Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
This commit is contained in:
commit
218b6a5b23
|
@ -59,20 +59,28 @@ button driver uses the following 3 modes in order not to trigger issues.
|
|||
If the userspace hasn't been prepared to ignore the unreliable "opened"
|
||||
events and the unreliable initial state notification, Linux users can use
|
||||
the following kernel parameters to handle the possible issues:
|
||||
A. button.lid_init_state=open:
|
||||
A. button.lid_init_state=method:
|
||||
When this option is specified, the ACPI button driver reports the
|
||||
initial lid state using the returning value of the _LID control method
|
||||
and whether the "opened"/"closed" events are paired fully relies on the
|
||||
firmware implementation.
|
||||
This option can be used to fix some platforms where the returning value
|
||||
of the _LID control method is reliable but the initial lid state
|
||||
notification is missing.
|
||||
This option is the default behavior during the period the userspace
|
||||
isn't ready to handle the buggy AML tables.
|
||||
B. button.lid_init_state=open:
|
||||
When this option is specified, the ACPI button driver always reports the
|
||||
initial lid state as "opened" and whether the "opened"/"closed" events
|
||||
are paired fully relies on the firmware implementation.
|
||||
This may fix some platforms where the returning value of the _LID
|
||||
control method is not reliable and the initial lid state notification is
|
||||
missing.
|
||||
This option is the default behavior during the period the userspace
|
||||
isn't ready to handle the buggy AML tables.
|
||||
|
||||
If the userspace has been prepared to ignore the unreliable "opened" events
|
||||
and the unreliable initial state notification, Linux users should always
|
||||
use the following kernel parameter:
|
||||
B. button.lid_init_state=ignore:
|
||||
C. button.lid_init_state=ignore:
|
||||
When this option is specified, the ACPI button driver never reports the
|
||||
initial lid state and there is a compensation mechanism implemented to
|
||||
ensure that the reliable "closed" notifications can always be delievered
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
.. |struct cpufreq_policy| replace:: :c:type:`struct cpufreq_policy <cpufreq_policy>`
|
||||
.. |intel_pstate| replace:: :doc:`intel_pstate <intel_pstate>`
|
||||
|
||||
=======================
|
||||
CPU Performance Scaling
|
||||
|
@ -75,7 +76,7 @@ feedback registers, as that information is typically specific to the hardware
|
|||
interface it comes from and may not be easily represented in an abstract,
|
||||
platform-independent way. For this reason, ``CPUFreq`` allows scaling drivers
|
||||
to bypass the governor layer and implement their own performance scaling
|
||||
algorithms. That is done by the ``intel_pstate`` scaling driver.
|
||||
algorithms. That is done by the |intel_pstate| scaling driver.
|
||||
|
||||
|
||||
``CPUFreq`` Policy Objects
|
||||
|
@ -174,13 +175,13 @@ necessary to restart the scaling governor so that it can take the new online CPU
|
|||
into account. That is achieved by invoking the governor's ``->stop`` and
|
||||
``->start()`` callbacks, in this order, for the entire policy.
|
||||
|
||||
As mentioned before, the ``intel_pstate`` scaling driver bypasses the scaling
|
||||
As mentioned before, the |intel_pstate| scaling driver bypasses the scaling
|
||||
governor layer of ``CPUFreq`` and provides its own P-state selection algorithms.
|
||||
Consequently, if ``intel_pstate`` is used, scaling governors are not attached to
|
||||
Consequently, if |intel_pstate| is used, scaling governors are not attached to
|
||||
new policy objects. Instead, the driver's ``->setpolicy()`` callback is invoked
|
||||
to register per-CPU utilization update callbacks for each policy. These
|
||||
callbacks are invoked by the CPU scheduler in the same way as for scaling
|
||||
governors, but in the ``intel_pstate`` case they both determine the P-state to
|
||||
governors, but in the |intel_pstate| case they both determine the P-state to
|
||||
use and change the hardware configuration accordingly in one go from scheduler
|
||||
context.
|
||||
|
||||
|
@ -257,7 +258,7 @@ are the following:
|
|||
|
||||
``scaling_available_governors``
|
||||
List of ``CPUFreq`` scaling governors present in the kernel that can
|
||||
be attached to this policy or (if the ``intel_pstate`` scaling driver is
|
||||
be attached to this policy or (if the |intel_pstate| scaling driver is
|
||||
in use) list of scaling algorithms provided by the driver that can be
|
||||
applied to this policy.
|
||||
|
||||
|
@ -274,7 +275,7 @@ are the following:
|
|||
the CPU is actually running at (due to hardware design and other
|
||||
limitations).
|
||||
|
||||
Some scaling drivers (e.g. ``intel_pstate``) attempt to provide
|
||||
Some scaling drivers (e.g. |intel_pstate|) attempt to provide
|
||||
information more precisely reflecting the current CPU frequency through
|
||||
this attribute, but that still may not be the exact current CPU
|
||||
frequency as seen by the hardware at the moment.
|
||||
|
@ -284,13 +285,13 @@ are the following:
|
|||
|
||||
``scaling_governor``
|
||||
The scaling governor currently attached to this policy or (if the
|
||||
``intel_pstate`` scaling driver is in use) the scaling algorithm
|
||||
|intel_pstate| scaling driver is in use) the scaling algorithm
|
||||
provided by the driver that is currently applied to this policy.
|
||||
|
||||
This attribute is read-write and writing to it will cause a new scaling
|
||||
governor to be attached to this policy or a new scaling algorithm
|
||||
provided by the scaling driver to be applied to it (in the
|
||||
``intel_pstate`` case), as indicated by the string written to this
|
||||
|intel_pstate| case), as indicated by the string written to this
|
||||
attribute (which must be one of the names listed by the
|
||||
``scaling_available_governors`` attribute described above).
|
||||
|
||||
|
@ -619,7 +620,7 @@ This file is located under :file:`/sys/devices/system/cpu/cpufreq/` and controls
|
|||
the "boost" setting for the whole system. It is not present if the underlying
|
||||
scaling driver does not support the frequency boost mechanism (or supports it,
|
||||
but provides a driver-specific interface for controlling it, like
|
||||
``intel_pstate``).
|
||||
|intel_pstate|).
|
||||
|
||||
If the value in this file is 1, the frequency boost mechanism is enabled. This
|
||||
means that either the hardware can be put into states in which it is able to
|
||||
|
|
|
@ -6,6 +6,7 @@ Power Management
|
|||
:maxdepth: 2
|
||||
|
||||
cpufreq
|
||||
intel_pstate
|
||||
|
||||
.. only:: subproject and html
|
||||
|
||||
|
|
|
@ -0,0 +1,755 @@
|
|||
===============================================
|
||||
``intel_pstate`` CPU Performance Scaling Driver
|
||||
===============================================
|
||||
|
||||
::
|
||||
|
||||
Copyright (c) 2017 Intel Corp., Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
||||
|
||||
|
||||
General Information
|
||||
===================
|
||||
|
||||
``intel_pstate`` is a part of the
|
||||
:doc:`CPU performance scaling subsystem <cpufreq>` in the Linux kernel
|
||||
(``CPUFreq``). It is a scaling driver for the Sandy Bridge and later
|
||||
generations of Intel processors. Note, however, that some of those processors
|
||||
may not be supported. [To understand ``intel_pstate`` it is necessary to know
|
||||
how ``CPUFreq`` works in general, so this is the time to read :doc:`cpufreq` if
|
||||
you have not done that yet.]
|
||||
|
||||
For the processors supported by ``intel_pstate``, the P-state concept is broader
|
||||
than just an operating frequency or an operating performance point (see the
|
||||
`LinuxCon Europe 2015 presentation by Kristen Accardi <LCEU2015_>`_ for more
|
||||
information about that). For this reason, the representation of P-states used
|
||||
by ``intel_pstate`` internally follows the hardware specification (for details
|
||||
refer to `Intel® 64 and IA-32 Architectures Software Developer’s Manual
|
||||
Volume 3: System Programming Guide <SDM_>`_). However, the ``CPUFreq`` core
|
||||
uses frequencies for identifying operating performance points of CPUs and
|
||||
frequencies are involved in the user space interface exposed by it, so
|
||||
``intel_pstate`` maps its internal representation of P-states to frequencies too
|
||||
(fortunately, that mapping is unambiguous). At the same time, it would not be
|
||||
practical for ``intel_pstate`` to supply the ``CPUFreq`` core with a table of
|
||||
available frequencies due to the possible size of it, so the driver does not do
|
||||
that. Some functionality of the core is limited by that.
|
||||
|
||||
Since the hardware P-state selection interface used by ``intel_pstate`` is
|
||||
available at the logical CPU level, the driver always works with individual
|
||||
CPUs. Consequently, if ``intel_pstate`` is in use, every ``CPUFreq`` policy
|
||||
object corresponds to one logical CPU and ``CPUFreq`` policies are effectively
|
||||
equivalent to CPUs. In particular, this means that they become "inactive" every
|
||||
time the corresponding CPU is taken offline and need to be re-initialized when
|
||||
it goes back online.
|
||||
|
||||
``intel_pstate`` is not modular, so it cannot be unloaded, which means that the
|
||||
only way to pass early-configuration-time parameters to it is via the kernel
|
||||
command line. However, its configuration can be adjusted via ``sysfs`` to a
|
||||
great extent. In some configurations it even is possible to unregister it via
|
||||
``sysfs`` which allows another ``CPUFreq`` scaling driver to be loaded and
|
||||
registered (see `below <status_attr_>`_).
|
||||
|
||||
|
||||
Operation Modes
|
||||
===============
|
||||
|
||||
``intel_pstate`` can operate in three different modes: in the active mode with
|
||||
or without hardware-managed P-states support and in the passive mode. Which of
|
||||
them will be in effect depends on what kernel command line options are used and
|
||||
on the capabilities of the processor.
|
||||
|
||||
Active Mode
|
||||
-----------
|
||||
|
||||
This is the default operation mode of ``intel_pstate``. If it works in this
|
||||
mode, the ``scaling_driver`` policy attribute in ``sysfs`` for all ``CPUFreq``
|
||||
policies contains the string "intel_pstate".
|
||||
|
||||
In this mode the driver bypasses the scaling governors layer of ``CPUFreq`` and
|
||||
provides its own scaling algorithms for P-state selection. Those algorithms
|
||||
can be applied to ``CPUFreq`` policies in the same way as generic scaling
|
||||
governors (that is, through the ``scaling_governor`` policy attribute in
|
||||
``sysfs``). [Note that different P-state selection algorithms may be chosen for
|
||||
different policies, but that is not recommended.]
|
||||
|
||||
They are not generic scaling governors, but their names are the same as the
|
||||
names of some of those governors. Moreover, confusingly enough, they generally
|
||||
do not work in the same way as the generic governors they share the names with.
|
||||
For example, the ``powersave`` P-state selection algorithm provided by
|
||||
``intel_pstate`` is not a counterpart of the generic ``powersave`` governor
|
||||
(roughly, it corresponds to the ``schedutil`` and ``ondemand`` governors).
|
||||
|
||||
There are two P-state selection algorithms provided by ``intel_pstate`` in the
|
||||
active mode: ``powersave`` and ``performance``. The way they both operate
|
||||
depends on whether or not the hardware-managed P-states (HWP) feature has been
|
||||
enabled in the processor and possibly on the processor model.
|
||||
|
||||
Which of the P-state selection algorithms is used by default depends on the
|
||||
:c:macro:`CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE` kernel configuration option.
|
||||
Namely, if that option is set, the ``performance`` algorithm will be used by
|
||||
default, and the other one will be used by default if it is not set.
|
||||
|
||||
Active Mode With HWP
|
||||
~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
If the processor supports the HWP feature, it will be enabled during the
|
||||
processor initialization and cannot be disabled after that. It is possible
|
||||
to avoid enabling it by passing the ``intel_pstate=no_hwp`` argument to the
|
||||
kernel in the command line.
|
||||
|
||||
If the HWP feature has been enabled, ``intel_pstate`` relies on the processor to
|
||||
select P-states by itself, but still it can give hints to the processor's
|
||||
internal P-state selection logic. What those hints are depends on which P-state
|
||||
selection algorithm has been applied to the given policy (or to the CPU it
|
||||
corresponds to).
|
||||
|
||||
Even though the P-state selection is carried out by the processor automatically,
|
||||
``intel_pstate`` registers utilization update callbacks with the CPU scheduler
|
||||
in this mode. However, they are not used for running a P-state selection
|
||||
algorithm, but for periodic updates of the current CPU frequency information to
|
||||
be made available from the ``scaling_cur_freq`` policy attribute in ``sysfs``.
|
||||
|
||||
HWP + ``performance``
|
||||
.....................
|
||||
|
||||
In this configuration ``intel_pstate`` will write 0 to the processor's
|
||||
Energy-Performance Preference (EPP) knob (if supported) or its
|
||||
Energy-Performance Bias (EPB) knob (otherwise), which means that the processor's
|
||||
internal P-state selection logic is expected to focus entirely on performance.
|
||||
|
||||
This will override the EPP/EPB setting coming from the ``sysfs`` interface
|
||||
(see `Energy vs Performance Hints`_ below).
|
||||
|
||||
Also, in this configuration the range of P-states available to the processor's
|
||||
internal P-state selection logic is always restricted to the upper boundary
|
||||
(that is, the maximum P-state that the driver is allowed to use).
|
||||
|
||||
HWP + ``powersave``
|
||||
...................
|
||||
|
||||
In this configuration ``intel_pstate`` will set the processor's
|
||||
Energy-Performance Preference (EPP) knob (if supported) or its
|
||||
Energy-Performance Bias (EPB) knob (otherwise) to whatever value it was
|
||||
previously set to via ``sysfs`` (or whatever default value it was
|
||||
set to by the platform firmware). This usually causes the processor's
|
||||
internal P-state selection logic to be less performance-focused.
|
||||
|
||||
Active Mode Without HWP
|
||||
~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
This is the default operation mode for processors that do not support the HWP
|
||||
feature. It also is used by default with the ``intel_pstate=no_hwp`` argument
|
||||
in the kernel command line. However, in this mode ``intel_pstate`` may refuse
|
||||
to work with the given processor if it does not recognize it. [Note that
|
||||
``intel_pstate`` will never refuse to work with any processor with the HWP
|
||||
feature enabled.]
|
||||
|
||||
In this mode ``intel_pstate`` registers utilization update callbacks with the
|
||||
CPU scheduler in order to run a P-state selection algorithm, either
|
||||
``powersave`` or ``performance``, depending on the ``scaling_cur_freq`` policy
|
||||
setting in ``sysfs``. The current CPU frequency information to be made
|
||||
available from the ``scaling_cur_freq`` policy attribute in ``sysfs`` is
|
||||
periodically updated by those utilization update callbacks too.
|
||||
|
||||
``performance``
|
||||
...............
|
||||
|
||||
Without HWP, this P-state selection algorithm is always the same regardless of
|
||||
the processor model and platform configuration.
|
||||
|
||||
It selects the maximum P-state it is allowed to use, subject to limits set via
|
||||
``sysfs``, every time the P-state selection computations are carried out by the
|
||||
driver's utilization update callback for the given CPU (that does not happen
|
||||
more often than every 10 ms), but the hardware configuration will not be changed
|
||||
if the new P-state is the same as the current one.
|
||||
|
||||
This is the default P-state selection algorithm if the
|
||||
:c:macro:`CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE` kernel configuration option
|
||||
is set.
|
||||
|
||||
``powersave``
|
||||
.............
|
||||
|
||||
Without HWP, this P-state selection algorithm generally depends on the
|
||||
processor model and/or the system profile setting in the ACPI tables and there
|
||||
are two variants of it.
|
||||
|
||||
One of them is used with processors from the Atom line and (regardless of the
|
||||
processor model) on platforms with the system profile in the ACPI tables set to
|
||||
"mobile" (laptops mostly), "tablet", "appliance PC", "desktop", or
|
||||
"workstation". It is also used with processors supporting the HWP feature if
|
||||
that feature has not been enabled (that is, with the ``intel_pstate=no_hwp``
|
||||
argument in the kernel command line). It is similar to the algorithm
|
||||
implemented by the generic ``schedutil`` scaling governor except that the
|
||||
utilization metric used by it is based on numbers coming from feedback
|
||||
registers of the CPU. It generally selects P-states proportional to the
|
||||
current CPU utilization, so it is referred to as the "proportional" algorithm.
|
||||
|
||||
The second variant of the ``powersave`` P-state selection algorithm, used in all
|
||||
of the other cases (generally, on processors from the Core line, so it is
|
||||
referred to as the "Core" algorithm), is based on the values read from the APERF
|
||||
and MPERF feedback registers and the previously requested target P-state.
|
||||
It does not really take CPU utilization into account explicitly, but as a rule
|
||||
it causes the CPU P-state to ramp up very quickly in response to increased
|
||||
utilization which is generally desirable in server environments.
|
||||
|
||||
Regardless of the variant, this algorithm is run by the driver's utilization
|
||||
update callback for the given CPU when it is invoked by the CPU scheduler, but
|
||||
not more often than every 10 ms (that can be tweaked via ``debugfs`` in `this
|
||||
particular case <Tuning Interface in debugfs_>`_). Like in the ``performance``
|
||||
case, the hardware configuration is not touched if the new P-state turns out to
|
||||
be the same as the current one.
|
||||
|
||||
This is the default P-state selection algorithm if the
|
||||
:c:macro:`CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE` kernel configuration option
|
||||
is not set.
|
||||
|
||||
Passive Mode
|
||||
------------
|
||||
|
||||
This mode is used if the ``intel_pstate=passive`` argument is passed to the
|
||||
kernel in the command line (it implies the ``intel_pstate=no_hwp`` setting too).
|
||||
Like in the active mode without HWP support, in this mode ``intel_pstate`` may
|
||||
refuse to work with the given processor if it does not recognize it.
|
||||
|
||||
If the driver works in this mode, the ``scaling_driver`` policy attribute in
|
||||
``sysfs`` for all ``CPUFreq`` policies contains the string "intel_cpufreq".
|
||||
Then, the driver behaves like a regular ``CPUFreq`` scaling driver. That is,
|
||||
it is invoked by generic scaling governors when necessary to talk to the
|
||||
hardware in order to change the P-state of a CPU (in particular, the
|
||||
``schedutil`` governor can invoke it directly from scheduler context).
|
||||
|
||||
While in this mode, ``intel_pstate`` can be used with all of the (generic)
|
||||
scaling governors listed by the ``scaling_available_governors`` policy attribute
|
||||
in ``sysfs`` (and the P-state selection algorithms described above are not
|
||||
used). Then, it is responsible for the configuration of policy objects
|
||||
corresponding to CPUs and provides the ``CPUFreq`` core (and the scaling
|
||||
governors attached to the policy objects) with accurate information on the
|
||||
maximum and minimum operating frequencies supported by the hardware (including
|
||||
the so-called "turbo" frequency ranges). In other words, in the passive mode
|
||||
the entire range of available P-states is exposed by ``intel_pstate`` to the
|
||||
``CPUFreq`` core. However, in this mode the driver does not register
|
||||
utilization update callbacks with the CPU scheduler and the ``scaling_cur_freq``
|
||||
information comes from the ``CPUFreq`` core (and is the last frequency selected
|
||||
by the current scaling governor for the given policy).
|
||||
|
||||
|
||||
.. _turbo:
|
||||
|
||||
Turbo P-states Support
|
||||
======================
|
||||
|
||||
In the majority of cases, the entire range of P-states available to
|
||||
``intel_pstate`` can be divided into two sub-ranges that correspond to
|
||||
different types of processor behavior, above and below a boundary that
|
||||
will be referred to as the "turbo threshold" in what follows.
|
||||
|
||||
The P-states above the turbo threshold are referred to as "turbo P-states" and
|
||||
the whole sub-range of P-states they belong to is referred to as the "turbo
|
||||
range". These names are related to the Turbo Boost technology allowing a
|
||||
multicore processor to opportunistically increase the P-state of one or more
|
||||
cores if there is enough power to do that and if that is not going to cause the
|
||||
thermal envelope of the processor package to be exceeded.
|
||||
|
||||
Specifically, if software sets the P-state of a CPU core within the turbo range
|
||||
(that is, above the turbo threshold), the processor is permitted to take over
|
||||
performance scaling control for that core and put it into turbo P-states of its
|
||||
choice going forward. However, that permission is interpreted differently by
|
||||
different processor generations. Namely, the Sandy Bridge generation of
|
||||
processors will never use any P-states above the last one set by software for
|
||||
the given core, even if it is within the turbo range, whereas all of the later
|
||||
processor generations will take it as a license to use any P-states from the
|
||||
turbo range, even above the one set by software. In other words, on those
|
||||
processors setting any P-state from the turbo range will enable the processor
|
||||
to put the given core into all turbo P-states up to and including the maximum
|
||||
supported one as it sees fit.
|
||||
|
||||
One important property of turbo P-states is that they are not sustainable. More
|
||||
precisely, there is no guarantee that any CPUs will be able to stay in any of
|
||||
those states indefinitely, because the power distribution within the processor
|
||||
package may change over time or the thermal envelope it was designed for might
|
||||
be exceeded if a turbo P-state was used for too long.
|
||||
|
||||
In turn, the P-states below the turbo threshold generally are sustainable. In
|
||||
fact, if one of them is set by software, the processor is not expected to change
|
||||
it to a lower one unless in a thermal stress or a power limit violation
|
||||
situation (a higher P-state may still be used if it is set for another CPU in
|
||||
the same package at the same time, for example).
|
||||
|
||||
Some processors allow multiple cores to be in turbo P-states at the same time,
|
||||
but the maximum P-state that can be set for them generally depends on the number
|
||||
of cores running concurrently. The maximum turbo P-state that can be set for 3
|
||||
cores at the same time usually is lower than the analogous maximum P-state for
|
||||
2 cores, which in turn usually is lower than the maximum turbo P-state that can
|
||||
be set for 1 core. The one-core maximum turbo P-state is thus the maximum
|
||||
supported one overall.
|
||||
|
||||
The maximum supported turbo P-state, the turbo threshold (the maximum supported
|
||||
non-turbo P-state) and the minimum supported P-state are specific to the
|
||||
processor model and can be determined by reading the processor's model-specific
|
||||
registers (MSRs). Moreover, some processors support the Configurable TDP
|
||||
(Thermal Design Power) feature and, when that feature is enabled, the turbo
|
||||
threshold effectively becomes a configurable value that can be set by the
|
||||
platform firmware.
|
||||
|
||||
Unlike ``_PSS`` objects in the ACPI tables, ``intel_pstate`` always exposes
|
||||
the entire range of available P-states, including the whole turbo range, to the
|
||||
``CPUFreq`` core and (in the passive mode) to generic scaling governors. This
|
||||
generally causes turbo P-states to be set more often when ``intel_pstate`` is
|
||||
used relative to ACPI-based CPU performance scaling (see `below <acpi-cpufreq_>`_
|
||||
for more information).
|
||||
|
||||
Moreover, since ``intel_pstate`` always knows what the real turbo threshold is
|
||||
(even if the Configurable TDP feature is enabled in the processor), its
|
||||
``no_turbo`` attribute in ``sysfs`` (described `below <no_turbo_attr_>`_) should
|
||||
work as expected in all cases (that is, if set to disable turbo P-states, it
|
||||
always should prevent ``intel_pstate`` from using them).
|
||||
|
||||
|
||||
Processor Support
|
||||
=================
|
||||
|
||||
To handle a given processor ``intel_pstate`` requires a number of different
|
||||
pieces of information on it to be known, including:
|
||||
|
||||
* The minimum supported P-state.
|
||||
|
||||
* The maximum supported `non-turbo P-state <turbo_>`_.
|
||||
|
||||
* Whether or not turbo P-states are supported at all.
|
||||
|
||||
* The maximum supported `one-core turbo P-state <turbo_>`_ (if turbo P-states
|
||||
are supported).
|
||||
|
||||
* The scaling formula to translate the driver's internal representation
|
||||
of P-states into frequencies and the other way around.
|
||||
|
||||
Generally, ways to obtain that information are specific to the processor model
|
||||
or family. Although it often is possible to obtain all of it from the processor
|
||||
itself (using model-specific registers), there are cases in which hardware
|
||||
manuals need to be consulted to get to it too.
|
||||
|
||||
For this reason, there is a list of supported processors in ``intel_pstate`` and
|
||||
the driver initialization will fail if the detected processor is not in that
|
||||
list, unless it supports the `HWP feature <Active Mode_>`_. [The interface to
|
||||
obtain all of the information listed above is the same for all of the processors
|
||||
supporting the HWP feature, which is why they all are supported by
|
||||
``intel_pstate``.]
|
||||
|
||||
|
||||
User Space Interface in ``sysfs``
|
||||
=================================
|
||||
|
||||
Global Attributes
|
||||
-----------------
|
||||
|
||||
``intel_pstate`` exposes several global attributes (files) in ``sysfs`` to
|
||||
control its functionality at the system level. They are located in the
|
||||
``/sys/devices/system/cpu/cpufreq/intel_pstate/`` directory and affect all
|
||||
CPUs.
|
||||
|
||||
Some of them are not present if the ``intel_pstate=per_cpu_perf_limits``
|
||||
argument is passed to the kernel in the command line.
|
||||
|
||||
``max_perf_pct``
|
||||
Maximum P-state the driver is allowed to set in percent of the
|
||||
maximum supported performance level (the highest supported `turbo
|
||||
P-state <turbo_>`_).
|
||||
|
||||
This attribute will not be exposed if the
|
||||
``intel_pstate=per_cpu_perf_limits`` argument is present in the kernel
|
||||
command line.
|
||||
|
||||
``min_perf_pct``
|
||||
Minimum P-state the driver is allowed to set in percent of the
|
||||
maximum supported performance level (the highest supported `turbo
|
||||
P-state <turbo_>`_).
|
||||
|
||||
This attribute will not be exposed if the
|
||||
``intel_pstate=per_cpu_perf_limits`` argument is present in the kernel
|
||||
command line.
