lock);
this_cpu_dec(nr_unused);
return LRU_REMOVED;
}
/* recently referenced inodes get one more pass */
if (inode->i_state & I_REFERENCED) {
inode->i_state &= ~I_REFERENCED;
spin_unlock(&inode->i_lock);
return LRU_ROTATE;
}
if (inode_has_buffers(inode) || inode->i_data.nrpages) {
__iget(inode);
spin_unlock(&inode->i_lock);
spin_unlock(lru_lock);
if (remove_inode_buffers(inode)) {
unsigned long reap;
reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
if (current_is_kswapd())
__count_vm_events(KSWAPD_INODESTEAL, reap);
else
__count_vm_events(PGINODESTEAL, reap);
if (current->reclaim_state)
current->reclaim_state->reclaimed_slab += reap;
}
iput(inode);
spin_lock(lru_lock);
return LRU_RETRY;
}
WARN_ON(inode->i_state & I_NEW);
inode->i_state |= I_FREEING;
list_move(&inode->i_lru, freeable);
spin_unlock(&inode->i_lock);
this_cpu_dec(nr_unused);
return LRU_REMOVED;
}
/*
* Walk the superblock inode LRU for freeable inodes and attempt to free them.
* This is called from the superblock shrinker function with a number of inodes
* to trim from the LRU. Inodes to be freed are moved to a temporary list and
* then are freed outside inode_lock by dispose_list().
*/
long prune_icache_sb(struct super_block *sb, unsigned long nr_to_scan,
int nid)
{
LIST_HEAD(freeable);
int nr_scanned;
unsigned long reap = 0;
spin_lock(&sb->s_inode_lru_lock);
for (nr_scanned = nr_to_scan; nr_scanned >= 0; nr_scanned--) {
struct inode *inode;
if (list_empty(&sb->s_inode_lru))
break;
inode = list_entry(sb->s_inode_lru.prev, struct inode, i_lru);
/*
* we are inverting the sb->s_inode_lru_lock/inode->i_lock here,
* so use a trylock. If we fail to get the lock, just move the
* inode to the back of the list so we don't spin on it.
*/
if (!spin_trylock(&inode->i_lock)) {
list_move(&inode->i_lru, &sb->s_inode_lru);
continue;
}
/*
* Referenced or dirty inodes are still in use. Give them
* another pass through the LRU as we canot reclaim them now.
*/
if (atomic_read(&inode->i_count) ||
(inode->i_state & ~I_REFERENCED)) {
list_del_init(&inode->i_lru);
spin_unlock(&inode->i_lock);
sb->s_nr_inodes_unused--;
this_cpu_dec(nr_unused);
continue;
}
/* recently referenced inodes get one more pass */
if (inode->i_state & I_REFERENCED) {
inode->i_state &= ~I_REFERENCED;
list_move(&inode->i_lru, &sb->s_inode_lru);
spin_unlock(&inode->i_lock);
continue;
}
if (inode_has_buffers(inode) || inode->i_data.nrpages) {
__iget(inode);
spin_unlock(&inode->i_lock);
spin_unlock(&sb->s_inode_lru_lock);
if (remove_inode_buffers(inode))
reap += invalidate_mapping_pages(&inode->i_data,
0, -1);
iput(inode);
spin_lock(&sb->s_inode_lru_lock);
if (inode != list_entry(sb->s_inode_lru.next,
struct inode, i_lru))
continue; /* wrong inode or list_empty */
/* avoid lock inversions with trylock */
if (!spin_trylock(&inode->i_lock))
continue;
if (!can_unuse(inode)) {
spin_unlock(&inode->i_lock);
continue;
}
}
WARN_ON(inode->i_state & I_NEW);
inode->i_state |= I_FREEING;
spin_unlock(&inode->i_lock);
list_move(&inode->i_lru, &freeable);
sb->s_nr_inodes_unused--;
this_cpu_dec(nr_unused);
}
if (current_is_kswapd())
__count_vm_events(KSWAPD_INODESTEAL, reap);
else
__count_vm_events(PGINODESTEAL, reap);
spin_unlock(&sb->s_inode_lru_lock);
if (current->reclaim_state)
current->reclaim_state->reclaimed_slab += reap;
long freed;
freed = list_lru_walk_node(&sb->s_inode_lru, nid, inode_lru_isolate,
&freeable, &nr_to_scan);
dispose_list(&freeable);
return freed;
}
static void __wait_on_freeing_inode(struct inode *inode);

View File

@ -114,6 +114,8 @@ extern int open_check_o_direct(struct file *f);
* inode.c
*/
extern spinlock_t inode_sb_list_lock;
extern long prune_icache_sb(struct super_block *sb, unsigned long nr_to_scan,
int nid);
extern void inode_add_lru(struct inode *inode);
/*
@ -121,7 +123,7 @@ extern void inode_add_lru(struct inode *inode);
*/
extern void inode_wb_list_del(struct inode *inode);
extern int get_nr_dirty_inodes(void);
extern long get_nr_dirty_inodes(void);
extern void evict_inodes(struct super_block *);
extern int invalidate_inodes(struct super_block *, bool);
@ -130,6 +132,8 @@ extern int invalidate_inodes(struct super_block *, bool);
*/
extern struct dentry *__d_alloc(struct super_block *, const struct qstr *);
extern int d_set_mounted(struct dentry *dentry);
extern long prune_dcache_sb(struct super_block *sb, unsigned long nr_to_scan,
int nid);
/*
* read_write.c

View File

@ -86,18 +86,6 @@ static LIST_HEAD(mb_cache_list);
static LIST_HEAD(mb_cache_lru_list);
static DEFINE_SPINLOCK(mb_cache_spinlock);
/*
* What the mbcache registers as to get shrunk dynamically.
*/
static int mb_cache_shrink_fn(struct shrinker *shrink,
struct shrink_control *sc);
static struct shrinker mb_cache_shrinker = {
.shrink = mb_cache_shrink_fn,
.seeks = DEFAULT_SEEKS,
};
static inline int
__mb_cache_entry_is_hashed(struct mb_cache_entry *ce)
{
@ -151,7 +139,7 @@ forget:
/*
* mb_cache_shrink_fn() memory pressure callback
* mb_cache_shrink_scan() memory pressure callback
*
* This function is called by the kernel memory management when memory
* gets low.
@ -159,17 +147,16 @@ forget:
* @shrink: (ignored)
* @sc: shrink_control passed from reclaim
*
* Returns the number of objects which are present in the cache.
* Returns the number of objects freed.
*/
static int
mb_cache_shrink_fn(struct shrinker *shrink, struct shrink_control *sc)
static unsigned long
mb_cache_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
{
LIST_HEAD(free_list);
struct mb_cache *cache;
struct mb_cache_entry *entry, *tmp;
int count = 0;
int nr_to_scan = sc->nr_to_scan;
gfp_t gfp_mask = sc->gfp_mask;
unsigned long freed = 0;
mb_debug("trying to free %d entries", nr_to_scan);
spin_lock(&mb_cache_spinlock);
@ -179,19 +166,37 @@ mb_cache_shrink_fn(struct shrinker *shrink, struct shrink_control *sc)
struct mb_cache_entry, e_lru_list);
list_move_tail(&ce->e_lru_list, &free_list);
__mb_cache_entry_unhash(ce);
freed++;
}
spin_unlock(&mb_cache_spinlock);
list_for_each_entry_safe(entry, tmp, &free_list, e_lru_list) {
__mb_cache_entry_forget(entry, gfp_mask);
}
return freed;
}
static unsigned long
mb_cache_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
{
struct mb_cache *cache;
unsigned long count = 0;
spin_lock(&mb_cache_spinlock);
list_for_each_entry(cache, &mb_cache_list, c_cache_list) {
mb_debug("cache %s (%d)", cache->c_name,
atomic_read(&cache->c_entry_count));
count += atomic_read(&cache->c_entry_count);
}
spin_unlock(&mb_cache_spinlock);
list_for_each_entry_safe(entry, tmp, &free_list, e_lru_list) {
__mb_cache_entry_forget(entry, gfp_mask);
}
return (count / 100) * sysctl_vfs_cache_pressure;
return vfs_pressure_ratio(count);
}
static struct shrinker mb_cache_shrinker = {
.count_objects = mb_cache_shrink_count,
.scan_objects = mb_cache_shrink_scan,
.seeks = DEFAULT_SEEKS,
};
/*
* mb_cache_create() create a new cache

View File

@ -660,29 +660,6 @@ static __always_inline void set_root_rcu(struct nameidata *nd)
}
}
static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
{
int ret;
if (IS_ERR(link))
goto fail;
if (*link == '/') {
set_root(nd);
path_put(&nd->path);
nd->path = nd->root;
path_get(&nd->root);
nd->flags |= LOOKUP_JUMPED;
}
nd->inode = nd->path.dentry->d_inode;
ret = link_path_walk(link, nd);
return ret;
fail:
path_put(&nd->path);
return PTR_ERR(link);
}
static void path_put_conditional(struct path *path, struct nameidata *nd)
{
dput(path->dentry);
@ -874,7 +851,20 @@ follow_link(struct path *link, struct nameidata *nd, void **p)
error = 0;
s = nd_get_link(nd);
if (s) {
error = __vfs_follow_link(nd, s);
if (unlikely(IS_ERR(s))) {
path_put(&nd->path);
put_link(nd, link, *p);
return PTR_ERR(s);
}
if (*s == '/') {
set_root(nd);
path_put(&nd->path);
nd->path = nd->root;
path_get(&nd->root);
nd->flags |= LOOKUP_JUMPED;
}
nd->inode = nd->path.dentry->d_inode;
error = link_path_walk(s, nd);
if (unlikely(error))
put_link(nd, link, *p);
}
@ -2271,12 +2261,15 @@ mountpoint_last(struct nameidata *nd, struct path *path)
dentry = d_alloc(dir, &nd->last);
if (!dentry) {
error = -ENOMEM;
mutex_unlock(&dir->d_inode->i_mutex);
goto out;
}
dentry = lookup_real(dir->d_inode, dentry, nd->flags);
error = PTR_ERR(dentry);
if (IS_ERR(dentry))
if (IS_ERR(dentry)) {
mutex_unlock(&dir->d_inode->i_mutex);
goto out;
}
}
mutex_unlock(&dir->d_inode->i_mutex);
@ -4236,11 +4229,6 @@ int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
return res;
}
int vfs_follow_link(struct nameidata *nd, const char *link)
{
return __vfs_follow_link(nd, link);
}
/* get the link contents into pagecache */
static char *page_getlink(struct dentry * dentry, struct page **ppage)
{
@ -4352,7 +4340,6 @@ EXPORT_SYMBOL(vfs_path_lookup);
EXPORT_SYMBOL(inode_permission);
EXPORT_SYMBOL(unlock_rename);
EXPORT_SYMBOL(vfs_create);
EXPORT_SYMBOL(vfs_follow_link);
EXPORT_SYMBOL(vfs_link);
EXPORT_SYMBOL(vfs_mkdir);
EXPORT_SYMBOL(vfs_mknod);

