x86/xen/time: setup vcpu 0 time info page
In order to support pvclock vdso on xen we need to setup the time info page for vcpu 0 and register the page with Xen using the VCPUOP_register_vcpu_time_memory_area hypercall. This hypercall will also forcefully update the pvti which will set some of the necessary flags for vdso. Afterwards we check if it supports the PVCLOCK_TSC_STABLE_BIT flag which is mandatory for having vdso/vsyscall support. And if so, it will set the cpu 0 pvti that will be later on used when mapping the vdso image. The xen headers are also updated to include the new hypercall for registering the secondary vcpu_time_info struct. Signed-off-by: Joao Martins <joao.m.martins@oracle.com> Reviewed-by: Juergen Gross <jgross@suse.com> Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com> Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
This commit is contained in:
parent
b888808093
commit
2229f70b5b
|
@ -16,6 +16,8 @@
|
|||
|
||||
void xen_arch_pre_suspend(void)
|
||||
{
|
||||
xen_save_time_memory_area();
|
||||
|
||||
if (xen_pv_domain())
|
||||
xen_pv_pre_suspend();
|
||||
}
|
||||
|
@ -26,6 +28,8 @@ void xen_arch_post_suspend(int cancelled)
|
|||
xen_pv_post_suspend(cancelled);
|
||||
else
|
||||
xen_hvm_post_suspend(cancelled);
|
||||
|
||||
xen_restore_time_memory_area();
|
||||
}
|
||||
|
||||
static void xen_vcpu_notify_restore(void *data)
|
||||
|
|
|
@ -370,6 +370,92 @@ static const struct pv_time_ops xen_time_ops __initconst = {
|
|||
.steal_clock = xen_steal_clock,
|
||||
};
|
||||
|
||||
static struct pvclock_vsyscall_time_info *xen_clock __read_mostly;
|
||||
|
||||
void xen_save_time_memory_area(void)
|
||||
{
|
||||
struct vcpu_register_time_memory_area t;
|
||||
int ret;
|
||||
|
||||
if (!xen_clock)
|
||||
return;
|
||||
|
||||
t.addr.v = NULL;
|
||||
|
||||
ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area, 0, &t);
|
||||
if (ret != 0)
|
||||
pr_notice("Cannot save secondary vcpu_time_info (err %d)",
|
||||
ret);
|
||||
else
|
||||
clear_page(xen_clock);
|
||||
}
|
||||
|
||||
void xen_restore_time_memory_area(void)
|
||||
{
|
||||
struct vcpu_register_time_memory_area t;
|
||||
int ret;
|
||||
|
||||
if (!xen_clock)
|
||||
return;
|
||||
|
||||
t.addr.v = &xen_clock->pvti;
|
||||
|
||||
ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area, 0, &t);
|
||||
|
||||
/*
|
||||
* We don't disable VCLOCK_PVCLOCK entirely if it fails to register the
|
||||
* secondary time info with Xen or if we migrated to a host without the
|
||||
* necessary flags. On both of these cases what happens is either
|
||||
* process seeing a zeroed out pvti or seeing no PVCLOCK_TSC_STABLE_BIT
|
||||
* bit set. Userspace checks the latter and if 0, it discards the data
|
||||
* in pvti and fallbacks to a system call for a reliable timestamp.
|
||||
*/
|
||||
if (ret != 0)
|
||||
pr_notice("Cannot restore secondary vcpu_time_info (err %d)",
|
||||
ret);
|
||||
}
|
||||
|
||||
static void xen_setup_vsyscall_time_info(void)
|
||||
{
|
||||
struct vcpu_register_time_memory_area t;
|
||||
struct pvclock_vsyscall_time_info *ti;
|
||||
int ret;
|
||||
|
||||
ti = (struct pvclock_vsyscall_time_info *)get_zeroed_page(GFP_KERNEL);
|
||||
if (!ti)
|
||||
return;
|
||||
|
||||
t.addr.v = &ti->pvti;
|
||||
|
||||
ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area, 0, &t);
|
||||
if (ret) {
|
||||
pr_notice("xen: VCLOCK_PVCLOCK not supported (err %d)\n", ret);
|
||||
free_page((unsigned long)ti);
|
||||
return;
|
||||
}
|
||||
|
||||
/*
|
||||
* If primary time info had this bit set, secondary should too since
|
||||
* it's the same data on both just different memory regions. But we
|
||||
* still check it in case hypervisor is buggy.