|
||||
|
||||
``num_pstates``
|
||||
Number of P-states supported by the processor (between 0 and 255
|
||||
inclusive) including both turbo and non-turbo P-states (see
|
||||
`Turbo P-states Support`_).
|
||||
|
||||
The value of this attribute is not affected by the ``no_turbo``
|
||||
setting described `below <no_turbo_attr_>`_.
|
||||
|
||||
This attribute is read-only.
|
||||
|
||||
``turbo_pct``
|
||||
Ratio of the `turbo range <turbo_>`_ size to the size of the entire
|
||||
range of supported P-states, in percent.
|
||||
|
||||
This attribute is read-only.
|
||||
|
||||
.. _no_turbo_attr:
|
||||
|
||||
``no_turbo``
|
||||
If set (equal to 1), the driver is not allowed to set any turbo P-states
|
||||
(see `Turbo P-states Support`_). If unset (equalt to 0, which is the
|
||||
default), turbo P-states can be set by the driver.
|
||||
[Note that ``intel_pstate`` does not support the general ``boost``
|
||||
attribute (supported by some other scaling drivers) which is replaced
|
||||
by this one.]
|
||||
|
||||
This attrubute does not affect the maximum supported frequency value
|
||||
supplied to the ``CPUFreq`` core and exposed via the policy interface,
|
||||
but it affects the maximum possible value of per-policy P-state limits
|
||||
(see `Interpretation of Policy Attributes`_ below for details).
|
||||
|
||||
.. _status_attr:
|
||||
|
||||
``status``
|
||||
Operation mode of the driver: "active", "passive" or "off".
|
||||
|
||||
"active"
|
||||
The driver is functional and in the `active mode
|
||||
<Active Mode_>`_.
|
||||
|
||||
"passive"
|
||||
The driver is functional and in the `passive mode
|
||||
<Passive Mode_>`_.
|
||||
|
||||
"off"
|
||||
The driver is not functional (it is not registered as a scaling
|
||||
driver with the ``CPUFreq`` core).
|
||||
|
||||
This attribute can be written to in order to change the driver's
|
||||
operation mode or to unregister it. The string written to it must be
|
||||
one of the possible values of it and, if successful, the write will
|
||||
cause the driver to switch over to the operation mode represented by
|
||||
that string - or to be unregistered in the "off" case. [Actually,
|
||||
switching over from the active mode to the passive mode or the other
|
||||
way around causes the driver to be unregistered and registered again
|
||||
with a different set of callbacks, so all of its settings (the global
|
||||
as well as the per-policy ones) are then reset to their default
|
||||
values, possibly depending on the target operation mode.]
|
||||
|
||||
That only is supported in some configurations, though (for example, if
|
||||
the `HWP feature is enabled in the processor <Active Mode With HWP_>`_,
|
||||
the operation mode of the driver cannot be changed), and if it is not
|
||||
supported in the current configuration, writes to this attribute with
|
||||
fail with an appropriate error.
|
||||
|
||||
Interpretation of Policy Attributes
|
||||
-----------------------------------
|
||||
|
||||
The interpretation of some ``CPUFreq`` policy attributes described in
|
||||
:doc:`cpufreq` is special with ``intel_pstate`` as the current scaling driver
|
||||
and it generally depends on the driver's `operation mode <Operation Modes_>`_.
|
||||
|
||||
First of all, the values of the ``cpuinfo_max_freq``, ``cpuinfo_min_freq`` and
|
||||
``scaling_cur_freq`` attributes are produced by applying a processor-specific
|
||||
multiplier to the internal P-state representation used by ``intel_pstate``.
|
||||
Also, the values of the ``scaling_max_freq`` and ``scaling_min_freq``
|
||||
attributes are capped by the frequency corresponding to the maximum P-state that
|
||||
the driver is allowed to set.
|
||||
|
||||
If the ``no_turbo`` `global attribute <no_turbo_attr_>`_ is set, the driver is
|
||||
not allowed to use turbo P-states, so the maximum value of ``scaling_max_freq``
|
||||
and ``scaling_min_freq`` is limited to the maximum non-turbo P-state frequency.
|
||||
Accordingly, setting ``no_turbo`` causes ``scaling_max_freq`` and
|
||||
``scaling_min_freq`` to go down to that value if they were above it before.
|
||||
However, the old values of ``scaling_max_freq`` and ``scaling_min_freq`` will be
|
||||
restored after unsetting ``no_turbo``, unless these attributes have been written
|
||||
to after ``no_turbo`` was set.
|
||||
|
||||
If ``no_turbo`` is not set, the maximum possible value of ``scaling_max_freq``
|
||||
and ``scaling_min_freq`` corresponds to the maximum supported turbo P-state,
|
||||
which also is the value of ``cpuinfo_max_freq`` in either case.
|
||||
|
||||
Next, the following policy attributes have special meaning if
|
||||
``intel_pstate`` works in the `active mode <Active Mode_>`_:
|
||||
|
||||
``scaling_available_governors``
|
||||
List of P-state selection algorithms provided by ``intel_pstate``.
|
||||
|
||||
``scaling_governor``
|
||||
P-state selection algorithm provided by ``intel_pstate`` currently in
|
||||
use with the given policy.
|
||||
|
||||
``scaling_cur_freq``
|
||||
Frequency of the average P-state of the CPU represented by the given
|
||||
policy for the time interval between the last two invocations of the
|
||||
driver's utilization update callback by the CPU scheduler for that CPU.
|
||||
|
||||
The meaning of these attributes in the `passive mode <Passive Mode_>`_ is the
|
||||
same as for other scaling drivers.
|
||||
|
||||
Additionally, the value of the ``scaling_driver`` attribute for ``intel_pstate``
|
||||
depends on the operation mode of the driver. Namely, it is either
|
||||
"intel_pstate" (in the `active mode <Active Mode_>`_) or "intel_cpufreq" (in the
|
||||
`passive mode <Passive Mode_>`_).
|
||||
|
||||
Coordination of P-State Limits
|
||||
------------------------------
|
||||
|
||||
``intel_pstate`` allows P-state limits to be set in two ways: with the help of
|
||||
the ``max_perf_pct`` and ``min_perf_pct`` `global attributes
|
||||
<Global Attributes_>`_ or via the ``scaling_max_freq`` and ``scaling_min_freq``
|
||||
``CPUFreq`` policy attributes. The coordination between those limits is based
|
||||
on the following rules, regardless of the current operation mode of the driver:
|
||||
|
||||
1. All CPUs are affected by the global limits (that is, none of them can be
|
||||
requested to run faster than the global maximum and none of them can be
|
||||
requested to run slower than the global minimum).
|
||||
|
||||
2. Each individual CPU is affected by its own per-policy limits (that is, it
|
||||
cannot be requested to run faster than its own per-policy maximum and it
|
||||
cannot be requested to run slower than its own per-policy minimum).
|
||||
|
||||
3. The global and per-policy limits can be set independently.
|
||||
|
||||
If the `HWP feature is enabled in the processor <Active Mode With HWP_>`_, the
|
||||
resulting effective values are written into its registers whenever the limits
|
||||
change in order to request its internal P-state selection logic to always set
|
||||
P-states within these limits. Otherwise, the limits are taken into account by
|
||||
scaling governors (in the `passive mode <Passive Mode_>`_) and by the driver
|
||||
every time before setting a new P-state for a CPU.
|
||||
|
||||
Additionally, if the ``intel_pstate=per_cpu_perf_limits`` command line argument
|
||||
is passed to the kernel, ``max_perf_pct`` and ``min_perf_pct`` are not exposed
|
||||
at all and the only way to set the limits is by using the policy attributes.
|
||||
|
||||
|
||||
Energy vs Performance Hints
|
||||
---------------------------
|
||||
|
||||
If ``intel_pstate`` works in the `active mode with the HWP feature enabled
|
||||
<Active Mode With HWP_>`_ in the processor, additional attributes are present
|
||||
in every ``CPUFreq`` policy directory in ``sysfs``. They are intended to allow
|
||||
user space to help ``intel_pstate`` to adjust the processor's internal P-state
|
||||
selection logic by focusing it on performance or on energy-efficiency, or
|
||||
somewhere between the two extremes:
|
||||
|
||||
``energy_performance_preference``
|
||||
Current value of the energy vs performance hint for the given policy
|
||||
(or the CPU represented by it).
|
||||
|
||||
The hint can be changed by writing to this attribute.
|
||||
|
||||
``energy_performance_available_preferences``
|
||||
List of strings that can be written to the
|
||||
``energy_performance_preference`` attribute.
|
||||
|
||||
They represent different energy vs performance hints and should be
|
||||
self-explanatory, except that ``default`` represents whatever hint
|
||||
value was set by the platform firmware.
|
||||
|
||||
Strings written to the ``energy_performance_preference`` attribute are
|
||||
internally translated to integer values written to the processor's
|
||||
Energy-Performance Preference (EPP) knob (if supported) or its
|
||||
Energy-Performance Bias (EPB) knob.
|
||||
|
||||
[Note that tasks may by migrated from one CPU to another by the scheduler's
|
||||
load-balancing algorithm and if different energy vs performance hints are
|
||||
set for those CPUs, that may lead to undesirable outcomes. To avoid such
|
||||
issues it is better to set the same energy vs performance hint for all CPUs
|
||||
or to pin every task potentially sensitive to them to a specific CPU.]
|
||||
|
||||
.. _acpi-cpufreq:
|
||||
|
||||
``intel_pstate`` vs ``acpi-cpufreq``
|
||||
====================================
|
||||
|
||||
On the majority of systems supported by ``intel_pstate``, the ACPI tables
|
||||
provided by the platform firmware contain ``_PSS`` objects returning information
|
||||
that can be used for CPU performance scaling (refer to the `ACPI specification`_
|
||||
for details on the ``_PSS`` objects and the format of the information returned
|
||||
by them).
|
||||
|
||||
The information returned by the ACPI ``_PSS`` objects is used by the
|
||||
``acpi-cpufreq`` scaling driver. On systems supported by ``intel_pstate``
|
||||
the ``acpi-cpufreq`` driver uses the same hardware CPU performance scaling
|
||||
interface, but the set of P-states it can use is limited by the ``_PSS``
|
||||
output.
|
||||
|
||||
On those systems each ``_PSS`` object returns a list of P-states supported by
|
||||
the corresponding CPU which basically is a subset of the P-states range that can
|
||||
be used by ``intel_pstate`` on the same system, with one exception: the whole
|
||||
`turbo range <turbo_>`_ is represented by one item in it (the topmost one). By
|
||||
convention, the frequency returned by ``_PSS`` for that item is greater by 1 MHz
|
||||
than the frequency of the highest non-turbo P-state listed by it, but the
|
||||
corresponding P-state representation (following the hardware specification)
|
||||
returned for it matches the maximum supported turbo P-state (or is the
|
||||
special value 255 meaning essentially "go as high as you can get").
|
||||
|
||||
The list of P-states returned by ``_PSS`` is reflected by the table of
|
||||
available frequencies supplied by ``acpi-cpufreq`` to the ``CPUFreq`` core and
|
||||
scaling governors and the minimum and maximum supported frequencies reported by
|
||||
it come from that list as well. In particular, given the special representation
|
||||
of the turbo range described above, this means that the maximum supported
|
||||
frequency reported by ``acpi-cpufreq`` is higher by 1 MHz than the frequency
|
||||
of the highest supported non-turbo P-state listed by ``_PSS`` which, of course,
|
||||
affects decisions made by the scaling governors, except for ``powersave`` and
|
||||
``performance``.
|
||||
|
||||
For example, if a given governor attempts to select a frequency proportional to
|
||||
estimated CPU load and maps the load of 100% to the maximum supported frequency
|
||||
(possibly multiplied by a constant), then it will tend to choose P-states below
|
||||
the turbo threshold if ``acpi-cpufreq`` is used as the scaling driver, because
|
||||
in that case the turbo range corresponds to a small fraction of the frequency
|
||||
band it can use (1 MHz vs 1 GHz or more). In consequence, it will only go to
|
||||
the turbo range for the highest loads and the other loads above 50% that might
|
||||
benefit from running at turbo frequencies will be given non-turbo P-states
|
||||
instead.
|
||||
|
||||
One more issue related to that may appear on systems supporting the
|
||||
`Configurable TDP feature <turbo_>`_ allowing the platform firmware to set the
|
||||
turbo threshold. Namely, if that is not coordinated with the lists of P-states
|
||||
returned by ``_PSS`` properly, there may be more than one item corresponding to
|
||||
a turbo P-state in those lists and there may be a problem with avoiding the
|
||||
turbo range (if desirable or necessary). Usually, to avoid using turbo
|
||||
P-states overall, ``acpi-cpufreq`` simply avoids using the topmost state listed
|
||||
by ``_PSS``, but that is not sufficient when there are other turbo P-states in
|
||||
the list returned by it.
|
||||
|
||||
Apart from the above, ``acpi-cpufreq`` works like ``intel_pstate`` in the
|
||||
`passive mode <Passive Mode_>`_, except that the number of P-states it can set
|
||||
is limited to the ones listed by the ACPI ``_PSS`` objects.
|
||||
|
||||
|
||||
Kernel Command Line Options for ``intel_pstate``
|
||||
================================================
|
||||
|
||||
Several kernel command line options can be used to pass early-configuration-time
|
||||
parameters to ``intel_pstate`` in order to enforce specific behavior of it. All
|
||||
of them have to be prepended with the ``intel_pstate=`` prefix.
|
||||
|
||||
``disable``
|
||||
Do not register ``intel_pstate`` as the scaling driver even if the
|
||||
processor is supported by it.
|
||||
|
||||
``passive``
|
||||
Register ``intel_pstate`` in the `passive mode <Passive Mode_>`_ to
|
||||
start with.
|
||||
|
||||
This option implies the ``no_hwp`` one described below.
|
||||
|
||||
``force``
|
||||
Register ``intel_pstate`` as the scaling driver instead of
|
||||
``acpi-cpufreq`` even if the latter is preferred on the given system.
|
||||
|
||||
This may prevent some platform features (such as thermal controls and
|
||||
power capping) that rely on the availability of ACPI P-states
|
||||
information from functioning as expected, so it should be used with
|
||||
caution.
|
||||
|
||||
This option does not work with processors that are not supported by
|
||||
``intel_pstate`` and on platforms where the ``pcc-cpufreq`` scaling
|
||||
driver is used instead of ``acpi-cpufreq``.
|
||||
|
||||
``no_hwp``
|
||||
Do not enable the `hardware-managed P-states (HWP) feature
|
||||
<Active Mode With HWP_>`_ even if it is supported by the processor.
|
||||
|
||||
``hwp_only``
|
||||
Register ``intel_pstate`` as the scaling driver only if the
|
||||
`hardware-managed P-states (HWP) feature <Active Mode With HWP_>`_ is
|
||||
supported by the processor.
|
||||
|
||||
``support_acpi_ppc``
|
||||
Take ACPI ``_PPC`` performance limits into account.
|
||||
|
||||
If the preferred power management profile in the FADT (Fixed ACPI
|
||||
Description Table) is set to "Enterprise Server" or "Performance
|
||||
Server", the ACPI ``_PPC`` limits are taken into account by default
|
||||
and this option has no effect.
|
||||
|
||||
``per_cpu_perf_limits``
|
||||
Use per-logical-CPU P-State limits (see `Coordination of P-state
|
||||
Limits`_ for details).
|
||||
|
||||
|
||||
Diagnostics and Tuning
|
||||
======================
|
||||
|
||||
Trace Events
|
||||
------------
|
||||
|
||||
There are two static trace events that can be used for ``intel_pstate``
|
||||
diagnostics. One of them is the ``cpu_frequency`` trace event generally used
|
||||
by ``CPUFreq``, and the other one is the ``pstate_sample`` trace event specific
|
||||
to ``intel_pstate``. Both of them are triggered by ``intel_pstate`` only if
|
||||
it works in the `active mode <Active Mode_>`_.
|
||||
|
||||
The following sequence of shell commands can be used to enable them and see
|
||||
their output (if the kernel is generally configured to support event tracing)::
|
||||
|
||||
# cd /sys/kernel/debug/tracing/
|
||||
# echo 1 > events/power/pstate_sample/enable
|
||||
# echo 1 > events/power/cpu_frequency/enable
|
||||
# cat trace
|
||||
gnome-terminal--4510 [001] ..s. 1177.680733: pstate_sample: core_busy=107 scaled=94 from=26 to=26 mperf=1143818 aperf=1230607 tsc=29838618 freq=2474476
|
||||
cat-5235 [002] ..s. 1177.681723: cpu_frequency: state=2900000 cpu_id=2
|
||||
|
||||
If ``intel_pstate`` works in the `passive mode <Passive Mode_>`_, the
|
||||
``cpu_frequency`` trace event will be triggered either by the ``schedutil``
|
||||
scaling governor (for the policies it is attached to), or by the ``CPUFreq``
|
||||
core (for the policies with other scaling governors).
|
||||
|
||||
``ftrace``
|
||||
----------
|
||||
|
||||
The ``ftrace`` interface can be used for low-level diagnostics of
|
||||
``intel_pstate``. For example, to check how often the function to set a
|
||||
P-state is called, the ``ftrace`` filter can be set to to
|
||||
:c:func:`intel_pstate_set_pstate`::
|
||||
|
||||
# cd /sys/kernel/debug/tracing/
|
||||
# cat available_filter_functions | grep -i pstate
|
||||
intel_pstate_set_pstate
|
||||
intel_pstate_cpu_init
|
||||
...
|
||||
# echo intel_pstate_set_pstate > set_ftrace_filter
|
||||
# echo function > current_tracer
|
||||
# cat trace | head -15
|
||||
# tracer: function
|
||||
#
|
||||
# entries-in-buffer/entries-written: 80/80 #P:4
|
||||
#
|
||||
# _-----=> irqs-off
|
||||
# / _----=> need-resched
|
||||
# | / _---=> hardirq/softirq
|
||||
# || / _--=> preempt-depth
|
||||
# ||| / delay
|
||||
# TASK-PID CPU# |||| TIMESTAMP FUNCTION
|
||||
# | | | |||| | |
|
||||
Xorg-3129 [000] ..s. 2537.644844: intel_pstate_set_pstate <-intel_pstate_timer_func
|
||||
gnome-terminal--4510 [002] ..s. 2537.649844: intel_pstate_set_pstate <-intel_pstate_timer_func
|
||||
gnome-shell-3409 [001] ..s. 2537.650850: intel_pstate_set_pstate <-intel_pstate_timer_func
|
||||
<idle>-0 [000] ..s. 2537.654843: intel_pstate_set_pstate <-intel_pstate_timer_func
|
||||
|
||||
Tuning Interface in ``debugfs``
|
||||
-------------------------------
|
||||
|
||||
The ``powersave`` algorithm provided by ``intel_pstate`` for `the Core line of
|
||||
processors in the active mode <powersave_>`_ is based on a `PID controller`_
|
||||
whose parameters were chosen to address a number of different use cases at the
|
||||
same time. However, it still is possible to fine-tune it to a specific workload
|
||||
and the ``debugfs`` interface under ``/sys/kernel/debug/pstate_snb/`` is
|
||||
provided for this purpose. [Note that the ``pstate_snb`` directory will be
|
||||
present only if the specific P-state selection algorithm matching the interface
|
||||
in it actually is in use.]
|
||||
|
||||
The following files present in that directory can be used to modify the PID
|
||||
controller parameters at run time:
|
||||
|
||||
| ``deadband``
|
||||
| ``d_gain_pct``
|
||||
| ``i_gain_pct``
|
||||
| ``p_gain_pct``
|
||||
| ``sample_rate_ms``
|
||||
| ``setpoint``
|
||||
|
||||
Note, however, that achieving desirable results this way generally requires
|
||||
expert-level understanding of the power vs performance tradeoff, so extra care
|
||||
is recommended when attempting to do that.
|
||||
|
||||
|
||||
.. _LCEU2015: http://events.linuxfoundation.org/sites/events/files/slides/LinuxConEurope_2015.pdf
|
||||
.. _SDM: http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-system-programming-manual-325384.html
|
||||
.. _ACPI specification: http://www.uefi.org/sites/default/files/resources/ACPI_6_1.pdf
|
||||
.. _PID controller: https://en.wikipedia.org/wiki/PID_controller
|
|
@ -1,281 +0,0 @@
|
|||
Intel P-State driver
|
||||
--------------------
|
||||
|
||||
This driver provides an interface to control the P-State selection for the
|
||||
SandyBridge+ Intel processors.
|
||||
|
||||
The following document explains P-States:
|
||||
http://events.linuxfoundation.org/sites/events/files/slides/LinuxConEurope_2015.pdf
|
||||
As stated in the document, P-State doesn’t exactly mean a frequency. However, for
|
||||
the sake of the relationship with cpufreq, P-State and frequency are used
|
||||
interchangeably.
|
||||
|
||||
Understanding the cpufreq core governors and policies are important before
|
||||
discussing more details about the Intel P-State driver. Based on what callbacks
|
||||
a cpufreq driver provides to the cpufreq core, it can support two types of
|
||||
drivers:
|
||||
- with target_index() callback: In this mode, the drivers using cpufreq core
|
||||
simply provide the minimum and maximum frequency limits and an additional
|
||||
interface target_index() to set the current frequency. The cpufreq subsystem
|
||||
has a number of scaling governors ("performance", "powersave", "ondemand",
|
||||
etc.). Depending on which governor is in use, cpufreq core will call for
|
||||
transitions to a specific frequency using target_index() callback.
|
||||
- setpolicy() callback: In this mode, drivers do not provide target_index()
|
||||
callback, so cpufreq core can't request a transition to a specific frequency.
|
||||
The driver provides minimum and maximum frequency limits and callbacks to set a
|
||||
policy. The policy in cpufreq sysfs is referred to as the "scaling governor".
|
||||
The cpufreq core can request the driver to operate in any of the two policies:
|
||||
"performance" and "powersave". The driver decides which frequency to use based
|
||||
on the above policy selection considering minimum and maximum frequency limits.
|
||||
|
||||
The Intel P-State driver falls under the latter category, which implements the
|
||||
setpolicy() callback. This driver decides what P-State to use based on the
|
||||
requested policy from the cpufreq core. If the processor is capable of
|
||||
selecting its next P-State internally, then the driver will offload this
|
||||
responsibility to the processor (aka HWP: Hardware P-States). If not, the
|
||||
driver implements algorithms to select the next P-State.
|
||||
|
||||
Since these policies are implemented in the driver, they are not same as the
|
||||
cpufreq scaling governors implementation, even if they have the same name in
|
||||
the cpufreq sysfs (scaling_governors). For example the "performance" policy is
|
||||
similar to cpufreq’s "performance" governor, but "powersave" is completely
|
||||
different than the cpufreq "powersave" governor. The strategy here is similar
|
||||
to cpufreq "ondemand", where the requested P-State is related to the system load.
|
||||
|
||||
Sysfs Interface
|
||||
|
||||
In addition to the frequency-controlling interfaces provided by the cpufreq
|
||||
core, the driver provides its own sysfs files to control the P-State selection.
|
||||
These files have been added to /sys/devices/system/cpu/intel_pstate/.
|
||||
Any changes made to these files are applicable to all CPUs (even in a
|
||||
multi-package system, Refer to later section on placing "Per-CPU limits").
|
||||
|
||||
max_perf_pct: Limits the maximum P-State that will be requested by
|
||||
the driver. It states it as a percentage of the available performance. The
|
||||
available (P-State) performance may be reduced by the no_turbo
|
||||
setting described below.
|
||||
|
||||
min_perf_pct: Limits the minimum P-State that will be requested by
|
||||
the driver. It states it as a percentage of the max (non-turbo)
|
||||
performance level.
|
||||
|
||||
no_turbo: Limits the driver to selecting P-State below the turbo
|
||||
frequency range.
|
||||
|
||||
turbo_pct: Displays the percentage of the total performance that
|
||||
is supported by hardware that is in the turbo range. This number
|
||||
is independent of whether turbo has been disabled or not.
|
||||
|
||||
num_pstates: Displays the number of P-States that are supported
|
||||
by hardware. This number is independent of whether turbo has
|
||||
been disabled or not.
|
||||
|
||||
For example, if a system has these parameters:
|
||||
Max 1 core turbo ratio: 0x21 (Max 1 core ratio is the maximum P-State)
|
||||
Max non turbo ratio: 0x17
|
||||
Minimum ratio : 0x08 (Here the ratio is called max efficiency ratio)
|
||||
|
||||
Sysfs will show :
|
||||
max_perf_pct:100, which corresponds to 1 core ratio
|
||||
min_perf_pct:24, max_efficiency_ratio / max 1 Core ratio
|
||||
no_turbo:0, turbo is not disabled
|
||||
num_pstates:26 = (max 1 Core ratio - Max Efficiency Ratio + 1)
|
||||
turbo_pct:39 = (max 1 core ratio - max non turbo ratio) / num_pstates
|
||||
|
||||
Refer to "Intel® 64 and IA-32 Architectures Software Developer’s Manual
|
||||
Volume 3: System Programming Guide" to understand ratios.
|
||||
|
||||
There is one more sysfs attribute in /sys/devices/system/cpu/intel_pstate/
|
||||
that can be used for controlling the operation mode of the driver:
|
||||
|
||||
status: Three settings are possible:
|
||||
"off" - The driver is not in use at this time.
|
||||
"active" - The driver works as a P-state governor (default).
|
||||
"passive" - The driver works as a regular cpufreq one and collaborates
|
||||
with the generic cpufreq governors (it sets P-states as
|
||||
requested by those governors).
|
||||
The current setting is returned by reads from this attribute. Writing one
|
||||
of the above strings to it changes the operation mode as indicated by that
|
||||
string, if possible. If HW-managed P-states (HWP) are enabled, it is not
|
||||
possible to change the driver's operation mode and attempts to write to
|
||||
this attribute will fail.
