crypto: sha256_generic - Fix some coding style issues
Add a bunch of missing spaces after commas and arround operators. Note the main goal of this is to make sha256_transform and its helpers identical in formatting too the duplcate implementation in lib/sha256.c, so that "diff -u" can be used to compare them to prove that no functional changes are made when further patches in this series consolidate the 2 implementations into 1. Signed-off-by: Hans de Goede <hdegoede@redhat.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This commit is contained in:
parent
aca1111965
commit
1a01333d31
|
@ -48,10 +48,10 @@ static inline u32 Maj(u32 x, u32 y, u32 z)
|
||||||
return (x & y) | (z & (x | y));
|
return (x & y) | (z & (x | y));
|
||||||
}
|
}
|
||||||
|
|
||||||
#define e0(x) (ror32(x, 2) ^ ror32(x,13) ^ ror32(x,22))
|
#define e0(x) (ror32(x, 2) ^ ror32(x, 13) ^ ror32(x, 22))
|
||||||
#define e1(x) (ror32(x, 6) ^ ror32(x,11) ^ ror32(x,25))
|
#define e1(x) (ror32(x, 6) ^ ror32(x, 11) ^ ror32(x, 25))
|
||||||
#define s0(x) (ror32(x, 7) ^ ror32(x,18) ^ (x >> 3))
|
#define s0(x) (ror32(x, 7) ^ ror32(x, 18) ^ (x >> 3))
|
||||||
#define s1(x) (ror32(x,17) ^ ror32(x,19) ^ (x >> 10))
|
#define s1(x) (ror32(x, 17) ^ ror32(x, 19) ^ (x >> 10))
|
||||||
|
|
||||||
static inline void LOAD_OP(int I, u32 *W, const u8 *input)
|
static inline void LOAD_OP(int I, u32 *W, const u8 *input)
|
||||||
{
|
{
|
||||||
|
@ -78,145 +78,145 @@ static void sha256_transform(u32 *state, const u8 *input)
|
||||||
BLEND_OP(i, W);
|
BLEND_OP(i, W);
|
||||||
|
|
||||||
/* load the state into our registers */
|
/* load the state into our registers */
|
||||||
a=state[0]; b=state[1]; c=state[2]; d=state[3];
|
a = state[0]; b = state[1]; c = state[2]; d = state[3];
|
||||||
e=state[4]; f=state[5]; g=state[6]; h=state[7];
|
e = state[4]; f = state[5]; g = state[6]; h = state[7];
|
||||||
|
|
||||||
/* now iterate */
|
/* now iterate */
|
||||||
t1 = h + e1(e) + Ch(e,f,g) + 0x428a2f98 + W[ 0];
|
t1 = h + e1(e) + Ch(e, f, g) + 0x428a2f98 + W[0];
|
||||||
t2 = e0(a) + Maj(a,b,c); d+=t1; h=t1+t2;
|
t2 = e0(a) + Maj(a, b, c); d += t1; h = t1 + t2;
|
||||||
t1 = g + e1(d) + Ch(d,e,f) + 0x71374491 + W[ 1];
|
t1 = g + e1(d) + Ch(d, e, f) + 0x71374491 + W[1];
|
||||||