|
||||
*/
|
||||
if (!(ti->pvti.flags & PVCLOCK_TSC_STABLE_BIT)) {
|
||||
t.addr.v = NULL;
|
||||
ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area,
|
||||
0, &t);
|
||||
if (!ret)
|
||||
free_page((unsigned long)ti);
|
||||
|
||||
pr_notice("xen: VCLOCK_PVCLOCK not supported (tsc unstable)\n");
|
||||
return;
|
||||
}
|
||||
|
||||
xen_clock = ti;
|
||||
pvclock_set_pvti_cpu0_va(xen_clock);
|
||||
|
||||
xen_clocksource.archdata.vclock_mode = VCLOCK_PVCLOCK;
|
||||
}
|
||||
|
||||
static void __init xen_time_init(void)
|
||||
{
|
||||
struct pvclock_vcpu_time_info *pvti;
|
||||
|
@ -401,8 +487,10 @@ static void __init xen_time_init(void)
|
|||
* bit is supported hence speeding up Xen clocksource.
|
||||
*/
|
||||
pvti = &__this_cpu_read(xen_vcpu)->time;
|
||||
if (pvti->flags & PVCLOCK_TSC_STABLE_BIT)
|
||||
if (pvti->flags & PVCLOCK_TSC_STABLE_BIT) {
|
||||
pvclock_set_flags(PVCLOCK_TSC_STABLE_BIT);
|
||||
xen_setup_vsyscall_time_info();
|
||||
}
|
||||
|
||||
xen_setup_runstate_info(cpu);
|
||||
xen_setup_timer(cpu);
|
||||
|
|
|
@ -69,6 +69,8 @@ void xen_setup_runstate_info(int cpu);
|
|||
void xen_teardown_timer(int cpu);
|
||||
u64 xen_clocksource_read(void);
|
||||
void xen_setup_cpu_clockevents(void);
|
||||
void xen_save_time_memory_area(void);
|
||||
void xen_restore_time_memory_area(void);
|
||||
void __init xen_init_time_ops(void);
|
||||
void __init xen_hvm_init_time_ops(void);
|
||||
|
||||
|
|
|
@ -178,4 +178,46 @@ DEFINE_GUEST_HANDLE_STRUCT(vcpu_register_vcpu_info);
|
|||
|
||||
/* Send an NMI to the specified VCPU. @extra_arg == NULL. */
|
||||
#define VCPUOP_send_nmi 11
|
||||
|
||||
/*
|
||||
* Get the physical ID information for a pinned vcpu's underlying physical
|
||||
* processor. The physical ID informmation is architecture-specific.
|
||||
* On x86: id[31:0]=apic_id, id[63:32]=acpi_id.
|
||||
* This command returns -EINVAL if it is not a valid operation for this VCPU.
|
||||
*/
|
||||
#define VCPUOP_get_physid 12 /* arg == vcpu_get_physid_t */
|
||||
struct vcpu_get_physid {
|
||||
uint64_t phys_id;
|
||||
};
|
||||
DEFINE_GUEST_HANDLE_STRUCT(vcpu_get_physid);
|
||||
#define xen_vcpu_physid_to_x86_apicid(physid) ((uint32_t)(physid))
|
||||
#define xen_vcpu_physid_to_x86_acpiid(physid) ((uint32_t)((physid) >> 32))
|
||||
|
||||
/*
|
||||
* Register a memory location to get a secondary copy of the vcpu time
|
||||
* parameters. The master copy still exists as part of the vcpu shared
|
||||
* memory area, and this secondary copy is updated whenever the master copy
|
||||
* is updated (and using the same versioning scheme for synchronisation).
|
||||
*
|
||||
* The intent is that this copy may be mapped (RO) into userspace so
|
||||
* that usermode can compute system time using the time info and the
|
||||
* tsc. Usermode will see an array of vcpu_time_info structures, one
|
||||
* for each vcpu, and choose the right one by an existing mechanism
|
||||
* which allows it to get the current vcpu number (such as via a
|
||||
* segment limit). It can then apply the normal algorithm to compute
|
||||
* system time from the tsc.
|
||||
*
|
||||
* @extra_arg == pointer to vcpu_register_time_info_memory_area structure.
|
||||
*/
|
||||
#define VCPUOP_register_vcpu_time_memory_area 13
|
||||
DEFINE_GUEST_HANDLE_STRUCT(vcpu_time_info);
|
||||
struct vcpu_register_time_memory_area {
|
||||
union {
|
||||
GUEST_HANDLE(vcpu_time_info) h;
|
||||
struct pvclock_vcpu_time_info *v;
|
||||
uint64_t p;
|
||||
} addr;
|
||||
};
|
||||
DEFINE_GUEST_HANDLE_STRUCT(vcpu_register_time_memory_area);
|
||||
|
||||
#endif /* __XEN_PUBLIC_VCPU_H__ */
|
||||
|
|
Loading…
Reference in New Issue