View File

@ -2006,17 +2006,18 @@ static void nfs_access_free_list(struct list_head *head)
}
}
int nfs_access_cache_shrinker(struct shrinker *shrink,
struct shrink_control *sc)
unsigned long
nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
{
LIST_HEAD(head);
struct nfs_inode *nfsi, *next;
struct nfs_access_entry *cache;
int nr_to_scan = sc->nr_to_scan;
gfp_t gfp_mask = sc->gfp_mask;
long freed = 0;
if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
return (nr_to_scan == 0) ? 0 : -1;
return SHRINK_STOP;
spin_lock(&nfs_access_lru_lock);
list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
@ -2032,6 +2033,7 @@ int nfs_access_cache_shrinker(struct shrinker *shrink,
struct nfs_access_entry, lru);
list_move(&cache->lru, &head);
rb_erase(&cache->rb_node, &nfsi->access_cache);
freed++;
if (!list_empty(&nfsi->access_cache_entry_lru))
list_move_tail(&nfsi->access_cache_inode_lru,
&nfs_access_lru_list);
@ -2046,7 +2048,13 @@ remove_lru_entry:
}
spin_unlock(&nfs_access_lru_lock);
nfs_access_free_list(&head);
return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure;
return freed;
}
unsigned long
nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
{
return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
}
static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)

View File

@ -273,8 +273,10 @@ extern struct nfs_client *nfs_init_client(struct nfs_client *clp,
const char *ip_addr);
/* dir.c */
extern int nfs_access_cache_shrinker(struct shrinker *shrink,
struct shrink_control *sc);
extern unsigned long nfs_access_cache_count(struct shrinker *shrink,
struct shrink_control *sc);
extern unsigned long nfs_access_cache_scan(struct shrinker *shrink,
struct shrink_control *sc);
struct dentry *nfs_lookup(struct inode *, struct dentry *, unsigned int);
int nfs_create(struct inode *, struct dentry *, umode_t, bool);
int nfs_mkdir(struct inode *, struct dentry *, umode_t);

View File

@ -360,7 +360,8 @@ static void unregister_nfs4_fs(void)
#endif
static struct shrinker acl_shrinker = {
.shrink = nfs_access_cache_shrinker,
.count_objects = nfs_access_cache_count,
.scan_objects = nfs_access_cache_scan,
.seeks = DEFAULT_SEEKS,
};

View File

@ -59,11 +59,14 @@ static unsigned int longest_chain_cachesize;
static int nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *vec);
static void cache_cleaner_func(struct work_struct *unused);
static int nfsd_reply_cache_shrink(struct shrinker *shrink,
struct shrink_control *sc);
static unsigned long nfsd_reply_cache_count(struct shrinker *shrink,
struct shrink_control *sc);
static unsigned long nfsd_reply_cache_scan(struct shrinker *shrink,
struct shrink_control *sc);
static struct shrinker nfsd_reply_cache_shrinker = {
.shrink = nfsd_reply_cache_shrink,
.scan_objects = nfsd_reply_cache_scan,
.count_objects = nfsd_reply_cache_count,
.seeks = 1,
};
@ -232,16 +235,18 @@ nfsd_cache_entry_expired(struct svc_cacherep *rp)
* Walk the LRU list and prune off entries that are older than RC_EXPIRE.
* Also prune the oldest ones when the total exceeds the max number of entries.
*/
static void
static long
prune_cache_entries(void)
{
struct svc_cacherep *rp, *tmp;
long freed = 0;
list_for_each_entry_safe(rp, tmp, &lru_head, c_lru) {
if (!nfsd_cache_entry_expired(rp) &&
num_drc_entries <= max_drc_entries)
break;
nfsd_reply_cache_free_locked(rp);
freed++;
}
/*
@ -254,6 +259,7 @@ prune_cache_entries(void)
cancel_delayed_work(&cache_cleaner);
else
mod_delayed_work(system_wq, &cache_cleaner, RC_EXPIRE);
return freed;
}
static void
@ -264,20 +270,28 @@ cache_cleaner_func(struct work_struct *unused)
spin_unlock(&cache_lock);
}
static int
nfsd_reply_cache_shrink(struct shrinker *shrink, struct shrink_control *sc)
static unsigned long
nfsd_reply_cache_count(struct shrinker *shrink, struct shrink_control *sc)
{
unsigned int num;
unsigned long num;
spin_lock(&cache_lock);
if (sc->nr_to_scan)
prune_cache_entries();
num = num_drc_entries;
spin_unlock(&cache_lock);
return num;
}
static unsigned long
nfsd_reply_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
{
unsigned long freed;
spin_lock(&cache_lock);
freed = prune_cache_entries();
spin_unlock(&cache_lock);
return freed;
}
/*
* Walk an xdr_buf and get a CRC for at most the first RC_CSUMLEN bytes
*/

View File

@ -687,45 +687,37 @@ int dquot_quota_sync(struct super_block *sb, int type)
}
EXPORT_SYMBOL(dquot_quota_sync);
/* Free unused dquots from cache */
static void prune_dqcache(int count)
static unsigned long
dqcache_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
{
struct list_head *head;
struct dquot *dquot;
unsigned long freed = 0;
head = free_dquots.prev;
while (head != &free_dquots && count) {
while (head != &free_dquots && sc->nr_to_scan) {
dquot = list_entry(head, struct dquot, dq_free);
remove_dquot_hash(dquot);
remove_free_dquot(dquot);
remove_inuse(dquot);
do_destroy_dquot(dquot);
count--;
sc->nr_to_scan--;
freed++;
head = free_dquots.prev;
}
return freed;
}
/*
* This is called from kswapd when we think we need some
* more memory
*/
static int shrink_dqcache_memory(struct shrinker *shrink,
struct shrink_control *sc)
static unsigned long
dqcache_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
{
int nr = sc->nr_to_scan;
if (nr) {
spin_lock(&dq_list_lock);
prune_dqcache(nr);
spin_unlock(&dq_list_lock);
}
return ((unsigned)
percpu_counter_read_positive(&dqstats.counter[DQST_FREE_DQUOTS])
/100) * sysctl_vfs_cache_pressure;
return vfs_pressure_ratio(
percpu_counter_read_positive(&dqstats.counter[DQST_FREE_DQUOTS]));
}
static struct shrinker dqcache_shrinker = {
.shrink = shrink_dqcache_memory,
.count_objects = dqcache_shrink_count,
.scan_objects = dqcache_shrink_scan,
.seeks = DEFAULT_SEEKS,
};

View File

@ -53,11 +53,15 @@ static char *sb_writers_name[SB_FREEZE_LEVELS] = {
* shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
* take a passive reference to the superblock to avoid this from occurring.
*/
static int prune_super(struct shrinker *shrink, struct shrink_control *sc)
static unsigned long super_cache_scan(struct shrinker *shrink,
struct shrink_control *sc)
{
struct super_block *sb;
int fs_objects = 0;
int total_objects;
long fs_objects = 0;
long total_objects;
long freed = 0;
long dentries;
long inodes;
sb = container_of(shrink, struct super_block, s_shrink);
@ -65,46 +69,62 @@ static int prune_super(struct shrinker *shrink, struct shrink_control *sc)
* Deadlock avoidance. We may hold various FS locks, and we don't want
* to recurse into the FS that called us in clear_inode() and friends..
*/
if (sc->nr_to_scan && !(sc->gfp_mask & __GFP_FS))
return -1;
if (!(sc->gfp_mask & __GFP_FS))
return SHRINK_STOP;
if (!grab_super_passive(sb))
return -1;
return SHRINK_STOP;
if (sb->s_op->nr_cached_objects)
fs_objects = sb->s_op->nr_cached_objects(sb);
fs_objects = sb->s_op->nr_cached_objects(sb, sc->nid);
total_objects = sb->s_nr_dentry_unused +
sb->s_nr_inodes_unused + fs_objects + 1;
inodes = list_lru_count_node(&sb->s_inode_lru, sc->nid);
dentries = list_lru_count_node(&sb->s_dentry_lru, sc->nid);
total_objects = dentries + inodes + fs_objects + 1;
if (sc->nr_to_scan) {
int dentries;
int inodes;
/* proportion the scan between the caches */
dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
/* proportion the scan between the caches */
dentries = (sc->nr_to_scan * sb->s_nr_dentry_unused) /
total_objects;
inodes = (sc->nr_to_scan * sb->s_nr_inodes_unused) /
total_objects;
if (fs_objects)
fs_objects = (sc->nr_to_scan * fs_objects) /
total_objects;
/*
* prune the dcache first as the icache is pinned by it, then
* prune the icache, followed by the filesystem specific caches
*/
prune_dcache_sb(sb, dentries);
prune_icache_sb(sb, inodes);
/*
* prune the dcache first as the icache is pinned by it, then
* prune the icache, followed by the filesystem specific caches
*/
freed = prune_dcache_sb(sb, dentries, sc->nid);
freed += prune_icache_sb(sb, inodes, sc->nid);
if (fs_objects && sb->s_op->free_cached_objects) {
sb->s_op->free_cached_objects(sb, fs_objects);
fs_objects = sb->s_op->nr_cached_objects(sb);
}
total_objects = sb->s_nr_dentry_unused +
sb->s_nr_inodes_unused + fs_objects;
if (fs_objects) {
fs_objects = mult_frac(sc->nr_to_scan, fs_objects,
total_objects);
freed += sb->s_op->free_cached_objects(sb, fs_objects,
sc->nid);
}
total_objects = (total_objects / 100) * sysctl_vfs_cache_pressure;
drop_super(sb);
return freed;
}
static unsigned long super_cache_count(struct shrinker *shrink,
struct shrink_control *sc)
{
struct super_block *sb;
long total_objects = 0;
sb = container_of(shrink, struct super_block, s_shrink);
if (!grab_super_passive(sb))
return 0;
if (sb->s_op && sb->s_op->nr_cached_objects)
total_objects = sb->s_op->nr_cached_objects(sb,
sc->nid);
total_objects += list_lru_count_node(&sb->s_dentry_lru,
sc->nid);
total_objects += list_lru_count_node(&sb->s_inode_lru,
sc->nid);
total_objects = vfs_pressure_ratio(total_objects);
drop_super(sb);
return total_objects;
}
@ -175,9 +195,12 @@ static struct super_block *alloc_super(struct file_system_type *type, int flags)
INIT_HLIST_NODE(&s->s_instances);
INIT_HLIST_BL_HEAD(&s->s_anon);
INIT_LIST_HEAD(&s->s_inodes);
INIT_LIST_HEAD(&s->s_dentry_lru);
INIT_LIST_HEAD(&s->s_inode_lru);
spin_lock_init(&s->s_inode_lru_lock);
if (list_lru_init(&s->s_dentry_lru))
goto err_out;
if (list_lru_init(&s->s_inode_lru))
goto err_out_dentry_lru;
INIT_LIST_HEAD(&s->s_mounts);
init_rwsem(&s->s_umount);
lockdep_set_class(&s->s_umount, &type->s_umount_key);
@ -210,11 +233,16 @@ static struct super_block *alloc_super(struct file_system_type *type, int flags)
s->cleancache_poolid = -1;
s->s_shrink.seeks = DEFAULT_SEEKS;
s->s_shrink.shrink = prune_super;
s->s_shrink.scan_objects = super_cache_scan;
s->s_shrink.count_objects = super_cache_count;
s->s_shrink.batch = 1024;
s->s_shrink.flags = SHRINKER_NUMA_AWARE;
}
out:
return s;
err_out_dentry_lru:
list_lru_destroy(&s->s_dentry_lru);
err_out:
security_sb_free(s);
#ifdef CONFIG_SMP
@ -295,6 +323,9 @@ void deactivate_locked_super(struct super_block *s)
/* caches are now gone, we can safely kill the shrinker now */
unregister_shrinker(&s->s_shrink);
list_lru_destroy(&s->s_dentry_lru);
list_lru_destroy(&s->s_inode_lru);
put_filesystem(fs);
put_super(s);
} else {