t2 = e0(h) + Maj(h,a,b); c+=t1; g=t1+t2;
|
t2 = e0(h) + Maj(h, a, b); c += t1; g = t1 + t2;
|
||||||
t1 = f + e1(c) + Ch(c,d,e) + 0xb5c0fbcf + W[ 2];
|
t1 = f + e1(c) + Ch(c, d, e) + 0xb5c0fbcf + W[2];
|
||||||
t2 = e0(g) + Maj(g,h,a); b+=t1; f=t1+t2;
|
t2 = e0(g) + Maj(g, h, a); b += t1; f = t1 + t2;
|
||||||
t1 = e + e1(b) + Ch(b,c,d) + 0xe9b5dba5 + W[ 3];
|
t1 = e + e1(b) + Ch(b, c, d) + 0xe9b5dba5 + W[3];
|
||||||
t2 = e0(f) + Maj(f,g,h); a+=t1; e=t1+t2;
|
t2 = e0(f) + Maj(f, g, h); a += t1; e = t1 + t2;
|
||||||
t1 = d + e1(a) + Ch(a,b,c) + 0x3956c25b + W[ 4];
|
t1 = d + e1(a) + Ch(a, b, c) + 0x3956c25b + W[4];
|
||||||
t2 = e0(e) + Maj(e,f,g); h+=t1; d=t1+t2;
|
t2 = e0(e) + Maj(e, f, g); h += t1; d = t1 + t2;
|
||||||
t1 = c + e1(h) + Ch(h,a,b) + 0x59f111f1 + W[ 5];
|
t1 = c + e1(h) + Ch(h, a, b) + 0x59f111f1 + W[5];
|
||||||
t2 = e0(d) + Maj(d,e,f); g+=t1; c=t1+t2;
|
t2 = e0(d) + Maj(d, e, f); g += t1; c = t1 + t2;
|
||||||
t1 = b + e1(g) + Ch(g,h,a) + 0x923f82a4 + W[ 6];
|
t1 = b + e1(g) + Ch(g, h, a) + 0x923f82a4 + W[6];
|
||||||
t2 = e0(c) + Maj(c,d,e); f+=t1; b=t1+t2;
|
t2 = e0(c) + Maj(c, d, e); f += t1; b = t1 + t2;
|
||||||
t1 = a + e1(f) + Ch(f,g,h) + 0xab1c5ed5 + W[ 7];
|
t1 = a + e1(f) + Ch(f, g, h) + 0xab1c5ed5 + W[7];
|
||||||
t2 = e0(b) + Maj(b,c,d); e+=t1; a=t1+t2;
|
t2 = e0(b) + Maj(b, c, d); e += t1; a = t1 + t2;
|
||||||
|
|
||||||
t1 = h + e1(e) + Ch(e,f,g) + 0xd807aa98 + W[ 8];
|
t1 = h + e1(e) + Ch(e, f, g) + 0xd807aa98 + W[8];
|
||||||
t2 = e0(a) + Maj(a,b,c); d+=t1; h=t1+t2;
|
t2 = e0(a) + Maj(a, b, c); d += t1; h = t1 + t2;
|
||||||
t1 = g + e1(d) + Ch(d,e,f) + 0x12835b01 + W[ 9];
|
t1 = g + e1(d) + Ch(d, e, f) + 0x12835b01 + W[9];
|
||||||
t2 = e0(h) + Maj(h,a,b); c+=t1; g=t1+t2;
|
t2 = e0(h) + Maj(h, a, b); c += t1; g = t1 + t2;
|
||||||
t1 = f + e1(c) + Ch(c,d,e) + 0x243185be + W[10];
|
t1 = f + e1(c) + Ch(c, d, e) + 0x243185be + W[10];
|
||||||
t2 = e0(g) + Maj(g,h,a); b+=t1; f=t1+t2;
|
t2 = e0(g) + Maj(g, h, a); b += t1; f = t1 + t2;
|
||||||
t1 = e + e1(b) + Ch(b,c,d) + 0x550c7dc3 + W[11];
|
t1 = e + e1(b) + Ch(b, c, d) + 0x550c7dc3 + W[11];
|
||||||
t2 = e0(f) + Maj(f,g,h); a+=t1; e=t1+t2;
|
t2 = e0(f) + Maj(f, g, h); a += t1; e = t1 + t2;
|
||||||
t1 = d + e1(a) + Ch(a,b,c) + 0x72be5d74 + W[12];
|
