mtd: mediatek: driver for MTK Smart Device

Add support for mediatek's SDG1 NFC nand controller embedded in SoC
2701

Signed-off-by: Jorge Ramirez-Ortiz <jorge.ramirez-ortiz@linaro.org>
Signed-off-by: Boris Brezillon <boris.brezillon@free-electrons.com>
Tested-by: Xiaolei Li <xiaolei.li@mediatek.com>
This commit is contained in:
Jorge Ramirez-Ortiz 2016-06-14 11:50:51 -04:00 committed by Boris Brezillon
parent cac4fcc0d3
commit 1d6b1e4649
5 changed files with 2114 additions and 0 deletions

View File

@ -563,4 +563,11 @@ config MTD_NAND_QCOM
Enables support for NAND flash chips on SoCs containing the EBI2 NAND Enables support for NAND flash chips on SoCs containing the EBI2 NAND
controller. This controller is found on IPQ806x SoC. controller. This controller is found on IPQ806x SoC.
config MTD_NAND_MTK
tristate "Support for NAND controller on MTK SoCs"
depends on HAS_DMA
help
Enables support for NAND controller on MTK SoCs.
This controller is found on mt27xx, mt81xx, mt65xx SoCs.
endif # MTD_NAND endif # MTD_NAND

View File

@ -57,5 +57,6 @@ obj-$(CONFIG_MTD_NAND_SUNXI) += sunxi_nand.o
obj-$(CONFIG_MTD_NAND_HISI504) += hisi504_nand.o obj-$(CONFIG_MTD_NAND_HISI504) += hisi504_nand.o
obj-$(CONFIG_MTD_NAND_BRCMNAND) += brcmnand/ obj-$(CONFIG_MTD_NAND_BRCMNAND) += brcmnand/
obj-$(CONFIG_MTD_NAND_QCOM) += qcom_nandc.o obj-$(CONFIG_MTD_NAND_QCOM) += qcom_nandc.o
obj-$(CONFIG_MTD_NAND_MTK) += mtk_nand.o mtk_ecc.o
nand-objs := nand_base.o nand_bbt.o nand_timings.o nand-objs := nand_base.o nand_bbt.o nand_timings.o