View File

@ -277,18 +277,25 @@ static int kick_a_thread(void)
return 0;
}
int ubifs_shrinker(struct shrinker *shrink, struct shrink_control *sc)
unsigned long ubifs_shrink_count(struct shrinker *shrink,
struct shrink_control *sc)
{
int nr = sc->nr_to_scan;
int freed, contention = 0;
long clean_zn_cnt = atomic_long_read(&ubifs_clean_zn_cnt);
if (nr == 0)
/*
* Due to the way UBIFS updates the clean znode counter it may
* temporarily be negative.
*/
return clean_zn_cnt >= 0 ? clean_zn_cnt : 1;
/*
* Due to the way UBIFS updates the clean znode counter it may
* temporarily be negative.
*/
return clean_zn_cnt >= 0 ? clean_zn_cnt : 1;
}
unsigned long ubifs_shrink_scan(struct shrinker *shrink,
struct shrink_control *sc)
{
unsigned long nr = sc->nr_to_scan;
int contention = 0;
unsigned long freed;
long clean_zn_cnt = atomic_long_read(&ubifs_clean_zn_cnt);
if (!clean_zn_cnt) {
/*
@ -316,10 +323,10 @@ int ubifs_shrinker(struct shrinker *shrink, struct shrink_control *sc)
if (!freed && contention) {
dbg_tnc("freed nothing, but contention");
return -1;
return SHRINK_STOP;
}
out:
dbg_tnc("%d znodes were freed, requested %d", freed, nr);
dbg_tnc("%lu znodes were freed, requested %lu", freed, nr);
return freed;
}

View File

@ -49,7 +49,8 @@ struct kmem_cache *ubifs_inode_slab;
/* UBIFS TNC shrinker description */
static struct shrinker ubifs_shrinker_info = {
.shrink = ubifs_shrinker,
.scan_objects = ubifs_shrink_scan,
.count_objects = ubifs_shrink_count,
.seeks = DEFAULT_SEEKS,
};

View File

@ -1624,7 +1624,10 @@ int ubifs_tnc_start_commit(struct ubifs_info *c, struct ubifs_zbranch *zroot);
int ubifs_tnc_end_commit(struct ubifs_info *c);
/* shrinker.c */
int ubifs_shrinker(struct shrinker *shrink, struct shrink_control *sc);
unsigned long ubifs_shrink_scan(struct shrinker *shrink,
struct shrink_control *sc);
unsigned long ubifs_shrink_count(struct shrinker *shrink,
struct shrink_control *sc);
/* commit.c */
int ubifs_bg_thread(void *info);

View File

@ -80,54 +80,6 @@ xfs_buf_vmap_len(
return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
}
/*
* xfs_buf_lru_add - add a buffer to the LRU.
*
* The LRU takes a new reference to the buffer so that it will only be freed
* once the shrinker takes the buffer off the LRU.
*/
STATIC void
xfs_buf_lru_add(
struct xfs_buf *bp)
{
struct xfs_buftarg *btp = bp->b_target;
spin_lock(&btp->bt_lru_lock);
if (list_empty(&bp->b_lru)) {
atomic_inc(&bp->b_hold);
list_add_tail(&bp->b_lru, &btp->bt_lru);
btp->bt_lru_nr++;
bp->b_lru_flags &= ~_XBF_LRU_DISPOSE;
}
spin_unlock(&btp->bt_lru_lock);
}
/*
* xfs_buf_lru_del - remove a buffer from the LRU
*
* The unlocked check is safe here because it only occurs when there are not
* b_lru_ref counts left on the inode under the pag->pag_buf_lock. it is there
* to optimise the shrinker removing the buffer from the LRU and calling
* xfs_buf_free(). i.e. it removes an unnecessary round trip on the
* bt_lru_lock.
*/
STATIC void
xfs_buf_lru_del(
struct xfs_buf *bp)
{
struct xfs_buftarg *btp = bp->b_target;
if (list_empty(&bp->b_lru))
return;
spin_lock(&btp->bt_lru_lock);
if (!list_empty(&bp->b_lru)) {
list_del_init(&bp->b_lru);
btp->bt_lru_nr--;
}
spin_unlock(&btp->bt_lru_lock);
}
/*
* When we mark a buffer stale, we remove the buffer from the LRU and clear the
* b_lru_ref count so that the buffer is freed immediately when the buffer
@ -151,20 +103,14 @@ xfs_buf_stale(
*/
bp->b_flags &= ~_XBF_DELWRI_Q;
atomic_set(&(bp)->b_lru_ref, 0);
if (!list_empty(&bp->b_lru)) {
struct xfs_buftarg *btp = bp->b_target;
spin_lock(&bp->b_lock);
atomic_set(&bp->b_lru_ref, 0);
if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
(list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
atomic_dec(&bp->b_hold);
spin_lock(&btp->bt_lru_lock);
if (!list_empty(&bp->b_lru) &&
!(bp->b_lru_flags & _XBF_LRU_DISPOSE)) {
list_del_init(&bp->b_lru);
btp->bt_lru_nr--;
atomic_dec(&bp->b_hold);
}
spin_unlock(&btp->bt_lru_lock);
}
ASSERT(atomic_read(&bp->b_hold) >= 1);
spin_unlock(&bp->b_lock);
}
static int
@ -228,6 +174,7 @@ _xfs_buf_alloc(
INIT_LIST_HEAD(&bp->b_list);
RB_CLEAR_NODE(&bp->b_rbnode);
sema_init(&bp->b_sema, 0); /* held, no waiters */
spin_lock_init(&bp->b_lock);
XB_SET_OWNER(bp);
bp->b_target = target;
bp->b_flags = flags;
@ -917,12 +864,33 @@ xfs_buf_rele(
ASSERT(atomic_read(&bp->b_hold) > 0);
if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) {
if (!(bp->b_flags & XBF_STALE) &&
atomic_read(&bp->b_lru_ref)) {
xfs_buf_lru_add(bp);
spin_lock(&bp->b_lock);
if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
/*
* If the buffer is added to the LRU take a new
* reference to the buffer for the LRU and clear the
* (now stale) dispose list state flag
*/
if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
bp->b_state &= ~XFS_BSTATE_DISPOSE;
atomic_inc(&bp->b_hold);
}
spin_unlock(&bp->b_lock);
spin_unlock(&pag->pag_buf_lock);
} else {
xfs_buf_lru_del(bp);
/*
* most of the time buffers will already be removed from
* the LRU, so optimise that case by checking for the
* XFS_BSTATE_DISPOSE flag indicating the last list the
* buffer was on was the disposal list
*/
if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
} else {
ASSERT(list_empty(&bp->b_lru));
}
spin_unlock(&bp->b_lock);
ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
spin_unlock(&pag->pag_buf_lock);
@ -1502,83 +1470,121 @@ xfs_buf_iomove(
* returned. These buffers will have an elevated hold count, so wait on those
* while freeing all the buffers only held by the LRU.
*/
static enum lru_status
xfs_buftarg_wait_rele(
struct list_head *item,
spinlock_t *lru_lock,
void *arg)
{
struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
struct list_head *dispose = arg;
if (atomic_read(&bp->b_hold) > 1) {
/* need to wait, so skip it this pass */
trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
return LRU_SKIP;
}
if (!spin_trylock(&bp->b_lock))
return LRU_SKIP;
/*
* clear the LRU reference count so the buffer doesn't get
* ignored in xfs_buf_rele().
*/
atomic_set(&bp->b_lru_ref, 0);
bp->b_state |= XFS_BSTATE_DISPOSE;
list_move(item, dispose);
spin_unlock(&bp->b_lock);
return LRU_REMOVED;
}
void
xfs_wait_buftarg(
struct xfs_buftarg *btp)
{
struct xfs_buf *bp;
LIST_HEAD(dispose);
int loop = 0;
restart:
spin_lock(&btp->bt_lru_lock);
while (!list_empty(&btp->bt_lru)) {
bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
if (atomic_read(&bp->b_hold) > 1) {
trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
list_move_tail(&bp->b_lru, &btp->bt_lru);
spin_unlock(&btp->bt_lru_lock);
delay(100);
goto restart;
/* loop until there is nothing left on the lru list. */
while (list_lru_count(&btp->bt_lru)) {
list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
&dispose, LONG_MAX);
while (!list_empty(&dispose)) {
struct xfs_buf *bp;
bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
list_del_init(&bp->b_lru);
xfs_buf_rele(bp);
}
/*
* clear the LRU reference count so the buffer doesn't get
* ignored in xfs_buf_rele().
*/
atomic_set(&bp->b_lru_ref, 0);
spin_unlock(&btp->bt_lru_lock);
xfs_buf_rele(bp);
spin_lock(&btp->bt_lru_lock);
if (loop++ != 0)
delay(100);
}
spin_unlock(&btp->bt_lru_lock);
}
int
xfs_buftarg_shrink(
static enum lru_status
xfs_buftarg_isolate(
struct list_head *item,
spinlock_t *lru_lock,
void *arg)
{
struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
struct list_head *dispose = arg;
/*
* we are inverting the lru lock/bp->b_lock here, so use a trylock.
* If we fail to get the lock, just skip it.
*/
if (!spin_trylock(&bp->b_lock))
return LRU_SKIP;
/*
* Decrement the b_lru_ref count unless the value is already
* zero. If the value is already zero, we need to reclaim the
* buffer, otherwise it gets another trip through the LRU.
*/
if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
spin_unlock(&bp->b_lock);
return LRU_ROTATE;
}
bp->b_state |= XFS_BSTATE_DISPOSE;
list_move(item, dispose);
spin_unlock(&bp->b_lock);
return LRU_REMOVED;
}
static unsigned long
xfs_buftarg_shrink_scan(
struct shrinker *shrink,
struct shrink_control *sc)
{
struct xfs_buftarg *btp = container_of(shrink,
struct xfs_buftarg, bt_shrinker);
struct xfs_buf *bp;
int nr_to_scan = sc->nr_to_scan;
LIST_HEAD(dispose);
unsigned long freed;
unsigned long nr_to_scan = sc->nr_to_scan;
if (!nr_to_scan)
return btp->bt_lru_nr;
spin_lock(&btp->bt_lru_lock);
while (!list_empty(&btp->bt_lru)) {
if (nr_to_scan-- <= 0)
break;
bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
/*
* Decrement the b_lru_ref count unless the value is already
* zero. If the value is already zero, we need to reclaim the
* buffer, otherwise it gets another trip through the LRU.
*/
if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
list_move_tail(&bp->b_lru, &btp->bt_lru);
continue;
}
/*
* remove the buffer from the LRU now to avoid needing another
* lock round trip inside xfs_buf_rele().
*/
list_move(&bp->b_lru, &dispose);
btp->bt_lru_nr--;
bp->b_lru_flags |= _XBF_LRU_DISPOSE;
}
spin_unlock(&btp->bt_lru_lock);
freed = list_lru_walk_node(&btp->bt_lru, sc->nid, xfs_buftarg_isolate,
&dispose, &nr_to_scan);
while (!list_empty(&dispose)) {
struct xfs_buf *bp;
bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
list_del_init(&bp->b_lru);
xfs_buf_rele(bp);
}
return btp->bt_lru_nr;
return freed;
}
static unsigned long
xfs_buftarg_shrink_count(
struct shrinker *shrink,
struct shrink_control *sc)
{
struct xfs_buftarg *btp = container_of(shrink,
struct xfs_buftarg, bt_shrinker);
return list_lru_count_node(&btp->bt_lru, sc->nid);
}
void
@ -1587,6 +1593,7 @@ xfs_free_buftarg(
struct xfs_buftarg *btp)
{
unregister_shrinker(&btp->bt_shrinker);
list_lru_destroy(&btp->bt_lru);
if (mp->m_flags & XFS_MOUNT_BARRIER)
xfs_blkdev_issue_flush(btp);
@ -1660,12 +1667,16 @@ xfs_alloc_buftarg(
if (!btp->bt_bdi)
goto error;
INIT_LIST_HEAD(&btp->bt_lru);
spin_lock_init(&btp->bt_lru_lock);
if (xfs_setsize_buftarg_early(btp, bdev))
goto error;
btp->bt_shrinker.shrink = xfs_buftarg_shrink;
if (list_lru_init(&btp->bt_lru))
goto error;
btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
btp->bt_shrinker.seeks = DEFAULT_SEEKS;
btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
register_shrinker(&btp->bt_shrinker);
return btp;