|
||||
|
||||
cpufreq sysfs for Intel P-State
|
||||
|
||||
Since this driver registers with cpufreq, cpufreq sysfs is also presented.
|
||||
There are some important differences, which need to be considered.
|
||||
|
||||
scaling_cur_freq: This displays the real frequency which was used during
|
||||
the last sample period instead of what is requested. Some other cpufreq driver,
|
||||
like acpi-cpufreq, displays what is requested (Some changes are on the
|
||||
way to fix this for acpi-cpufreq driver). The same is true for frequencies
|
||||
displayed at /proc/cpuinfo.
|
||||
|
||||
scaling_governor: This displays current active policy. Since each CPU has a
|
||||
cpufreq sysfs, it is possible to set a scaling governor to each CPU. But this
|
||||
is not possible with Intel P-States, as there is one common policy for all
|
||||
CPUs. Here, the last requested policy will be applicable to all CPUs. It is
|
||||
suggested that one use the cpupower utility to change policy to all CPUs at the
|
||||
same time.
|
||||
|
||||
scaling_setspeed: This attribute can never be used with Intel P-State.
|
||||
|
||||
scaling_max_freq/scaling_min_freq: This interface can be used similarly to
|
||||
the max_perf_pct/min_perf_pct of Intel P-State sysfs. However since frequencies
|
||||
are converted to nearest possible P-State, this is prone to rounding errors.
|
||||
This method is not preferred to limit performance.
|
||||
|
||||
affected_cpus: Not used
|
||||
related_cpus: Not used
|
||||
|
||||
For contemporary Intel processors, the frequency is controlled by the
|
||||
processor itself and the P-State exposed to software is related to
|
||||
performance levels. The idea that frequency can be set to a single
|
||||
frequency is fictional for Intel Core processors. Even if the scaling
|
||||
driver selects a single P-State, the actual frequency the processor
|
||||
will run at is selected by the processor itself.
|
||||
|
||||
Per-CPU limits
|
||||
|
||||
The kernel command line option "intel_pstate=per_cpu_perf_limits" forces
|
||||
the intel_pstate driver to use per-CPU performance limits. When it is set,
|
||||
the sysfs control interface described above is subject to limitations.
|
||||
- The following controls are not available for both read and write
|
||||
/sys/devices/system/cpu/intel_pstate/max_perf_pct
|
||||
/sys/devices/system/cpu/intel_pstate/min_perf_pct
|
||||
- The following controls can be used to set performance limits, as far as the
|
||||
architecture of the processor permits:
|
||||
/sys/devices/system/cpu/cpu*/cpufreq/scaling_max_freq
|
||||
/sys/devices/system/cpu/cpu*/cpufreq/scaling_min_freq
|
||||
/sys/devices/system/cpu/cpu*/cpufreq/scaling_governor
|
||||
- User can still observe turbo percent and number of P-States from
|
||||
/sys/devices/system/cpu/intel_pstate/turbo_pct
|
||||
/sys/devices/system/cpu/intel_pstate/num_pstates
|
||||
- User can read write system wide turbo status
|
||||
/sys/devices/system/cpu/no_turbo
|
||||
|
||||
Support of energy performance hints
|
||||
It is possible to provide hints to the HWP algorithms in the processor
|
||||
to be more performance centric to more energy centric. When the driver
|
||||
is using HWP, two additional cpufreq sysfs attributes are presented for
|
||||
each logical CPU.
|
||||
These attributes are:
|
||||
- energy_performance_available_preferences
|
||||
- energy_performance_preference
|
||||
|
||||
To get list of supported hints:
|
||||
$ cat energy_performance_available_preferences
|
||||
default performance balance_performance balance_power power
|
||||
|
||||
The current preference can be read or changed via cpufreq sysfs
|
||||
attribute "energy_performance_preference". Reading from this attribute
|
||||
will display current effective setting. User can write any of the valid
|
||||
preference string to this attribute. User can always restore to power-on
|
||||
default by writing "default".
|
||||
|
||||
Since threads can migrate to different CPUs, this is possible that the
|
||||
new CPU may have different energy performance preference than the previous
|
||||
one. To avoid such issues, either threads can be pinned to specific CPUs
|
||||
or set the same energy performance preference value to all CPUs.
|
||||
|
||||
Tuning Intel P-State driver
|
||||
|
||||
When the performance can be tuned using PID (Proportional Integral
|
||||
Derivative) controller, debugfs files are provided for adjusting performance.
|
||||
They are presented under:
|
||||
/sys/kernel/debug/pstate_snb/
|
||||
|
||||
The PID tunable parameters are:
|
||||
deadband
|
||||
d_gain_pct
|
||||
i_gain_pct
|
||||
p_gain_pct
|
||||
sample_rate_ms
|
||||
setpoint
|
||||
|
||||
To adjust these parameters, some understanding of driver implementation is
|
||||
necessary. There are some tweeks described here, but be very careful. Adjusting
|
||||
them requires expert level understanding of power and performance relationship.
|
||||
These limits are only useful when the "powersave" policy is active.
|
||||
|
||||
-To make the system more responsive to load changes, sample_rate_ms can
|
||||
be adjusted (current default is 10ms).
|
||||
-To make the system use higher performance, even if the load is lower, setpoint
|
||||
can be adjusted to a lower number. This will also lead to faster ramp up time
|
||||
to reach the maximum P-State.
|
||||
If there are no derivative and integral coefficients, The next P-State will be
|
||||
equal to:
|
||||
current P-State - ((setpoint - current cpu load) * p_gain_pct)
|
||||
|
||||
For example, if the current PID parameters are (Which are defaults for the core
|
||||
processors like SandyBridge):
|
||||
deadband = 0
|
||||
d_gain_pct = 0
|
||||
i_gain_pct = 0
|
||||
p_gain_pct = 20
|
||||
sample_rate_ms = 10
|
||||
setpoint = 97
|
||||
|
||||
If the current P-State = 0x08 and current load = 100, this will result in the
|
||||
next P-State = 0x08 - ((97 - 100) * 0.2) = 8.6 (rounded to 9). Here the P-State
|
||||
goes up by only 1. If during next sample interval the current load doesn't
|
||||
change and still 100, then P-State goes up by one again. This process will
|
||||
continue as long as the load is more than the setpoint until the maximum P-State
|
||||
is reached.
|
||||
|
||||
For the same load at setpoint = 60, this will result in the next P-State
|
||||
= 0x08 - ((60 - 100) * 0.2) = 16
|
||||
So by changing the setpoint from 97 to 60, there is an increase of the
|
||||
next P-State from 9 to 16. So this will make processor execute at higher
|
||||
P-State for the same CPU load. If the load continues to be more than the
|
||||
setpoint during next sample intervals, then P-State will go up again till the
|
||||
maximum P-State is reached. But the ramp up time to reach the maximum P-State
|
||||
will be much faster when the setpoint is 60 compared to 97.
|
||||
|
||||
Debugging Intel P-State driver
|
||||
|
||||
Event tracing
|
||||
To debug P-State transition, the Linux event tracing interface can be used.
|
||||
There are two specific events, which can be enabled (Provided the kernel
|
||||
configs related to event tracing are enabled).
|
||||
|
||||
# cd /sys/kernel/debug/tracing/
|
||||
# echo 1 > events/power/pstate_sample/enable
|
||||
# echo 1 > events/power/cpu_frequency/enable
|
||||
# cat trace
|
||||
gnome-terminal--4510 [001] ..s. 1177.680733: pstate_sample: core_busy=107
|
||||
scaled=94 from=26 to=26 mperf=1143818 aperf=1230607 tsc=29838618
|
||||
freq=2474476
|
||||
cat-5235 [002] ..s. 1177.681723: cpu_frequency: state=2900000 cpu_id=2
|
||||
|
||||
|
||||
Using ftrace
|
||||
|
||||
If function level tracing is required, the Linux ftrace interface can be used.
|
||||
For example if we want to check how often a function to set a P-State is
|
||||
called, we can set ftrace filter to intel_pstate_set_pstate.
|
||||
|
||||
# cd /sys/kernel/debug/tracing/
|
||||
# cat available_filter_functions | grep -i pstate
|
||||
intel_pstate_set_pstate
|
||||
intel_pstate_cpu_init
|
||||
...
|
||||
|
||||
# echo intel_pstate_set_pstate > set_ftrace_filter
|
||||
# echo function > current_tracer
|
||||
# cat trace | head -15
|
||||
# tracer: function
|
||||
#
|
||||
# entries-in-buffer/entries-written: 80/80 #P:4
|
||||
#
|
||||
# _-----=> irqs-off
|
||||
# / _----=> need-resched
|
||||
# | / _---=> hardirq/softirq
|
||||
# || / _--=> preempt-depth
|
||||
# ||| / delay
|
||||
# TASK-PID CPU# |||| TIMESTAMP FUNCTION
|
||||
# | | | |||| | |
|
||||
Xorg-3129 [000] ..s. 2537.644844: intel_pstate_set_pstate <-intel_pstate_timer_func
|
||||
gnome-terminal--4510 [002] ..s. 2537.649844: intel_pstate_set_pstate <-intel_pstate_timer_func
|
||||
gnome-shell-3409 [001] ..s. 2537.650850: intel_pstate_set_pstate <-intel_pstate_timer_func
|
||||
<idle>-0 [000] ..s. 2537.654843: intel_pstate_set_pstate <-intel_pstate_timer_func
|
|
@ -1,31 +0,0 @@
|
|||
Hi6220 SoC ION
|
||||
===================================================================
|
||||
Required properties:
|
||||
- compatible : "hisilicon,hi6220-ion"
|
||||
- list of the ION heaps
|
||||
- heap name : maybe heap_sys_user@0
|
||||
- heap id : id should be unique in the system.
|
||||
- heap base : base ddr address of the heap,0 means that
|
||||
it is dynamic.
|
||||
- heap size : memory size and 0 means it is dynamic.
|
||||
- heap type : the heap type of the heap, please also
|
||||
see the define in ion.h(drivers/staging/android/uapi/ion.h)
|
||||
-------------------------------------------------------------------
|
||||
Example:
|
||||
hi6220-ion {
|
||||
compatible = "hisilicon,hi6220-ion";
|
||||
heap_sys_user@0 {
|
||||
heap-name = "sys_user";
|
||||
heap-id = <0x0>;
|
||||
heap-base = <0x0>;
|
||||
heap-size = <0x0>;
|
||||
heap-type = "ion_system";
|
||||
};
|
||||
heap_sys_contig@0 {
|
||||
heap-name = "sys_contig";
|
||||
heap-id = <0x1>;
|
||||
heap-base = <0x0>;
|
||||
heap-size = <0x0>;
|
||||
heap-type = "ion_system_contig";
|
||||
};
|
||||
};
|
|
@ -114,8 +114,7 @@ the details during registration. The class offers the following API for
|
|||
registering/unregistering cables and their plugs:
|
||||
|
||||
.. kernel-doc:: drivers/usb/typec/typec.c
|
||||
:functions: typec_register_cable typec_unregister_cable typec_register_plug
|
||||
typec_unregister_plug
|
||||
:functions: typec_register_cable typec_unregister_cable typec_register_plug typec_unregister_plug
|
||||
|
||||
The class will provide a handle to struct typec_cable and struct typec_plug if
|
||||
the registration is successful, or NULL if it isn't.
|
||||
|
@ -137,8 +136,7 @@ during connection of a partner or cable, the port driver must use the following
|
|||
APIs to report it to the class:
|
||||
|
||||
.. kernel-doc:: drivers/usb/typec/typec.c
|
||||
:functions: typec_set_data_role typec_set_pwr_role typec_set_vconn_role
|
||||
typec_set_pwr_opmode
|
||||
:functions: typec_set_data_role typec_set_pwr_role typec_set_vconn_role typec_set_pwr_opmode
|
||||
|
||||
Alternate Modes
|
||||
~~~~~~~~~~~~~~~
|
||||
|
|
|
@ -117,7 +117,7 @@ nowayout: Watchdog cannot be stopped once started
|
|||
-------------------------------------------------
|
||||
iTCO_wdt:
|
||||
heartbeat: Watchdog heartbeat in seconds.
|
||||
(2<heartbeat<39 (TCO v1) or 613 (TCO v2), default=30)
|
||||
(5<=heartbeat<=74 (TCO v1) or 1226 (TCO v2), default=30)
|
||||
nowayout: Watchdog cannot be stopped once started
|
||||
(default=kernel config parameter)
|
||||
-------------------------------------------------
|
||||
|
|
15
MAINTAINERS
15
MAINTAINERS
|
@ -846,7 +846,6 @@ M: Laura Abbott <labbott@redhat.com>
|
|||
M: Sumit Semwal <sumit.semwal@linaro.org>
|
||||
L: devel@driverdev.osuosl.org
|
||||
S: Supported
|
||||
F: Documentation/devicetree/bindings/staging/ion/
|
||||
F: drivers/staging/android/ion
|
||||
F: drivers/staging/android/uapi/ion.h
|
||||
F: drivers/staging/android/uapi/ion_test.h
|
||||
|
@ -3116,6 +3115,14 @@ F: drivers/net/ieee802154/cc2520.c
|
|||
F: include/linux/spi/cc2520.h
|
||||
F: Documentation/devicetree/bindings/net/ieee802154/cc2520.txt
|
||||
|
||||
CCREE ARM TRUSTZONE CRYPTOCELL 700 REE DRIVER
|
||||
M: Gilad Ben-Yossef <gilad@benyossef.com>
|
||||
L: linux-crypto@vger.kernel.org
|
||||
L: driverdev-devel@linuxdriverproject.org
|
||||
S: Supported
|
||||
F: drivers/staging/ccree/
|
||||
W: https://developer.arm.com/products/system-ip/trustzone-cryptocell/cryptocell-700-family
|
||||
|
||||
CEC FRAMEWORK
|
||||
M: Hans Verkuil <hans.verkuil@cisco.com>
|
||||
L: linux-media@vger.kernel.org
|
||||
|
@ -5695,7 +5702,7 @@ M: Alex Elder <elder@kernel.org>
|
|||
M: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
||||
S: Maintained
|
||||
F: drivers/staging/greybus/
|
||||
L: greybus-dev@lists.linaro.org
|
||||
L: greybus-dev@lists.linaro.org (moderated for non-subscribers)
|
||||
|
||||
GREYBUS AUDIO PROTOCOLS DRIVERS
|
||||
M: Vaibhav Agarwal <vaibhav.sr@gmail.com>
|
||||
|
@ -9553,10 +9560,6 @@ F: drivers/net/wireless/intersil/orinoco/
|
|||
|
||||
OSD LIBRARY and FILESYSTEM
|
||||
M: Boaz Harrosh <ooo@electrozaur.com>
|
||||
M: Benny Halevy <bhalevy@primarydata.com>
|
||||
L: osd-dev@open-osd.org
|
||||
W: http://open-osd.org
|
||||
T: git git://git.open-osd.org/open-osd.git
|
||||
S: Maintained
|
||||
F: drivers/scsi/osd/
|
||||
F: include/scsi/osd_*
|
||||
|
|
2
Makefile
2
Makefile
|
@ -1,7 +1,7 @@
|
|||
VERSION = 4
|
||||
PATCHLEVEL = 12
|
||||
SUBLEVEL = 0
|
||||
EXTRAVERSION = -rc1
|
||||
EXTRAVERSION = -rc2
|
||||
NAME = Fearless Coyote
|
||||
|
||||
# *DOCUMENTATION*
|
||||
|
|
|
@ -1201,8 +1201,10 @@ SYSCALL_DEFINE4(osf_wait4, pid_t, pid, int __user *, ustatus, int, options,
|
|||
if (!access_ok(VERIFY_WRITE, ur, sizeof(*ur)))
|
||||
return -EFAULT;
|
||||
|
||||
err = 0;
|
||||
err |= put_user(status, ustatus);
|
||||
err = put_user(status, ustatus);
|
||||
if (ret < 0)
|
||||
return err ? err : ret;
|
||||
|
||||
err |= __put_user(r.ru_utime.tv_sec, &ur->ru_utime.tv_sec);
|
||||
err |= __put_user(r.ru_utime.tv_usec, &ur->ru_utime.tv_usec);
|
||||
err |= __put_user(r.ru_stime.tv_sec, &ur->ru_stime.tv_sec);
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
/ {
|
||||
aliases {
|
||||
ethernet = ðernet;
|
||||
ethernet0 = ðernet;
|
||||
};
|
||||
};
|
||||
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
/ {
|
||||
aliases {
|
||||
ethernet = ðernet;
|
||||
ethernet0 = ðernet;
|
||||
};
|
||||
};
|
||||
|
||||
|
|
|
@ -198,8 +198,8 @@
|
|||
brcm,pins = <0 1>;
|
||||
brcm,function = <BCM2835_FSEL_ALT0>;
|
||||
};
|
||||
i2c0_gpio32: i2c0_gpio32 {
|
||||
brcm,pins = <32 34>;
|
||||
i2c0_gpio28: i2c0_gpio28 {
|
||||
brcm,pins = <28 29>;
|
||||
brcm,function = <BCM2835_FSEL_ALT0>;
|
||||
};
|
||||
i2c0_gpio44: i2c0_gpio44 {
|
||||
|
@ -295,20 +295,28 @@
|
|||
/* Separate from the uart0_gpio14 group
|
||||
* because it conflicts with spi1_gpio16, and
|
||||
* people often run uart0 on the two pins
|
||||
* without flow contrl.
|
||||
* without flow control.
|
||||
*/
|
||||
uart0_ctsrts_gpio16: uart0_ctsrts_gpio16 {
|
||||
brcm,pins = <16 17>;
|
||||
brcm,function = <BCM2835_FSEL_ALT3>;
|
||||
};
|
||||
uart0_gpio30: uart0_gpio30 {
|
||||
uart0_ctsrts_gpio30: uart0_ctsrts_gpio30 {
|
||||
brcm,pins = <30 31>;
|
||||
brcm,function = <BCM2835_FSEL_ALT3>;
|
||||
};
|
||||
uart0_ctsrts_gpio32: uart0_ctsrts_gpio32 {
|
||||
uart0_gpio32: uart0_gpio32 {
|
||||
brcm,pins = <32 33>;
|
||||
brcm,function = <BCM2835_FSEL_ALT3>;
|
||||
};
|
||||
uart0_gpio36: uart0_gpio36 {
|
||||
brcm,pins = <36 37>;
|
||||
brcm,function = <BCM2835_FSEL_ALT2>;
|
||||
};
|
||||
uart0_ctsrts_gpio38: uart0_ctsrts_gpio38 {
|
||||
brcm,pins = <38 39>;
|
||||
brcm,function = <BCM2835_FSEL_ALT2>;
|
||||
};
|
||||
|
||||
uart1_gpio14: uart1_gpio14 {
|
||||
brcm,pins = <14 15>;
|
||||
|
@ -326,10 +334,6 @@
|
|||
brcm,pins = <30 31>;
|
||||
brcm,function = <BCM2835_FSEL_ALT5>;
|
||||
};
|
||||
uart1_gpio36: uart1_gpio36 {
|
||||
brcm,pins = <36 37 38 39>;
|
||||
brcm,function = <BCM2835_FSEL_ALT2>;
|
||||
};
|
||||
uart1_gpio40: uart1_gpio40 {
|
||||
brcm,pins = <40 41>;
|
||||
brcm,function = <BCM2835_FSEL_ALT5>;
|
||||
|
|
|
@ -204,6 +204,8 @@
|
|||
tps659038: tps659038@58 {
|
||||
compatible = "ti,tps659038";
|
||||
reg = <0x58>;
|
||||
ti,palmas-override-powerhold;
|
||||
ti,system-power-controller;
|
||||
|
||||
tps659038_pmic {
|
||||
compatible = "ti,tps659038-pmic";
|
||||
|
|
|
@ -2017,4 +2017,8 @@
|
|||
coefficients = <0 2000>;
|
||||
};
|
||||
|
||||
&cpu_crit {
|
||||
temperature = <120000>; /* milli Celsius */
|
||||
};
|
||||
|
||||
/include/ "dra7xx-clocks.dtsi"
|
||||
|
|
|
@ -23,7 +23,7 @@
|
|||
imx53-qsrb {
|
||||
pinctrl_pmic: pmicgrp {
|
||||
fsl,pins = <
|
||||
MX53_PAD_CSI0_DAT5__GPIO5_23 0x1e4 /* IRQ */
|
||||
MX53_PAD_CSI0_DAT5__GPIO5_23 0x1c4 /* IRQ */
|
||||
>;
|
||||
};
|
||||
};
|
||||
|
|
|
@ -12,23 +12,6 @@
|
|||
model = "Freescale i.MX6 SoloX SDB RevB Board";
|
||||
};
|
||||
|
||||
&cpu0 {
|
||||
operating-points = <
|
||||
/* kHz uV */
|
||||
996000 1250000
|
||||
792000 1175000
|
||||
396000 1175000
|
||||
198000 1175000
|
||||
>;
|
||||
fsl,soc-operating-points = <
|
||||
/* ARM kHz SOC uV */
|
||||
996000 1250000
|
||||
792000 1175000
|
||||
396000 1175000
|
||||
198000 1175000
|
||||
>;
|
||||
};
|
||||
|
||||
&i2c1 {
|
||||
clock-frequency = <100000>;
|
||||
pinctrl-names = "default";
|
||||
|
|
|
@ -1 +0,0 @@
|
|||
..
