ALSA: ctxfi - fix PTP address initialization

After hours of debugging, I finally found the reason why some source
and runtime combination does not work. The PTP (page table pages)
address must be aligned. I am not sure how much, but alignment to
PAGE_SIZE is sufficient. Also, use ALSA's page allocation routines
to ensure proper virtual -> physical address translation.

Cc: <stable@kernel.org>
Signed-off-by: Jaroslav Kysela <perex@perex.cz>
This commit is contained in:
Jaroslav Kysela 2010-02-02 19:58:25 +01:00
parent c68db7175f
commit 21956b61f5
3 changed files with 25 additions and 36 deletions

View File

@ -166,18 +166,7 @@ static void ct_unmap_audio_buffer(struct ct_atc *atc, struct ct_atc_pcm *apcm)
static unsigned long atc_get_ptp_phys(struct ct_atc *atc, int index) static unsigned long atc_get_ptp_phys(struct ct_atc *atc, int index)
{ {
struct ct_vm *vm; return atc->vm->get_ptp_phys(atc->vm, index);
void *kvirt_addr;
unsigned long phys_addr;
vm = atc->vm;
kvirt_addr = vm->get_ptp_virt(vm, index);
if (kvirt_addr == NULL)
phys_addr = (~0UL);
else
phys_addr = virt_to_phys(kvirt_addr);
return phys_addr;
} }
static unsigned int convert_format(snd_pcm_format_t snd_format) static unsigned int convert_format(snd_pcm_format_t snd_format)
@ -1669,7 +1658,7 @@ int __devinit ct_atc_create(struct snd_card *card, struct pci_dev *pci,
} }
/* Set up device virtual memory management object */ /* Set up device virtual memory management object */
err = ct_vm_create(&atc->vm); err = ct_vm_create(&atc->vm, pci);
if (err < 0) if (err < 0)
goto error1; goto error1;

View File

@ -138,7 +138,7 @@ ct_vm_map(struct ct_vm *vm, struct snd_pcm_substream *substream, int size)
return NULL; return NULL;
} }
ptp = vm->ptp[0]; ptp = (unsigned long *)vm->ptp[0].area;
pte_start = (block->addr >> CT_PAGE_SHIFT); pte_start = (block->addr >> CT_PAGE_SHIFT);
pages = block->size >> CT_PAGE_SHIFT; pages = block->size >> CT_PAGE_SHIFT;
for (i = 0; i < pages; i++) { for (i = 0; i < pages; i++) {
@ -158,25 +158,25 @@ static void ct_vm_unmap(struct ct_vm *vm, struct ct_vm_block *block)
} }
/* * /* *
* return the host (kmalloced) addr of the @index-th device * return the host physical addr of the @index-th device
* page talbe page on success, or NULL on failure. * page table page on success, or ~0UL on failure.
* The first returned NULL indicates the termination. * The first returned ~0UL indicates the termination.
* */ * */
static void * static dma_addr_t
ct_get_ptp_virt(struct ct_vm *vm, int index) ct_get_ptp_phys(struct ct_vm *vm, int index)
{ {
void *addr; dma_addr_t addr;
addr = (index >= CT_PTP_NUM) ? NULL : vm->ptp[index]; addr = (index >= CT_PTP_NUM) ? ~0UL : vm->ptp[index].addr;
return addr; return addr;
} }
int ct_vm_create(struct ct_vm **rvm) int ct_vm_create(struct ct_vm **rvm, struct pci_dev *pci)
{ {
struct ct_vm *vm; struct ct_vm *vm;
struct ct_vm_block *block; struct ct_vm_block *block;
int i; int i, err = 0;
*rvm = NULL; *rvm = NULL;
@ -188,23 +188,21 @@ int ct_vm_create(struct ct_vm **rvm)
/* Allocate page table pages */ /* Allocate page table pages */
for (i = 0; i < CT_PTP_NUM; i++) { for (i = 0; i < CT_PTP_NUM; i++) {
vm->ptp[i] = kmalloc(PAGE_SIZE, GFP_KERNEL); err = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV,
if (!vm->ptp[i]) snd_dma_pci_data(pci),
PAGE_SIZE, &vm->ptp[i]);
if (err < 0)
break; break;
} }
if (!i) { if (err < 0) {
/* no page table pages are allocated */ /* no page table pages are allocated */
kfree(vm); ct_vm_destroy(vm);
return -ENOMEM; return -ENOMEM;
} }
vm->size = CT_ADDRS_PER_PAGE * i; vm->size = CT_ADDRS_PER_PAGE * i;
/* Initialise remaining ptps */
for (; i < CT_PTP_NUM; i++)
vm->ptp[i] = NULL;
vm->map = ct_vm_map; vm->map = ct_vm_map;
vm->unmap = ct_vm_unmap; vm->unmap = ct_vm_unmap;
vm->get_ptp_virt = ct_get_ptp_virt; vm->get_ptp_phys = ct_get_ptp_phys;
INIT_LIST_HEAD(&vm->unused); INIT_LIST_HEAD(&vm->unused);
INIT_LIST_HEAD(&vm->used); INIT_LIST_HEAD(&vm->used);
block = kzalloc(sizeof(*block), GFP_KERNEL); block = kzalloc(sizeof(*block), GFP_KERNEL);
@ -242,7 +240,7 @@ void ct_vm_destroy(struct ct_vm *vm)
/* free allocated page table pages */ /* free allocated page table pages */
for (i = 0; i < CT_PTP_NUM; i++) for (i = 0; i < CT_PTP_NUM; i++)
kfree(vm->ptp[i]); snd_dma_free_pages(&vm->ptp[i]);
vm->size = 0; vm->size = 0;

View File

@ -22,6 +22,8 @@
#include <linux/mutex.h> #include <linux/mutex.h>
#include <linux/list.h> #include <linux/list.h>
#include <linux/pci.h>
#include <sound/memalloc.h>
/* The chip can handle the page table of 4k pages /* The chip can handle the page table of 4k pages
* (emu20k1 can handle even 8k pages, but we don't use it right now) * (emu20k1 can handle even 8k pages, but we don't use it right now)
@ -41,7 +43,7 @@ struct snd_pcm_substream;
/* Virtual memory management object for card device */ /* Virtual memory management object for card device */
struct ct_vm { struct ct_vm {
void *ptp[CT_PTP_NUM]; /* Device page table pages */ struct snd_dma_buffer ptp[CT_PTP_NUM]; /* Device page table pages */
unsigned int size; /* Available addr space in bytes */ unsigned int size; /* Available addr space in bytes */
struct list_head unused; /* List of unused blocks */ struct list_head unused; /* List of unused blocks */
struct list_head used; /* List of used blocks */ struct list_head used; /* List of used blocks */
@ -52,10 +54,10 @@ struct ct_vm {
int size); int size);
/* Unmap device logical addr area. */ /* Unmap device logical addr area. */
void (*unmap)(struct ct_vm *, struct ct_vm_block *block); void (*unmap)(struct ct_vm *, struct ct_vm_block *block);
void *(*get_ptp_virt)(struct ct_vm *vm, int index); dma_addr_t (*get_ptp_phys)(struct ct_vm *vm, int index);
}; };
int ct_vm_create(struct ct_vm **rvm); int ct_vm_create(struct ct_vm **rvm, struct pci_dev *pci);
void ct_vm_destroy(struct ct_vm *vm); void ct_vm_destroy(struct ct_vm *vm);
#endif /* CTVMEM_H */ #endif /* CTVMEM_H */