View File

@ -25,6 +25,7 @@
#include <linux/fs.h>
#include <linux/buffer_head.h>
#include <linux/uio.h>
#include <linux/list_lru.h>
/*
* Base types
@ -59,7 +60,6 @@ typedef enum {
#define _XBF_KMEM (1 << 21)/* backed by heap memory */
#define _XBF_DELWRI_Q (1 << 22)/* buffer on a delwri queue */
#define _XBF_COMPOUND (1 << 23)/* compound buffer */
#define _XBF_LRU_DISPOSE (1 << 24)/* buffer being discarded */
typedef unsigned int xfs_buf_flags_t;
@ -78,8 +78,12 @@ typedef unsigned int xfs_buf_flags_t;
{ _XBF_PAGES, "PAGES" }, \
{ _XBF_KMEM, "KMEM" }, \
{ _XBF_DELWRI_Q, "DELWRI_Q" }, \
{ _XBF_COMPOUND, "COMPOUND" }, \
{ _XBF_LRU_DISPOSE, "LRU_DISPOSE" }
{ _XBF_COMPOUND, "COMPOUND" }
/*
* Internal state flags.
*/
#define XFS_BSTATE_DISPOSE (1 << 0) /* buffer being discarded */
typedef struct xfs_buftarg {
dev_t bt_dev;
@ -92,9 +96,7 @@ typedef struct xfs_buftarg {
/* LRU control structures */
struct shrinker bt_shrinker;
struct list_head bt_lru;
spinlock_t bt_lru_lock;
unsigned int bt_lru_nr;
struct list_lru bt_lru;
} xfs_buftarg_t;
struct xfs_buf;
@ -137,7 +139,8 @@ typedef struct xfs_buf {
* bt_lru_lock and not by b_sema
*/
struct list_head b_lru; /* lru list */
xfs_buf_flags_t b_lru_flags; /* internal lru status flags */
spinlock_t b_lock; /* internal state lock */
unsigned int b_state; /* internal state flags */
wait_queue_head_t b_waiters; /* unpin waiters */
struct list_head b_list;
struct xfs_perag *b_pag; /* contains rbtree root */

View File

@ -940,13 +940,8 @@ xfs_qm_dqput_final(
trace_xfs_dqput_free(dqp);
mutex_lock(&qi->qi_lru_lock);
if (list_empty(&dqp->q_lru)) {
list_add_tail(&dqp->q_lru, &qi->qi_lru_list);
qi->qi_lru_count++;
if (list_lru_add(&qi->qi_lru, &dqp->q_lru))
XFS_STATS_INC(xs_qm_dquot_unused);
}
mutex_unlock(&qi->qi_lru_lock);
/*
* If we just added a udquot to the freelist, then we want to release

View File

@ -1167,7 +1167,7 @@ xfs_reclaim_inodes(
* them to be cleaned, which we hope will not be very long due to the
* background walker having already kicked the IO off on those dirty inodes.
*/
void
long
xfs_reclaim_inodes_nr(
struct xfs_mount *mp,
int nr_to_scan)
@ -1176,7 +1176,7 @@ xfs_reclaim_inodes_nr(
xfs_reclaim_work_queue(mp);
xfs_ail_push_all(mp->m_ail);
xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan);
return xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan);
}
/*

View File

@ -46,7 +46,7 @@ void xfs_reclaim_worker(struct work_struct *work);
int xfs_reclaim_inodes(struct xfs_mount *mp, int mode);
int xfs_reclaim_inodes_count(struct xfs_mount *mp);
void xfs_reclaim_inodes_nr(struct xfs_mount *mp, int nr_to_scan);
long xfs_reclaim_inodes_nr(struct xfs_mount *mp, int nr_to_scan);
void xfs_inode_set_reclaim_tag(struct xfs_inode *ip);

