Drivers: hv: vmbus: Implement NUMA aware CPU affinity for channels
Channels/sub-channels can be affinitized to VCPUs in the guest. Implement this affinity in a way that is NUMA aware. The current protocol distributed the primary channels uniformly across all available CPUs. The new protocol is NUMA aware: primary channels are distributed across the available NUMA nodes while the sub-channels within a primary channel are distributed amongst CPUs within the NUMA node assigned to the primary channel. Signed-off-by: K. Y. Srinivasan <kys@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This commit is contained in:
parent
9c6e64adf2
commit
1f656ff3fd
|
@ -370,25 +370,27 @@ static const struct hv_vmbus_device_id hp_devs[] = {
|
|||
/*
|
||||
* We use this state to statically distribute the channel interrupt load.
|
||||
*/
|
||||
static u32 next_vp;
|
||||
static int next_numa_node_id;
|
||||
|
||||
/*
|
||||
* Starting with Win8, we can statically distribute the incoming
|
||||
* channel interrupt load by binding a channel to VCPU. We
|
||||
* implement here a simple round robin scheme for distributing
|
||||
* the interrupt load.
|
||||
* We will bind channels that are not performance critical to cpu 0 and
|
||||
* performance critical channels (IDE, SCSI and Network) will be uniformly
|
||||
* distributed across all available CPUs.
|
||||
* channel interrupt load by binding a channel to VCPU.
|
||||
* We do this in a hierarchical fashion:
|
||||
* First distribute the primary channels across available NUMA nodes
|
||||
* and then distribute the subchannels amongst the CPUs in the NUMA
|
||||
* node assigned to the primary channel.
|
||||
*
|
||||
* For pre-win8 hosts or non-performance critical channels we assign the
|
||||
* first CPU in the first NUMA node.
|
||||
*/
|
||||
static void init_vp_index(struct vmbus_channel *channel, const uuid_le *type_guid)
|
||||
{
|
||||
u32 cur_cpu;
|
||||
int i;
|
||||
bool perf_chn = false;
|
||||
u32 max_cpus = num_online_cpus();
|
||||
struct vmbus_channel *primary = channel->primary_channel, *prev;
|
||||
unsigned long flags;
|
||||
struct vmbus_channel *primary = channel->primary_channel;
|
||||
int next_node;
|
||||
struct cpumask available_mask;
|
||||
|
||||
for (i = IDE; i < MAX_PERF_CHN; i++) {
|
||||
if (!memcmp(type_guid->b, hp_devs[i].guid,
|
||||
|
@ -405,36 +407,48 @@ static void init_vp_index(struct vmbus_channel *channel, const uuid_le *type_gui
|
|||
* Also if the channel is not a performance critical
|
||||
* channel, bind it to cpu 0.
|
||||
*/
|
||||
channel->numa_node = 0;
|
||||
cpumask_set_cpu(0, &channel->alloced_cpus_in_node);
|
||||
channel->target_cpu = 0;
|
||||
channel->target_vp = hv_context.vp_index[0];
|
||||
return;
|
||||
}
|
||||
|
||||
/*
|
||||
* Primary channels are distributed evenly across all vcpus we have.
|
||||
* When the host asks us to create subchannels it usually makes us
|
||||
* num_cpus-1 offers and we are supposed to distribute the work evenly
|
||||
* among the channel itself and all its subchannels. Make sure they are
|
||||
* all assigned to different vcpus.
|
||||
* We distribute primary channels evenly across all the available
|
||||
* NUMA nodes and within the assigned NUMA node we will assign the
|
||||
* first available CPU to the primary channel.
|
||||
* The sub-channels will be assigned to the CPUs available in the
|
||||
* NUMA node evenly.
|
||||
*/
|
||||
if (!primary)
|
||||
cur_cpu = (++next_vp % max_cpus);
|
||||
else {
|
||||
if (!primary) {
|
||||
while (true) {
|
||||
next_node = next_numa_node_id++;
|
||||
if (next_node == nr_node_ids)
|
||||
next_node = next_numa_node_id = 0;
|
||||
if (cpumask_empty(cpumask_of_node(next_node)))
|
||||
continue;
|
||||
break;
|
||||
}
|
||||
channel->numa_node = next_node;
|
||||
primary = channel;
|
||||
}
|
||||
|
||||
if (cpumask_weight(&primary->alloced_cpus_in_node) ==
|
||||
cpumask_weight(cpumask_of_node(primary->numa_node))) {
|
||||
/*
|
||||
* Let's assign the first subchannel of a channel to the
|
||||
* primary->target_cpu+1 and all the subsequent channels to
|
||||
* the prev->target_cpu+1.
|
||||
* We have cycled through all the CPUs in the node;
|
||||
* reset the alloced map.
|
||||
*/
|
||||
spin_lock_irqsave(&primary->lock, flags);
|
||||
if (primary->num_sc == 1)
|
||||
cur_cpu = (primary->target_cpu + 1) % max_cpus;
|
||||
else {
|
||||
prev = list_prev_entry(channel, sc_list);
|
||||
cur_cpu = (prev->target_cpu + 1) % max_cpus;
|
||||
}
|
||||
spin_unlock_irqrestore(&primary->lock, flags);
|
||||
cpumask_clear(&primary->alloced_cpus_in_node);
|
||||
}
|
||||
|
||||
cpumask_xor(&available_mask, &primary->alloced_cpus_in_node,
|
||||
cpumask_of_node(primary->numa_node));
|
||||
|
||||
cur_cpu = cpumask_next(-1, &available_mask);
|
||||
cpumask_set_cpu(cur_cpu, &primary->alloced_cpus_in_node);
|
||||
|
||||
channel->target_cpu = cur_cpu;
|
||||
channel->target_vp = hv_context.vp_index[cur_cpu];
|
||||
}
|
||||
|
|
|
@ -696,6 +696,11 @@ struct vmbus_channel {
|
|||
u32 target_vp;
|
||||
/* The corresponding CPUID in the guest */
|
||||
u32 target_cpu;
|
||||
/*
|
||||
* State to manage the CPU affiliation of channels.
|
||||
*/
|
||||
struct cpumask alloced_cpus_in_node;
|
||||
int numa_node;
|
||||
/*
|
||||
* Support for sub-channels. For high performance devices,
|
||||
* it will be useful to have multiple sub-channels to support
|
||||
|
|
Loading…
Reference in New Issue