t1 = d + e1(a) + Ch(a, b, c) + 0x72be5d74 + W[12];
|
||||||
t2 = e0(e) + Maj(e,f,g); h+=t1; d=t1+t2;
|
t2 = e0(e) + Maj(e, f, g); h += t1; d = t1 + t2;
|
||||||
t1 = c + e1(h) + Ch(h,a,b) + 0x80deb1fe + W[13];
|
t1 = c + e1(h) + Ch(h, a, b) + 0x80deb1fe + W[13];
|
||||||
t2 = e0(d) + Maj(d,e,f); g+=t1; c=t1+t2;
|
t2 = e0(d) + Maj(d, e, f); g += t1; c = t1 + t2;
|
||||||
t1 = b + e1(g) + Ch(g,h,a) + 0x9bdc06a7 + W[14];
|
t1 = b + e1(g) + Ch(g, h, a) + 0x9bdc06a7 + W[14];
|
||||||
t2 = e0(c) + Maj(c,d,e); f+=t1; b=t1+t2;
|
t2 = e0(c) + Maj(c, d, e); f += t1; b = t1 + t2;
|
||||||
t1 = a + e1(f) + Ch(f,g,h) + 0xc19bf174 + W[15];
|
t1 = a + e1(f) + Ch(f, g, h) + 0xc19bf174 + W[15];
|
||||||
t2 = e0(b) + Maj(b,c,d); e+=t1; a=t1+t2;
|
t2 = e0(b) + Maj(b, c, d); e += t1; a = t1 + t2;
|
||||||
|
|
||||||
t1 = h + e1(e) + Ch(e,f,g) + 0xe49b69c1 + W[16];
|
t1 = h + e1(e) + Ch(e, f, g) + 0xe49b69c1 + W[16];
|
||||||
t2 = e0(a) + Maj(a,b,c); d+=t1; h=t1+t2;
|
t2 = e0(a) + Maj(a, b, c); d += t1; h = t1 + t2;
|
||||||
t1 = g + e1(d) + Ch(d,e,f) + 0xefbe4786 + W[17];
|
t1 = g + e1(d) + Ch(d, e, f) + 0xefbe4786 + W[17];
|
||||||
t2 = e0(h) + Maj(h,a,b); c+=t1; g=t1+t2;
|
t2 = e0(h) + Maj(h, a, b); c += t1; g = t1 + t2;
|
||||||
t1 = f + e1(c) + Ch(c,d,e) + 0x0fc19dc6 + W[18];
|
t1 = f + e1(c) + Ch(c, d, e) + 0x0fc19dc6 + W[18];
|
||||||
t2 = e0(g) + Maj(g,h,a); b+=t1; f=t1+t2;
|
t2 = e0(g) + Maj(g, h, a); b += t1; f = t1 + t2;
|
||||||
t1 = e + e1(b) + Ch(b,c,d) + 0x240ca1cc + W[19];
|
t1 = e + e1(b) + Ch(b, c, d) + 0x240ca1cc + W[19];
|
||||||
t2 = e0(f) + Maj(f,g,h); a+=t1; e=t1+t2;
|
t2 = e0(f) + Maj(f, g, h); a += t1; e = t1 + t2;
|
||||||
t1 = d + e1(a) + Ch(a,b,c) + 0x2de92c6f + W[20];
|
t1 = d + e1(a) + Ch(a, b, c) + 0x2de92c6f + W[20];
|
||||||
t2 = e0(e) + Maj(e,f,g); h+=t1; d=t1+t2;
|
t2 = e0(e) + Maj(e, f, g); h += t1; d = t1 + t2;
|
||||||
t1 = c + e1(h) + Ch(h,a,b) + 0x4a7484aa + W[21];
|
t1 = c + e1(h) + Ch(h, a, b) + 0x4a7484aa + W[21];
|
||||||
t2 = e0(d) + Maj(d,e,f); g+=t1; c=t1+t2;
|
t2 = e0(d) + Maj(d, e, f); g += t1; c = t1 + t2;
|
||||||
t1 = b + e1(g) + Ch(g,h,a) + 0x5cb0a9dc + W[22];
|
t1 = b + e1(g) + Ch(g, h, a) + 0x5cb0a9dc + W[22];
|
||||||
t2 = e0(c) + Maj(c,d,e); f+=t1; b=t1+t2;
|
t2 = e0(c) + Maj(c, d, e); f += t1; b = t1 + t2;