|
|
@ -1 +0,0 @@
|
|||
../../../../arm64/boot/dts
|
|
@ -1 +0,0 @@
|
|||
../../../../../include/dt-bindings
|
|
@ -249,9 +249,9 @@
|
|||
OMAP3_CORE1_IOPAD(0x2110, PIN_INPUT | MUX_MODE0) /* cam_xclka.cam_xclka */
|
||||
OMAP3_CORE1_IOPAD(0x2112, PIN_INPUT | MUX_MODE0) /* cam_pclk.cam_pclk */
|
||||
|
||||
OMAP3_CORE1_IOPAD(0x2114, PIN_INPUT | MUX_MODE0) /* cam_d0.cam_d0 */
|
||||
OMAP3_CORE1_IOPAD(0x2116, PIN_INPUT | MUX_MODE0) /* cam_d1.cam_d1 */
|
||||
OMAP3_CORE1_IOPAD(0x2118, PIN_INPUT | MUX_MODE0) /* cam_d2.cam_d2 */
|
||||
OMAP3_CORE1_IOPAD(0x2116, PIN_INPUT | MUX_MODE0) /* cam_d0.cam_d0 */
|
||||
OMAP3_CORE1_IOPAD(0x2118, PIN_INPUT | MUX_MODE0) /* cam_d1.cam_d1 */
|
||||
OMAP3_CORE1_IOPAD(0x211a, PIN_INPUT | MUX_MODE0) /* cam_d2.cam_d2 */
|
||||
OMAP3_CORE1_IOPAD(0x211c, PIN_INPUT | MUX_MODE0) /* cam_d3.cam_d3 */
|
||||
OMAP3_CORE1_IOPAD(0x211e, PIN_INPUT | MUX_MODE0) /* cam_d4.cam_d4 */
|
||||
OMAP3_CORE1_IOPAD(0x2120, PIN_INPUT | MUX_MODE0) /* cam_d5.cam_d5 */
|
||||
|
|
|
@ -72,6 +72,8 @@
|
|||
<GIC_PPI 14 (GIC_CPU_MASK_SIMPLE(4) | IRQ_TYPE_LEVEL_HIGH)>,
|
||||
<GIC_PPI 11 (GIC_CPU_MASK_SIMPLE(4) | IRQ_TYPE_LEVEL_HIGH)>,
|
||||
<GIC_PPI 10 (GIC_CPU_MASK_SIMPLE(4) | IRQ_TYPE_LEVEL_HIGH)>;
|
||||
clock-frequency = <13000000>;
|
||||
arm,cpu-registers-not-fw-configured;
|
||||
};
|
||||
|
||||
watchdog: watchdog@10007000 {
|
||||
|
|
|
@ -55,7 +55,8 @@
|
|||
simple-audio-card,bitclock-master = <&telephony_link_master>;
|
||||
simple-audio-card,frame-master = <&telephony_link_master>;
|
||||
simple-audio-card,format = "i2s";
|
||||
|
||||
simple-audio-card,bitclock-inversion;
|
||||
simple-audio-card,frame-inversion;
|
||||
simple-audio-card,cpu {
|
||||
sound-dai = <&mcbsp4>;
|
||||
};
|
||||
|
|
|
@ -13,7 +13,7 @@
|
|||
/* Pandaboard Rev A4+ have external pullups on SCL & SDA */
|
||||
&dss_hdmi_pins {
|
||||
pinctrl-single,pins = <
|
||||
OMAP4_IOPAD(0x09a, PIN_INPUT_PULLUP | MUX_MODE0) /* hdmi_cec.hdmi_cec */
|
||||
OMAP4_IOPAD(0x09a, PIN_INPUT | MUX_MODE0) /* hdmi_cec.hdmi_cec */
|
||||
OMAP4_IOPAD(0x09c, PIN_INPUT | MUX_MODE0) /* hdmi_scl.hdmi_scl */
|
||||
OMAP4_IOPAD(0x09e, PIN_INPUT | MUX_MODE0) /* hdmi_sda.hdmi_sda */
|
||||
>;
|
||||
|
|
|
@ -34,7 +34,7 @@
|
|||
/* PandaboardES has external pullups on SCL & SDA */
|
||||
&dss_hdmi_pins {
|
||||
pinctrl-single,pins = <
|
||||
OMAP4_IOPAD(0x09a, PIN_INPUT_PULLUP | MUX_MODE0) /* hdmi_cec.hdmi_cec */
|
||||
OMAP4_IOPAD(0x09a, PIN_INPUT | MUX_MODE0) /* hdmi_cec.hdmi_cec */
|
||||
OMAP4_IOPAD(0x09c, PIN_INPUT | MUX_MODE0) /* hdmi_scl.hdmi_scl */
|
||||
OMAP4_IOPAD(0x09e, PIN_INPUT | MUX_MODE0) /* hdmi_sda.hdmi_sda */
|
||||
>;
|
||||
|
|
|
@ -0,0 +1,68 @@
|
|||
# CONFIG_LOCALVERSION_AUTO is not set
|
||||
CONFIG_SYSVIPC=y
|
||||
CONFIG_NO_HZ_IDLE=y
|
||||
CONFIG_BSD_PROCESS_ACCT=y
|
||||
CONFIG_USER_NS=y
|
||||
CONFIG_RELAY=y
|
||||
CONFIG_BLK_DEV_INITRD=y
|
||||
CONFIG_PARTITION_ADVANCED=y
|
||||
CONFIG_ARCH_MULTI_V4=y
|
||||
# CONFIG_ARCH_MULTI_V7 is not set
|
||||
CONFIG_ARCH_GEMINI=y
|
||||
CONFIG_PCI=y
|
||||
CONFIG_PREEMPT=y
|
||||
CONFIG_AEABI=y
|
||||
CONFIG_CMDLINE="console=ttyS0,115200n8"
|
||||
CONFIG_KEXEC=y
|
||||
CONFIG_BINFMT_MISC=y
|
||||
CONFIG_PM=y
|
||||
CONFIG_UEVENT_HELPER_PATH="/sbin/hotplug"
|
||||
CONFIG_DEVTMPFS=y
|
||||
CONFIG_MTD=y
|
||||
CONFIG_MTD_BLOCK=y
|
||||
CONFIG_MTD_CFI=y
|
||||
CONFIG_MTD_CFI_INTELEXT=y
|
||||
CONFIG_MTD_CFI_AMDSTD=y
|
||||
CONFIG_MTD_CFI_STAA=y
|
||||
CONFIG_MTD_PHYSMAP=y
|
||||
CONFIG_MTD_PHYSMAP_OF=y
|
||||
CONFIG_BLK_DEV_RAM=y
|
||||
CONFIG_BLK_DEV_RAM_SIZE=16384
|
||||
# CONFIG_SCSI_PROC_FS is not set
|
||||
CONFIG_BLK_DEV_SD=y
|
||||
# CONFIG_SCSI_LOWLEVEL is not set
|
||||
CONFIG_ATA=y
|
||||
CONFIG_INPUT_EVDEV=y
|
||||
CONFIG_KEYBOARD_GPIO=y
|
||||
# CONFIG_INPUT_MOUSE is not set
|
||||
# CONFIG_LEGACY_PTYS is not set
|
||||
CONFIG_SERIAL_8250=y
|
||||
CONFIG_SERIAL_8250_CONSOLE=y
|
||||
CONFIG_SERIAL_8250_NR_UARTS=1
|
||||
CONFIG_SERIAL_8250_RUNTIME_UARTS=1
|
||||
CONFIG_SERIAL_OF_PLATFORM=y
|
||||
# CONFIG_HW_RANDOM is not set
|
||||
# CONFIG_HWMON is not set
|
||||
CONFIG_WATCHDOG=y
|
||||
CONFIG_GEMINI_WATCHDOG=y
|
||||
CONFIG_USB=y
|
||||
CONFIG_USB_MON=y
|
||||
CONFIG_USB_FOTG210_HCD=y
|
||||
CONFIG_USB_STORAGE=y
|
||||
CONFIG_NEW_LEDS=y
|
||||
CONFIG_LEDS_CLASS=y
|
||||
CONFIG_LEDS_GPIO=y
|
||||
CONFIG_LEDS_TRIGGERS=y
|
||||
CONFIG_LEDS_TRIGGER_HEARTBEAT=y
|
||||
CONFIG_RTC_CLASS=y
|
||||
CONFIG_RTC_DRV_GEMINI=y
|
||||
CONFIG_DMADEVICES=y
|
||||
# CONFIG_DNOTIFY is not set
|
||||
CONFIG_TMPFS=y
|
||||
CONFIG_TMPFS_POSIX_ACL=y
|
||||
CONFIG_ROMFS_FS=y
|
||||
CONFIG_NLS_CODEPAGE_437=y
|
||||
CONFIG_NLS_ISO8859_1=y
|
||||
# CONFIG_ENABLE_WARN_DEPRECATED is not set
|
||||
# CONFIG_ENABLE_MUST_CHECK is not set
|
||||
CONFIG_DEBUG_FS=y
|
|
@ -31,7 +31,8 @@ void kvm_register_target_coproc_table(struct kvm_coproc_target_table *table);
|
|||
int kvm_handle_cp10_id(struct kvm_vcpu *vcpu, struct kvm_run *run);
|
||||
int kvm_handle_cp_0_13_access(struct kvm_vcpu *vcpu, struct kvm_run *run);
|
||||
int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run);
|
||||
int kvm_handle_cp14_access(struct kvm_vcpu *vcpu, struct kvm_run *run);
|
||||
int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run);
|
||||
int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run);
|
||||
int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run);
|
||||
int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run);
|
||||
|
||||
|
|
|
@ -32,6 +32,7 @@
|
|||
#include <asm/vfp.h>
|
||||
#include "../vfp/vfpinstr.h"
|
||||
|
||||
#define CREATE_TRACE_POINTS
|
||||
#include "trace.h"
|
||||
#include "coproc.h"
|
||||
|
||||
|
@ -111,12 +112,6 @@ int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
|
|||
return 1;
|
||||
}
|
||||
|
||||
int kvm_handle_cp14_access(struct kvm_vcpu *vcpu, struct kvm_run *run)
|
||||
{
|
||||
kvm_inject_undefined(vcpu);
|
||||
return 1;
|
||||
}
|
||||
|
||||
static void reset_mpidr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
|
||||
{
|
||||
/*
|
||||
|
@ -284,7 +279,7 @@ static bool access_gic_sre(struct kvm_vcpu *vcpu,
|
|||
* must always support PMCCNTR (the cycle counter): we just RAZ/WI for
|
||||
* all PM registers, which doesn't crash the guest kernel at least.
|
||||
*/
|
||||
static bool pm_fake(struct kvm_vcpu *vcpu,
|
||||
static bool trap_raz_wi(struct kvm_vcpu *vcpu,
|
||||
const struct coproc_params *p,
|
||||
const struct coproc_reg *r)
|
||||
{
|
||||
|
@ -294,19 +289,19 @@ static bool pm_fake(struct kvm_vcpu *vcpu,
|
|||
return read_zero(vcpu, p);
|
||||
}
|
||||
|
||||
#define access_pmcr pm_fake
|
||||
#define access_pmcntenset pm_fake
|
||||
#define access_pmcntenclr pm_fake
|
||||
#define access_pmovsr pm_fake
|
||||
#define access_pmselr pm_fake
|
||||
#define access_pmceid0 pm_fake
|
||||
#define access_pmceid1 pm_fake
|
||||
#define access_pmccntr pm_fake
|
||||
#define access_pmxevtyper pm_fake
|
||||
#define access_pmxevcntr pm_fake
|
||||
#define access_pmuserenr pm_fake
|
||||
#define access_pmintenset pm_fake
|
||||
#define access_pmintenclr pm_fake
|
||||
#define access_pmcr trap_raz_wi
|
||||
#define access_pmcntenset trap_raz_wi
|
||||
#define access_pmcntenclr trap_raz_wi
|
||||
#define access_pmovsr trap_raz_wi
|
||||
#define access_pmselr trap_raz_wi
|
||||
#define access_pmceid0 trap_raz_wi
|
||||
#define access_pmceid1 trap_raz_wi
|
||||
#define access_pmccntr trap_raz_wi
|
||||
#define access_pmxevtyper trap_raz_wi
|
||||
#define access_pmxevcntr trap_raz_wi
|
||||
#define access_pmuserenr trap_raz_wi
|
||||
#define access_pmintenset trap_raz_wi
|
||||
#define access_pmintenclr trap_raz_wi
|
||||
|
||||
/* Architected CP15 registers.
|
||||
* CRn denotes the primary register number, but is copied to the CRm in the
|
||||
|
@ -532,12 +527,7 @@ static int emulate_cp15(struct kvm_vcpu *vcpu,
|
|||
return 1;
|
||||
}
|
||||
|
||||
/**
|
||||
* kvm_handle_cp15_64 -- handles a mrrc/mcrr trap on a guest CP15 access
|
||||
* @vcpu: The VCPU pointer
|
||||
* @run: The kvm_run struct
|
||||
*/
|
||||
int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
|
||||
static struct coproc_params decode_64bit_hsr(struct kvm_vcpu *vcpu)
|
||||
{
|
||||
struct coproc_params params;
|
||||
|
||||
|
@ -551,9 +541,38 @@ int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
|
|||
params.Rt2 = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf;
|
||||
params.CRm = 0;
|
||||
|
||||
return params;
|
||||
}
|
||||
|
||||
/**
|
||||
* kvm_handle_cp15_64 -- handles a mrrc/mcrr trap on a guest CP15 access
|
||||
* @vcpu: The VCPU pointer
|
||||
* @run: The kvm_run struct
|
||||
*/
|
||||
int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
|
||||
{
|
||||
struct coproc_params params = decode_64bit_hsr(vcpu);
|
||||
|
||||
return emulate_cp15(vcpu, ¶ms);
|
||||
}
|
||||
|
||||
/**
|
||||
* kvm_handle_cp14_64 -- handles a mrrc/mcrr trap on a guest CP14 access
|
||||
* @vcpu: The VCPU pointer
|
||||
* @run: The kvm_run struct
|
||||
*/
|
||||
int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
|
||||
{
|
||||
struct coproc_params params = decode_64bit_hsr(vcpu);
|
||||
|
||||
/* raz_wi cp14 */
|
||||
trap_raz_wi(vcpu, ¶ms, NULL);
|
||||
|
||||
/* handled */
|
||||
kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
|
||||
return 1;
|
||||
}
|
||||
|
||||
static void reset_coproc_regs(struct kvm_vcpu *vcpu,
|
||||
const struct coproc_reg *table, size_t num)
|
||||
{
|
||||
|
@ -564,12 +583,7 @@ static void reset_coproc_regs(struct kvm_vcpu *vcpu,
|
|||
table[i].reset(vcpu, &table[i]);
|
||||
}
|
||||
|
||||
/**
|
||||
* kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access
|
||||
* @vcpu: The VCPU pointer
|
||||
* @run: The kvm_run struct
|
||||
*/
|
||||
int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
|
||||
static struct coproc_params decode_32bit_hsr(struct kvm_vcpu *vcpu)
|
||||
{
|
||||
struct coproc_params params;
|
||||
|
||||
|
@ -583,9 +597,37 @@ int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
|
|||
params.Op2 = (kvm_vcpu_get_hsr(vcpu) >> 17) & 0x7;
|
||||
params.Rt2 = 0;
|
||||
|
||||
return params;
|
||||
}
|
||||
|
||||
/**
|
||||
* kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access
|
||||
* @vcpu: The VCPU pointer
|
||||
* @run: The kvm_run struct
|
||||
*/
|
||||
int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
|
||||
{
|
||||
struct coproc_params params = decode_32bit_hsr(vcpu);
|
||||
return emulate_cp15(vcpu, ¶ms);
|
||||
}
|
||||
|
||||
/**
|
||||
* kvm_handle_cp14_32 -- handles a mrc/mcr trap on a guest CP14 access
|
||||
* @vcpu: The VCPU pointer
|
||||
* @run: The kvm_run struct
|
||||
*/
|
||||
int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
|
||||
{
|
||||
struct coproc_params params = decode_32bit_hsr(vcpu);
|
||||
|
||||
/* raz_wi cp14 */
|
||||
trap_raz_wi(vcpu, ¶ms, NULL);
|
||||
|
||||
/* handled */
|
||||
kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
|
||||
return 1;
|
||||
}
|
||||
|
||||
/******************************************************************************
|
||||
* Userspace API
|
||||
*****************************************************************************/
|
||||
|
|
|
@ -95,9 +95,9 @@ static exit_handle_fn arm_exit_handlers[] = {
|
|||
[HSR_EC_WFI] = kvm_handle_wfx,
|
||||
[HSR_EC_CP15_32] = kvm_handle_cp15_32,
|
||||
[HSR_EC_CP15_64] = kvm_handle_cp15_64,
|
||||
[HSR_EC_CP14_MR] = kvm_handle_cp14_access,
|
||||
[HSR_EC_CP14_MR] = kvm_handle_cp14_32,
|
||||
[HSR_EC_CP14_LS] = kvm_handle_cp14_load_store,
|
||||
[HSR_EC_CP14_64] = kvm_handle_cp14_access,
|
||||
[HSR_EC_CP14_64] = kvm_handle_cp14_64,
|
||||
[HSR_EC_CP_0_13] = kvm_handle_cp_0_13_access,
|
||||
[HSR_EC_CP10_ID] = kvm_handle_cp10_id,
|
||||
[HSR_EC_HVC] = handle_hvc,
|
||||
|
|
|
@ -2,6 +2,8 @@
|
|||
# Makefile for Kernel-based Virtual Machine module, HYP part
|
||||
#
|
||||
|
||||
ccflags-y += -fno-stack-protector
|
||||
|
||||
KVM=../../../../virt/kvm
|
||||
|
||||
obj-$(CONFIG_KVM_ARM_HOST) += $(KVM)/arm/hyp/vgic-v2-sr.o
|
||||
|
|
|
@ -48,7 +48,9 @@ static void __hyp_text __activate_traps(struct kvm_vcpu *vcpu, u32 *fpexc_host)
|
|||
write_sysreg(HSTR_T(15), HSTR);
|
||||
write_sysreg(HCPTR_TTA | HCPTR_TCP(10) | HCPTR_TCP(11), HCPTR);
|
||||
val = read_sysreg(HDCR);
|
||||
write_sysreg(val | HDCR_TPM | HDCR_TPMCR, HDCR);
|
||||
val |= HDCR_TPM | HDCR_TPMCR; /* trap performance monitors */
|
||||
val |= HDCR_TDRA | HDCR_TDOSA | HDCR_TDA; /* trap debug regs */
|
||||
write_sysreg(val, HDCR);
|
||||
}
|
||||
|
||||
static void __hyp_text __deactivate_traps(struct kvm_vcpu *vcpu)
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
#if !defined(_TRACE_KVM_H) || defined(TRACE_HEADER_MULTI_READ)
|
||||
#define _TRACE_KVM_H
|
||||
#if !defined(_TRACE_ARM_KVM_H) || defined(TRACE_HEADER_MULTI_READ)
|
||||
#define _TRACE_ARM_KVM_H
|
||||
|
||||
#include <linux/tracepoint.h>
|
||||
|
||||
|
@ -74,10 +74,10 @@ TRACE_EVENT(kvm_hvc,
|
|||
__entry->vcpu_pc, __entry->r0, __entry->imm)
|
||||
);
|
||||
|
||||
#endif /* _TRACE_KVM_H */
|
||||
#endif /* _TRACE_ARM_KVM_H */
|
||||
|
||||
#undef TRACE_INCLUDE_PATH
|
||||
#define TRACE_INCLUDE_PATH arch/arm/kvm
|
||||
#define TRACE_INCLUDE_PATH .
|
||||
#undef TRACE_INCLUDE_FILE
|
||||
#define TRACE_INCLUDE_FILE trace
|
||||
|
||||
|
|
|
@ -335,7 +335,7 @@ static const struct ramc_info ramc_infos[] __initconst = {
|
|||
{ .idle = sama5d3_ddr_standby, .memctrl = AT91_MEMCTRL_DDRSDR},
|
||||
};
|
||||
|
||||
static const struct of_device_id const ramc_ids[] __initconst = {
|
||||
static const struct of_device_id ramc_ids[] __initconst = {
|
||||
{ .compatible = "atmel,at91rm9200-sdramc", .data = &ramc_infos[0] },
|
||||
{ .compatible = "atmel,at91sam9260-sdramc", .data = &ramc_infos[1] },
|
||||
{ .compatible = "atmel,at91sam9g45-ddramc", .data = &ramc_infos[2] },
|
||||
|
|
|
@ -33,7 +33,7 @@ struct bcm_kona_smc_data {
|
|||
unsigned result;
|
||||
};
|
||||
|
||||
static const struct of_device_id const bcm_kona_smc_ids[] __initconst = {
|
||||
static const struct of_device_id bcm_kona_smc_ids[] __initconst = {
|
||||
{.compatible = "brcm,kona-smc"},
|
||||
{.compatible = "bcm,kona-smc"}, /* deprecated name */
|
||||
{},
|
||||
|
|
|
@ -346,7 +346,7 @@ static struct usb_ohci_pdata cns3xxx_usb_ohci_pdata = {
|
|||
.power_off = csn3xxx_usb_power_off,
|
||||
};
|
||||
|
||||
static const struct of_dev_auxdata const cns3xxx_auxdata[] __initconst = {
|
||||
static const struct of_dev_auxdata cns3xxx_auxdata[] __initconst = {
|
||||
{ "intel,usb-ehci", CNS3XXX_USB_BASE, "ehci-platform", &cns3xxx_usb_ehci_pdata },
|
||||
{ "intel,usb-ohci", CNS3XXX_USB_OHCI_BASE, "ohci-platform", &cns3xxx_usb_ohci_pdata },
|
||||
{ "cavium,cns3420-ahci", CNS3XXX_SATA2_BASE, "ahci", NULL },
|
||||
|
|
|
@ -266,11 +266,12 @@ extern int omap4_cpu_kill(unsigned int cpu);
|
|||
extern const struct smp_operations omap4_smp_ops;
|
||||
#endif
|
||||
|
||||
extern u32 omap4_get_cpu1_ns_pa_addr(void);
|
||||
|
||||
#if defined(CONFIG_SMP) && defined(CONFIG_PM)
|
||||
extern int omap4_mpuss_init(void);
|
||||
extern int omap4_enter_lowpower(unsigned int cpu, unsigned int power_state);
|
||||
extern int omap4_hotplug_cpu(unsigned int cpu, unsigned int power_state);
|
||||
extern u32 omap4_get_cpu1_ns_pa_addr(void);
|
||||
#else
|
||||
static inline int omap4_enter_lowpower(unsigned int cpu,
|
||||
unsigned int power_state)
|
||||
|
|
|
@ -213,11 +213,6 @@ static void __init save_l2x0_context(void)
|
|||
{}
|
||||
#endif
|
||||
|
||||
u32 omap4_get_cpu1_ns_pa_addr(void)
|
||||
{
|
||||
return old_cpu1_ns_pa_addr;
|
||||
}
|
||||
|
||||
/**
|
||||
* omap4_enter_lowpower: OMAP4 MPUSS Low Power Entry Function
|
||||
* The purpose of this function is to manage low power programming
|
||||
|
@ -457,6 +452,11 @@ int __init omap4_mpuss_init(void)
|
|||
|
||||
#endif
|
||||
|
||||
u32 omap4_get_cpu1_ns_pa_addr(void)
|
||||
{
|
||||
return old_cpu1_ns_pa_addr;
|
||||
}
|
||||
|
||||
/*
|
||||
* For kexec, we must set CPU1_WAKEUP_NS_PA_ADDR to point to
|
||||
* current kernel's secondary_startup() early before
|
||||
|
|
|
@ -306,7 +306,6 @@ static void __init omap4_smp_maybe_reset_cpu1(struct omap_smp_config *c)
|
|||
|
||||
cpu1_startup_pa = readl_relaxed(cfg.wakeupgen_base +
|
||||
OMAP_AUX_CORE_BOOT_1);
|
||||
cpu1_ns_pa_addr = omap4_get_cpu1_ns_pa_addr();
|
||||
|
||||
/* Did the configured secondary_startup() get overwritten? */
|
||||
if (!omap4_smp_cpu1_startup_valid(cpu1_startup_pa))
|
||||
|
@ -316,9 +315,13 @@ static void __init omap4_smp_maybe_reset_cpu1(struct omap_smp_config *c)
|
|||
* If omap4 or 5 has NS_PA_ADDR configured, CPU1 may be in a
|
||||
* deeper idle state in WFI and will wake to an invalid address.
|
||||
*/
|
||||
if ((soc_is_omap44xx() || soc_is_omap54xx()) &&
|
||||
!omap4_smp_cpu1_startup_valid(cpu1_ns_pa_addr))
|
||||
if ((soc_is_omap44xx() || soc_is_omap54xx())) {
|
||||
cpu1_ns_pa_addr = omap4_get_cpu1_ns_pa_addr();
|
||||
if (!omap4_smp_cpu1_startup_valid(cpu1_ns_pa_addr))
|
||||
needs_reset = true;
|
||||
} else {
|
||||
cpu1_ns_pa_addr = 0;
|
||||
}
|
||||
|
||||
if (!needs_reset || !c->cpu1_rstctrl_va)
|
||||
return;
|
||||
|
|
|
@ -711,7 +711,7 @@ static struct omap_prcm_init_data scrm_data __initdata = {
|
|||
};
|
||||
#endif
|
||||
|
||||
static const struct of_device_id const omap_prcm_dt_match_table[] __initconst = {
|
||||
static const struct of_device_id omap_prcm_dt_match_table[] __initconst = {
|
||||
#ifdef CONFIG_SOC_AM33XX
|
||||
{ .compatible = "ti,am3-prcm", .data = &am3_prm_data },
|
||||
#endif
|
||||
|
|
|
@ -559,7 +559,7 @@ struct i2c_init_data {
|
|||
u8 hsscll_12;
|
||||
};
|
||||
|
||||
static const struct i2c_init_data const omap4_i2c_timing_data[] __initconst = {
|
||||
static const struct i2c_init_data omap4_i2c_timing_data[] __initconst = {
|
||||
{
|
||||
.load = 50,
|
||||
.loadbits = 0x3,
|
||||
|
|
|
@ -204,7 +204,7 @@ static void __init spear_clockevent_init(int irq)
|
|||
setup_irq(irq, &spear_timer_irq);
|
||||
}
|
||||
|
||||
static const struct of_device_id const timer_of_match[] __initconst = {
|
||||
static const struct of_device_id timer_of_match[] __initconst = {
|
||||
{ .compatible = "st,spear-timer", },
|
||||
{ },
|
||||
};
|
||||
|
|
|
@ -106,8 +106,13 @@ config ARCH_MVEBU
|
|||
select ARMADA_AP806_SYSCON
|
||||
select ARMADA_CP110_SYSCON
|
||||
select ARMADA_37XX_CLK
|
||||
select GPIOLIB
|
||||
select GPIOLIB_IRQCHIP
|
||||
select MVEBU_ODMI
|
||||
select MVEBU_PIC
|
||||
select OF_GPIO
|
||||
select PINCTRL
|
||||
select PINCTRL_ARMADA_37XX
|
||||
help
|
||||
This enables support for Marvell EBU familly, including:
|
||||
- Armada 3700 SoC Family
|
||||
|
|
|
@ -1 +0,0 @@
|
|||
../../../../arm/boot/dts
|
|
@ -1 +0,0 @@
|
|||
..
