drm/nouveau/clk/gk20a: abstract pl_to_div

pl_to_div may be done differently depending on the chip. Abstract this
operation so the same logic can be reused for them as well.

Signed-off-by: Alexandre Courbot <acourbot@nvidia.com>
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
This commit is contained in:
Alexandre Courbot 2016-02-12 13:56:38 +09:00 committed by Ben Skeggs
parent a04bc140aa
commit 195c113773
1 changed files with 36 additions and 21 deletions

View File

@ -93,7 +93,7 @@
#define GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_MASK \
(0x1 << GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_SHIFT)
static const u8 pl_to_div[] = {
static const u8 _pl_to_div[] = {
/* PL: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 */
/* p: */ 1, 2, 3, 4, 5, 6, 8, 10, 12, 16, 12, 16, 20, 24, 32,
};
@ -106,6 +106,25 @@ struct gk20a_clk_pllg_params {
u32 min_n, max_n;
u32 min_pl, max_pl;
};
static u32 pl_to_div(u32 pl)
{
if (pl >= ARRAY_SIZE(_pl_to_div))
return 1;
return _pl_to_div[pl];
}
static u32 div_to_pl(u32 div)
{
u32 pl;
for (pl = 0; pl < ARRAY_SIZE(_pl_to_div) - 1; pl++) {
if (_pl_to_div[pl] >= div)
return pl;
}
return ARRAY_SIZE(_pl_to_div) - 1;
}
static const struct gk20a_clk_pllg_params gk20a_pllg_params = {
.min_vco = 1000000, .max_vco = 2064000,
@ -126,6 +145,9 @@ struct gk20a_clk {
const struct gk20a_clk_pllg_params *params;
struct gk20a_pll pll;
u32 parent_rate;
u32 (*div_to_pl)(u32);
u32 (*pl_to_div)(u32);
};
static void
@ -147,7 +169,7 @@ gk20a_pllg_calc_rate(struct gk20a_clk *clk)
u32 divider;
rate = clk->parent_rate * clk->pll.n;
divider = clk->pll.m * pl_to_div[clk->pll.pl];
divider = clk->pll.m * clk->pl_to_div(clk->pll.pl);
return rate / divider / 2;
}
@ -181,34 +203,23 @@ gk20a_pllg_calc_mnp(struct gk20a_clk *clk, unsigned long rate)
high_pl = (max_vco_f + target_vco_f - 1) / target_vco_f;
high_pl = min(high_pl, clk->params->max_pl);
high_pl = max(high_pl, clk->params->min_pl);
high_pl = clk->div_to_pl(high_pl);
/* min_pl <= low_pl <= max_pl */
low_pl = min_vco_f / target_vco_f;
low_pl = min(low_pl, clk->params->max_pl);
low_pl = max(low_pl, clk->params->min_pl);
/* Find Indices of high_pl and low_pl */
for (pl = 0; pl < ARRAY_SIZE(pl_to_div) - 1; pl++) {
if (pl_to_div[pl] >= low_pl) {
low_pl = pl;
break;
}
}
for (pl = 0; pl < ARRAY_SIZE(pl_to_div) - 1; pl++) {
if (pl_to_div[pl] >= high_pl) {
high_pl = pl;
break;
}
}
low_pl = clk->div_to_pl(low_pl);
nvkm_debug(subdev, "low_PL %d(div%d), high_PL %d(div%d)", low_pl,
pl_to_div[low_pl], high_pl, pl_to_div[high_pl]);
clk->pl_to_div(low_pl), high_pl, clk->pl_to_div(high_pl));
/* Select lowest possible VCO */
for (pl = low_pl; pl <= high_pl; pl++) {
u32 m, n, n2;
target_vco_f = target_clk_f * pl_to_div[pl];
target_vco_f = target_clk_f * clk->pl_to_div(pl);
for (m = clk->params->min_m; m <= clk->params->max_m; m++) {
u32 u_f, vco_f;
@ -236,8 +247,8 @@ gk20a_pllg_calc_mnp(struct gk20a_clk *clk, unsigned long rate)
if (vco_f >= min_vco_f && vco_f <= max_vco_f) {
u32 delta, lwv;
lwv = (vco_f + (pl_to_div[pl] / 2))
/ pl_to_div[pl];
lwv = (vco_f + (clk->pl_to_div(pl) / 2))
/ clk->pl_to_div(pl);
delta = abs(lwv - target_clk_f);
if (delta < best_delta) {
@ -271,7 +282,7 @@ found_match:
nvkm_debug(subdev,
"actual target freq %d MHz, M %d, N %d, PL %d(div%d)\n",
target_freq / MHZ, clk->pll.m, clk->pll.n, clk->pll.pl,
pl_to_div[clk->pll.pl]);
clk->pl_to_div(clk->pll.pl));
return 0;
}
@ -682,5 +693,9 @@ gk20a_clk_new(struct nvkm_device *device, int index, struct nvkm_clk **pclk)
ret = nvkm_clk_ctor(&gk20a_clk, device, index, true, &clk->base);
nvkm_debug(&clk->base.subdev, "parent clock rate: %d Khz\n",
clk->parent_rate / KHZ);
clk->pl_to_div = pl_to_div;
clk->div_to_pl = div_to_pl;
return ret;
}