|
||||||
t1 = a + e1(f) + Ch(f,g,h) + 0x76f988da + W[23];
|
t1 = a + e1(f) + Ch(f, g, h) + 0x76f988da + W[23];
|
||||||
t2 = e0(b) + Maj(b,c,d); e+=t1; a=t1+t2;
|
t2 = e0(b) + Maj(b, c, d); e += t1; a = t1 + t2;
|
||||||
|
|
||||||
t1 = h + e1(e) + Ch(e,f,g) + 0x983e5152 + W[24];
|
t1 = h + e1(e) + Ch(e, f, g) + 0x983e5152 + W[24];
|
||||||
t2 = e0(a) + Maj(a,b,c); d+=t1; h=t1+t2;
|
t2 = e0(a) + Maj(a, b, c); d += t1; h = t1 + t2;
|
||||||
t1 = g + e1(d) + Ch(d,e,f) + 0xa831c66d + W[25];
|
t1 = g + e1(d) + Ch(d, e, f) + 0xa831c66d + W[25];
|
||||||
t2 = e0(h) + Maj(h,a,b); c+=t1; g=t1+t2;
|
t2 = e0(h) + Maj(h, a, b); c += t1; g = t1 + t2;
|
||||||
t1 = f + e1(c) + Ch(c,d,e) + 0xb00327c8 + W[26];
|
t1 = f + e1(c) + Ch(c, d, e) + 0xb00327c8 + W[26];
|
||||||
t2 = e0(g) + Maj(g,h,a); b+=t1; f=t1+t2;
|
t2 = e0(g) + Maj(g, h, a); b += t1; f = t1 + t2;
|
||||||
t1 = e + e1(b) + Ch(b,c,d) + 0xbf597fc7 + W[27];
|
t1 = e + e1(b) + Ch(b, c, d) + 0xbf597fc7 + W[27];
|
||||||
t2 = e0(f) + Maj(f,g,h); a+=t1; e=t1+t2;
|
t2 = e0(f) + Maj(f, g, h); a += t1; e = t1 + t2;
|
||||||
t1 = d + e1(a) + Ch(a,b,c) + 0xc6e00bf3 + W[28];
|
t1 = d + e1(a) + Ch(a, b, c) + 0xc6e00bf3 + W[28];
|
||||||
t2 = e0(e) + Maj(e,f,g); h+=t1; d=t1+t2;
|
t2 = e0(e) + Maj(e, f, g); h += t1; d = t1 + t2;
|
||||||
t1 = c + e1(h) + Ch(h,a,b) + 0xd5a79147 + W[29];
|
t1 = c + e1(h) + Ch(h, a, b) + 0xd5a79147 + W[29];
|
||||||
t2 = e0(d) + Maj(d,e,f); g+=t1; c=t1+t2;
|
t2 = e0(d) + Maj(d, e, f); g += t1; c = t1 + t2;
|
||||||
t1 = b + e1(g) + Ch(g,h,a) + 0x06ca6351 + W[30];
|
t1 = b + e1(g) + Ch(g, h, a) + 0x06ca6351 + W[30];
|
||||||
t2 = e0(c) + Maj(c,d,e); f+=t1; b=t1+t2;
|
t2 = e0(c) + Maj(c, d, e); f += t1; b = t1 + t2;
|
||||||
t1 = a + e1(f) + Ch(f,g,h) + 0x14292967 + W[31];
|
t1 = a + e1(f) + Ch(f, g, h) + 0x14292967 + W[31];
|
||||||
t2 = e0(b) + Maj(b,c,d); e+=t1; a=t1+t2;
|
t2 = e0(b) + Maj(b, c, d); e += t1; a = t1 + t2;
|
||||||
|
|
||||||
t1 = h + e1(e) + Ch(e,f,g) + 0x27b70a85 + W[32];
|
t1 = h + e1(e) + Ch(e, f, g) + 0x27b70a85 + W[32];
|
||||||
t2 = e0(a) + Maj(a,b,c); d+=t1; h=t1+t2;
|
t2 = e0(a) + Maj(a, b, c); d += t1; h = t1 + t2;
|
||||||
t1 = g + e1(d) + Ch(d,e,f) + 0x2e1b2138 + W[33];
|
t1 = g + e1(d) + Ch(d, e, f) + 0x2e1b2138 + W[33];
|