View File

@ -51,8 +51,9 @@
*/
STATIC int xfs_qm_init_quotainos(xfs_mount_t *);
STATIC int xfs_qm_init_quotainfo(xfs_mount_t *);
STATIC int xfs_qm_shake(struct shrinker *, struct shrink_control *);
STATIC void xfs_qm_dqfree_one(struct xfs_dquot *dqp);
/*
* We use the batch lookup interface to iterate over the dquots as it
* currently is the only interface into the radix tree code that allows
@ -203,12 +204,9 @@ xfs_qm_dqpurge(
* We move dquots to the freelist as soon as their reference count
* hits zero, so it really should be on the freelist here.
*/
mutex_lock(&qi->qi_lru_lock);
ASSERT(!list_empty(&dqp->q_lru));
list_del_init(&dqp->q_lru);
qi->qi_lru_count--;
list_lru_del(&qi->qi_lru, &dqp->q_lru);
XFS_STATS_DEC(xs_qm_dquot_unused);
mutex_unlock(&qi->qi_lru_lock);
xfs_qm_dqdestroy(dqp);
@ -680,6 +678,143 @@ xfs_qm_calc_dquots_per_chunk(
return ndquots;
}
struct xfs_qm_isolate {
struct list_head buffers;
struct list_head dispose;
};
static enum lru_status
xfs_qm_dquot_isolate(
struct list_head *item,
spinlock_t *lru_lock,
void *arg)
{
struct xfs_dquot *dqp = container_of(item,
struct xfs_dquot, q_lru);
struct xfs_qm_isolate *isol = arg;
if (!xfs_dqlock_nowait(dqp))
goto out_miss_busy;
/*
* This dquot has acquired a reference in the meantime remove it from
* the freelist and try again.
*/
if (dqp->q_nrefs) {
xfs_dqunlock(dqp);
XFS_STATS_INC(xs_qm_dqwants);
trace_xfs_dqreclaim_want(dqp);
list_del_init(&dqp->q_lru);
XFS_STATS_DEC(xs_qm_dquot_unused);
return LRU_REMOVED;
}
/*
* If the dquot is dirty, flush it. If it's already being flushed, just
* skip it so there is time for the IO to complete before we try to
* reclaim it again on the next LRU pass.
*/
if (!xfs_dqflock_nowait(dqp)) {
xfs_dqunlock(dqp);
goto out_miss_busy;
}
if (XFS_DQ_IS_DIRTY(dqp)) {
struct xfs_buf *bp = NULL;
int error;
trace_xfs_dqreclaim_dirty(dqp);
/* we have to drop the LRU lock to flush the dquot */
spin_unlock(lru_lock);
error = xfs_qm_dqflush(dqp, &bp);
if (error) {
xfs_warn(dqp->q_mount, "%s: dquot %p flush failed",
__func__, dqp);
goto out_unlock_dirty;
}
xfs_buf_delwri_queue(bp, &isol->buffers);
xfs_buf_relse(bp);
goto out_unlock_dirty;
}
xfs_dqfunlock(dqp);
/*
* Prevent lookups now that we are past the point of no return.
*/
dqp->dq_flags |= XFS_DQ_FREEING;
xfs_dqunlock(dqp);
ASSERT(dqp->q_nrefs == 0);
list_move_tail(&dqp->q_lru, &isol->dispose);
XFS_STATS_DEC(xs_qm_dquot_unused);
trace_xfs_dqreclaim_done(dqp);
XFS_STATS_INC(xs_qm_dqreclaims);
return LRU_REMOVED;
out_miss_busy:
trace_xfs_dqreclaim_busy(dqp);
XFS_STATS_INC(xs_qm_dqreclaim_misses);
return LRU_SKIP;
out_unlock_dirty:
trace_xfs_dqreclaim_busy(dqp);
XFS_STATS_INC(xs_qm_dqreclaim_misses);
xfs_dqunlock(dqp);
spin_lock(lru_lock);
return LRU_RETRY;
}
static unsigned long
xfs_qm_shrink_scan(
struct shrinker *shrink,
struct shrink_control *sc)
{
struct xfs_quotainfo *qi = container_of(shrink,
struct xfs_quotainfo, qi_shrinker);
struct xfs_qm_isolate isol;
unsigned long freed;
int error;
unsigned long nr_to_scan = sc->nr_to_scan;
if ((sc->gfp_mask & (__GFP_FS|__GFP_WAIT)) != (__GFP_FS|__GFP_WAIT))
return 0;
INIT_LIST_HEAD(&isol.buffers);
INIT_LIST_HEAD(&isol.dispose);
freed = list_lru_walk_node(&qi->qi_lru, sc->nid, xfs_qm_dquot_isolate, &isol,
&nr_to_scan);
error = xfs_buf_delwri_submit(&isol.buffers);
if (error)
xfs_warn(NULL, "%s: dquot reclaim failed", __func__);
while (!list_empty(&isol.dispose)) {
struct xfs_dquot *dqp;
dqp = list_first_entry(&isol.dispose, struct xfs_dquot, q_lru);
list_del_init(&dqp->q_lru);
xfs_qm_dqfree_one(dqp);
}
return freed;
}
static unsigned long
xfs_qm_shrink_count(
struct shrinker *shrink,
struct shrink_control *sc)
{
struct xfs_quotainfo *qi = container_of(shrink,
struct xfs_quotainfo, qi_shrinker);
return list_lru_count_node(&qi->qi_lru, sc->nid);
}
/*
* This initializes all the quota information that's kept in the
* mount structure
@ -696,11 +831,18 @@ xfs_qm_init_quotainfo(
qinf = mp->m_quotainfo = kmem_zalloc(sizeof(xfs_quotainfo_t), KM_SLEEP);
if ((error = list_lru_init(&qinf->qi_lru))) {
kmem_free(qinf);
mp->m_quotainfo = NULL;
return error;
}
/*
* See if quotainodes are setup, and if not, allocate them,
* and change the superblock accordingly.
*/
if ((error = xfs_qm_init_quotainos(mp))) {
list_lru_destroy(&qinf->qi_lru);
kmem_free(qinf);
mp->m_quotainfo = NULL;
return error;
@ -711,10 +853,6 @@ xfs_qm_init_quotainfo(
INIT_RADIX_TREE(&qinf->qi_pquota_tree, GFP_NOFS);
mutex_init(&qinf->qi_tree_lock);
INIT_LIST_HEAD(&qinf->qi_lru_list);
qinf->qi_lru_count = 0;
mutex_init(&qinf->qi_lru_lock);
/* mutex used to serialize quotaoffs */
mutex_init(&qinf->qi_quotaofflock);
@ -779,8 +917,10 @@ xfs_qm_init_quotainfo(
qinf->qi_rtbwarnlimit = XFS_QM_RTBWARNLIMIT;
}
qinf->qi_shrinker.shrink = xfs_qm_shake;
qinf->qi_shrinker.count_objects = xfs_qm_shrink_count;
qinf->qi_shrinker.scan_objects = xfs_qm_shrink_scan;
qinf->qi_shrinker.seeks = DEFAULT_SEEKS;
qinf->qi_shrinker.flags = SHRINKER_NUMA_AWARE;
register_shrinker(&qinf->qi_shrinker);
return 0;
}
@ -801,6 +941,7 @@ xfs_qm_destroy_quotainfo(
ASSERT(qi != NULL);
unregister_shrinker(&qi->qi_shrinker);
list_lru_destroy(&qi->qi_lru);
if (qi->qi_uquotaip) {
IRELE(qi->qi_uquotaip);
@ -1599,132 +1740,6 @@ xfs_qm_dqfree_one(
xfs_qm_dqdestroy(dqp);
}
STATIC void
xfs_qm_dqreclaim_one(
struct xfs_dquot *dqp,
struct list_head *buffer_list,
struct list_head *dispose_list)
{
struct xfs_mount *mp = dqp->q_mount;
struct xfs_quotainfo *qi = mp->m_quotainfo;
int error;
if (!xfs_dqlock_nowait(dqp))
goto out_move_tail;
/*
* This dquot has acquired a reference in the meantime remove it from
* the freelist and try again.
*/
if (dqp->q_nrefs) {
xfs_dqunlock(dqp);
trace_xfs_dqreclaim_want(dqp);
XFS_STATS_INC(xs_qm_dqwants);
list_del_init(&dqp->q_lru);
qi->qi_lru_count--;
XFS_STATS_DEC(xs_qm_dquot_unused);
return;
}
/*
* Try to grab the flush lock. If this dquot is in the process of
* getting flushed to disk, we don't want to reclaim it.
*/
if (!xfs_dqflock_nowait(dqp))
goto out_unlock_move_tail;
if (XFS_DQ_IS_DIRTY(dqp)) {
struct xfs_buf *bp = NULL;
trace_xfs_dqreclaim_dirty(dqp);
error = xfs_qm_dqflush(dqp, &bp);
if (error) {
xfs_warn(mp, "%s: dquot %p flush failed",
__func__, dqp);
goto out_unlock_move_tail;
}
xfs_buf_delwri_queue(bp, buffer_list);
xfs_buf_relse(bp);
/*
* Give the dquot another try on the freelist, as the
* flushing will take some time.
*/
goto out_unlock_move_tail;
}
xfs_dqfunlock(dqp);
/*
* Prevent lookups now that we are past the point of no return.
*/
dqp->dq_flags |= XFS_DQ_FREEING;
xfs_dqunlock(dqp);
ASSERT(dqp->q_nrefs == 0);
list_move_tail(&dqp->q_lru, dispose_list);
qi->qi_lru_count--;
XFS_STATS_DEC(xs_qm_dquot_unused);
trace_xfs_dqreclaim_done(dqp);
XFS_STATS_INC(xs_qm_dqreclaims);
return;
/*
* Move the dquot to the tail of the list so that we don't spin on it.
*/
out_unlock_move_tail:
xfs_dqunlock(dqp);
out_move_tail:
list_move_tail(&dqp->q_lru, &qi->qi_lru_list);
trace_xfs_dqreclaim_busy(dqp);
XFS_STATS_INC(xs_qm_dqreclaim_misses);
}
STATIC int
xfs_qm_shake(
struct shrinker *shrink,
struct shrink_control *sc)
{
struct xfs_quotainfo *qi =
container_of(shrink, struct xfs_quotainfo, qi_shrinker);
int nr_to_scan = sc->nr_to_scan;
LIST_HEAD (buffer_list);
LIST_HEAD (dispose_list);
struct xfs_dquot *dqp;
int error;
if ((sc->gfp_mask & (__GFP_FS|__GFP_WAIT)) != (__GFP_FS|__GFP_WAIT))
return 0;
if (!nr_to_scan)
goto out;
mutex_lock(&qi->qi_lru_lock);
while (!list_empty(&qi->qi_lru_list)) {
if (nr_to_scan-- <= 0)
break;
dqp = list_first_entry(&qi->qi_lru_list, struct xfs_dquot,
q_lru);
xfs_qm_dqreclaim_one(dqp, &buffer_list, &dispose_list);
}
mutex_unlock(&qi->qi_lru_lock);
error = xfs_buf_delwri_submit(&buffer_list);
if (error)
xfs_warn(NULL, "%s: dquot reclaim failed", __func__);
while (!list_empty(&dispose_list)) {
dqp = list_first_entry(&dispose_list, struct xfs_dquot, q_lru);
list_del_init(&dqp->q_lru);
xfs_qm_dqfree_one(dqp);
}
out:
return (qi->qi_lru_count / 100) * sysctl_vfs_cache_pressure;
}
/*
* Start a transaction and write the incore superblock changes to
* disk. flags parameter indicates which fields have changed.