|
|
@ -1 +0,0 @@
|
|||
../../../../../include/dt-bindings
|
|
@ -79,6 +79,8 @@
|
|||
};
|
||||
|
||||
&i2c0 {
|
||||
pinctrl-names = "default";
|
||||
pinctrl-0 = <&i2c1_pins>;
|
||||
status = "okay";
|
||||
|
||||
gpio_exp: pca9555@22 {
|
||||
|
@ -113,6 +115,8 @@
|
|||
|
||||
&spi0 {
|
||||
status = "okay";
|
||||
pinctrl-names = "default";
|
||||
pinctrl-0 = <&spi_quad_pins>;
|
||||
|
||||
m25p80@0 {
|
||||
compatible = "jedec,spi-nor";
|
||||
|
@ -143,6 +147,8 @@
|
|||
|
||||
/* Exported on the micro USB connector CON32 through an FTDI */
|
||||
&uart0 {
|
||||
pinctrl-names = "default";
|
||||
pinctrl-0 = <&uart1_pins>;
|
||||
status = "okay";
|
||||
};
|
||||
|
||||
|
@ -184,6 +190,8 @@
|
|||
};
|
||||
|
||||
ð0 {
|
||||
pinctrl-names = "default";
|
||||
pinctrl-0 = <&rgmii_pins>;
|
||||
phy-mode = "rgmii-id";
|
||||
phy = <&phy0>;
|
||||
status = "okay";
|
||||
|
|
|
@ -161,16 +161,83 @@
|
|||
#clock-cells = <1>;
|
||||
};
|
||||
|
||||
gpio1: gpio@13800 {
|
||||
compatible = "marvell,mvebu-gpio-3700",
|
||||
pinctrl_nb: pinctrl@13800 {
|
||||
compatible = "marvell,armada3710-nb-pinctrl",
|
||||
"syscon", "simple-mfd";
|
||||
reg = <0x13800 0x500>;
|
||||
reg = <0x13800 0x100>, <0x13C00 0x20>;
|
||||
gpionb: gpio {
|
||||
#gpio-cells = <2>;
|
||||
gpio-ranges = <&pinctrl_nb 0 0 36>;
|
||||
gpio-controller;
|
||||
interrupts =
|
||||
<GIC_SPI 51 IRQ_TYPE_LEVEL_HIGH>,
|
||||
<GIC_SPI 52 IRQ_TYPE_LEVEL_HIGH>,
|
||||
<GIC_SPI 53 IRQ_TYPE_LEVEL_HIGH>,
|
||||
<GIC_SPI 54 IRQ_TYPE_LEVEL_HIGH>,
|
||||
<GIC_SPI 55 IRQ_TYPE_LEVEL_HIGH>,
|
||||
<GIC_SPI 56 IRQ_TYPE_LEVEL_HIGH>,
|
||||
<GIC_SPI 57 IRQ_TYPE_LEVEL_HIGH>,
|
||||
<GIC_SPI 58 IRQ_TYPE_LEVEL_HIGH>,
|
||||
<GIC_SPI 152 IRQ_TYPE_LEVEL_HIGH>,
|
||||
<GIC_SPI 153 IRQ_TYPE_LEVEL_HIGH>,
|
||||
<GIC_SPI 154 IRQ_TYPE_LEVEL_HIGH>,
|
||||
<GIC_SPI 155 IRQ_TYPE_LEVEL_HIGH>;
|
||||
|
||||
};
|
||||
|
||||
xtalclk: xtal-clk {
|
||||
compatible = "marvell,armada-3700-xtal-clock";
|
||||
clock-output-names = "xtal";
|
||||
#clock-cells = <0>;
|
||||
};
|
||||
|
||||
spi_quad_pins: spi-quad-pins {
|
||||
groups = "spi_quad";
|
||||
function = "spi";
|
||||
};
|
||||
|
||||
i2c1_pins: i2c1-pins {
|
||||
groups = "i2c1";
|
||||
function = "i2c";
|
||||
};
|
||||
|
||||
i2c2_pins: i2c2-pins {
|
||||
groups = "i2c2";
|
||||
function = "i2c";
|
||||
};
|
||||
|
||||
uart1_pins: uart1-pins {
|
||||
groups = "uart1";
|
||||
function = "uart";
|
||||
};
|
||||
|
||||
uart2_pins: uart2-pins {
|
||||
groups = "uart2";
|
||||
function = "uart";
|
||||
};
|
||||
};
|
||||
|
||||
pinctrl_sb: pinctrl@18800 {
|
||||
compatible = "marvell,armada3710-sb-pinctrl",
|
||||
"syscon", "simple-mfd";
|
||||
reg = <0x18800 0x100>, <0x18C00 0x20>;
|
||||
gpiosb: gpio {
|
||||
#gpio-cells = <2>;
|
||||
gpio-ranges = <&pinctrl_sb 0 0 29>;
|
||||
gpio-controller;
|
||||
interrupts =
|
||||
<GIC_SPI 160 IRQ_TYPE_LEVEL_HIGH>,
|
||||
<GIC_SPI 159 IRQ_TYPE_LEVEL_HIGH>,
|
||||
<GIC_SPI 158 IRQ_TYPE_LEVEL_HIGH>,
|
||||
<GIC_SPI 157 IRQ_TYPE_LEVEL_HIGH>,
|
||||
<GIC_SPI 156 IRQ_TYPE_LEVEL_HIGH>;
|
||||
};
|
||||
|
||||
rgmii_pins: mii-pins {
|
||||
groups = "rgmii";
|
||||
function = "mii";
|
||||
};
|
||||
|
||||
};
|
||||
|
||||
eth0: ethernet@30000 {
|
||||
|
|
|
@ -134,6 +134,9 @@
|
|||
bus-width = <8>;
|
||||
max-frequency = <50000000>;
|
||||
cap-mmc-highspeed;
|
||||
mediatek,hs200-cmd-int-delay=<26>;
|
||||
mediatek,hs400-cmd-int-delay=<14>;
|
||||
mediatek,hs400-cmd-resp-sel-rising;
|
||||
vmmc-supply = <&mt6397_vemc_3v3_reg>;
|
||||
vqmmc-supply = <&mt6397_vio18_reg>;
|
||||
non-removable;
|
||||
|
|
|
@ -44,7 +44,7 @@
|
|||
|
||||
/dts-v1/;
|
||||
#include "rk3399-gru.dtsi"
|
||||
#include <include/dt-bindings/input/linux-event-codes.h>
|
||||
#include <dt-bindings/input/linux-event-codes.h>
|
||||
|
||||
/*
|
||||
* Kevin-specific things
|
||||
|
|
|
@ -30,7 +30,6 @@ CONFIG_PROFILING=y
|
|||
CONFIG_JUMP_LABEL=y
|
||||
CONFIG_MODULES=y
|
||||
CONFIG_MODULE_UNLOAD=y
|
||||
# CONFIG_BLK_DEV_BSG is not set
|
||||
# CONFIG_IOSCHED_DEADLINE is not set
|
||||
CONFIG_ARCH_SUNXI=y
|
||||
CONFIG_ARCH_ALPINE=y
|
||||
|
@ -62,16 +61,15 @@ CONFIG_ARCH_XGENE=y
|
|||
CONFIG_ARCH_ZX=y
|
||||
CONFIG_ARCH_ZYNQMP=y
|
||||
CONFIG_PCI=y
|
||||
CONFIG_PCI_MSI=y
|
||||
CONFIG_PCI_IOV=y
|
||||
CONFIG_PCI_AARDVARK=y
|
||||
CONFIG_PCIE_RCAR=y
|
||||
CONFIG_PCI_HOST_GENERIC=y
|
||||
CONFIG_PCI_XGENE=y
|
||||
CONFIG_PCI_LAYERSCAPE=y
|
||||
CONFIG_PCI_HISI=y
|
||||
CONFIG_PCIE_QCOM=y
|
||||
CONFIG_PCIE_ARMADA_8K=y
|
||||
CONFIG_PCI_AARDVARK=y
|
||||
CONFIG_PCIE_RCAR=y
|
||||
CONFIG_PCI_HOST_GENERIC=y
|
||||
CONFIG_PCI_XGENE=y
|
||||
CONFIG_ARM64_VA_BITS_48=y
|
||||
CONFIG_SCHED_MC=y
|
||||
CONFIG_NUMA=y
|
||||
|
@ -80,12 +78,11 @@ CONFIG_KSM=y
|
|||
CONFIG_TRANSPARENT_HUGEPAGE=y
|
||||
CONFIG_CMA=y
|
||||
CONFIG_SECCOMP=y
|
||||
CONFIG_XEN=y
|
||||
CONFIG_KEXEC=y
|
||||
CONFIG_CRASH_DUMP=y
|
||||
CONFIG_XEN=y
|
||||
# CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS is not set
|
||||
CONFIG_COMPAT=y
|
||||
CONFIG_CPU_IDLE=y
|
||||
CONFIG_HIBERNATION=y
|
||||
CONFIG_ARM_CPUIDLE=y
|
||||
CONFIG_CPU_FREQ=y
|
||||
|
@ -155,8 +152,8 @@ CONFIG_MTD_SPI_NOR=y
|
|||
CONFIG_BLK_DEV_LOOP=y
|
||||
CONFIG_BLK_DEV_NBD=m
|
||||
CONFIG_VIRTIO_BLK=y
|
||||
CONFIG_EEPROM_AT25=m
|
||||
CONFIG_SRAM=y
|
||||
CONFIG_EEPROM_AT25=m
|
||||
# CONFIG_SCSI_PROC_FS is not set
|
||||
CONFIG_BLK_DEV_SD=y
|
||||
CONFIG_SCSI_SAS_ATA=y
|
||||
|
@ -168,8 +165,8 @@ CONFIG_AHCI_CEVA=y
|
|||
CONFIG_AHCI_MVEBU=y
|
||||
CONFIG_AHCI_XGENE=y
|
||||
CONFIG_AHCI_QORIQ=y
|
||||
CONFIG_SATA_RCAR=y
|
||||
CONFIG_SATA_SIL24=y
|
||||
CONFIG_SATA_RCAR=y
|
||||
CONFIG_PATA_PLATFORM=y
|
||||
CONFIG_PATA_OF_PLATFORM=y
|
||||
CONFIG_NETDEVICES=y
|
||||
|
@ -186,18 +183,17 @@ CONFIG_HNS_ENET=y
|
|||
CONFIG_E1000E=y
|
||||
CONFIG_IGB=y
|
||||
CONFIG_IGBVF=y
|
||||
CONFIG_MVPP2=y
|
||||
CONFIG_MVNETA=y
|
||||
CONFIG_MVPP2=y
|
||||
CONFIG_SKY2=y
|
||||
CONFIG_RAVB=y
|
||||
CONFIG_SMC91X=y
|
||||
CONFIG_SMSC911X=y
|
||||
CONFIG_STMMAC_ETH=m
|
||||
CONFIG_REALTEK_PHY=m
|
||||
CONFIG_MDIO_BUS_MUX_MMIOREG=y
|
||||
CONFIG_MESON_GXL_PHY=m
|
||||
CONFIG_MICREL_PHY=y
|
||||
CONFIG_MDIO_BUS_MUX=y
|
||||
CONFIG_MDIO_BUS_MUX_MMIOREG=y
|
||||
CONFIG_REALTEK_PHY=m
|
||||
CONFIG_USB_PEGASUS=m
|
||||
CONFIG_USB_RTL8150=m
|
||||
CONFIG_USB_RTL8152=m
|
||||
|
@ -230,14 +226,14 @@ CONFIG_SERIAL_8250_UNIPHIER=y
|
|||
CONFIG_SERIAL_OF_PLATFORM=y
|
||||
CONFIG_SERIAL_AMBA_PL011=y
|
||||
CONFIG_SERIAL_AMBA_PL011_CONSOLE=y
|
||||
CONFIG_SERIAL_MESON=y
|
||||
CONFIG_SERIAL_MESON_CONSOLE=y
|
||||
CONFIG_SERIAL_SAMSUNG=y
|
||||
CONFIG_SERIAL_SAMSUNG_CONSOLE=y
|
||||
CONFIG_SERIAL_TEGRA=y
|
||||
CONFIG_SERIAL_SH_SCI=y
|
||||
CONFIG_SERIAL_SH_SCI_NR_UARTS=11
|
||||
CONFIG_SERIAL_SH_SCI_CONSOLE=y
|
||||
CONFIG_SERIAL_MESON=y
|
||||
CONFIG_SERIAL_MESON_CONSOLE=y
|
||||
CONFIG_SERIAL_MSM=y
|
||||
CONFIG_SERIAL_MSM_CONSOLE=y
|
||||
CONFIG_SERIAL_XILINX_PS_UART=y
|
||||
|
@ -261,14 +257,14 @@ CONFIG_I2C_UNIPHIER_F=y
|
|||
CONFIG_I2C_RCAR=y
|
||||
CONFIG_I2C_CROS_EC_TUNNEL=y
|
||||
CONFIG_SPI=y
|
||||
CONFIG_SPI_MESON_SPIFC=m
|
||||
CONFIG_SPI_BCM2835=m
|
||||
CONFIG_SPI_BCM2835AUX=m
|
||||
CONFIG_SPI_MESON_SPIFC=m
|
||||
CONFIG_SPI_ORION=y
|
||||
CONFIG_SPI_PL022=y
|
||||
CONFIG_SPI_QUP=y
|
||||
CONFIG_SPI_SPIDEV=m
|
||||
CONFIG_SPI_S3C64XX=y
|
||||
CONFIG_SPI_SPIDEV=m
|
||||
CONFIG_SPMI=y
|
||||
CONFIG_PINCTRL_SINGLE=y
|
||||
CONFIG_PINCTRL_MAX77620=y
|
||||
|
@ -286,33 +282,30 @@ CONFIG_GPIO_PCA953X=y
|
|||
CONFIG_GPIO_PCA953X_IRQ=y
|
||||
CONFIG_GPIO_MAX77620=y
|
||||
CONFIG_POWER_RESET_MSM=y
|
||||
CONFIG_BATTERY_BQ27XXX=y
|
||||
CONFIG_POWER_RESET_XGENE=y
|
||||
CONFIG_POWER_RESET_SYSCON=y
|
||||
CONFIG_BATTERY_BQ27XXX=y
|
||||
CONFIG_SENSORS_ARM_SCPI=y
|
||||
CONFIG_SENSORS_LM90=m
|
||||
CONFIG_SENSORS_INA2XX=m
|
||||
CONFIG_SENSORS_ARM_SCPI=y
|
||||
CONFIG_THERMAL=y
|
||||
CONFIG_THERMAL_EMULATION=y
|
||||
CONFIG_THERMAL_GOV_POWER_ALLOCATOR=y
|
||||
CONFIG_CPU_THERMAL=y
|
||||
CONFIG_BCM2835_THERMAL=y
|
||||
CONFIG_THERMAL_EMULATION=y
|
||||
CONFIG_EXYNOS_THERMAL=y
|
||||
CONFIG_WATCHDOG=y
|
||||
CONFIG_BCM2835_WDT=y
|
||||
CONFIG_RENESAS_WDT=y
|
||||
CONFIG_S3C2410_WATCHDOG=y
|
||||
CONFIG_MESON_GXBB_WATCHDOG=m
|
||||
CONFIG_MESON_WATCHDOG=m
|
||||
CONFIG_MFD_EXYNOS_LPASS=m
|
||||
CONFIG_MFD_MAX77620=y
|
||||
CONFIG_MFD_RK808=y
|
||||
CONFIG_MFD_SPMI_PMIC=y
|
||||
CONFIG_MFD_SEC_CORE=y
|
||||
CONFIG_MFD_HI655X_PMIC=y
|
||||
CONFIG_REGULATOR=y
|
||||
CONFIG_RENESAS_WDT=y
|
||||
CONFIG_BCM2835_WDT=y
|
||||
CONFIG_MFD_CROS_EC=y
|
||||
CONFIG_MFD_CROS_EC_I2C=y
|
||||
CONFIG_MFD_EXYNOS_LPASS=m
|
||||
CONFIG_MFD_HI655X_PMIC=y
|
||||
CONFIG_MFD_MAX77620=y
|
||||
CONFIG_MFD_SPMI_PMIC=y
|
||||
CONFIG_MFD_RK808=y
|
||||
CONFIG_MFD_SEC_CORE=y
|
||||
CONFIG_REGULATOR_FIXED_VOLTAGE=y
|
||||
CONFIG_REGULATOR_GPIO=y
|
||||
CONFIG_REGULATOR_HI655X=y
|
||||
|
@ -345,13 +338,12 @@ CONFIG_DRM_EXYNOS_DSI=y
|
|||
CONFIG_DRM_EXYNOS_HDMI=y
|
||||
CONFIG_DRM_EXYNOS_MIC=y
|
||||
CONFIG_DRM_RCAR_DU=m
|
||||
CONFIG_DRM_RCAR_HDMI=y
|
||||
CONFIG_DRM_RCAR_LVDS=y
|
||||
CONFIG_DRM_RCAR_VSP=y
|
||||
CONFIG_DRM_TEGRA=m
|
||||
CONFIG_DRM_VC4=m
|
||||
CONFIG_DRM_PANEL_SIMPLE=m
|
||||
CONFIG_DRM_I2C_ADV7511=m
|
||||
CONFIG_DRM_VC4=m
|
||||
CONFIG_DRM_HISI_KIRIN=m
|
||||
CONFIG_DRM_MESON=m
|
||||
CONFIG_FB=y
|
||||
|
@ -366,39 +358,37 @@ CONFIG_SOUND=y
|
|||
CONFIG_SND=y
|
||||
CONFIG_SND_SOC=y
|
||||
CONFIG_SND_BCM2835_SOC_I2S=m
|
||||
CONFIG_SND_SOC_RCAR=y
|
||||
CONFIG_SND_SOC_SAMSUNG=y
|
||||
CONFIG_SND_SOC_RCAR=y
|
||||
CONFIG_SND_SOC_AK4613=y
|
||||
CONFIG_USB=y
|
||||
CONFIG_USB_OTG=y
|
||||
CONFIG_USB_XHCI_HCD=y
|
||||
CONFIG_USB_XHCI_PLATFORM=y
|
||||
CONFIG_USB_XHCI_RCAR=y
|
||||
CONFIG_USB_EHCI_EXYNOS=y
|
||||
CONFIG_USB_XHCI_TEGRA=y
|
||||
CONFIG_USB_EHCI_HCD=y
|
||||
CONFIG_USB_EHCI_MSM=y
|
||||
CONFIG_USB_EHCI_EXYNOS=y
|
||||
CONFIG_USB_EHCI_HCD_PLATFORM=y
|
||||
CONFIG_USB_OHCI_EXYNOS=y
|
||||
CONFIG_USB_OHCI_HCD=y
|
||||
CONFIG_USB_OHCI_EXYNOS=y
|
||||
CONFIG_USB_OHCI_HCD_PLATFORM=y
|
||||
CONFIG_USB_RENESAS_USBHS=m
|
||||
CONFIG_USB_STORAGE=y
|
||||
CONFIG_USB_DWC2=y
|
||||
CONFIG_USB_DWC3=y
|
||||
CONFIG_USB_DWC2=y
|
||||
CONFIG_USB_CHIPIDEA=y
|
||||
CONFIG_USB_CHIPIDEA_UDC=y
|
||||
CONFIG_USB_CHIPIDEA_HOST=y
|
||||
CONFIG_USB_ISP1760=y
|
||||
CONFIG_USB_HSIC_USB3503=y
|
||||
CONFIG_USB_MSM_OTG=y
|
||||
CONFIG_USB_QCOM_8X16_PHY=y
|
||||
CONFIG_USB_ULPI=y
|
||||
CONFIG_USB_GADGET=y
|
||||
CONFIG_USB_RENESAS_USBHS_UDC=m
|
||||
CONFIG_MMC=y
|
||||
CONFIG_MMC_BLOCK_MINORS=32
|
||||
CONFIG_MMC_ARMMMCI=y
|
||||
CONFIG_MMC_MESON_GX=y
|
||||
CONFIG_MMC_SDHCI=y
|
||||
CONFIG_MMC_SDHCI_ACPI=y
|
||||
CONFIG_MMC_SDHCI_PLTFM=y
|
||||
|
@ -406,6 +396,7 @@ CONFIG_MMC_SDHCI_OF_ARASAN=y
|
|||
CONFIG_MMC_SDHCI_OF_ESDHC=y
|
||||
CONFIG_MMC_SDHCI_CADENCE=y
|
||||
CONFIG_MMC_SDHCI_TEGRA=y
|
||||
CONFIG_MMC_MESON_GX=y
|
||||
CONFIG_MMC_SDHCI_MSM=y
|
||||
CONFIG_MMC_SPI=y
|
||||
CONFIG_MMC_SDHI=y
|
||||
|
@ -414,32 +405,31 @@ CONFIG_MMC_DW_EXYNOS=y
|
|||
CONFIG_MMC_DW_K3=y
|
||||
CONFIG_MMC_DW_ROCKCHIP=y
|
||||
CONFIG_MMC_SUNXI=y
|
||||
CONFIG_MMC_SDHCI_XENON=y
|
||||
CONFIG_MMC_BCM2835=y
|
||||
CONFIG_MMC_SDHCI_XENON=y
|
||||
CONFIG_NEW_LEDS=y
|
||||
CONFIG_LEDS_CLASS=y
|
||||
CONFIG_LEDS_GPIO=y
|
||||
CONFIG_LEDS_PWM=y
|
||||
CONFIG_LEDS_SYSCON=y
|
||||
CONFIG_LEDS_TRIGGERS=y
|
||||
CONFIG_LEDS_TRIGGER_DEFAULT_ON=y
|
||||
CONFIG_LEDS_TRIGGER_HEARTBEAT=y
|
||||
CONFIG_LEDS_TRIGGER_CPU=y
|
||||
CONFIG_LEDS_TRIGGER_DEFAULT_ON=y
|
||||
CONFIG_RTC_CLASS=y
|
||||
CONFIG_RTC_DRV_MAX77686=y
|
||||
CONFIG_RTC_DRV_RK808=m
|
||||
CONFIG_RTC_DRV_S5M=y
|
||||
CONFIG_RTC_DRV_DS3232=y
|
||||
CONFIG_RTC_DRV_EFI=y
|
||||
CONFIG_RTC_DRV_S3C=y
|
||||
CONFIG_RTC_DRV_PL031=y
|
||||
CONFIG_RTC_DRV_SUN6I=y
|
||||
CONFIG_RTC_DRV_RK808=m
|
||||
CONFIG_RTC_DRV_TEGRA=y
|
||||
CONFIG_RTC_DRV_XGENE=y
|
||||
CONFIG_RTC_DRV_S3C=y
|
||||
CONFIG_DMADEVICES=y
|
||||
CONFIG_DMA_BCM2835=m
|
||||
CONFIG_MV_XOR_V2=y
|
||||
CONFIG_PL330_DMA=y
|
||||
CONFIG_DMA_BCM2835=m
|
||||
CONFIG_TEGRA20_APB_DMA=y
|
||||
CONFIG_QCOM_BAM_DMA=y
|
||||
CONFIG_QCOM_HIDMA_MGMT=y
|
||||
|
@ -452,52 +442,53 @@ CONFIG_VIRTIO_BALLOON=y
|
|||
CONFIG_VIRTIO_MMIO=y
|
||||
CONFIG_XEN_GNTDEV=y
|
||||
CONFIG_XEN_GRANT_DEV_ALLOC=y
|
||||
CONFIG_COMMON_CLK_RK808=y
|
||||
CONFIG_COMMON_CLK_SCPI=y
|
||||
CONFIG_COMMON_CLK_CS2000_CP=y
|
||||
CONFIG_COMMON_CLK_S2MPS11=y
|
||||
CONFIG_COMMON_CLK_PWM=y
|
||||
CONFIG_COMMON_CLK_RK808=y
|
||||
CONFIG_CLK_QORIQ=y
|
||||
CONFIG_COMMON_CLK_PWM=y
|
||||
CONFIG_COMMON_CLK_QCOM=y
|
||||
CONFIG_QCOM_CLK_SMD_RPM=y
|
||||
CONFIG_MSM_GCC_8916=y
|
||||
CONFIG_MSM_GCC_8994=y
|
||||
CONFIG_MSM_MMCC_8996=y
|
||||
CONFIG_HWSPINLOCK_QCOM=y
|
||||
CONFIG_MAILBOX=y
|
||||
CONFIG_ARM_MHU=y
|
||||
CONFIG_PLATFORM_MHU=y
|
||||
CONFIG_BCM2835_MBOX=y
|
||||
CONFIG_HI6220_MBOX=y
|
||||
CONFIG_ARM_SMMU=y
|
||||
CONFIG_ARM_SMMU_V3=y
|
||||
CONFIG_RPMSG_QCOM_SMD=y
|
||||
CONFIG_RASPBERRYPI_POWER=y
|
||||
CONFIG_QCOM_SMEM=y
|
||||
CONFIG_QCOM_SMD=y
|
||||
CONFIG_QCOM_SMD_RPM=y
|
||||
CONFIG_QCOM_SMP2P=y
|
||||
CONFIG_QCOM_SMSM=y
|
||||
CONFIG_ROCKCHIP_PM_DOMAINS=y
|
||||
CONFIG_ARCH_TEGRA_132_SOC=y
|
||||
CONFIG_ARCH_TEGRA_210_SOC=y
|
||||
CONFIG_ARCH_TEGRA_186_SOC=y
|
||||
CONFIG_EXTCON_USB_GPIO=y
|
||||
CONFIG_IIO=y
|
||||
CONFIG_EXYNOS_ADC=y
|
||||
CONFIG_PWM=y
|
||||
CONFIG_PWM_BCM2835=m
|
||||
CONFIG_PWM_ROCKCHIP=y
|
||||
CONFIG_PWM_TEGRA=m
|
||||
CONFIG_PWM_MESON=m
|
||||
CONFIG_COMMON_RESET_HI6220=y
|
||||
CONFIG_PWM_ROCKCHIP=y
|
||||
CONFIG_PWM_SAMSUNG=y
|
||||
CONFIG_PWM_TEGRA=m
|
||||
CONFIG_PHY_RCAR_GEN3_USB2=y
|
||||
CONFIG_PHY_HI6220_USB=y
|
||||
CONFIG_PHY_SUN4I_USB=y
|
||||
CONFIG_PHY_ROCKCHIP_INNO_USB2=y
|
||||
CONFIG_PHY_ROCKCHIP_EMMC=y
|
||||
CONFIG_PHY_SUN4I_USB=y
|
||||
CONFIG_PHY_XGENE=y
|
||||
CONFIG_PHY_TEGRA_XUSB=y
|
||||
CONFIG_ARM_SCPI_PROTOCOL=y
|
||||
CONFIG_ACPI=y
|
||||
CONFIG_IIO=y
|
||||
CONFIG_EXYNOS_ADC=y
|
||||
CONFIG_PWM_SAMSUNG=y
|
||||
CONFIG_RASPBERRYPI_FIRMWARE=y
|
||||
CONFIG_ACPI=y
|
||||
CONFIG_EXT2_FS=y
|
||||
CONFIG_EXT3_FS=y
|
||||
CONFIG_EXT4_FS_POSIX_ACL=y
|
||||
|
@ -511,7 +502,6 @@ CONFIG_FUSE_FS=m
|
|||
CONFIG_CUSE=m
|
||||
CONFIG_OVERLAY_FS=m
|
||||
CONFIG_VFAT_FS=y
|
||||
CONFIG_TMPFS=y
|
||||
CONFIG_HUGETLBFS=y
|
||||
CONFIG_CONFIGFS_FS=y
|
||||
CONFIG_EFIVAR_FS=y
|
||||
|
@ -539,11 +529,9 @@ CONFIG_MEMTEST=y
|
|||
CONFIG_SECURITY=y
|
||||
CONFIG_CRYPTO_ECHAINIV=y
|
||||
CONFIG_CRYPTO_ANSI_CPRNG=y
|
||||
CONFIG_CRYPTO_DEV_SAFEXCEL=m
|
||||
CONFIG_ARM64_CRYPTO=y
|
||||
CONFIG_CRYPTO_SHA1_ARM64_CE=y
|
||||
CONFIG_CRYPTO_SHA2_ARM64_CE=y
|
||||
CONFIG_CRYPTO_GHASH_ARM64_CE=y
|
||||
CONFIG_CRYPTO_AES_ARM64_CE_CCM=y
|
||||
CONFIG_CRYPTO_AES_ARM64_CE_BLK=y
|
||||
# CONFIG_CRYPTO_AES_ARM64_NEON_BLK is not set
|
||||
|
|
|
@ -264,7 +264,6 @@ __LL_SC_PREFIX(__cmpxchg_case_##name(volatile void *ptr, \
|
|||
" st" #rel "xr" #sz "\t%w[tmp], %" #w "[new], %[v]\n" \
|
||||
" cbnz %w[tmp], 1b\n" \
|
||||
" " #mb "\n" \
|
||||
" mov %" #w "[oldval], %" #w "[old]\n" \
|
||||
"2:" \
|
||||
: [tmp] "=&r" (tmp), [oldval] "=&r" (oldval), \
|
||||
[v] "+Q" (*(unsigned long *)ptr) \
|
||||
|
|
|
@ -115,6 +115,7 @@ struct arm64_cpu_capabilities {
|
|||
|
||||
extern DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
|
||||
extern struct static_key_false cpu_hwcap_keys[ARM64_NCAPS];
|
||||
extern struct static_key_false arm64_const_caps_ready;
|
||||
|
||||
bool this_cpu_has_cap(unsigned int cap);
|
||||
|
||||
|
@ -124,7 +125,7 @@ static inline bool cpu_have_feature(unsigned int num)
|
|||
}
|
||||
|
||||
/* System capability check for constant caps */
|
||||
static inline bool cpus_have_const_cap(int num)
|
||||
static inline bool __cpus_have_const_cap(int num)
|
||||
{
|
||||
if (num >= ARM64_NCAPS)
|
||||
return false;
|
||||
|
@ -138,6 +139,14 @@ static inline bool cpus_have_cap(unsigned int num)
|
|||
return test_bit(num, cpu_hwcaps);
|
||||
}
|
||||
|
||||
static inline bool cpus_have_const_cap(int num)
|
||||
{
|
||||
if (static_branch_likely(&arm64_const_caps_ready))
|
||||
return __cpus_have_const_cap(num);
|
||||
else
|
||||
return cpus_have_cap(num);
|
||||
}
|
||||
|
||||
static inline void cpus_set_cap(unsigned int num)
|
||||
{
|
||||
if (num >= ARM64_NCAPS) {
|
||||
|
@ -145,7 +154,6 @@ static inline void cpus_set_cap(unsigned int num)
|
|||
num, ARM64_NCAPS);
|
||||
} else {
|
||||
__set_bit(num, cpu_hwcaps);
|
||||
static_branch_enable(&cpu_hwcap_keys[num]);
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -24,6 +24,7 @@
|
|||
|
||||
#include <linux/types.h>
|
||||
#include <linux/kvm_types.h>
|
||||
#include <asm/cpufeature.h>
|
||||
#include <asm/kvm.h>
|
||||
#include <asm/kvm_asm.h>
|
||||
#include <asm/kvm_mmio.h>
|
||||
|
@ -355,9 +356,12 @@ static inline void __cpu_init_hyp_mode(phys_addr_t pgd_ptr,
|
|||
unsigned long vector_ptr)
|
||||
{
|
||||
/*
|
||||
* Call initialization code, and switch to the full blown
|
||||
* HYP code.