||||||
t2 = e0(h) + Maj(h,a,b); c+=t1; g=t1+t2;
|
t2 = e0(h) + Maj(h, a, b); c += t1; g = t1 + t2;
|
||||||
t1 = f + e1(c) + Ch(c,d,e) + 0x4d2c6dfc + W[34];
|
t1 = f + e1(c) + Ch(c, d, e) + 0x4d2c6dfc + W[34];
|
||||||
t2 = e0(g) + Maj(g,h,a); b+=t1; f=t1+t2;
|
t2 = e0(g) + Maj(g, h, a); b += t1; f = t1 + t2;
|
||||||
t1 = e + e1(b) + Ch(b,c,d) + 0x53380d13 + W[35];
|
t1 = e + e1(b) + Ch(b, c, d) + 0x53380d13 + W[35];
|
||||||
t2 = e0(f) + Maj(f,g,h); a+=t1; e=t1+t2;
|
t2 = e0(f) + Maj(f, g, h); a += t1; e = t1 + t2;
|
||||||
t1 = d + e1(a) + Ch(a,b,c) + 0x650a7354 + W[36];
|
t1 = d + e1(a) + Ch(a, b, c) + 0x650a7354 + W[36];
|
||||||
t2 = e0(e) + Maj(e,f,g); h+=t1; d=t1+t2;
|
t2 = e0(e) + Maj(e, f, g); h += t1; d = t1 + t2;
|
||||||
t1 = c + e1(h) + Ch(h,a,b) + 0x766a0abb + W[37];
|
t1 = c + e1(h) + Ch(h, a, b) + 0x766a0abb + W[37];
|
||||||
t2 = e0(d) + Maj(d,e,f); g+=t1; c=t1+t2;
|
t2 = e0(d) + Maj(d, e, f); g += t1; c = t1 + t2;
|
||||||
t1 = b + e1(g) + Ch(g,h,a) + 0x81c2c92e + W[38];
|
t1 = b + e1(g) + Ch(g, h, a) + 0x81c2c92e + W[38];
|
||||||
t2 = e0(c) + Maj(c,d,e); f+=t1; b=t1+t2;
|
t2 = e0(c) + Maj(c, d, e); f += t1; b = t1 + t2;
|
||||||
t1 = a + e1(f) + Ch(f,g,h) + 0x92722c85 + W[39];
|
t1 = a + e1(f) + Ch(f, g, h) + 0x92722c85 + W[39];
|
||||||
t2 = e0(b) + Maj(b,c,d); e+=t1; a=t1+t2;
|
t2 = e0(b) + Maj(b, c, d); e += t1; a = t1 + t2;
|
||||||
|
|
||||||
t1 = h + e1(e) + Ch(e,f,g) + 0xa2bfe8a1 + W[40];
|
t1 = h + e1(e) + Ch(e, f, g) + 0xa2bfe8a1 + W[40];
|
||||||
t2 = e0(a) + Maj(a,b,c); d+=t1; h=t1+t2;
|
t2 = e0(a) + Maj(a, b, c); d += t1; h = t1 + t2;
|
||||||
t1 = g + e1(d) + Ch(d,e,f) + 0xa81a664b + W[41];
|
t1 = g + e1(d) + Ch(d, e, f) + 0xa81a664b + W[41];
|
||||||
t2 = e0(h) + Maj(h,a,b); c+=t1; g=t1+t2;
|
t2 = e0(h) + Maj(h, a, b); c += t1; g = t1 + t2;
|
||||||
t1 = f + e1(c) + Ch(c,d,e) + 0xc24b8b70 + W[42];
|
t1 = f + e1(c) + Ch(c, d, e) + 0xc24b8b70 + W[42];
|
||||||
t2 = e0(g) + Maj(g,h,a); b+=t1; f=t1+t2;
|
t2 = e0(g) + Maj(g, h, a); b += t1; f = t1 + t2;
|
||||||
t1 = e + e1(b) + Ch(b,c,d) + 0xc76c51a3 + W[43];
|
t1 = e + e1(b) + Ch(b, c, d) + 0xc76c51a3 + W[43];
|
||||||
t2 = e0(f) + Maj(f,g,h); a+=t1; e=t1+t2;
|
t2 = e0(f) + Maj(f, g, h); a += t1; e = t1 + t2;
|
||||||
t1 = d + e1(a) + Ch(a,b,c) + 0xd192e819 + W[44];