View File

@ -49,9 +49,7 @@ typedef struct xfs_quotainfo {
struct xfs_inode *qi_uquotaip; /* user quota inode */
struct xfs_inode *qi_gquotaip; /* group quota inode */
struct xfs_inode *qi_pquotaip; /* project quota inode */
struct list_head qi_lru_list;
struct mutex qi_lru_lock;
int qi_lru_count;
struct list_lru qi_lru;
int qi_dquots;
time_t qi_btimelimit; /* limit for blks timer */
time_t qi_itimelimit; /* limit for inodes timer */

View File

@ -1535,19 +1535,21 @@ xfs_fs_mount(
return mount_bdev(fs_type, flags, dev_name, data, xfs_fs_fill_super);
}
static int
static long
xfs_fs_nr_cached_objects(
struct super_block *sb)
struct super_block *sb,
int nid)
{
return xfs_reclaim_inodes_count(XFS_M(sb));
}
static void
static long
xfs_fs_free_cached_objects(
struct super_block *sb,
int nr_to_scan)
long nr_to_scan,
int nid)
{
xfs_reclaim_inodes_nr(XFS_M(sb), nr_to_scan);
return xfs_reclaim_inodes_nr(XFS_M(sb), nr_to_scan);
}
static const struct super_operations xfs_super_operations = {

View File

@ -55,11 +55,11 @@ struct qstr {
#define hashlen_len(hashlen) ((u32)((hashlen) >> 32))
struct dentry_stat_t {
int nr_dentry;
int nr_unused;
int age_limit; /* age in seconds */
int want_pages; /* pages requested by system */
int dummy[2];
long nr_dentry;
long nr_unused;
long age_limit; /* age in seconds */
long want_pages; /* pages requested by system */
long dummy[2];
};
extern struct dentry_stat_t dentry_stat;
@ -395,4 +395,8 @@ static inline bool d_mountpoint(const struct dentry *dentry)
extern int sysctl_vfs_cache_pressure;
static inline unsigned long vfs_pressure_ratio(unsigned long val)
{
return mult_frac(val, sysctl_vfs_cache_pressure, 100);
}
#endif /* __LINUX_DCACHE_H */

View File

@ -10,6 +10,7 @@
#include <linux/stat.h>
#include <linux/cache.h>
#include <linux/list.h>
#include <linux/list_lru.h>
#include <linux/llist.h>
#include <linux/radix-tree.h>
#include <linux/rbtree.h>
@ -1269,15 +1270,6 @@ struct super_block {
struct list_head s_files;
#endif
struct list_head s_mounts; /* list of mounts; _not_ for fs use */
/* s_dentry_lru, s_nr_dentry_unused protected by dcache.c lru locks */
struct list_head s_dentry_lru; /* unused dentry lru */
int s_nr_dentry_unused; /* # of dentry on lru */
/* s_inode_lru_lock protects s_inode_lru and s_nr_inodes_unused */
spinlock_t s_inode_lru_lock ____cacheline_aligned_in_smp;
struct list_head s_inode_lru; /* unused inode lru */
int s_nr_inodes_unused; /* # of inodes on lru */
struct block_device *s_bdev;
struct backing_dev_info *s_bdi;
struct mtd_info *s_mtd;
@ -1331,11 +1323,14 @@ struct super_block {
/* AIO completions deferred from interrupt context */
struct workqueue_struct *s_dio_done_wq;
};
/* superblock cache pruning functions */
extern void prune_icache_sb(struct super_block *sb, int nr_to_scan);
extern void prune_dcache_sb(struct super_block *sb, int nr_to_scan);
/*
* Keep the lru lists last in the structure so they always sit on their
* own individual cachelines.
*/
struct list_lru s_dentry_lru ____cacheline_aligned_in_smp;
struct list_lru s_inode_lru ____cacheline_aligned_in_smp;
};
extern struct timespec current_fs_time(struct super_block *sb);
@ -1629,8 +1624,8 @@ struct super_operations {
ssize_t (*quota_write)(struct super_block *, int, const char *, size_t, loff_t);
#endif
int (*bdev_try_to_free_page)(struct super_block*, struct page*, gfp_t);
int (*nr_cached_objects)(struct super_block *);
void (*free_cached_objects)(struct super_block *, int);
long (*nr_cached_objects)(struct super_block *, int);
long (*free_cached_objects)(struct super_block *, long, int);
};
/*
@ -2494,7 +2489,6 @@ extern const struct file_operations generic_ro_fops;
#define special_file(m) (S_ISCHR(m)||S_ISBLK(m)||S_ISFIFO(m)||S_ISSOCK(m))
extern int vfs_readlink(struct dentry *, char __user *, int, const char *);
extern int vfs_follow_link(struct nameidata *, const char *);
extern int page_readlink(struct dentry *, char __user *, int);
extern void *page_follow_link_light(struct dentry *, struct nameidata *);
extern void page_put_link(struct dentry *, struct nameidata *, void *);

131
include/linux/list_lru.h Normal file
View File

@ -0,0 +1,131 @@
/*
* Copyright (c) 2013 Red Hat, Inc. and Parallels Inc. All rights reserved.
* Authors: David Chinner and Glauber Costa
*
* Generic LRU infrastructure
*/
#ifndef _LRU_LIST_H
#define _LRU_LIST_H
#include <linux/list.h>
#include <linux/nodemask.h>
/* list_lru_walk_cb has to always return one of those */
enum lru_status {
LRU_REMOVED, /* item removed from list */
LRU_ROTATE, /* item referenced, give another pass */
LRU_SKIP, /* item cannot be locked, skip */
LRU_RETRY, /* item not freeable. May drop the lock
internally, but has to return locked. */
};
struct list_lru_node {
spinlock_t lock;
struct list_head list;
/* kept as signed so we can catch imbalance bugs */
long nr_items;
} ____cacheline_aligned_in_smp;
struct list_lru {
struct list_lru_node *node;
nodemask_t active_nodes;
};
void list_lru_destroy(struct list_lru *lru);
int list_lru_init(struct list_lru *lru);
/**
* list_lru_add: add an element to the lru list's tail
* @list_lru: the lru pointer
* @item: the item to be added.
*
* If the element is already part of a list, this function returns doing
* nothing. Therefore the caller does not need to keep state about whether or
* not the element already belongs in the list and is allowed to lazy update
* it. Note however that this is valid for *a* list, not *this* list. If
* the caller organize itself in a way that elements can be in more than
* one type of list, it is up to the caller to fully remove the item from
* the previous list (with list_lru_del() for instance) before moving it
* to @list_lru
*
* Return value: true if the list was updated, false otherwise
*/
bool list_lru_add(struct list_lru *lru, struct list_head *item);
/**
* list_lru_del: delete an element to the lru list
* @list_lru: the lru pointer
* @item: the item to be deleted.
*
* This function works analogously as list_lru_add in terms of list
* manipulation. The comments about an element already pertaining to
* a list are also valid for list_lru_del.
*
* Return value: true if the list was updated, false otherwise
*/
bool list_lru_del(struct list_lru *lru, struct list_head *item);
/**
* list_lru_count_node: return the number of objects currently held by @lru
* @lru: the lru pointer.
* @nid: the node id to count from.
*
* Always return a non-negative number, 0 for empty lists. There is no
* guarantee that the list is not updated while the count is being computed.
* Callers that want such a guarantee need to provide an outer lock.
*/
unsigned long list_lru_count_node(struct list_lru *lru, int nid);
static inline unsigned long list_lru_count(struct list_lru *lru)
{
long count = 0;
int nid;
for_each_node_mask(nid, lru->active_nodes)
count += list_lru_count_node(lru, nid);
return count;
}
typedef enum lru_status
(*list_lru_walk_cb)(struct list_head *item, spinlock_t *lock, void *cb_arg);
/**
* list_lru_walk_node: walk a list_lru, isolating and disposing freeable items.
* @lru: the lru pointer.
* @nid: the node id to scan from.
* @isolate: callback function that is resposible for deciding what to do with
* the item currently being scanned
* @cb_arg: opaque type that will be passed to @isolate
* @nr_to_walk: how many items to scan.
*
* This function will scan all elements in a particular list_lru, calling the
* @isolate callback for each of those items, along with the current list
* spinlock and a caller-provided opaque. The @isolate callback can choose to
* drop the lock internally, but *must* return with the lock held. The callback
* will return an enum lru_status telling the list_lru infrastructure what to
* do with the object being scanned.
*
* Please note that nr_to_walk does not mean how many objects will be freed,
* just how many objects will be scanned.
*
* Return value: the number of objects effectively removed from the LRU.
*/
unsigned long list_lru_walk_node(struct list_lru *lru, int nid,
list_lru_walk_cb isolate, void *cb_arg,
unsigned long *nr_to_walk);
static inline unsigned long
list_lru_walk(struct list_lru *lru, list_lru_walk_cb isolate,
void *cb_arg, unsigned long nr_to_walk)
{
long isolated = 0;
int nid;
for_each_node_mask(nid, lru->active_nodes) {
isolated += list_lru_walk_node(lru, nid, isolate,
cb_arg, &nr_to_walk);
if (nr_to_walk <= 0)
break;
}
return isolated;
}
#endif /* _LRU_LIST_H */

View File

@ -4,39 +4,67 @@
/*
* This struct is used to pass information from page reclaim to the shrinkers.
* We consolidate the values for easier extention later.
*
* The 'gfpmask' refers to the allocation we are currently trying to
* fulfil.
*/
struct shrink_control {
gfp_t gfp_mask;
/* How many slab objects shrinker() should scan and try to reclaim */
/*
* How many objects scan_objects should scan and try to reclaim.
* This is reset before every call, so it is safe for callees
* to modify.
*/
unsigned long nr_to_scan;
/* shrink from these nodes */
nodemask_t nodes_to_scan;
/* current node being shrunk (for NUMA aware shrinkers) */
int nid;
};
#define SHRINK_STOP (~0UL)
/*
* A callback you can register to apply pressure to ageable caches.
*
* 'sc' is passed shrink_control which includes a count 'nr_to_scan'
* and a 'gfpmask'. It should look through the least-recently-used
* 'nr_to_scan' entries and attempt to free them up. It should return
* the number of objects which remain in the cache. If it returns -1, it means
* it cannot do any scanning at this time (eg. there is a risk of deadlock).
* @count_objects should return the number of freeable items in the cache. If
* there are no objects to free or the number of freeable items cannot be
* determined, it should return 0. No deadlock checks should be done during the
* count callback - the shrinker relies on aggregating scan counts that couldn't
* be executed due to potential deadlocks to be run at a later call when the
* deadlock condition is no longer pending.
*
* The 'gfpmask' refers to the allocation we are currently trying to
* fulfil.
* @scan_objects will only be called if @count_objects returned a non-zero
* value for the number of freeable objects. The callout should scan the cache
* and attempt to free items from the cache. It should then return the number
* of objects freed during the scan, or SHRINK_STOP if progress cannot be made
* due to potential deadlocks. If SHRINK_STOP is returned, then no further
* attempts to call the @scan_objects will be made from the current reclaim
* context.
*
* Note that 'shrink' will be passed nr_to_scan == 0 when the VM is
* querying the cache size, so a fastpath for that case is appropriate.
* @flags determine the shrinker abilities, like numa awareness
*/
struct shrinker {
int (*shrink)(struct shrinker *, struct shrink_control *sc);
unsigned long (*count_objects)(struct shrinker *,
struct shrink_control *sc);
unsigned long (*scan_objects)(struct shrinker *,
struct shrink_control *sc);
int seeks; /* seeks to recreate an obj */
long batch; /* reclaim batch size, 0 = default */
unsigned long flags;
/* These are for internal use */
struct list_head list;
atomic_long_t nr_in_batch; /* objs pending delete */
/* objs pending delete, per node */
atomic_long_t *nr_deferred;
};
#define DEFAULT_SEEKS 2 /* A good number if you don't know better. */
extern void register_shrinker(struct shrinker *);
/* Flags */
#define SHRINKER_NUMA_AWARE (1 << 0)
extern int register_shrinker(struct shrinker *);
extern void unregister_shrinker(struct shrinker *);
#endif