530
drivers/mtd/nand/mtk_ecc.c Normal file
View File

@ -0,0 +1,530 @@
/*
* MTK ECC controller driver.
* Copyright (C) 2016 MediaTek Inc.
* Authors: Xiaolei Li <xiaolei.li@mediatek.com>
* Jorge Ramirez-Ortiz <jorge.ramirez-ortiz@linaro.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
#include <linux/interrupt.h>
#include <linux/clk.h>
#include <linux/module.h>
#include <linux/iopoll.h>
#include <linux/of.h>
#include <linux/of_platform.h>
#include <linux/mutex.h>
#include "mtk_ecc.h"
#define ECC_IDLE_MASK BIT(0)
#define ECC_IRQ_EN BIT(0)
#define ECC_OP_ENABLE (1)
#define ECC_OP_DISABLE (0)
#define ECC_ENCCON (0x00)
#define ECC_ENCCNFG (0x04)
#define ECC_CNFG_4BIT (0)
#define ECC_CNFG_6BIT (1)
#define ECC_CNFG_8BIT (2)
#define ECC_CNFG_10BIT (3)
#define ECC_CNFG_12BIT (4)
#define ECC_CNFG_14BIT (5)
#define ECC_CNFG_16BIT (6)
#define ECC_CNFG_18BIT (7)
#define ECC_CNFG_20BIT (8)
#define ECC_CNFG_22BIT (9)
#define ECC_CNFG_24BIT (0xa)
#define ECC_CNFG_28BIT (0xb)
#define ECC_CNFG_32BIT (0xc)
#define ECC_CNFG_36BIT (0xd)
#define ECC_CNFG_40BIT (0xe)
#define ECC_CNFG_44BIT (0xf)
#define ECC_CNFG_48BIT (0x10)
#define ECC_CNFG_52BIT (0x11)
#define ECC_CNFG_56BIT (0x12)
#define ECC_CNFG_60BIT (0x13)
#define ECC_MODE_SHIFT (5)
#define ECC_MS_SHIFT (16)
#define ECC_ENCDIADDR (0x08)
#define ECC_ENCIDLE (0x0C)
#define ECC_ENCPAR(x) (0x10 + (x) * sizeof(u32))
#define ECC_ENCIRQ_EN (0x80)
#define ECC_ENCIRQ_STA (0x84)
#define ECC_DECCON (0x100)
#define ECC_DECCNFG (0x104)
#define DEC_EMPTY_EN BIT(31)
#define DEC_CNFG_CORRECT (0x3 << 12)
#define ECC_DECIDLE (0x10C)
#define ECC_DECENUM0 (0x114)
#define ERR_MASK (0x3f)
#define ECC_DECDONE (0x124)
#define ECC_DECIRQ_EN (0x200)
#define ECC_DECIRQ_STA (0x204)
#define ECC_TIMEOUT (500000)
#define ECC_IDLE_REG(op) ((op) == ECC_ENCODE ? ECC_ENCIDLE : ECC_DECIDLE)
#define ECC_CTL_REG(op) ((op) == ECC_ENCODE ? ECC_ENCCON : ECC_DECCON)
#define ECC_IRQ_REG(op) ((op) == ECC_ENCODE ? \
ECC_ENCIRQ_EN : ECC_DECIRQ_EN)
struct mtk_ecc {
struct device *dev;
void __iomem *regs;
struct clk *clk;
struct completion done;
struct mutex lock;
u32 sectors;
};
static inline void mtk_ecc_wait_idle(struct mtk_ecc *ecc,
enum mtk_ecc_operation op)
{
struct device *dev = ecc->dev;
u32 val;
int ret;
ret = readl_poll_timeout_atomic(ecc->regs + ECC_IDLE_REG(op), val,
val & ECC_IDLE_MASK,
10, ECC_TIMEOUT);
if (ret)
dev_warn(dev, "%s NOT idle\n",
op == ECC_ENCODE ? "encoder" : "decoder");
}
static irqreturn_t mtk_ecc_irq(int irq, void *id)
{
struct mtk_ecc *ecc = id;
enum mtk_ecc_operation op;
u32 dec, enc;
dec = readw(ecc->regs + ECC_DECIRQ_STA) & ECC_IRQ_EN;
if (dec) {
op = ECC_DECODE;
dec = readw(ecc->regs + ECC_DECDONE);
if (dec & ecc->sectors) {
ecc->sectors = 0;
complete(&ecc->done);
} else {
return IRQ_HANDLED;
}
} else {
enc = readl(ecc->regs + ECC_ENCIRQ_STA) & ECC_IRQ_EN;
if (enc) {
op = ECC_ENCODE;
complete(&ecc->done);
} else {
return IRQ_NONE;
}
}
writel(0, ecc->regs + ECC_IRQ_REG(op));
return IRQ_HANDLED;
}
static void mtk_ecc_config(struct mtk_ecc *ecc, struct mtk_ecc_config *config)
{
u32 ecc_bit = ECC_CNFG_4BIT, dec_sz, enc_sz;
u32 reg;
switch (config->strength) {
case 4:
ecc_bit = ECC_CNFG_4BIT;
break;
case 6:
ecc_bit = ECC_CNFG_6BIT;
break;
case 8:
ecc_bit = ECC_CNFG_8BIT;
break;
case 10:
ecc_bit = ECC_CNFG_10BIT;
break;
case 12:
ecc_bit = ECC_CNFG_12BIT;
break;
case 14:
ecc_bit = ECC_CNFG_14BIT;
break;
case 16:
ecc_bit = ECC_CNFG_16BIT;
break;
case 18:
ecc_bit = ECC_CNFG_18BIT;
break;
case 20:
ecc_bit = ECC_CNFG_20BIT;
break;
case 22:
ecc_bit = ECC_CNFG_22BIT;
break;
case 24:
ecc_bit = ECC_CNFG_24BIT;
break;
case 28:
ecc_bit = ECC_CNFG_28BIT;
break;
case 32:
ecc_bit = ECC_CNFG_32BIT;
break;
case 36:
ecc_bit = ECC_CNFG_36BIT;
break;
case 40:
ecc_bit = ECC_CNFG_40BIT;
break;
case 44:
ecc_bit = ECC_CNFG_44BIT;
break;
case 48:
ecc_bit = ECC_CNFG_48BIT;
break;
case 52:
ecc_bit = ECC_CNFG_52BIT;
break;
case 56:
ecc_bit = ECC_CNFG_56BIT;
break;
case 60:
ecc_bit = ECC_CNFG_60BIT;
break;
default:
dev_err(ecc->dev, "invalid strength %d, default to 4 bits\n",
config->strength);
}
if (config->op == ECC_ENCODE) {
/* configure ECC encoder (in bits) */
enc_sz = config->len << 3;
reg = ecc_bit | (config->mode << ECC_MODE_SHIFT);
reg |= (enc_sz << ECC_MS_SHIFT);
writel(reg, ecc->regs + ECC_ENCCNFG);
if (config->mode != ECC_NFI_MODE)
writel(lower_32_bits(config->addr),
ecc->regs + ECC_ENCDIADDR);
} else {
/* configure ECC decoder (in bits) */
dec_sz = (config->len << 3) +
config->strength * ECC_PARITY_BITS;
reg = ecc_bit | (config->mode << ECC_MODE_SHIFT);
reg |= (dec_sz << ECC_MS_SHIFT) | DEC_CNFG_CORRECT;
reg |= DEC_EMPTY_EN;
writel(reg, ecc->regs + ECC_DECCNFG);
if (config->sectors)
ecc->sectors = 1 << (config->sectors - 1);
}
}
void mtk_ecc_get_stats(struct mtk_ecc *ecc, struct mtk_ecc_stats *stats,
int sectors)
{
u32 offset, i, err;
u32 bitflips = 0;
stats->corrected = 0;
stats->failed = 0;
for (i = 0; i < sectors; i++) {
offset = (i >> 2) << 2;
err = readl(ecc->regs + ECC_DECENUM0 + offset);
err = err >> ((i % 4) * 8);
err &= ERR_MASK;
if (err == ERR_MASK) {
/* uncorrectable errors */
stats->failed++;
continue;
}
stats->corrected += err;
bitflips = max_t(u32, bitflips, err);
}
stats->bitflips = bitflips;
}
EXPORT_SYMBOL(mtk_ecc_get_stats);
void mtk_ecc_release(struct mtk_ecc *ecc)
{
clk_disable_unprepare(ecc->clk);
put_device(ecc->dev);
}
EXPORT_SYMBOL(mtk_ecc_release);
static void mtk_ecc_hw_init(struct mtk_ecc *ecc)
{
mtk_ecc_wait_idle(ecc, ECC_ENCODE);
writew(ECC_OP_DISABLE, ecc->regs + ECC_ENCCON);
mtk_ecc_wait_idle(ecc, ECC_DECODE);
writel(ECC_OP_DISABLE, ecc->regs + ECC_DECCON);
}
static struct mtk_ecc *mtk_ecc_get(struct device_node *np)
{
struct platform_device *pdev;
struct mtk_ecc *ecc;
pdev = of_find_device_by_node(np);
if (!pdev || !platform_get_drvdata(pdev))
return ERR_PTR(-EPROBE_DEFER);
get_device(&pdev->dev);
ecc = platform_get_drvdata(pdev);
clk_prepare_enable(ecc->clk);
mtk_ecc_hw_init(ecc);
return ecc;
}
struct mtk_ecc *of_mtk_ecc_get(struct device_node *of_node)
{
struct mtk_ecc *ecc = NULL;
struct device_node *np;
np = of_parse_phandle(of_node, "ecc-engine", 0);
if (np) {
ecc = mtk_ecc_get(np);
of_node_put(np);
}
return ecc;
}
EXPORT_SYMBOL(of_mtk_ecc_get);
int mtk_ecc_enable(struct mtk_ecc *ecc, struct mtk_ecc_config *config)
{
enum mtk_ecc_operation op = config->op;
int ret;
ret = mutex_lock_interruptible(&ecc->lock);
if (ret) {
dev_err(ecc->dev, "interrupted when attempting to lock\n");
return ret;
}
mtk_ecc_wait_idle(ecc, op);
mtk_ecc_config(ecc, config);
writew(ECC_OP_ENABLE, ecc->regs + ECC_CTL_REG(op));
init_completion(&ecc->done);
writew(ECC_IRQ_EN, ecc->regs + ECC_IRQ_REG(op));
return 0;
}
EXPORT_SYMBOL(mtk_ecc_enable);
void mtk_ecc_disable(struct mtk_ecc *ecc)
{
enum mtk_ecc_operation op = ECC_ENCODE;
/* find out the running operation */
if (readw(ecc->regs + ECC_CTL_REG(op)) != ECC_OP_ENABLE)
op = ECC_DECODE;
/* disable it */
mtk_ecc_wait_idle(ecc, op);
writew(0, ecc->regs + ECC_IRQ_REG(op));
writew(ECC_OP_DISABLE, ecc->regs + ECC_CTL_REG(op));
mutex_unlock(&ecc->lock);
}
EXPORT_SYMBOL(mtk_ecc_disable);
int mtk_ecc_wait_done(struct mtk_ecc *ecc, enum mtk_ecc_operation op)
{
int ret;
ret = wait_for_completion_timeout(&ecc->done, msecs_to_jiffies(500));
if (!ret) {
dev_err(ecc->dev, "%s timeout - interrupt did not arrive)\n",
(op == ECC_ENCODE) ? "encoder" : "decoder");
return -ETIMEDOUT;
}
return 0;
}
EXPORT_SYMBOL(mtk_ecc_wait_done);
int mtk_ecc_encode(struct mtk_ecc *ecc, struct mtk_ecc_config *config,
u8 *data, u32 bytes)
{
dma_addr_t addr;
u32 *p, len, i;
int ret = 0;
addr = dma_map_single(ecc->dev, data, bytes, DMA_TO_DEVICE);
ret = dma_mapping_error(ecc->dev, addr);
if (ret) {
dev_err(ecc->dev, "dma mapping error\n");
return -EINVAL;
}
config->op = ECC_ENCODE;
config->addr = addr;
ret = mtk_ecc_enable(ecc, config);
if (ret) {
dma_unmap_single(ecc->dev, addr, bytes, DMA_TO_DEVICE);
return ret;
}
ret = mtk_ecc_wait_done(ecc, ECC_ENCODE);
if (ret)
goto timeout;
mtk_ecc_wait_idle(ecc, ECC_ENCODE);
/* Program ECC bytes to OOB: per sector oob = FDM + ECC + SPARE */
len = (config->strength * ECC_PARITY_BITS + 7) >> 3;
p = (u32 *)(data + bytes);
/* write the parity bytes generated by the ECC back to the OOB region */
for (i = 0; i < len; i++)
p[i] = readl(ecc->regs + ECC_ENCPAR(i));
timeout:
dma_unmap_single(ecc->dev, addr, bytes, DMA_TO_DEVICE);
mtk_ecc_disable(ecc);
return ret;
}
EXPORT_SYMBOL(mtk_ecc_encode);
void mtk_ecc_adjust_strength(u32 *p)
{
u32 ecc[] = {4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 28, 32, 36,
40, 44, 48, 52, 56, 60};
int i;
for (i = 0; i < ARRAY_SIZE(ecc); i++) {
if (*p <= ecc[i]) {
if (!i)
*p = ecc[i];
else if (*p != ecc[i])
*p = ecc[i - 1];
return;
}
}
*p = ecc[ARRAY_SIZE(ecc) - 1];
}
EXPORT_SYMBOL(mtk_ecc_adjust_strength);
static int mtk_ecc_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct mtk_ecc *ecc;
struct resource *res;
int irq, ret;
ecc = devm_kzalloc(dev, sizeof(*ecc), GFP_KERNEL);
if (!ecc)
return -ENOMEM;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
ecc->regs = devm_ioremap_resource(dev, res);
if (IS_ERR(ecc->regs)) {
dev_err(dev, "failed to map regs: %ld\n", PTR_ERR(ecc->regs));
return PTR_ERR(ecc->regs);
}
ecc->clk = devm_clk_get(dev, NULL);
if (IS_ERR(ecc->clk)) {
dev_err(dev, "failed to get clock: %ld\n", PTR_ERR(ecc->clk));
return PTR_ERR(ecc->clk);
}
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
dev_err(dev, "failed to get irq\n");
return -EINVAL;
}
ret = dma_set_mask(dev, DMA_BIT_MASK(32));
if (ret) {
dev_err(dev, "failed to set DMA mask\n");
return ret;
}
ret = devm_request_irq(dev, irq, mtk_ecc_irq, 0x0, "mtk-ecc", ecc);
if (ret) {
dev_err(dev, "failed to request irq\n");
return -EINVAL;
}
ecc->dev = dev;
mutex_init(&ecc->lock);
platform_set_drvdata(pdev, ecc);
dev_info(dev, "probed\n");
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int mtk_ecc_suspend(struct device *dev)
{
struct mtk_ecc *ecc = dev_get_drvdata(dev);
clk_disable_unprepare(ecc->clk);
return 0;
}
static int mtk_ecc_resume(struct device *dev)
{
struct mtk_ecc *ecc = dev_get_drvdata(dev);
int ret;
ret = clk_prepare_enable(ecc->clk);
if (ret) {
dev_err(dev, "failed to enable clk\n");
return ret;
}
mtk_ecc_hw_init(ecc);
return 0;
}
static SIMPLE_DEV_PM_OPS(mtk_ecc_pm_ops, mtk_ecc_suspend, mtk_ecc_resume);
#endif
static const struct of_device_id mtk_ecc_dt_match[] = {
{ .compatible = "mediatek,mt2701-ecc" },
{},
};
MODULE_DEVICE_TABLE(of, mtk_ecc_dt_match);
static struct platform_driver mtk_ecc_driver = {
.probe = mtk_ecc_probe,
.driver = {
.name = "mtk-ecc",
.of_match_table = of_match_ptr(mtk_ecc_dt_match),
#ifdef CONFIG_PM_SLEEP
.pm = &mtk_ecc_pm_ops,
#endif
},
};
module_platform_driver(mtk_ecc_driver);
MODULE_AUTHOR("Xiaolei Li <xiaolei.li@mediatek.com>");
MODULE_DESCRIPTION("MTK Nand ECC Driver");
MODULE_LICENSE("GPL");

View File

@ -0,0 +1,50 @@
/*
* MTK SDG1 ECC controller
*
* Copyright (c) 2016 Mediatek
* Authors: Xiaolei Li <xiaolei.li@mediatek.com>
* Jorge Ramirez-Ortiz <jorge.ramirez-ortiz@linaro.org>
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation.
*/
#ifndef __DRIVERS_MTD_NAND_MTK_ECC_H__
#define __DRIVERS_MTD_NAND_MTK_ECC_H__
#include <linux/types.h>
#define ECC_PARITY_BITS (14)
enum mtk_ecc_mode {ECC_DMA_MODE = 0, ECC_NFI_MODE = 1};
enum mtk_ecc_operation {ECC_ENCODE, ECC_DECODE};
struct device_node;
struct mtk_ecc;
struct mtk_ecc_stats {
u32 corrected;
u32 bitflips;
u32 failed;
};
struct mtk_ecc_config {
enum mtk_ecc_operation op;
enum mtk_ecc_mode mode;
dma_addr_t addr;
u32 strength;
u32 sectors;
u32 len;
};
int mtk_ecc_encode(struct mtk_ecc *, struct mtk_ecc_config *, u8 *, u32);
void mtk_ecc_get_stats(struct mtk_ecc *, struct mtk_ecc_stats *, int);
int mtk_ecc_wait_done(struct mtk_ecc *, enum mtk_ecc_operation);
int mtk_ecc_enable(struct mtk_ecc *, struct mtk_ecc_config *);
void mtk_ecc_disable(struct mtk_ecc *);
void mtk_ecc_adjust_strength(u32 *);
struct mtk_ecc *of_mtk_ecc_get(struct device_node *);
void mtk_ecc_release(struct mtk_ecc *);
#endif

1526
drivers/mtd/nand/mtk_nand.c Normal file

File diff suppressed because it is too large Load Diff