|
t1 = d + e1(a) + Ch(a, b, c) + 0xd192e819 + W[44];
|
||||||
t2 = e0(e) + Maj(e,f,g); h+=t1; d=t1+t2;
|
t2 = e0(e) + Maj(e, f, g); h += t1; d = t1 + t2;
|
||||||
t1 = c + e1(h) + Ch(h,a,b) + 0xd6990624 + W[45];
|
t1 = c + e1(h) + Ch(h, a, b) + 0xd6990624 + W[45];
|
||||||
t2 = e0(d) + Maj(d,e,f); g+=t1; c=t1+t2;
|
t2 = e0(d) + Maj(d, e, f); g += t1; c = t1 + t2;
|
||||||
t1 = b + e1(g) + Ch(g,h,a) + 0xf40e3585 + W[46];
|
t1 = b + e1(g) + Ch(g, h, a) + 0xf40e3585 + W[46];
|
||||||
t2 = e0(c) + Maj(c,d,e); f+=t1; b=t1+t2;
|
t2 = e0(c) + Maj(c, d, e); f += t1; b = t1 + t2;
|
||||||
t1 = a + e1(f) + Ch(f,g,h) + 0x106aa070 + W[47];
|
t1 = a + e1(f) + Ch(f, g, h) + 0x106aa070 + W[47];
|
||||||
t2 = e0(b) + Maj(b,c,d); e+=t1; a=t1+t2;
|
t2 = e0(b) + Maj(b, c, d); e += t1; a = t1 + t2;
|
||||||
|
|
||||||
t1 = h + e1(e) + Ch(e,f,g) + 0x19a4c116 + W[48];
|
t1 = h + e1(e) + Ch(e, f, g) + 0x19a4c116 + W[48];
|
||||||
t2 = e0(a) + Maj(a,b,c); d+=t1; h=t1+t2;
|
t2 = e0(a) + Maj(a, b, c); d += t1; h = t1 + t2;
|
||||||
t1 = g + e1(d) + Ch(d,e,f) + 0x1e376c08 + W[49];
|
t1 = g + e1(d) + Ch(d, e, f) + 0x1e376c08 + W[49];
|
||||||
t2 = e0(h) + Maj(h,a,b); c+=t1; g=t1+t2;
|
t2 = e0(h) + Maj(h, a, b); c += t1; g = t1 + t2;
|
||||||
t1 = f + e1(c) + Ch(c,d,e) + 0x2748774c + W[50];
|
t1 = f + e1(c) + Ch(c, d, e) + 0x2748774c + W[50];
|
||||||
t2 = e0(g) + Maj(g,h,a); b+=t1; f=t1+t2;
|
t2 = e0(g) + Maj(g, h, a); b += t1; f = t1 + t2;
|
||||||
t1 = e + e1(b) + Ch(b,c,d) + 0x34b0bcb5 + W[51];
|
t1 = e + e1(b) + Ch(b, c, d) + 0x34b0bcb5 + W[51];
|
||||||
t2 = e0(f) + Maj(f,g,h); a+=t1; e=t1+t2;
|
t2 = e0(f) + Maj(f, g, h); a += t1; e = t1 + t2;
|
||||||
t1 = d + e1(a) + Ch(a,b,c) + 0x391c0cb3 + W[52];
|
t1 = d + e1(a) + Ch(a, b, c) + 0x391c0cb3 + W[52];
|
||||||
t2 = e0(e) + Maj(e,f,g); h+=t1; d=t1+t2;
|
t2 = e0(e) + Maj(e, f, g); h += t1; d = t1 + t2;
|
||||||
t1 = c + e1(h) + Ch(h,a,b) + 0x4ed8aa4a + W[53];
|
t1 = c + e1(h) + Ch(h, a, b) + 0x4ed8aa4a + W[53];
|
||||||
t2 = e0(d) + Maj(d,e,f); g+=t1; c=t1+t2;
|
t2 = e0(d) + Maj(d, e, f); g += t1; c = t1 + t2;
|
||||||
t1 = b + e1(g) + Ch(g,h,a) + 0x5b9cca4f + W[54];
|
t1 = b + e1(g) + Ch(g, h, a) + 0x5b9cca4f + W[54];
|
||||||
t2 = e0(c) + Maj(c,d,e); f+=t1; b=t1+t2;
|