View File

@ -202,7 +202,7 @@ TRACE_EVENT(mm_shrink_slab_start,
TP_fast_assign(
__entry->shr = shr;
__entry->shrink = shr->shrink;
__entry->shrink = shr->scan_objects;
__entry->nr_objects_to_shrink = nr_objects_to_shrink;
__entry->gfp_flags = sc->gfp_mask;
__entry->pgs_scanned = pgs_scanned;
@ -241,7 +241,7 @@ TRACE_EVENT(mm_shrink_slab_end,
TP_fast_assign(
__entry->shr = shr;
__entry->shrink = shr->shrink;
__entry->shrink = shr->scan_objects;
__entry->unused_scan = unused_scan_cnt;
__entry->new_scan = new_scan_cnt;
__entry->retval = shrinker_retval;

View File

@ -49,9 +49,9 @@ struct files_stat_struct {
};
struct inodes_stat_t {
int nr_inodes;
int nr_unused;
int dummy[5]; /* padding for sysctl ABI compatibility */
long nr_inodes;
long nr_unused;
long dummy[5]; /* padding for sysctl ABI compatibility */
};

View File

@ -1471,14 +1471,14 @@ static struct ctl_table fs_table[] = {
{
.procname = "inode-nr",
.data = &inodes_stat,
.maxlen = 2*sizeof(int),
.maxlen = 2*sizeof(long),
.mode = 0444,
.proc_handler = proc_nr_inodes,
},
{
.procname = "inode-state",
.data = &inodes_stat,
.maxlen = 7*sizeof(int),
.maxlen = 7*sizeof(long),
.mode = 0444,
.proc_handler = proc_nr_inodes,
},
@ -1508,7 +1508,7 @@ static struct ctl_table fs_table[] = {
{
.procname = "dentry-state",
.data = &dentry_stat,
.maxlen = 6*sizeof(int),
.maxlen = 6*sizeof(long),
.mode = 0444,
.proc_handler = proc_nr_dentry,
},

View File

@ -17,7 +17,7 @@ obj-y := filemap.o mempool.o oom_kill.o fadvise.o \
util.o mmzone.o vmstat.o backing-dev.o \
mm_init.o mmu_context.o percpu.o slab_common.o \
compaction.o balloon_compaction.o \
interval_tree.o $(mmu-y)
interval_tree.o list_lru.o $(mmu-y)
obj-y += init-mm.o

View File

@ -211,24 +211,29 @@ static void put_huge_zero_page(void)
BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
}
static int shrink_huge_zero_page(struct shrinker *shrink,
struct shrink_control *sc)
static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
struct shrink_control *sc)
{
if (!sc->nr_to_scan)
/* we can free zero page only if last reference remains */
return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
/* we can free zero page only if last reference remains */
return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
}
static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
struct shrink_control *sc)
{
if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
struct page *zero_page = xchg(&huge_zero_page, NULL);
BUG_ON(zero_page == NULL);
__free_page(zero_page);
return HPAGE_PMD_NR;
}
return 0;
}
static struct shrinker huge_zero_page_shrinker = {
.shrink = shrink_huge_zero_page,
.count_objects = shrink_huge_zero_page_count,
.scan_objects = shrink_huge_zero_page_scan,
.seeks = DEFAULT_SEEKS,
};

139
mm/list_lru.c Normal file
View File

@ -0,0 +1,139 @@
/*
* Copyright (c) 2013 Red Hat, Inc. and Parallels Inc. All rights reserved.
* Authors: David Chinner and Glauber Costa
*
* Generic LRU infrastructure
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/mm.h>
#include <linux/list_lru.h>
#include <linux/slab.h>
bool list_lru_add(struct list_lru *lru, struct list_head *item)
{
int nid = page_to_nid(virt_to_page(item));
struct list_lru_node *nlru = &lru->node[nid];
spin_lock(&nlru->lock);
WARN_ON_ONCE(nlru->nr_items < 0);
if (list_empty(item)) {
list_add_tail(item, &nlru->list);
if (nlru->nr_items++ == 0)
node_set(nid, lru->active_nodes);
spin_unlock(&nlru->lock);
return true;
}
spin_unlock(&nlru->lock);
return false;
}
EXPORT_SYMBOL_GPL(list_lru_add);
bool list_lru_del(struct list_lru *lru, struct list_head *item)
{
int nid = page_to_nid(virt_to_page(item));
struct list_lru_node *nlru = &lru->node[nid];
spin_lock(&nlru->lock);
if (!list_empty(item)) {
list_del_init(item);
if (--nlru->nr_items == 0)
node_clear(nid, lru->active_nodes);
WARN_ON_ONCE(nlru->nr_items < 0);
spin_unlock(&nlru->lock);
return true;
}
spin_unlock(&nlru->lock);
return false;
}
EXPORT_SYMBOL_GPL(list_lru_del);
unsigned long
list_lru_count_node(struct list_lru *lru, int nid)
{
unsigned long count = 0;
struct list_lru_node *nlru = &lru->node[nid];
spin_lock(&nlru->lock);
WARN_ON_ONCE(nlru->nr_items < 0);
count += nlru->nr_items;
spin_unlock(&nlru->lock);
return count;
}
EXPORT_SYMBOL_GPL(list_lru_count_node);
unsigned long
list_lru_walk_node(struct list_lru *lru, int nid, list_lru_walk_cb isolate,
void *cb_arg, unsigned long *nr_to_walk)
{
struct list_lru_node *nlru = &lru->node[nid];
struct list_head *item, *n;
unsigned long isolated = 0;
spin_lock(&nlru->lock);
restart:
list_for_each_safe(item, n, &nlru->list) {
enum lru_status ret;
/*
* decrement nr_to_walk first so that we don't livelock if we
* get stuck on large numbesr of LRU_RETRY items
*/
if (--(*nr_to_walk) == 0)
break;
ret = isolate(item, &nlru->lock, cb_arg);
switch (ret) {
case LRU_REMOVED:
if (--nlru->nr_items == 0)
node_clear(nid, lru->active_nodes);
WARN_ON_ONCE(nlru->nr_items < 0);
isolated++;
break;
case LRU_ROTATE:
list_move_tail(item, &nlru->list);
break;
case LRU_SKIP:
break;
case LRU_RETRY:
/*
* The lru lock has been dropped, our list traversal is
* now invalid and so we have to restart from scratch.
*/
goto restart;
default:
BUG();
}
}
spin_unlock(&nlru->lock);
return isolated;
}
EXPORT_SYMBOL_GPL(list_lru_walk_node);
int list_lru_init(struct list_lru *lru)
{
int i;
size_t size = sizeof(*lru->node) * nr_node_ids;
lru->node = kzalloc(size, GFP_KERNEL);
if (!lru->node)
return -ENOMEM;
nodes_clear(lru->active_nodes);
for (i = 0; i < nr_node_ids; i++) {
spin_lock_init(&lru->node[i].lock);
INIT_LIST_HEAD(&lru->node[i].list);
lru->node[i].nr_items = 0;
}
return 0;
}
EXPORT_SYMBOL_GPL(list_lru_init);
void list_lru_destroy(struct list_lru *lru)
{
kfree(lru->node);
}
EXPORT_SYMBOL_GPL(list_lru_destroy);

View File

@ -248,10 +248,12 @@ void shake_page(struct page *p, int access)
*/
if (access) {
int nr;
int nid = page_to_nid(p);
do {
struct shrink_control shrink = {
.gfp_mask = GFP_KERNEL,
};
node_set(nid, shrink.nodes_to_scan);
nr = shrink_slab(&shrink, 1000, 1000);
if (page_count(p) == 1)