|
||||
* Call initialization code, and switch to the full blown HYP code.
|
||||
* If the cpucaps haven't been finalized yet, something has gone very
|
||||
* wrong, and hyp will crash and burn when it uses any
|
||||
* cpus_have_const_cap() wrapper.
|
||||
*/
|
||||
BUG_ON(!static_branch_likely(&arm64_const_caps_ready));
|
||||
__kvm_call_hyp((void *)pgd_ptr, hyp_stack_ptr, vector_ptr);
|
||||
}
|
||||
|
||||
|
|
|
@ -985,8 +985,16 @@ void update_cpu_capabilities(const struct arm64_cpu_capabilities *caps,
|
|||
*/
|
||||
void __init enable_cpu_capabilities(const struct arm64_cpu_capabilities *caps)
|
||||
{
|
||||
for (; caps->matches; caps++)
|
||||
if (caps->enable && cpus_have_cap(caps->capability))
|
||||
for (; caps->matches; caps++) {
|
||||
unsigned int num = caps->capability;
|
||||
|
||||
if (!cpus_have_cap(num))
|
||||
continue;
|
||||
|
||||
/* Ensure cpus_have_const_cap(num) works */
|
||||
static_branch_enable(&cpu_hwcap_keys[num]);
|
||||
|
||||
if (caps->enable) {
|
||||
/*
|
||||
* Use stop_machine() as it schedules the work allowing
|
||||
* us to modify PSTATE, instead of on_each_cpu() which
|
||||
|
@ -995,6 +1003,8 @@ void __init enable_cpu_capabilities(const struct arm64_cpu_capabilities *caps)
|
|||
*/
|
||||
stop_machine(caps->enable, NULL, cpu_online_mask);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Flag to indicate if we have computed the system wide
|
||||
|
@ -1096,6 +1106,14 @@ static void __init setup_feature_capabilities(void)
|
|||
enable_cpu_capabilities(arm64_features);
|
||||
}
|
||||
|
||||
DEFINE_STATIC_KEY_FALSE(arm64_const_caps_ready);
|
||||
EXPORT_SYMBOL(arm64_const_caps_ready);
|
||||
|
||||
static void __init mark_const_caps_ready(void)
|
||||
{
|
||||
static_branch_enable(&arm64_const_caps_ready);
|
||||
}
|
||||
|
||||
/*
|
||||
* Check if the current CPU has a given feature capability.
|
||||
* Should be called from non-preemptible context.
|
||||
|
@ -1131,6 +1149,7 @@ void __init setup_cpu_features(void)
|
|||
/* Set the CPU feature capabilies */
|
||||
setup_feature_capabilities();
|
||||
enable_errata_workarounds();
|
||||
mark_const_caps_ready();
|
||||
setup_elf_hwcaps(arm64_elf_hwcaps);
|
||||
|
||||
if (system_supports_32bit_el0())
|
||||
|
|
|
@ -877,15 +877,24 @@ static int armv8pmu_set_event_filter(struct hw_perf_event *event,
|
|||
|
||||
if (attr->exclude_idle)
|
||||
return -EPERM;
|
||||
if (is_kernel_in_hyp_mode() &&
|
||||
attr->exclude_kernel != attr->exclude_hv)
|
||||
return -EINVAL;
|
||||
if (attr->exclude_user)
|
||||
config_base |= ARMV8_PMU_EXCLUDE_EL0;
|
||||
if (!is_kernel_in_hyp_mode() && attr->exclude_kernel)
|
||||
|
||||
/*
|
||||
* If we're running in hyp mode, then we *are* the hypervisor.
|
||||
* Therefore we ignore exclude_hv in this configuration, since
|
||||
* there's no hypervisor to sample anyway. This is consistent
|
||||
* with other architectures (x86 and Power).
|
||||
*/
|
||||
if (is_kernel_in_hyp_mode()) {
|
||||
if (!attr->exclude_kernel)
|
||||
config_base |= ARMV8_PMU_INCLUDE_EL2;
|
||||
} else {
|
||||
if (attr->exclude_kernel)
|
||||
config_base |= ARMV8_PMU_EXCLUDE_EL1;
|
||||
if (!attr->exclude_hv)
|
||||
config_base |= ARMV8_PMU_INCLUDE_EL2;
|
||||
}
|
||||
if (attr->exclude_user)
|
||||
config_base |= ARMV8_PMU_EXCLUDE_EL0;
|
||||
|
||||
/*
|
||||
* Install the filter into config_base as this is used to
|
||||
|
|
|
@ -2,6 +2,8 @@
|
|||
# Makefile for Kernel-based Virtual Machine module, HYP part
|
||||
#
|
||||
|
||||
ccflags-y += -fno-stack-protector
|
||||
|
||||
KVM=../../../../virt/kvm
|
||||
|
||||
obj-$(CONFIG_KVM_ARM_HOST) += $(KVM)/arm/hyp/vgic-v2-sr.o
|
||||
|
|
|
@ -1 +0,0 @@
|
|||
../../../../../include/dt-bindings
|
|
@ -1 +0,0 @@
|
|||
../../../../../include/dt-bindings
|
|
@ -1 +0,0 @@
|
|||
../../../../../include/dt-bindings
|
|
@ -1 +0,0 @@
|
|||
../../../../../include/dt-bindings
|
|
@ -14,6 +14,10 @@
|
|||
#include <asm-generic/module.h>
|
||||
|
||||
|
||||
#ifdef CC_USING_MPROFILE_KERNEL
|
||||
#define MODULE_ARCH_VERMAGIC "mprofile-kernel"
|
||||
#endif
|
||||
|
||||
#ifndef __powerpc64__
|
||||
/*
|
||||
* Thanks to Paul M for explaining this.
|
||||
|
|
|
@ -132,7 +132,19 @@ extern long long virt_phys_offset;
|
|||
#define virt_to_pfn(kaddr) (__pa(kaddr) >> PAGE_SHIFT)
|
||||
#define virt_to_page(kaddr) pfn_to_page(virt_to_pfn(kaddr))
|
||||
#define pfn_to_kaddr(pfn) __va((pfn) << PAGE_SHIFT)
|
||||
|
||||
#ifdef CONFIG_PPC_BOOK3S_64
|
||||
/*
|
||||
* On hash the vmalloc and other regions alias to the kernel region when passed
|
||||
* through __pa(), which virt_to_pfn() uses. That means virt_addr_valid() can
|
||||
* return true for some vmalloc addresses, which is incorrect. So explicitly
|
||||
* check that the address is in the kernel region.
|
||||
*/
|
||||
#define virt_addr_valid(kaddr) (REGION_ID(kaddr) == KERNEL_REGION_ID && \
|
||||
pfn_valid(virt_to_pfn(kaddr)))
|
||||
#else
|
||||
#define virt_addr_valid(kaddr) pfn_valid(virt_to_pfn(kaddr))
|
||||
#endif
|
||||
|
||||
/*
|
||||
* On Book-E parts we need __va to parse the device tree and we can't
|
||||
|
|
|
@ -416,7 +416,7 @@ power9_dd1_recover_paca:
|
|||
* which needs to be restored from the stack.
|
||||
*/
|
||||
li r3, 1
|
||||
stb r0,PACA_NAPSTATELOST(r13)
|
||||
stb r3,PACA_NAPSTATELOST(r13)
|
||||
blr
|
||||
|
||||
/*
|
||||
|
|
|
@ -305,16 +305,17 @@ int kprobe_handler(struct pt_regs *regs)
|
|||
save_previous_kprobe(kcb);
|
||||
set_current_kprobe(p, regs, kcb);
|
||||
kprobes_inc_nmissed_count(p);
|
||||
prepare_singlestep(p, regs);
|
||||
kcb->kprobe_status = KPROBE_REENTER;
|
||||
if (p->ainsn.boostable >= 0) {
|
||||
ret = try_to_emulate(p, regs);
|
||||
|
||||
if (ret > 0) {
|
||||
restore_previous_kprobe(kcb);
|
||||
preempt_enable_no_resched();
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
prepare_singlestep(p, regs);
|
||||
return 1;
|
||||
} else {
|
||||
if (*addr != BREAKPOINT_INSTRUCTION) {
|
||||
|
|
|
@ -864,6 +864,25 @@ static void tm_reclaim_thread(struct thread_struct *thr,
|
|||
if (!MSR_TM_SUSPENDED(mfmsr()))
|
||||
return;
|
||||
|
||||
/*
|
||||
* If we are in a transaction and FP is off then we can't have
|
||||
* used FP inside that transaction. Hence the checkpointed
|
||||
* state is the same as the live state. We need to copy the
|
||||
* live state to the checkpointed state so that when the
|
||||
* transaction is restored, the checkpointed state is correct
|
||||
* and the aborted transaction sees the correct state. We use
|
||||
* ckpt_regs.msr here as that's what tm_reclaim will use to
|
||||
* determine if it's going to write the checkpointed state or
|
||||
* not. So either this will write the checkpointed registers,
|
||||
* or reclaim will. Similarly for VMX.
|
||||
*/
|
||||
if ((thr->ckpt_regs.msr & MSR_FP) == 0)
|
||||
memcpy(&thr->ckfp_state, &thr->fp_state,
|
||||
sizeof(struct thread_fp_state));
|
||||
if ((thr->ckpt_regs.msr & MSR_VEC) == 0)
|
||||
memcpy(&thr->ckvr_state, &thr->vr_state,
|
||||
sizeof(struct thread_vr_state));
|
||||
|
||||
giveup_all(container_of(thr, struct task_struct, thread));
|
||||
|
||||
tm_reclaim(thr, thr->ckpt_regs.msr, cause);
|
||||
|
|
|
@ -67,7 +67,7 @@ config KVM_BOOK3S_64
|
|||
select KVM_BOOK3S_64_HANDLER
|
||||
select KVM
|
||||
select KVM_BOOK3S_PR_POSSIBLE if !KVM_BOOK3S_HV_POSSIBLE
|
||||
select SPAPR_TCE_IOMMU if IOMMU_SUPPORT
|
||||
select SPAPR_TCE_IOMMU if IOMMU_SUPPORT && (PPC_SERIES || PPC_POWERNV)
|
||||
---help---
|
||||
Support running unmodified book3s_64 and book3s_32 guest kernels
|
||||
in virtual machines on book3s_64 host processors.
|
||||
|
|
|
@ -46,7 +46,7 @@ kvm-e500mc-objs := \
|
|||
e500_emulate.o
|
||||
kvm-objs-$(CONFIG_KVM_E500MC) := $(kvm-e500mc-objs)
|
||||
|
||||
kvm-book3s_64-builtin-objs-$(CONFIG_KVM_BOOK3S_64_HANDLER) := \
|
||||
kvm-book3s_64-builtin-objs-$(CONFIG_SPAPR_TCE_IOMMU) := \
|
||||
book3s_64_vio_hv.o
|
||||
|
||||
kvm-pr-y := \
|
||||
|
@ -90,11 +90,11 @@ kvm-book3s_64-objs-$(CONFIG_KVM_XICS) += \
|
|||
book3s_xics.o
|
||||
|
||||
kvm-book3s_64-objs-$(CONFIG_KVM_XIVE) += book3s_xive.o
|
||||
kvm-book3s_64-objs-$(CONFIG_SPAPR_TCE_IOMMU) += book3s_64_vio.o
|
||||
|
||||
kvm-book3s_64-module-objs := \
|
||||
$(common-objs-y) \
|
||||
book3s.o \
|
||||
book3s_64_vio.o \
|
||||
book3s_rtas.o \
|
||||
$(kvm-book3s_64-objs-y)
|
||||
|
||||
|
|
|
@ -301,6 +301,10 @@ long kvmppc_rm_h_put_tce(struct kvm_vcpu *vcpu, unsigned long liobn,
|
|||
/* udbg_printf("H_PUT_TCE(): liobn=0x%lx ioba=0x%lx, tce=0x%lx\n", */
|
||||
/* liobn, ioba, tce); */
|
||||
|
||||
/* For radix, we might be in virtual mode, so punt */
|
||||
if (kvm_is_radix(vcpu->kvm))
|
||||
return H_TOO_HARD;
|
||||
|
||||
stt = kvmppc_find_table(vcpu->kvm, liobn);
|
||||
if (!stt)
|
||||
return H_TOO_HARD;
|
||||
|
@ -381,6 +385,10 @@ long kvmppc_rm_h_put_tce_indirect(struct kvm_vcpu *vcpu,
|
|||
bool prereg = false;
|
||||
struct kvmppc_spapr_tce_iommu_table *stit;
|
||||
|
||||
/* For radix, we might be in virtual mode, so punt */
|
||||
if (kvm_is_radix(vcpu->kvm))
|
||||
return H_TOO_HARD;
|
||||
|
||||
stt = kvmppc_find_table(vcpu->kvm, liobn);
|
||||
if (!stt)
|
||||
return H_TOO_HARD;
|
||||
|
@ -491,6 +499,10 @@ long kvmppc_rm_h_stuff_tce(struct kvm_vcpu *vcpu,
|
|||
long i, ret;
|
||||
struct kvmppc_spapr_tce_iommu_table *stit;
|
||||
|
||||
/* For radix, we might be in virtual mode, so punt */
|
||||
if (kvm_is_radix(vcpu->kvm))
|
||||
return H_TOO_HARD;
|
||||
|
||||
stt = kvmppc_find_table(vcpu->kvm, liobn);
|
||||
if (!stt)
|
||||
return H_TOO_HARD;
|
||||
|
@ -527,6 +539,7 @@ long kvmppc_rm_h_stuff_tce(struct kvm_vcpu *vcpu,
|
|||
return H_SUCCESS;
|
||||
}
|
||||
|
||||
/* This can be called in either virtual mode or real mode */
|
||||
long kvmppc_h_get_tce(struct kvm_vcpu *vcpu, unsigned long liobn,
|
||||
unsigned long ioba)
|
||||
{
|
||||
|
|
|
@ -207,7 +207,14 @@ EXPORT_SYMBOL_GPL(kvmppc_hwrng_present);
|
|||
|
||||
long kvmppc_h_random(struct kvm_vcpu *vcpu)
|
||||
{
|
||||
if (powernv_get_random_real_mode(&vcpu->arch.gpr[4]))
|
||||
int r;
|
||||
|
||||
/* Only need to do the expensive mfmsr() on radix */
|
||||
if (kvm_is_radix(vcpu->kvm) && (mfmsr() & MSR_IR))
|
||||
r = powernv_get_random_long(&vcpu->arch.gpr[4]);
|
||||
else
|
||||
r = powernv_get_random_real_mode(&vcpu->arch.gpr[4]);
|
||||
if (r)
|
||||
return H_SUCCESS;
|
||||
|
||||
return H_HARDWARE;
|
||||
|
|
|
@ -50,7 +50,9 @@ static int kvmppc_h_pr_enter(struct kvm_vcpu *vcpu)
|
|||
pteg_addr = get_pteg_addr(vcpu, pte_index);
|
||||
|
||||
mutex_lock(&vcpu->kvm->arch.hpt_mutex);
|
||||
copy_from_user(pteg, (void __user *)pteg_addr, sizeof(pteg));
|
||||
ret = H_FUNCTION;
|
||||
if (copy_from_user(pteg, (void __user *)pteg_addr, sizeof(pteg)))
|
||||
goto done;
|
||||
hpte = pteg;
|
||||
|
||||
ret = H_PTEG_FULL;
|
||||
|
@ -71,7 +73,9 @@ static int kvmppc_h_pr_enter(struct kvm_vcpu *vcpu)
|
|||
hpte[0] = cpu_to_be64(kvmppc_get_gpr(vcpu, 6));
|
||||
hpte[1] = cpu_to_be64(kvmppc_get_gpr(vcpu, 7));
|
||||
pteg_addr += i * HPTE_SIZE;
|
||||
copy_to_user((void __user *)pteg_addr, hpte, HPTE_SIZE);
|
||||
ret = H_FUNCTION;
|
||||
if (copy_to_user((void __user *)pteg_addr, hpte, HPTE_SIZE))
|
||||
goto done;
|
||||
kvmppc_set_gpr(vcpu, 4, pte_index | i);
|
||||
ret = H_SUCCESS;
|
||||
|
||||
|
@ -93,7 +97,9 @@ static int kvmppc_h_pr_remove(struct kvm_vcpu *vcpu)
|
|||
|
||||
pteg = get_pteg_addr(vcpu, pte_index);
|
||||
mutex_lock(&vcpu->kvm->arch.hpt_mutex);
|
||||
copy_from_user(pte, (void __user *)pteg, sizeof(pte));
|
||||
ret = H_FUNCTION;
|
||||
if (copy_from_user(pte, (void __user *)pteg, sizeof(pte)))
|
||||
goto done;
|
||||
pte[0] = be64_to_cpu((__force __be64)pte[0]);
|
||||
pte[1] = be64_to_cpu((__force __be64)pte[1]);
|
||||
|
||||
|
@ -103,7 +109,9 @@ static int kvmppc_h_pr_remove(struct kvm_vcpu *vcpu)
|
|||
((flags & H_ANDCOND) && (pte[0] & avpn) != 0))
|
||||
goto done;
|
||||
|
||||
copy_to_user((void __user *)pteg, &v, sizeof(v));
|
||||
ret = H_FUNCTION;
|
||||
if (copy_to_user((void __user *)pteg, &v, sizeof(v)))
|
||||
goto done;
|
||||
|
||||
rb = compute_tlbie_rb(pte[0], pte[1], pte_index);
|
||||
vcpu->arch.mmu.tlbie(vcpu, rb, rb & 1 ? true : false);
|
||||
|
@ -171,7 +179,10 @@ static int kvmppc_h_pr_bulk_remove(struct kvm_vcpu *vcpu)
|
|||
}
|
||||
|
||||
pteg = get_pteg_addr(vcpu, tsh & H_BULK_REMOVE_PTEX);
|
||||
copy_from_user(pte, (void __user *)pteg, sizeof(pte));
|
||||
if (copy_from_user(pte, (void __user *)pteg, sizeof(pte))) {
|
||||
ret = H_FUNCTION;
|
||||
break;
|
||||
}
|
||||
pte[0] = be64_to_cpu((__force __be64)pte[0]);
|
||||
pte[1] = be64_to_cpu((__force __be64)pte[1]);
|
||||
|
||||
|
@ -184,7 +195,10 @@ static int kvmppc_h_pr_bulk_remove(struct kvm_vcpu *vcpu)
|
|||
tsh |= H_BULK_REMOVE_NOT_FOUND;
|
||||
} else {
|
||||
/* Splat the pteg in (userland) hpt */
|
||||
copy_to_user((void __user *)pteg, &v, sizeof(v));
|
||||
if (copy_to_user((void __user *)pteg, &v, sizeof(v))) {
|
||||
ret = H_FUNCTION;
|
||||
break;
|
||||
}
|
||||
|
||||
rb = compute_tlbie_rb(pte[0], pte[1],
|
||||
tsh & H_BULK_REMOVE_PTEX);
|
||||
|
@ -211,7 +225,9 @@ static int kvmppc_h_pr_protect(struct kvm_vcpu *vcpu)
|
|||
|
||||
pteg = get_pteg_addr(vcpu, pte_index);
|
||||
mutex_lock(&vcpu->kvm->arch.hpt_mutex);
|
||||
copy_from_user(pte, (void __user *)pteg, sizeof(pte));
|
||||
ret = H_FUNCTION;
|
||||
if (copy_from_user(pte, (void __user *)pteg, sizeof(pte)))
|
||||
goto done;
|
||||
pte[0] = be64_to_cpu((__force __be64)pte[0]);
|
||||
pte[1] = be64_to_cpu((__force __be64)pte[1]);
|
||||
|
||||
|
@ -234,7 +250,9 @@ static int kvmppc_h_pr_protect(struct kvm_vcpu *vcpu)
|
|||
vcpu->arch.mmu.tlbie(vcpu, rb, rb & 1 ? true : false);
|
||||
pte[0] = (__force u64)cpu_to_be64(pte[0]);
|
||||
pte[1] = (__force u64)cpu_to_be64(pte[1]);
|
||||
copy_to_user((void __user *)pteg, pte, sizeof(pte));
|
||||
ret = H_FUNCTION;
|
||||
if (copy_to_user((void __user *)pteg, pte, sizeof(pte)))
|
||||
goto done;
|
||||
ret = H_SUCCESS;
|
||||
|
||||
done:
|
||||
|
@ -244,20 +262,6 @@ static int kvmppc_h_pr_protect(struct kvm_vcpu *vcpu)
|
|||
return EMULATE_DONE;
|
||||
}
|
||||
|
||||
static int kvmppc_h_pr_put_tce(struct kvm_vcpu *vcpu)
|
||||
{
|
||||
unsigned long liobn = kvmppc_get_gpr(vcpu, 4);
|
||||
unsigned long ioba = kvmppc_get_gpr(vcpu, 5);
|
||||
unsigned long tce = kvmppc_get_gpr(vcpu, 6);
|
||||
long rc;
|
||||
|
||||
rc = kvmppc_h_put_tce(vcpu, liobn, ioba, tce);
|
||||
if (rc == H_TOO_HARD)
|
||||
return EMULATE_FAIL;
|
||||
kvmppc_set_gpr(vcpu, 3, rc);
|
||||
return EMULATE_DONE;
|
||||
}
|
||||
|
||||
static int kvmppc_h_pr_logical_ci_load(struct kvm_vcpu *vcpu)
|
||||
{
|
||||
long rc;
|
||||
|
@ -280,6 +284,21 @@ static int kvmppc_h_pr_logical_ci_store(struct kvm_vcpu *vcpu)
|
|||
return EMULATE_DONE;
|
||||
}
|
||||
|
||||
#ifdef CONFIG_SPAPR_TCE_IOMMU
|
||||
static int kvmppc_h_pr_put_tce(struct kvm_vcpu *vcpu)
|
||||
{
|
||||
unsigned long liobn = kvmppc_get_gpr(vcpu, 4);
|
||||
unsigned long ioba = kvmppc_get_gpr(vcpu, 5);
|
||||
unsigned long tce = kvmppc_get_gpr(vcpu, 6);
|
||||
long rc;
|
||||
|
||||
rc = kvmppc_h_put_tce(vcpu, liobn, ioba, tce);
|
||||
if (rc == H_TOO_HARD)
|
||||
return EMULATE_FAIL;
|
||||
kvmppc_set_gpr(vcpu, 3, rc);
|
||||
return EMULATE_DONE;
|
||||
}
|
||||
|
||||
static int kvmppc_h_pr_put_tce_indirect(struct kvm_vcpu *vcpu)
|
||||
{
|
||||
unsigned long liobn = kvmppc_get_gpr(vcpu, 4);
|
||||
|
@ -311,6 +330,23 @@ static int kvmppc_h_pr_stuff_tce(struct kvm_vcpu *vcpu)
|
|||
return EMULATE_DONE;
|
||||
}
|
||||
|
||||
#else /* CONFIG_SPAPR_TCE_IOMMU */
|
||||
static int kvmppc_h_pr_put_tce(struct kvm_vcpu *vcpu)
|
||||
{
|
||||
return EMULATE_FAIL;
|
||||
}
|
||||
|
||||
static int kvmppc_h_pr_put_tce_indirect(struct kvm_vcpu *vcpu)
|
||||
{
|
||||
return EMULATE_FAIL;
|
||||
}
|
||||
|
||||
static int kvmppc_h_pr_stuff_tce(struct kvm_vcpu *vcpu)
|
||||
{
|
||||
return EMULATE_FAIL;
|
||||
}
|
||||
#endif /* CONFIG_SPAPR_TCE_IOMMU */
|
||||
|
||||
static int kvmppc_h_pr_xics_hcall(struct kvm_vcpu *vcpu, u32 cmd)
|
||||
{
|
||||
long rc = kvmppc_xics_hcall(vcpu, cmd);
|
||||
|
|
|
@ -1749,7 +1749,7 @@ long kvm_arch_vm_ioctl(struct file *filp,
|
|||
r = kvm_vm_ioctl_enable_cap(kvm, &cap);
|
||||
break;
|
||||
}
|
||||
#ifdef CONFIG_PPC_BOOK3S_64
|
||||
#ifdef CONFIG_SPAPR_TCE_IOMMU
|
||||
case KVM_CREATE_SPAPR_TCE_64: {
|
||||
struct kvm_create_spapr_tce_64 create_tce_64;
|
||||
|
||||
|
@ -1780,6 +1780,8 @@ long kvm_arch_vm_ioctl(struct file *filp,
|
|||
r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
|
||||
goto out;
|
||||
}
|
||||
#endif
|
||||
#ifdef CONFIG_PPC_BOOK3S_64
|
||||
case KVM_PPC_GET_SMMU_INFO: {
|
||||
struct kvm_ppc_smmu_info info;
|
||||
struct kvm *kvm = filp->private_data;
|
||||
|
|
|
@ -16,6 +16,7 @@
|
|||
*/
|
||||
#include <linux/debugfs.h>
|
||||
#include <linux/fs.h>
|
||||
#include <linux/hugetlb.h>
|
||||
#include <linux/io.h>
|
||||
#include <linux/mm.h>
|
||||
#include <linux/sched.h>
|
||||
|
@ -391,7 +392,7 @@ static void walk_pmd(struct pg_state *st, pud_t *pud, unsigned long start)
|
|||
|
||||
for (i = 0; i < PTRS_PER_PMD; i++, pmd++) {
|
||||
addr = start + i * PMD_SIZE;
|
||||
if (!pmd_none(*pmd))
|
||||
if (!pmd_none(*pmd) && !pmd_huge(*pmd))
|
||||
/* pmd exists */
|
||||
walk_pte(st, pmd, addr);
|
||||
else
|
||||
|
@ -407,7 +408,7 @@ static void walk_pud(struct pg_state *st, pgd_t *pgd, unsigned long start)
|
|||
|
||||
for (i = 0; i < PTRS_PER_PUD; i++, pud++) {
|
||||
addr = start + i * PUD_SIZE;
|
||||
if (!pud_none(*pud))
|
||||
if (!pud_none(*pud) && !pud_huge(*pud))
|
||||
/* pud exists */
|
||||
walk_pmd(st, pud, addr);