t2 = e0(c) + Maj(c, d, e); f += t1; b = t1 + t2;
|
||||||
t1 = a + e1(f) + Ch(f,g,h) + 0x682e6ff3 + W[55];
|
t1 = a + e1(f) + Ch(f, g, h) + 0x682e6ff3 + W[55];
|
||||||
t2 = e0(b) + Maj(b,c,d); e+=t1; a=t1+t2;
|
t2 = e0(b) + Maj(b, c, d); e += t1; a = t1 + t2;
|
||||||
|
|
||||||
t1 = h + e1(e) + Ch(e,f,g) + 0x748f82ee + W[56];
|
t1 = h + e1(e) + Ch(e, f, g) + 0x748f82ee + W[56];
|
||||||
t2 = e0(a) + Maj(a,b,c); d+=t1; h=t1+t2;
|
t2 = e0(a) + Maj(a, b, c); d += t1; h = t1 + t2;
|
||||||
t1 = g + e1(d) + Ch(d,e,f) + 0x78a5636f + W[57];
|
t1 = g + e1(d) + Ch(d, e, f) + 0x78a5636f + W[57];
|
||||||
t2 = e0(h) + Maj(h,a,b); c+=t1; g=t1+t2;
|
t2 = e0(h) + Maj(h, a, b); c += t1; g = t1 + t2;
|
||||||
t1 = f + e1(c) + Ch(c,d,e) + 0x84c87814 + W[58];
|
t1 = f + e1(c) + Ch(c, d, e) + 0x84c87814 + W[58];
|
||||||
t2 = e0(g) + Maj(g,h,a); b+=t1; f=t1+t2;
|
t2 = e0(g) + Maj(g, h, a); b += t1; f = t1 + t2;
|
||||||
t1 = e + e1(b) + Ch(b,c,d) + 0x8cc70208 + W[59];
|
t1 = e + e1(b) + Ch(b, c, d) + 0x8cc70208 + W[59];
|
||||||
t2 = e0(f) + Maj(f,g,h); a+=t1; e=t1+t2;
|
t2 = e0(f) + Maj(f, g, h); a += t1; e = t1 + t2;
|
||||||
t1 = d + e1(a) + Ch(a,b,c) + 0x90befffa + W[60];
|
t1 = d + e1(a) + Ch(a, b, c) + 0x90befffa + W[60];
|
||||||
t2 = e0(e) + Maj(e,f,g); h+=t1; d=t1+t2;
|
t2 = e0(e) + Maj(e, f, g); h += t1; d = t1 + t2;
|
||||||
t1 = c + e1(h) + Ch(h,a,b) + 0xa4506ceb + W[61];
|
t1 = c + e1(h) + Ch(h, a, b) + 0xa4506ceb + W[61];
|
||||||
t2 = e0(d) + Maj(d,e,f); g+=t1; c=t1+t2;
|
t2 = e0(d) + Maj(d, e, f); g += t1; c = t1 + t2;
|
||||||
t1 = b + e1(g) + Ch(g,h,a) + 0xbef9a3f7 + W[62];
|
t1 = b + e1(g) + Ch(g, h, a) + 0xbef9a3f7 + W[62];
|
||||||
t2 = e0(c) + Maj(c,d,e); f+=t1; b=t1+t2;
|
t2 = e0(c) + Maj(c, d, e); f += t1; b = t1 + t2;
|
||||||
t1 = a + e1(f) + Ch(f,g,h) + 0xc67178f2 + W[63];
|
t1 = a + e1(f) + Ch(f, g, h) + 0xc67178f2 + W[63];
|
||||||
t2 = e0(b) + Maj(b,c,d); e+=t1; a=t1+t2;
|
t2 = e0(b) + Maj(b, c, d); e += t1; a = t1 + t2;
|
||||||
|
|
||||||
state[0] += a; state[1] += b; state[2] += c; state[3] += d;
|
state[0] += a; state[1] += b; state[2] += c; state[3] += d;
|
||||||
state[4] += e; state[5] += f; state[6] += g; state[7] += h;
|
state[4] += e; state[5] += f; state[6] += g; state[7] += h;
|
||||||
|
|
Loading…
Reference in New Issue