View File

@ -174,14 +174,31 @@ static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
}
/*
* Add a shrinker callback to be called from the vm
* Add a shrinker callback to be called from the vm.
*/
void register_shrinker(struct shrinker *shrinker)
int register_shrinker(struct shrinker *shrinker)
{
atomic_long_set(&shrinker->nr_in_batch, 0);
size_t size = sizeof(*shrinker->nr_deferred);
/*
* If we only have one possible node in the system anyway, save
* ourselves the trouble and disable NUMA aware behavior. This way we
* will save memory and some small loop time later.
*/
if (nr_node_ids == 1)
shrinker->flags &= ~SHRINKER_NUMA_AWARE;
if (shrinker->flags & SHRINKER_NUMA_AWARE)
size *= nr_node_ids;
shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
if (!shrinker->nr_deferred)
return -ENOMEM;
down_write(&shrinker_rwsem);
list_add_tail(&shrinker->list, &shrinker_list);
up_write(&shrinker_rwsem);
return 0;
}
EXPORT_SYMBOL(register_shrinker);
@ -196,15 +213,102 @@ void unregister_shrinker(struct shrinker *shrinker)
}
EXPORT_SYMBOL(unregister_shrinker);
static inline int do_shrinker_shrink(struct shrinker *shrinker,
struct shrink_control *sc,
unsigned long nr_to_scan)
#define SHRINK_BATCH 128
static unsigned long
shrink_slab_node(struct shrink_control *shrinkctl, struct shrinker *shrinker,
unsigned long nr_pages_scanned, unsigned long lru_pages)
{
sc->nr_to_scan = nr_to_scan;
return (*shrinker->shrink)(shrinker, sc);
unsigned long freed = 0;
unsigned long long delta;
long total_scan;
long max_pass;
long nr;
long new_nr;
int nid = shrinkctl->nid;
long batch_size = shrinker->batch ? shrinker->batch
: SHRINK_BATCH;
max_pass = shrinker->count_objects(shrinker, shrinkctl);
if (max_pass == 0)
return 0;
/*
* copy the current shrinker scan count into a local variable
* and zero it so that other concurrent shrinker invocations
* don't also do this scanning work.
*/
nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
total_scan = nr;
delta = (4 * nr_pages_scanned) / shrinker->seeks;
delta *= max_pass;
do_div(delta, lru_pages + 1);
total_scan += delta;
if (total_scan < 0) {
printk(KERN_ERR
"shrink_slab: %pF negative objects to delete nr=%ld\n",
shrinker->scan_objects, total_scan);
total_scan = max_pass;
}
/*
* We need to avoid excessive windup on filesystem shrinkers
* due to large numbers of GFP_NOFS allocations causing the
* shrinkers to return -1 all the time. This results in a large
* nr being built up so when a shrink that can do some work
* comes along it empties the entire cache due to nr >>>
* max_pass. This is bad for sustaining a working set in
* memory.
*
* Hence only allow the shrinker to scan the entire cache when
* a large delta change is calculated directly.
*/
if (delta < max_pass / 4)
total_scan = min(total_scan, max_pass / 2);
/*
* Avoid risking looping forever due to too large nr value:
* never try to free more than twice the estimate number of
* freeable entries.
*/
if (total_scan > max_pass * 2)
total_scan = max_pass * 2;
trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
nr_pages_scanned, lru_pages,
max_pass, delta, total_scan);
while (total_scan >= batch_size) {
unsigned long ret;
shrinkctl->nr_to_scan = batch_size;
ret = shrinker->scan_objects(shrinker, shrinkctl);
if (ret == SHRINK_STOP)
break;
freed += ret;
count_vm_events(SLABS_SCANNED, batch_size);
total_scan -= batch_size;
cond_resched();
}
/*
* move the unused scan count back into the shrinker in a
* manner that handles concurrent updates. If we exhausted the
* scan, there is no need to do an update.
*/
if (total_scan > 0)
new_nr = atomic_long_add_return(total_scan,
&shrinker->nr_deferred[nid]);
else
new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
trace_mm_shrink_slab_end(shrinker, freed, nr, new_nr);
return freed;
}
#define SHRINK_BATCH 128
/*
* Call the shrink functions to age shrinkable caches
*
@ -224,115 +328,45 @@ static inline int do_shrinker_shrink(struct shrinker *shrinker,
*
* Returns the number of slab objects which we shrunk.
*/
unsigned long shrink_slab(struct shrink_control *shrink,
unsigned long shrink_slab(struct shrink_control *shrinkctl,
unsigned long nr_pages_scanned,
unsigned long lru_pages)
{
struct shrinker *shrinker;
unsigned long ret = 0;
unsigned long freed = 0;
if (nr_pages_scanned == 0)
nr_pages_scanned = SWAP_CLUSTER_MAX;
if (!down_read_trylock(&shrinker_rwsem)) {
/* Assume we'll be able to shrink next time */
ret = 1;
/*
* If we would return 0, our callers would understand that we
* have nothing else to shrink and give up trying. By returning
* 1 we keep it going and assume we'll be able to shrink next
* time.
*/
freed = 1;
goto out;
}
list_for_each_entry(shrinker, &shrinker_list, list) {
unsigned long long delta;
long total_scan;
long max_pass;
int shrink_ret = 0;
long nr;
long new_nr;
long batch_size = shrinker->batch ? shrinker->batch
: SHRINK_BATCH;
for_each_node_mask(shrinkctl->nid, shrinkctl->nodes_to_scan) {
if (!node_online(shrinkctl->nid))
continue;
max_pass = do_shrinker_shrink(shrinker, shrink, 0);
if (max_pass <= 0)
continue;
/*
* copy the current shrinker scan count into a local variable
* and zero it so that other concurrent shrinker invocations
* don't also do this scanning work.
*/
nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
total_scan = nr;
delta = (4 * nr_pages_scanned) / shrinker->seeks;
delta *= max_pass;
do_div(delta, lru_pages + 1);
total_scan += delta;
if (total_scan < 0) {
printk(KERN_ERR "shrink_slab: %pF negative objects to "
"delete nr=%ld\n",
shrinker->shrink, total_scan);
total_scan = max_pass;
}
/*
* We need to avoid excessive windup on filesystem shrinkers
* due to large numbers of GFP_NOFS allocations causing the
* shrinkers to return -1 all the time. This results in a large
* nr being built up so when a shrink that can do some work
* comes along it empties the entire cache due to nr >>>
* max_pass. This is bad for sustaining a working set in
* memory.
*
* Hence only allow the shrinker to scan the entire cache when
* a large delta change is calculated directly.
*/
if (delta < max_pass / 4)
total_scan = min(total_scan, max_pass / 2);
/*
* Avoid risking looping forever due to too large nr value:
* never try to free more than twice the estimate number of
* freeable entries.
*/
if (total_scan > max_pass * 2)
total_scan = max_pass * 2;
trace_mm_shrink_slab_start(shrinker, shrink, nr,
nr_pages_scanned, lru_pages,
max_pass, delta, total_scan);
while (total_scan >= batch_size) {
int nr_before;
nr_before = do_shrinker_shrink(shrinker, shrink, 0);
shrink_ret = do_shrinker_shrink(shrinker, shrink,
batch_size);
if (shrink_ret == -1)
if (!(shrinker->flags & SHRINKER_NUMA_AWARE) &&
(shrinkctl->nid != 0))
break;
if (shrink_ret < nr_before)
ret += nr_before - shrink_ret;
count_vm_events(SLABS_SCANNED, batch_size);
total_scan -= batch_size;
cond_resched();
freed += shrink_slab_node(shrinkctl, shrinker,
nr_pages_scanned, lru_pages);
}
/*
* move the unused scan count back into the shrinker in a
* manner that handles concurrent updates. If we exhausted the
* scan, there is no need to do an update.
*/
if (total_scan > 0)
new_nr = atomic_long_add_return(total_scan,
&shrinker->nr_in_batch);
else
new_nr = atomic_long_read(&shrinker->nr_in_batch);
trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
}
up_read(&shrinker_rwsem);
out:
cond_resched();
return ret;
return freed;
}
static inline int is_page_cache_freeable(struct page *page)
@ -2368,12 +2402,16 @@ static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
*/
if (global_reclaim(sc)) {
unsigned long lru_pages = 0;
nodes_clear(shrink->nodes_to_scan);
for_each_zone_zonelist(zone, z, zonelist,
gfp_zone(sc->gfp_mask)) {
if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
continue;
lru_pages += zone_reclaimable_pages(zone);
node_set(zone_to_nid(zone),
shrink->nodes_to_scan);
}
shrink_slab(shrink, sc->nr_scanned, lru_pages);
@ -2829,6 +2867,8 @@ static bool kswapd_shrink_zone(struct zone *zone,
return true;
shrink_zone(zone, sc);
nodes_clear(shrink.nodes_to_scan);
node_set(zone_to_nid(zone), shrink.nodes_to_scan);
reclaim_state->reclaimed_slab = 0;
shrink_slab(&shrink, sc->nr_scanned, lru_pages);
@ -3520,10 +3560,9 @@ static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
* number of slab pages and shake the slab until it is reduced
* by the same nr_pages that we used for reclaiming unmapped
* pages.
*
* Note that shrink_slab will free memory on all zones and may
* take a long time.
*/
nodes_clear(shrink.nodes_to_scan);
node_set(zone_to_nid(zone), shrink.nodes_to_scan);
for (;;) {
unsigned long lru_pages = zone_reclaimable_pages(zone);

View File

@ -434,12 +434,13 @@ EXPORT_SYMBOL_GPL(rpcauth_destroy_credcache);
/*
* Remove stale credentials. Avoid sleeping inside the loop.
*/
static int
static long
rpcauth_prune_expired(struct list_head *free, int nr_to_scan)
{
spinlock_t *cache_lock;
struct rpc_cred *cred, *next;
unsigned long expired = jiffies - RPC_AUTH_EXPIRY_MORATORIUM;
long freed = 0;
list_for_each_entry_safe(cred, next, &cred_unused, cr_lru) {
@ -451,10 +452,11 @@ rpcauth_prune_expired(struct list_head *free, int nr_to_scan)
*/
if (time_in_range(cred->cr_expire, expired, jiffies) &&
test_bit(RPCAUTH_CRED_HASHED, &cred->cr_flags) != 0)
return 0;
break;
list_del_init(&cred->cr_lru);
number_cred_unused--;
freed++;
if (atomic_read(&cred->cr_count) != 0)
continue;
@ -467,29 +469,39 @@ rpcauth_prune_expired(struct list_head *free, int nr_to_scan)
}
spin_unlock(cache_lock);
}
return (number_cred_unused / 100) * sysctl_vfs_cache_pressure;
return freed;
}
/*
* Run memory cache shrinker.
*/
static int
rpcauth_cache_shrinker(struct shrinker *shrink, struct shrink_control *sc)
static unsigned long
rpcauth_cache_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
{
LIST_HEAD(free);
int res;
int nr_to_scan = sc->nr_to_scan;
gfp_t gfp_mask = sc->gfp_mask;
unsigned long freed;
if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
return (nr_to_scan == 0) ? 0 : -1;
if ((sc->gfp_mask & GFP_KERNEL) != GFP_KERNEL)
return SHRINK_STOP;
/* nothing left, don't come back */
if (list_empty(&cred_unused))
return 0;
return SHRINK_STOP;
spin_lock(&rpc_credcache_lock);
res = rpcauth_prune_expired(&free, nr_to_scan);
freed = rpcauth_prune_expired(&free, sc->nr_to_scan);
spin_unlock(&rpc_credcache_lock);
rpcauth_destroy_credlist(&free);
return res;
return freed;
}
static unsigned long
rpcauth_cache_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
{
return (number_cred_unused / 100) * sysctl_vfs_cache_pressure;
}
/*
@ -805,7 +817,8 @@ rpcauth_uptodatecred(struct rpc_task *task)
}
static struct shrinker rpc_cred_shrinker = {
.shrink = rpcauth_cache_shrinker,
.count_objects = rpcauth_cache_shrink_count,
.scan_objects = rpcauth_cache_shrink_scan,
.seeks = DEFAULT_SEEKS,
};