|
||||
else
|
||||
|
@ -427,7 +428,7 @@ static void walk_pagetables(struct pg_state *st)
|
|||
*/
|
||||
for (i = 0; i < PTRS_PER_PGD; i++, pgd++) {
|
||||
addr = KERN_VIRT_START + i * PGDIR_SIZE;
|
||||
if (!pgd_none(*pgd))
|
||||
if (!pgd_none(*pgd) && !pgd_huge(*pgd))
|
||||
/* pgd exists */
|
||||
walk_pud(st, pgd, addr);
|
||||
else
|
||||
|
|
|
@ -43,7 +43,7 @@
|
|||
#define KVM_PRIVATE_MEM_SLOTS 3
|
||||
#define KVM_MEM_SLOTS_NUM (KVM_USER_MEM_SLOTS + KVM_PRIVATE_MEM_SLOTS)
|
||||
|
||||
#define KVM_HALT_POLL_NS_DEFAULT 400000
|
||||
#define KVM_HALT_POLL_NS_DEFAULT 200000
|
||||
|
||||
#define KVM_IRQCHIP_NUM_PINS KVM_IOAPIC_NUM_PINS
|
||||
|
||||
|
|
|
@ -319,10 +319,10 @@ do { \
|
|||
#define __get_user_asm_u64(x, ptr, retval, errret) \
|
||||
({ \
|
||||
__typeof__(ptr) __ptr = (ptr); \
|
||||
asm volatile(ASM_STAC "\n" \
|
||||
asm volatile("\n" \
|
||||
"1: movl %2,%%eax\n" \
|
||||
"2: movl %3,%%edx\n" \
|
||||
"3: " ASM_CLAC "\n" \
|
||||
"3:\n" \
|
||||
".section .fixup,\"ax\"\n" \
|
||||
"4: mov %4,%0\n" \
|
||||
" xorl %%eax,%%eax\n" \
|
||||
|
@ -331,7 +331,7 @@ do { \
|
|||
".previous\n" \
|
||||
_ASM_EXTABLE(1b, 4b) \
|
||||
_ASM_EXTABLE(2b, 4b) \
|
||||
: "=r" (retval), "=A"(x) \
|
||||
: "=r" (retval), "=&A"(x) \
|
||||
: "m" (__m(__ptr)), "m" __m(((u32 *)(__ptr)) + 1), \
|
||||
"i" (errret), "0" (retval)); \
|
||||
})
|
||||
|
@ -703,14 +703,15 @@ extern struct movsl_mask {
|
|||
#define unsafe_put_user(x, ptr, err_label) \
|
||||
do { \
|
||||
int __pu_err; \
|
||||
__put_user_size((x), (ptr), sizeof(*(ptr)), __pu_err, -EFAULT); \
|
||||
__typeof__(*(ptr)) __pu_val = (x); \
|
||||
__put_user_size(__pu_val, (ptr), sizeof(*(ptr)), __pu_err, -EFAULT); \
|
||||
if (unlikely(__pu_err)) goto err_label; \
|
||||
} while (0)
|
||||
|
||||
#define unsafe_get_user(x, ptr, err_label) \
|
||||
do { \
|
||||
int __gu_err; \
|
||||
unsigned long __gu_val; \
|
||||
__inttype(*(ptr)) __gu_val; \
|
||||
__get_user_size(__gu_val, (ptr), sizeof(*(ptr)), __gu_err, -EFAULT); \
|
||||
(x) = (__force __typeof__(*(ptr)))__gu_val; \
|
||||
if (unlikely(__gu_err)) goto err_label; \
|
||||
|
|
|
@ -90,6 +90,7 @@ static void fpu__init_system_early_generic(struct cpuinfo_x86 *c)
|
|||
* Boot time FPU feature detection code:
|
||||
*/
|
||||
unsigned int mxcsr_feature_mask __read_mostly = 0xffffffffu;
|
||||
EXPORT_SYMBOL_GPL(mxcsr_feature_mask);
|
||||
|
||||
static void __init fpu__init_system_mxcsr(void)
|
||||
{
|
||||
|
|
|
@ -4173,7 +4173,7 @@ static int check_dr_write(struct x86_emulate_ctxt *ctxt)
|
|||
|
||||
static int check_svme(struct x86_emulate_ctxt *ctxt)
|
||||
{
|
||||
u64 efer;
|
||||
u64 efer = 0;
|
||||
|
||||
ctxt->ops->get_msr(ctxt, MSR_EFER, &efer);
|
||||
|
||||
|
|
|
@ -283,11 +283,13 @@ static int FNAME(walk_addr_generic)(struct guest_walker *walker,
|
|||
pt_element_t pte;
|
||||
pt_element_t __user *uninitialized_var(ptep_user);
|
||||
gfn_t table_gfn;
|
||||
unsigned index, pt_access, pte_access, accessed_dirty, pte_pkey;
|
||||
u64 pt_access, pte_access;
|
||||
unsigned index, accessed_dirty, pte_pkey;
|
||||
unsigned nested_access;
|
||||
gpa_t pte_gpa;
|
||||
bool have_ad;
|
||||
int offset;
|
||||
u64 walk_nx_mask = 0;
|
||||
const int write_fault = access & PFERR_WRITE_MASK;
|
||||
const int user_fault = access & PFERR_USER_MASK;
|
||||
const int fetch_fault = access & PFERR_FETCH_MASK;
|
||||
|
@ -302,6 +304,7 @@ retry_walk:
|
|||
have_ad = PT_HAVE_ACCESSED_DIRTY(mmu);
|
||||
|
||||
#if PTTYPE == 64
|
||||
walk_nx_mask = 1ULL << PT64_NX_SHIFT;
|
||||
if (walker->level == PT32E_ROOT_LEVEL) {
|
||||
pte = mmu->get_pdptr(vcpu, (addr >> 30) & 3);
|
||||
trace_kvm_mmu_paging_element(pte, walker->level);
|
||||
|
@ -313,8 +316,6 @@ retry_walk:
|
|||
walker->max_level = walker->level;
|
||||
ASSERT(!(is_long_mode(vcpu) && !is_pae(vcpu)));
|
||||
|
||||
accessed_dirty = have_ad ? PT_GUEST_ACCESSED_MASK : 0;
|
||||
|
||||
/*
|
||||
* FIXME: on Intel processors, loads of the PDPTE registers for PAE paging
|
||||
* by the MOV to CR instruction are treated as reads and do not cause the
|
||||
|
@ -322,14 +323,14 @@ retry_walk:
|
|||
*/
|
||||
nested_access = (have_ad ? PFERR_WRITE_MASK : 0) | PFERR_USER_MASK;
|
||||
|
||||
pt_access = pte_access = ACC_ALL;
|
||||
pte_access = ~0;
|
||||
++walker->level;
|
||||
|
||||
do {
|
||||
gfn_t real_gfn;
|
||||
unsigned long host_addr;
|
||||
|
||||
pt_access &= pte_access;
|
||||
pt_access = pte_access;
|
||||
--walker->level;
|
||||
|
||||
index = PT_INDEX(addr, walker->level);
|
||||
|
@ -371,6 +372,12 @@ retry_walk:
|
|||
|
||||
trace_kvm_mmu_paging_element(pte, walker->level);
|
||||
|
||||
/*
|
||||
* Inverting the NX it lets us AND it like other
|
||||
* permission bits.
|
||||
*/
|
||||
pte_access = pt_access & (pte ^ walk_nx_mask);
|
||||
|
||||
if (unlikely(!FNAME(is_present_gpte)(pte)))
|
||||
goto error;
|
||||
|
||||
|
@ -379,14 +386,16 @@ retry_walk:
|
|||
goto error;
|
||||
}
|
||||
|
||||
accessed_dirty &= pte;
|
||||
pte_access = pt_access & FNAME(gpte_access)(vcpu, pte);
|
||||
|
||||
walker->ptes[walker->level - 1] = pte;
|
||||
} while (!is_last_gpte(mmu, walker->level, pte));
|
||||
|
||||
pte_pkey = FNAME(gpte_pkeys)(vcpu, pte);
|
||||
errcode = permission_fault(vcpu, mmu, pte_access, pte_pkey, access);
|
||||
accessed_dirty = have_ad ? pte_access & PT_GUEST_ACCESSED_MASK : 0;
|
||||
|
||||
/* Convert to ACC_*_MASK flags for struct guest_walker. */
|
||||
walker->pt_access = FNAME(gpte_access)(vcpu, pt_access ^ walk_nx_mask);
|
||||
walker->pte_access = FNAME(gpte_access)(vcpu, pte_access ^ walk_nx_mask);
|
||||
errcode = permission_fault(vcpu, mmu, walker->pte_access, pte_pkey, access);
|
||||
if (unlikely(errcode))
|
||||
goto error;
|
||||
|
||||
|
@ -403,7 +412,7 @@ retry_walk:
|
|||
walker->gfn = real_gpa >> PAGE_SHIFT;
|
||||
|
||||
if (!write_fault)
|
||||
FNAME(protect_clean_gpte)(mmu, &pte_access, pte);
|
||||
FNAME(protect_clean_gpte)(mmu, &walker->pte_access, pte);
|
||||
else
|
||||
/*
|
||||
* On a write fault, fold the dirty bit into accessed_dirty.
|
||||
|
@ -421,10 +430,8 @@ retry_walk:
|
|||
goto retry_walk;
|
||||
}
|
||||
|
||||
walker->pt_access = pt_access;
|
||||
walker->pte_access = pte_access;
|
||||
pgprintk("%s: pte %llx pte_access %x pt_access %x\n",
|
||||
__func__, (u64)pte, pte_access, pt_access);
|
||||
__func__, (u64)pte, walker->pte_access, walker->pt_access);
|
||||
return 1;
|
||||
|
||||
error:
|
||||
|
@ -452,7 +459,7 @@ error:
|
|||
*/
|
||||
if (!(errcode & PFERR_RSVD_MASK)) {
|
||||
vcpu->arch.exit_qualification &= 0x187;
|
||||
vcpu->arch.exit_qualification |= ((pt_access & pte) & 0x7) << 3;
|
||||
vcpu->arch.exit_qualification |= (pte_access & 0x7) << 3;
|
||||
}
|
||||
#endif
|
||||
walker->fault.address = addr;
|
||||
|
|
|
@ -294,7 +294,7 @@ static void intel_pmu_refresh(struct kvm_vcpu *vcpu)
|
|||
((u64)1 << edx.split.bit_width_fixed) - 1;
|
||||
}
|
||||
|
||||
pmu->global_ctrl = ((1 << pmu->nr_arch_gp_counters) - 1) |
|
||||
pmu->global_ctrl = ((1ull << pmu->nr_arch_gp_counters) - 1) |
|
||||
(((1ull << pmu->nr_arch_fixed_counters) - 1) << INTEL_PMC_IDX_FIXED);
|
||||
pmu->global_ctrl_mask = ~pmu->global_ctrl;
|
||||
|
||||
|
|
|
@ -1272,7 +1272,8 @@ static void init_vmcb(struct vcpu_svm *svm)
|
|||
|
||||
}
|
||||
|
||||
static u64 *avic_get_physical_id_entry(struct kvm_vcpu *vcpu, int index)
|
||||
static u64 *avic_get_physical_id_entry(struct kvm_vcpu *vcpu,
|
||||
unsigned int index)
|
||||
{
|
||||
u64 *avic_physical_id_table;
|
||||
struct kvm_arch *vm_data = &vcpu->kvm->arch;
|
||||
|
|
|
@ -6504,7 +6504,7 @@ static __init int hardware_setup(void)
|
|||
enable_ept_ad_bits = 0;
|
||||
}
|
||||
|
||||
if (!cpu_has_vmx_ept_ad_bits())
|
||||
if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
|
||||
enable_ept_ad_bits = 0;
|
||||
|
||||
if (!cpu_has_vmx_unrestricted_guest())
|
||||
|
@ -11213,7 +11213,7 @@ static int vmx_write_pml_buffer(struct kvm_vcpu *vcpu)
|
|||
if (!nested_cpu_has_pml(vmcs12))
|
||||
return 0;
|
||||
|
||||
if (vmcs12->guest_pml_index > PML_ENTITY_NUM) {
|
||||
if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
|
||||
vmx->nested.pml_full = true;
|
||||
return 1;
|
||||
}
|
||||
|
|
|
@ -1763,6 +1763,7 @@ u64 get_kvmclock_ns(struct kvm *kvm)
|
|||
{
|
||||
struct kvm_arch *ka = &kvm->arch;
|
||||
struct pvclock_vcpu_time_info hv_clock;
|
||||
u64 ret;
|
||||
|
||||
spin_lock(&ka->pvclock_gtod_sync_lock);
|
||||
if (!ka->use_master_clock) {
|
||||
|
@ -1774,10 +1775,17 @@ u64 get_kvmclock_ns(struct kvm *kvm)
|
|||
hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
|
||||
spin_unlock(&ka->pvclock_gtod_sync_lock);
|
||||
|
||||
/* both __this_cpu_read() and rdtsc() should be on the same cpu */
|
||||
get_cpu();
|
||||
|
||||
kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
|
||||
&hv_clock.tsc_shift,
|
||||
&hv_clock.tsc_to_system_mul);
|
||||
return __pvclock_read_cycles(&hv_clock, rdtsc());
|
||||
ret = __pvclock_read_cycles(&hv_clock, rdtsc());
|
||||
|
||||
put_cpu();
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
|
||||
|
@ -3288,11 +3296,14 @@ static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
|
|||
}
|
||||
}
|
||||
|
||||
#define XSAVE_MXCSR_OFFSET 24
|
||||
|
||||
static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
|
||||
struct kvm_xsave *guest_xsave)
|
||||
{
|
||||
u64 xstate_bv =
|
||||
*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
|
||||
u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
|
||||
|
||||
if (boot_cpu_has(X86_FEATURE_XSAVE)) {
|
||||
/*
|
||||
|
@ -3300,11 +3311,13 @@ static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
|
|||
* CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility
|
||||
* with old userspace.
|
||||
*/
|
||||
if (xstate_bv & ~kvm_supported_xcr0())
|
||||
if (xstate_bv & ~kvm_supported_xcr0() ||
|
||||
mxcsr & ~mxcsr_feature_mask)
|
||||
return -EINVAL;
|
||||
load_xsave(vcpu, (u8 *)guest_xsave->region);
|
||||
} else {
|
||||
if (xstate_bv & ~XFEATURE_MASK_FPSSE)
|
||||
if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
|
||||
mxcsr & ~mxcsr_feature_mask)
|
||||
return -EINVAL;
|
||||
memcpy(&vcpu->arch.guest_fpu.state.fxsave,
|
||||
guest_xsave->region, sizeof(struct fxregs_state));
|
||||
|
@ -4818,9 +4831,9 @@ emul_write:
|
|||
|
||||
static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
|
||||
{
|
||||
/* TODO: String I/O for in kernel device */
|
||||
int r;
|
||||
int r = 0, i;
|
||||
|
||||
for (i = 0; i < vcpu->arch.pio.count; i++) {
|
||||
if (vcpu->arch.pio.in)
|
||||
r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
|
||||
vcpu->arch.pio.size, pd);
|
||||
|
@ -4828,6 +4841,10 @@ static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
|
|||
r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
|
||||
vcpu->arch.pio.port, vcpu->arch.pio.size,
|
||||
pd);
|
||||
if (r)
|
||||
break;
|
||||
pd += vcpu->arch.pio.size;
|
||||
}
|
||||
return r;
|
||||
}
|
||||
|
||||
|
@ -4865,6 +4882,8 @@ static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
|
|||
if (vcpu->arch.pio.count)
|
||||
goto data_avail;
|
||||
|
||||
memset(vcpu->arch.pio_data, 0, size * count);
|
||||
|
||||
ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
|
||||
if (ret) {
|
||||
data_avail:
|
||||
|
@ -5048,6 +5067,8 @@ static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
|
|||
|
||||
if (var.unusable) {
|
||||
memset(desc, 0, sizeof(*desc));
|
||||
if (base3)
|
||||
*base3 = 0;
|
||||
return false;
|
||||
}
|
||||
|
||||
|
|
|
@ -142,9 +142,7 @@ static void __init xen_banner(void)
|
|||
struct xen_extraversion extra;
|
||||
HYPERVISOR_xen_version(XENVER_extraversion, &extra);
|
||||
|
||||
pr_info("Booting paravirtualized kernel %son %s\n",
|
||||
xen_feature(XENFEAT_auto_translated_physmap) ?
|
||||
"with PVH extensions " : "", pv_info.name);
|
||||
pr_info("Booting paravirtualized kernel on %s\n", pv_info.name);
|
||||
printk(KERN_INFO "Xen version: %d.%d%s%s\n",
|
||||
version >> 16, version & 0xffff, extra.extraversion,
|
||||
xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
|
||||
|
@ -957,15 +955,10 @@ static void xen_write_msr(unsigned int msr, unsigned low, unsigned high)
|
|||
|
||||
void xen_setup_shared_info(void)
|
||||
{
|
||||
if (!xen_feature(XENFEAT_auto_translated_physmap)) {
|
||||
set_fixmap(FIX_PARAVIRT_BOOTMAP,
|
||||
xen_start_info->shared_info);
|
||||
set_fixmap(FIX_PARAVIRT_BOOTMAP, xen_start_info->shared_info);
|
||||
|
||||
HYPERVISOR_shared_info =
|
||||
(struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
|
||||
} else
|
||||
HYPERVISOR_shared_info =
|
||||
(struct shared_info *)__va(xen_start_info->shared_info);
|
||||
|
||||
#ifndef CONFIG_SMP
|
||||
/* In UP this is as good a place as any to set up shared info */
|
||||
|
|
|
@ -42,7 +42,7 @@ xmaddr_t arbitrary_virt_to_machine(void *vaddr)
|
|||
}
|
||||
EXPORT_SYMBOL_GPL(arbitrary_virt_to_machine);
|
||||
|
||||
void xen_flush_tlb_all(void)
|
||||
static void xen_flush_tlb_all(void)
|
||||
{
|
||||
struct mmuext_op *op;
|
||||
struct multicall_space mcs;
|
||||
|
|
|
@ -355,10 +355,8 @@ static pteval_t pte_pfn_to_mfn(pteval_t val)
|
|||
pteval_t flags = val & PTE_FLAGS_MASK;
|
||||
unsigned long mfn;
|
||||
|
||||
if (!xen_feature(XENFEAT_auto_translated_physmap))
|
||||
mfn = __pfn_to_mfn(pfn);
|
||||
else
|
||||
mfn = pfn;
|
||||
|
||||
/*
|
||||
* If there's no mfn for the pfn, then just create an
|
||||
* empty non-present pte. Unfortunately this loses
|
||||
|
@ -647,9 +645,6 @@ static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
|
|||
limit--;
|
||||
BUG_ON(limit >= FIXADDR_TOP);
|
||||
|
||||
if (xen_feature(XENFEAT_auto_translated_physmap))
|
||||
return 0;
|
||||
|
||||
/*
|
||||
* 64-bit has a great big hole in the middle of the address
|
||||
* space, which contains the Xen mappings. On 32-bit these
|
||||
|
@ -1289,9 +1284,6 @@ static void __init xen_pagetable_cleanhighmap(void)
|
|||
|
||||
static void __init xen_pagetable_p2m_setup(void)
|
||||
{
|
||||
if (xen_feature(XENFEAT_auto_translated_physmap))
|
||||
return;
|
||||
|
||||
xen_vmalloc_p2m_tree();
|
||||
|
||||
#ifdef CONFIG_X86_64
|
||||
|
@ -1314,7 +1306,6 @@ static void __init xen_pagetable_init(void)
|
|||
xen_build_mfn_list_list();
|
||||
|
||||
/* Remap memory freed due to conflicts with E820 map */
|
||||
if (!xen_feature(XENFEAT_auto_translated_physmap))
|
||||
xen_remap_memory();
|
||||
|
||||
xen_setup_shared_info();
|
||||
|
@ -1925,21 +1916,20 @@ void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
|
|||
/* Zap identity mapping */
|
||||
init_level4_pgt[0] = __pgd(0);
|
||||
|
||||
if (!xen_feature(XENFEAT_auto_translated_physmap)) {
|
||||
/* Pre-constructed entries are in pfn, so convert to mfn */
|
||||
/* L4[272] -> level3_ident_pgt
|
||||
* L4[511] -> level3_kernel_pgt */
|
||||
/* L4[272] -> level3_ident_pgt */
|
||||
/* L4[511] -> level3_kernel_pgt */
|
||||
convert_pfn_mfn(init_level4_pgt);
|
||||
|
||||
/* L3_i[0] -> level2_ident_pgt */
|
||||
convert_pfn_mfn(level3_ident_pgt);
|
||||
/* L3_k[510] -> level2_kernel_pgt
|
||||
* L3_k[511] -> level2_fixmap_pgt */
|
||||
/* L3_k[510] -> level2_kernel_pgt */
|
||||
/* L3_k[511] -> level2_fixmap_pgt */
|
||||
convert_pfn_mfn(level3_kernel_pgt);
|
||||
|
||||
/* L3_k[511][506] -> level1_fixmap_pgt */
|
||||
convert_pfn_mfn(level2_fixmap_pgt);
|
||||
}
|
||||
|
||||
/* We get [511][511] and have Xen's version of level2_kernel_pgt */
|
||||
l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
|
||||
l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
|
||||
|
@ -1962,7 +1952,6 @@ void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
|
|||
if (i && i < pgd_index(__START_KERNEL_map))
|
||||
init_level4_pgt[i] = ((pgd_t *)xen_start_info->pt_base)[i];
|
||||
|
||||
if (!xen_feature(XENFEAT_auto_translated_physmap)) {
|
||||
/* Make pagetable pieces RO */
|
||||
set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
|
||||
set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
|
||||
|
@ -1981,15 +1970,12 @@ void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
|
|||
pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
|
||||
|
||||
/*
|
||||
* At this stage there can be no user pgd, and no page
|
||||
* structure to attach it to, so make sure we just set kernel
|
||||
* pgd.
|
||||
* At this stage there can be no user pgd, and no page structure to
|
||||
* attach it to, so make sure we just set kernel pgd.
|
||||
*/
|
||||
xen_mc_batch();
|
||||
__xen_write_cr3(true, __pa(init_level4_pgt));
|
||||
xen_mc_issue(PARAVIRT_LAZY_CPU);
|
||||
} else
|
||||
native_write_cr3(__pa(init_level4_pgt));
|
||||
|
||||
/* We can't that easily rip out L3 and L2, as the Xen pagetables are
|
||||
* set out this way: [L4], [L1], [L2], [L3], [L1], [L1] ... for
|
||||
|
@ -2403,9 +2389,6 @@ static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot)
|
|||
|
||||
static void __init xen_post_allocator_init(void)
|
||||
{
|
||||
if (xen_feature(XENFEAT_auto_translated_physmap))
|
||||
return;
|
||||
|
||||
pv_mmu_ops.set_pte = xen_set_pte;
|
||||
pv_mmu_ops.set_pmd = xen_set_pmd;
|
||||
pv_mmu_ops.set_pud = xen_set_pud;
|
||||
|
@ -2511,9 +2494,6 @@ void __init xen_init_mmu_ops(void)
|
|||
{
|
||||
x86_init.paging.pagetable_init = xen_pagetable_init;
|
||||
|
||||
if (xen_feature(XENFEAT_auto_translated_physmap))
|
||||
return;
|
||||
|
||||
pv_mmu_ops = xen_mmu_ops;
|
||||
|
||||
memset(dummy_mapping, 0xff, PAGE_SIZE);
|
||||
|
@ -2650,9 +2630,6 @@ int xen_create_contiguous_region(phys_addr_t pstart, unsigned int order,
|
|||
* this function are redundant and can be ignored.
|
||||
*/
|
||||
|
||||
if (xen_feature(XENFEAT_auto_translated_physmap))
|
||||
return 0;
|
||||
|
||||
if (unlikely(order > MAX_CONTIG_ORDER))
|
||||
return -ENOMEM;
|
||||
|
||||
|
@ -2689,9 +2666,6 @@ void xen_destroy_contiguous_region(phys_addr_t pstart, unsigned int order)
|
|||
int success;
|
||||
unsigned long vstart;
|
||||
|
||||
if (xen_feature(XENFEAT_auto_translated_physmap))
|
||||
return;
|
||||
|
||||
if (unlikely(order > MAX_CONTIG_ORDER))
|
||||
return;
|
||||
|
||||
|
|
|
@ -57,6 +57,7 @@
|
|||
|
||||
#define ACPI_BUTTON_LID_INIT_IGNORE 0x00
|
||||
#define ACPI_BUTTON_LID_INIT_OPEN 0x01
|
||||
#define ACPI_BUTTON_LID_INIT_METHOD 0x02
|
||||
|
||||
#define _COMPONENT ACPI_BUTTON_COMPONENT
|
||||
ACPI_MODULE_NAME("button");
|
||||
|
@ -376,6 +377,9 @@ static void acpi_lid_initialize_state(struct acpi_device *device)
|
|||
case ACPI_BUTTON_LID_INIT_OPEN:
|
||||
(void)acpi_lid_notify_state(device, 1);
|
||||
break;
|
||||
case ACPI_BUTTON_LID_INIT_METHOD:
|
||||
(void)acpi_lid_update_state(device);
|
||||
break;
|
||||
case ACPI_BUTTON_LID_INIT_IGNORE:
|
||||
default:
|
||||
break;
|
||||
|
@ -560,6 +564,9 @@ static int param_set_lid_init_state(const char *val, struct kernel_param *kp)
|
|||
if (!strncmp(val, "open", sizeof("open") - 1)) {
|
||||
lid_init_state = ACPI_BUTTON_LID_INIT_OPEN;
|
||||
pr_info("Notify initial lid state as open\n");
|
||||
} else if (!strncmp(val, "method", sizeof("method") - 1)) {
|
||||
lid_init_state = ACPI_BUTTON_LID_INIT_METHOD;
|
||||
pr_info("Notify initial lid state with _LID return value\n");
|
||||
} else if (!strncmp(val, "ignore", sizeof("ignore") - 1)) {
|
||||
lid_init_state = ACPI_BUTTON_LID_INIT_IGNORE;
|
||||
pr_info("Do not notify initial lid state\n");
|
||||
|
@ -573,6 +580,8 @@ static int param_get_lid_init_state(char *buffer, struct kernel_param *kp)
|
|||
switch (lid_init_state) {
|
||||
case ACPI_BUTTON_LID_INIT_OPEN:
|
||||
return sprintf(buffer, "open");
|
||||
case ACPI_BUTTON_LID_INIT_METHOD:
|
||||
return sprintf(buffer, "method");
|
||||
case ACPI_BUTTON_LID_INIT_IGNORE:
|
||||
return sprintf(buffer, "ignore");
|
||||
default:
|
||||
|
|
|
@ -512,13 +512,12 @@ static bool wakeup_source_not_registered(struct wakeup_source *ws)
|
|||
/**
|
||||
* wakup_source_activate - Mark given wakeup source as active.
|
||||
* @ws: Wakeup source to handle.
|
||||
* @hard: If set, abort suspends in progress and wake up from suspend-to-idle.
|
||||
*
|
||||
* Update the @ws' statistics and, if @ws has just been activated, notify the PM
|
||||
* core of the event by incrementing the counter of of wakeup events being
|
||||
* processed.
|
||||
*/
|
||||
static void wakeup_source_activate(struct wakeup_source *ws, bool hard)
|
||||
static void wakeup_source_activate(struct wakeup_source *ws)
|
||||
{
|
||||
unsigned int cec;
|
||||
|
||||
|
@ -526,9 +525,6 @@ static void wakeup_source_activate(struct wakeup_source *ws, bool hard)
|
|||
"unregistered wakeup source\n"))
|
||||
return;
|
||||
|
||||
if (hard)
|
||||
pm_system_wakeup();
|
||||
|
||||
ws->active = true;
|
||||
ws->active_count++;
|
||||
ws->last_time = ktime_get();
|
||||
|
@ -554,7 +550,10 @@ static void wakeup_source_report_event(struct wakeup_source *ws, bool hard)
|
|||
ws->wakeup_count++;
|
||||
|
||||
if (!ws->active)
|
||||
wakeup_source_activate(ws, hard);
|
||||
wakeup_source_activate(ws);
|
||||
|
||||
if (hard)
|
||||
pm_system_wakeup();
|
||||
}
|
||||
|
||||
/**
|
||||
|
|
|
@ -315,24 +315,32 @@ void drbd_req_complete(struct drbd_request *req, struct bio_and_error *m)
|
|||
}
|
||||
|
||||
/* still holds resource->req_lock */
|
||||
static int drbd_req_put_completion_ref(struct drbd_request *req, struct bio_and_error *m, int put)
|
||||
static void drbd_req_put_completion_ref(struct drbd_request *req, struct bio_and_error *m, int put)
|
||||
{
|
||||
struct drbd_device *device = req->device;
|
||||
D_ASSERT(device, m || (req->rq_state & RQ_POSTPONED));
|
||||
|
||||
if (!put)
|
||||
return;
|
||||
|
||||
if (!atomic_sub_and_test(put, &req->completion_ref))
|
||||
return 0;
|
||||
return;
|
||||
|
||||
drbd_req_complete(req, m);
|
||||
|
||||
/* local completion may still come in later,
|
||||
* we need to keep the req object around. */
|
||||
if (req->rq_state & RQ_LOCAL_ABORTED)
|
||||
return;
|
||||
|
||||
if (req->rq_state & RQ_POSTPONED) {
|
||||
/* don't destroy the req object just yet,
|
||||
* but queue it for retry */
|
||||
drbd_restart_request(req);
|
||||
return 0;
|
||||
return;
|
||||
}
|
||||
|
||||
return 1;
|
||||
kref_put(&req->kref, drbd_req_destroy);
|
||||
}
|
||||
|
||||
static void set_if_null_req_next(struct drbd_peer_device *peer_device, struct drbd_request *req)
|
||||
|
@ -519,12 +527,8 @@ static void mod_rq_state(struct drbd_request *req, struct bio_and_error *m,
|
|||
if (req->i.waiting)
|
||||
wake_up(&device->misc_wait);
|
||||
|
||||
if (c_put) {
|
||||
if (drbd_req_put_completion_ref(req, m, c_put))
|
||||
drbd_req_put_completion_ref(req, m, c_put);
|
||||
kref_put(&req->kref, drbd_req_destroy);
|
||||
} else {
|
||||
kref_put(&req->kref, drbd_req_destroy);
|
||||
}
|
||||
}
|
||||
|
||||
static void drbd_report_io_error(struct drbd_device *device, struct drbd_request *req)
|
||||
|
@ -1366,8 +1370,7 @@ nodata:
|
|||
}
|
||||
|
||||
out:
|
||||
if (drbd_req_put_completion_ref(req, &m, 1))
|
||||
kref_put(&req->kref, drbd_req_destroy);
|
||||
drbd_req_put_completion_ref(req, &m, 1);
|
||||
spin_unlock_irq(&resource->req_lock);
|
||||
|
||||
/* Even though above is a kref_put(), this is safe.
|
||||
|
|
|
@ -504,11 +504,13 @@ static int xen_blkbk_remove(struct xenbus_device *dev)
|
|||
|
||||
dev_set_drvdata(&dev->dev, NULL);
|
||||
|
||||
if (be->blkif)
|
||||
if (be->blkif) {
|
||||
xen_blkif_disconnect(be->blkif);
|
||||
|
||||
/* Put the reference we set in xen_blkif_alloc(). */
|
||||
xen_blkif_put(be->blkif);
|
||||
}
|
||||
|
||||
kfree(be->mode);
|
||||
kfree(be);
|
||||
return 0;
|
||||
|
|
|
@ -859,7 +859,11 @@ static int __init lp_setup (char *str)
|
|||
} else if (!strcmp(str, "auto")) {
|
||||
parport_nr[0] = LP_PARPORT_AUTO;
|
||||
} else if (!strcmp(str, "none")) {
|
||||
if (parport_ptr < LP_NO)
|
||||
parport_nr[parport_ptr++] = LP_PARPORT_NONE;
|
||||
else
|
||||
printk(KERN_INFO "lp: too many ports, %s ignored.\n",
|
||||
str);
|
||||
} else if (!strcmp(str, "reset")) {
|
||||
reset = 1;
|
||||
}
|
||||
|
|
|
@ -340,6 +340,11 @@ static const struct vm_operations_struct mmap_mem_ops = {
|
|||
static int mmap_mem(struct file *file, struct vm_area_struct *vma)
|
||||
{
|
||||
size_t size = vma->vm_end - vma->vm_start;
|
||||
phys_addr_t offset = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
|
||||
|
||||
/* It's illegal to wrap around the end of the physical address space. */
|
||||
if (offset + (phys_addr_t)size < offset)
|
||||
return -EINVAL;
|
||||
|
||||
if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size))
|
||||
return -EINVAL;
|
||||
|
|
|
@ -71,6 +71,15 @@ config ARM_HIGHBANK_CPUFREQ
|
|||
|
||||
If in doubt, say N.
|
||||
|
||||
config ARM_DB8500_CPUFREQ
|
||||
tristate "ST-Ericsson DB8500 cpufreq" if COMPILE_TEST && !ARCH_U8500
|
||||
default ARCH_U8500
|
||||
depends on HAS_IOMEM
|
||||
depends on !CPU_THERMAL || THERMAL
|
||||
help
|
||||
This adds the CPUFreq driver for ST-Ericsson Ux500 (DB8500) SoC
|
||||
series.
|
||||
|
||||
config ARM_IMX6Q_CPUFREQ
|
||||
tristate "Freescale i.MX6 cpufreq support"
|
||||
depends on ARCH_MXC
|
||||
|
|
|
@ -53,7 +53,7 @@ obj-$(CONFIG_ARM_DT_BL_CPUFREQ) += arm_big_little_dt.o
|
|||
|
||||
obj-$(CONFIG_ARM_BRCMSTB_AVS_CPUFREQ) += brcmstb-avs-cpufreq.o
|
||||
obj-$(CONFIG_ARCH_DAVINCI) += davinci-cpufreq.o
|
||||
obj-$(CONFIG_UX500_SOC_DB8500) += dbx500-cpufreq.o
|
||||
obj-$(CONFIG_ARM_DB8500_CPUFREQ) += dbx500-cpufreq.o
|
||||
obj-$(CONFIG_ARM_EXYNOS5440_CPUFREQ) += exynos5440-cpufreq.o
|
||||
obj-$(CONFIG_ARM_HIGHBANK_CPUFREQ) += highbank-cpufreq.o
|
||||
obj-$(CONFIG_ARM_IMX6Q_CPUFREQ) += imx6q-cpufreq.o
|
||||
|
|
|
@ -44,6 +44,7 @@ void dax_read_unlock(int id)
|
|||
}
|
||||
EXPORT_SYMBOL_GPL(dax_read_unlock);
|
||||
|
||||
#ifdef CONFIG_BLOCK
|
||||
int bdev_dax_pgoff(struct block_device *bdev, sector_t sector, size_t size,
|
||||
pgoff_t *pgoff)
|
||||
{
|
||||
|
@ -112,6 +113,7 @@ int __bdev_dax_supported(struct super_block *sb, int blocksize)
|
|||
return 0;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(__bdev_dax_supported);
|
||||
#endif
|
||||
|
||||
/**
|
||||
* struct dax_device - anchor object for dax services
|
||||
|
|
|
@ -53,6 +53,7 @@ static int efi_pstore_read_func(struct efivar_entry *entry,
|
|||
if (sscanf(name, "dump-type%u-%u-%d-%lu-%c",
|
||||
&record->type, &part, &cnt, &time, &data_type) == 5) {
|
||||
record->id = generic_id(time, part, cnt);
|
||||
record->part = part;
|
||||
record->count = cnt;
|
||||
record->time.tv_sec = time;
|
||||
record->time.tv_nsec = 0;
|
||||
|
@ -64,6 +65,7 @@ static int efi_pstore_read_func(struct efivar_entry *entry,
|
|||
} else if (sscanf(name, "dump-type%u-%u-%d-%lu",
|
||||
&record->type, &part, &cnt, &time) == 4) {
|
||||
record->id = generic_id(time, part, cnt);
|
||||
record->part = part;
|
||||
record->count = cnt;
|
||||
record->time.tv_sec = time;
|
||||
record->time.tv_nsec = 0;
|
||||
|
@ -77,6 +79,7 @@ static int efi_pstore_read_func(struct efivar_entry *entry,
|
|||
* multiple logs, remains.
|
||||
*/
|
||||
record->id = generic_id(time, part, 0);
|
||||
record->part = part;
|
||||
record->count = 0;
|
||||
record->time.tv_sec = time;
|
||||
record->time.tv_nsec = 0;
|
||||
|
@ -241,9 +244,15 @@ static int efi_pstore_write(struct pstore_record *record)
|
|||
efi_guid_t vendor = LINUX_EFI_CRASH_GUID;
|
||||
int i, ret = 0;
|
||||
|
||||
record->time.tv_sec = get_seconds();
|
||||
record->time.tv_nsec = 0;
|
||||
|
||||
record->id = generic_id(record->time.tv_sec, record->part,
|
||||
record->count);
|
||||
|
||||
snprintf(name, sizeof(name), "dump-type%u-%u-%d-%lu-%c",
|
||||
record->type, record->part, record->count,
|
||||
get_seconds(), record->compressed ? 'C' : 'D');
|
||||
record->time.tv_sec, record->compressed ? 'C' : 'D');
|
||||
|
||||
for (i = 0; i < DUMP_NAME_LEN; i++)
|
||||
efi_name[i] = name[i];
|
||||
|
@ -255,7 +264,6 @@ static int efi_pstore_write(struct pstore_record *record)
|
|||
if (record->reason == KMSG_DUMP_OOPS)
|
||||
efivar_run_worker();
|
||||
|
||||
record->id = record->part;
|
||||
return ret;
|
||||
};
|
||||
|
||||
|
@ -287,7 +295,7 @@ static int efi_pstore_erase_func(struct efivar_entry *entry, void *data)
|
|||
* holding multiple logs, remains.
|
||||
*/
|
||||
snprintf(name_old, sizeof(name_old), "dump-type%u-%u-%lu",
|
||||
ed->record->type, (unsigned int)ed->record->id,
|
||||
ed->record->type, ed->record->part,
|
||||
ed->record->time.tv_sec);
|
||||
|
||||
for (i = 0; i < DUMP_NAME_LEN; i++)
|
||||
|
@ -320,10 +328,7 @@ static int efi_pstore_erase(struct pstore_record *record)
|
|||
char name[DUMP_NAME_LEN];
|
||||
efi_char16_t efi_name[DUMP_NAME_LEN];
|
||||
int found, i;
|
||||
unsigned int part;
|
||||
|
||||
do_div(record->id, 1000);
|
||||
part = do_div(record->id, 100);
|
||||
snprintf(name, sizeof(name), "dump-type%u-%u-%d-%lu",
|
||||
record->type, record->part, record->count,
|
||||
record->time.tv_sec);
|
||||
|
|
|
@ -116,9 +116,13 @@ static int vpd_section_attrib_add(const u8 *key, s32 key_len,
|
|||
return VPD_OK;
|
||||
|
||||
info = kzalloc(sizeof(*info), GFP_KERNEL);
|
||||
info->key = kzalloc(key_len + 1, GFP_KERNEL);
|
||||
if (!info->key)
|
||||
if (!info)
|
||||
return -ENOMEM;
|
||||
info->key = kzalloc(key_len + 1, GFP_KERNEL);
|
||||
if (!info->key) {
|
||||
ret = -ENOMEM;
|
||||
goto free_info;
|
||||
}
|
||||
|
||||
memcpy(info->key, key, key_len);
|
||||
|
||||
|
@ -135,12 +139,17 @@ static int vpd_section_attrib_add(const u8 *key, s32 key_len,
|
|||
list_add_tail(&info->list, &sec->attribs);
|
||||
|
||||
ret = sysfs_create_bin_file(sec->kobj, &info->bin_attr);
|
||||
if (ret) {
|
||||
kfree(info->key);
|
||||
return ret;
|
||||
}
|
||||
if (ret)
|
||||
goto free_info_key;
|
||||
|
||||
return 0;
|
||||
|
||||
free_info_key:
|
||||
kfree(info->key);
|
||||
free_info:
|
||||
kfree(info);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
static void vpd_section_attrib_destroy(struct vpd_section *sec)
|
||||
|
|
|
@ -202,7 +202,8 @@ static int ti_sci_debugfs_create(struct platform_device *pdev,
|
|||
info->debug_buffer[info->debug_region_size] = 0;
|
||||
|
||||
info->d = debugfs_create_file(strncat(debug_name, dev_name(dev),
|
||||
sizeof(debug_name)),
|
||||
sizeof(debug_name) -
|
||||
sizeof("ti_sci_debug@")),
|
||||
0444, NULL, info, &ti_sci_debug_fops);
|
||||
if (IS_ERR(info->d))
|
||||
return PTR_ERR(info->d);
|
||||
|
|
|
@ -10,6 +10,7 @@
|
|||
*/
|
||||
|
||||
#include <drm/drmP.h>
|
||||
#include <drm/drm_atomic.h>
|
||||
#include <drm/drm_atomic_helper.h>
|
||||
#include <drm/drm_crtc.h>
|
||||
#include <drm/drm_crtc_helper.h>
|
||||
|
@ -226,16 +227,33 @@ static const struct drm_crtc_helper_funcs hdlcd_crtc_helper_funcs = {
|
|||
static int hdlcd_plane_atomic_check(struct drm_plane *plane,
|
||||
struct drm_plane_state *state)
|
||||
{
|
||||
u32 src_w, src_h;
|
||||
struct drm_rect clip = { 0 };
|
||||
struct drm_crtc_state *crtc_state;
|
||||
u32 src_h = state->src_h >> 16;
|
||||
|
||||
src_w = state->src_w >> 16;
|
||||
src_h = state->src_h >> 16;
|
||||
|
||||
/* we can't do any scaling of the plane source */
|
||||
if ((src_w != state->crtc_w) || (src_h != state->crtc_h))
|
||||
/* only the HDLCD_REG_FB_LINE_COUNT register has a limit */
|
||||
if (src_h >= HDLCD_MAX_YRES) {
|
||||
DRM_DEBUG_KMS("Invalid source width: %d\n", src_h);
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
if (!state->fb || !state->crtc)
|
||||
return 0;
|
||||
|
||||
crtc_state = drm_atomic_get_existing_crtc_state(state->state,
|
||||
state->crtc);
|
||||
if (!crtc_state) {
|
||||
DRM_DEBUG_KMS("Invalid crtc state\n");
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
clip.x2 = crtc_state->adjusted_mode.hdisplay;
|
||||
clip.y2 = crtc_state->adjusted_mode.vdisplay;
|
||||
|
||||
return drm_plane_helper_check_state(state, &clip,
|
||||
DRM_PLANE_HELPER_NO_SCALING,
|
||||
DRM_PLANE_HELPER_NO_SCALING,
|
||||
false, true);
|
||||
}
|
||||
|
||||
static void hdlcd_plane_atomic_update(struct drm_plane *plane,
|
||||
|
@ -244,21 +262,20 @@ static void hdlcd_plane_atomic_update(struct drm_plane *plane,
|
|||
struct drm_framebuffer *fb = plane->state->fb;
|
||||
struct hdlcd_drm_private *hdlcd;
|
||||
struct drm_gem_cma_object *gem;
|
||||
u32 src_w, src_h, dest_w, dest_h;
|
||||
u32 src_x, src_y, dest_h;
|
||||
dma_addr_t scanout_start;
|
||||
|
||||
if (!fb)
|
||||
return;
|
||||
|
||||
src_w = plane->state->src_w >> 16;
|
||||
src_h = plane->state->src_h >> 16;
|
||||
dest_w = plane->state->crtc_w;
|
||||
dest_h = plane->state->crtc_h;
|
||||
src_x = plane->state->src.x1 >> 16;
|
||||
src_y = plane->state->src.y1 >> 16;
|
||||
dest_h = drm_rect_height(&plane->state->dst);
|
||||
gem = drm_fb_cma_get_gem_obj(fb, 0);
|
||||
|
||||
scanout_start = gem->paddr + fb->offsets[0] +
|
||||
plane->state->crtc_y * fb->pitches[0] +
|
||||
plane->state->crtc_x *
|
||||
fb->format->cpp[0];
|
||||
src_y * fb->pitches[0] +
|
||||
src_x * fb->format->cpp[0];
|
||||
|
||||
hdlcd = plane->dev->dev_private;
|
||||
hdlcd_write(hdlcd, HDLCD_REG_FB_LINE_LENGTH, fb->pitches[0]);
|
||||
|
@ -305,7 +322,6 @@ static struct drm_plane *hdlcd_plane_init(struct drm_device *drm)
|
|||
formats, ARRAY_SIZE(formats),
|
||||
DRM_PLANE_TYPE_PRIMARY, NULL);
|
||||
if (ret) {
|
||||
devm_kfree(drm->dev, plane);
|
||||
return ERR_PTR(ret);
|
||||
}
|
||||
|
||||
|
@ -329,7 +345,6 @@ int hdlcd_setup_crtc(struct drm_device *drm)
|
|||
&hdlcd_crtc_funcs, NULL);
|
||||
if (ret) {
|
||||
hdlcd_plane_destroy(primary);
|
||||
devm_kfree(drm->dev, primary);
|
||||
return ret;
|
||||
}
|
||||
|
||||
|
|
|
@ -152,8 +152,7 @@ static const struct drm_connector_funcs atmel_hlcdc_panel_connector_funcs = {
|
|||
.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
|
||||
};
|
||||
|
||||
static int atmel_hlcdc_attach_endpoint(struct drm_device *dev,
|
||||
const struct device_node *np)
|
||||
static int atmel_hlcdc_attach_endpoint(struct drm_device *dev, int endpoint)
|
||||
{
|
||||
struct atmel_hlcdc_dc *dc = dev->dev_private;
|
||||
struct atmel_hlcdc_rgb_output *output;
|
||||
|
@ -161,6 +160,11 @@ static int atmel_hlcdc_attach_endpoint(struct drm_device *dev,
|
|||
struct drm_bridge *bridge;
|
||||
int ret;
|
||||
|
||||
ret = drm_of_find_panel_or_bridge(dev->dev->of_node, 0, endpoint,
|
||||
&panel, &bridge);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
output = devm_kzalloc(dev->dev, sizeof(*output), GFP_KERNEL);
|
||||
if (!output)
|
||||
return -EINVAL;
|
||||
|
@ -177,10 +181,6 @@ static int atmel_hlcdc_attach_endpoint(struct drm_device *dev,
|
|||
|
||||
output->encoder.possible_crtcs = 0x1;
|
||||
|
||||
ret = drm_of_find_panel_or_bridge(np, 0, 0, &panel, &bridge);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
if (panel) {
|
||||
output->connector.dpms = DRM_MODE_DPMS_OFF;
|
||||
output->connector.polled = DRM_CONNECTOR_POLL_CONNECT;
|
||||
|
@ -220,22 +220,14 @@ err_encoder_cleanup:
|
|||
|
||||
int atmel_hlcdc_create_outputs(struct drm_device *dev)
|
||||
{
|
||||
struct device_node *remote;
|
||||
int ret = -ENODEV;
|
||||
int endpoint = 0;
|
||||
int endpoint, ret = 0;
|
||||
|
||||
while (true) {
|
||||
/* Loop thru possible multiple connections to the output */
|
||||
remote = of_graph_get_remote_node(dev->dev->of_node, 0,
|
||||
endpoint++);
|
||||
if (!remote)
|
||||
break;
|
||||
for (endpoint = 0; !ret; endpoint++)
|
||||
ret = atmel_hlcdc_attach_endpoint(dev, endpoint);
|
||||
|
||||
ret = atmel_hlcdc_attach_endpoint(dev, remote);
|
||||
of_node_put(remote);
|
||||
if (ret)
|
||||
return ret;
|
||||
}
|
||||
/* At least one device was successfully attached.*/
|
||||
if (ret == -ENODEV && endpoint)
|
||||
return 0;
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
|
|
@ -44,6 +44,7 @@ static struct etnaviv_gem_submit *submit_create(struct drm_device *dev,
|
|||
|
||||
/* initially, until copy_from_user() and bo lookup succeeds: */
|
||||
submit->nr_bos = 0;
|
||||
submit->fence = NULL;
|
||||
|
||||
ww_acquire_init(&submit->ticket, &reservation_ww_class);
|
||||
}
|
||||
|
@ -294,6 +295,7 @@ static void submit_cleanup(struct etnaviv_gem_submit *submit)
|
|||
}
|
||||
|
||||
ww_acquire_fini(&submit->ticket);
|
||||
if (submit->fence)
|
||||
dma_fence_put(submit->fence);
|
||||
kfree(submit);
|
||||
}
|
||||
|
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue