staging: zcache: crypto API support

This patch allow zcache to use the crypto API for page compression.
It replaces the direct LZO compress/decompress calls with calls
into the crypto compression API. The compressor to be used is
specified in the kernel boot line with the zcache parameter like:
zcache=lzo or zcache=deflate.  If the specified compressor can't
be loaded, zcache uses lzo as the default compressor.

Signed-off-by: Seth Jennings <sjenning@linux.vnet.ibm.com>
Acked-by: Dan Magenheimer <dan.magenheimer@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This commit is contained in:
Seth Jennings 2012-01-03 16:31:34 -06:00 committed by Greg Kroah-Hartman
parent af9584b82d
commit 17dd9f831a
2 changed files with 126 additions and 31 deletions

View File

@ -1,13 +1,12 @@
config ZCACHE
tristate "Dynamic compression of swap pages and clean pagecache pages"
depends on CLEANCACHE || FRONTSWAP
depends on (CLEANCACHE || FRONTSWAP) && CRYPTO
select XVMALLOC
select LZO_COMPRESS
select LZO_DECOMPRESS
select CRYPTO_LZO
default n
help
Zcache doubles RAM efficiency while providing a significant
performance boosts on many workloads. Zcache uses lzo1x
performance boosts on many workloads. Zcache uses
compression and an in-kernel implementation of transcendent
memory to store clean page cache pages and swap in RAM,
providing a noticeable reduction in disk I/O.

View File

@ -6,7 +6,8 @@
*
* Zcache provides an in-kernel "host implementation" for transcendent memory
* and, thus indirectly, for cleancache and frontswap. Zcache includes two
* page-accessible memory [1] interfaces, both utilizing lzo1x compression:
* page-accessible memory [1] interfaces, both utilizing the crypto compression
* API:
* 1) "compression buddies" ("zbud") is used for ephemeral pages
* 2) xvmalloc is used for persistent pages.
* Xvmalloc (based on the TLSF allocator) has very low fragmentation
@ -23,12 +24,13 @@
#include <linux/cpu.h>
#include <linux/highmem.h>
#include <linux/list.h>
#include <linux/lzo.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/types.h>
#include <linux/atomic.h>
#include <linux/math64.h>
#include <linux/crypto.h>
#include <linux/string.h>
#include "tmem.h"
#include "../zram/xvmalloc.h" /* if built in drivers/staging */
@ -81,6 +83,38 @@ static inline bool is_local_client(struct zcache_client *cli)
return cli == &zcache_host;
}
/* crypto API for zcache */
#define ZCACHE_COMP_NAME_SZ CRYPTO_MAX_ALG_NAME
static char zcache_comp_name[ZCACHE_COMP_NAME_SZ];
static struct crypto_comp * __percpu *zcache_comp_pcpu_tfms;
enum comp_op {
ZCACHE_COMPOP_COMPRESS,
ZCACHE_COMPOP_DECOMPRESS
};
static inline int zcache_comp_op(enum comp_op op,
const u8 *src, unsigned int slen,
u8 *dst, unsigned int *dlen)
{
struct crypto_comp *tfm;
int ret;
BUG_ON(!zcache_comp_pcpu_tfms);
tfm = *per_cpu_ptr(zcache_comp_pcpu_tfms, get_cpu());
BUG_ON(!tfm);
switch (op) {
case ZCACHE_COMPOP_COMPRESS:
ret = crypto_comp_compress(tfm, src, slen, dst, dlen);
break;
case ZCACHE_COMPOP_DECOMPRESS:
ret = crypto_comp_decompress(tfm, src, slen, dst, dlen);
break;
}
put_cpu();
return ret;
}
/**********
* Compression buddies ("zbud") provides for packing two (or, possibly
* in the future, more) compressed ephemeral pages into a single "raw"
@ -408,7 +442,7 @@ static int zbud_decompress(struct page *page, struct zbud_hdr *zh)
{
struct zbud_page *zbpg;
unsigned budnum = zbud_budnum(zh);
size_t out_len = PAGE_SIZE;
unsigned int out_len = PAGE_SIZE;
char *to_va, *from_va;
unsigned size;
int ret = 0;
@ -425,8 +459,9 @@ static int zbud_decompress(struct page *page, struct zbud_hdr *zh)
to_va = kmap_atomic(page, KM_USER0);
size = zh->size;
from_va = zbud_data(zh, size);
ret = lzo1x_decompress_safe(from_va, size, to_va, &out_len);
BUG_ON(ret != LZO_E_OK);
ret = zcache_comp_op(ZCACHE_COMPOP_DECOMPRESS, from_va, size,
to_va, &out_len);
BUG_ON(ret);
BUG_ON(out_len != PAGE_SIZE);
kunmap_atomic(to_va, KM_USER0);
out:
@ -624,7 +659,7 @@ static int zbud_show_cumul_chunk_counts(char *buf)
/**********
* This "zv" PAM implementation combines the TLSF-based xvMalloc
* with lzo1x compression to maximize the amount of data that can
* with the crypto compression API to maximize the amount of data that can
* be packed into a physical page.
*
* Zv represents a PAM page with the index and object (plus a "size" value
@ -711,7 +746,7 @@ static void zv_free(struct xv_pool *xvpool, struct zv_hdr *zv)
static void zv_decompress(struct page *page, struct zv_hdr *zv)
{
size_t clen = PAGE_SIZE;
unsigned int clen = PAGE_SIZE;
char *to_va;
unsigned size;
int ret;
@ -720,10 +755,10 @@ static void zv_decompress(struct page *page, struct zv_hdr *zv)
size = xv_get_object_size(zv) - sizeof(*zv);
BUG_ON(size == 0);
to_va = kmap_atomic(page, KM_USER0);
ret = lzo1x_decompress_safe((char *)zv + sizeof(*zv),
size, to_va, &clen);
ret = zcache_comp_op(ZCACHE_COMPOP_DECOMPRESS, (char *)zv + sizeof(*zv),
size, to_va, &clen);
kunmap_atomic(to_va, KM_USER0);
BUG_ON(ret != LZO_E_OK);
BUG_ON(ret);
BUG_ON(clen != PAGE_SIZE);
}
@ -1286,25 +1321,24 @@ static struct tmem_pamops zcache_pamops = {
* zcache compression/decompression and related per-cpu stuff
*/
#define LZO_WORKMEM_BYTES LZO1X_1_MEM_COMPRESS
#define LZO_DSTMEM_PAGE_ORDER 1
static DEFINE_PER_CPU(unsigned char *, zcache_workmem);
static DEFINE_PER_CPU(unsigned char *, zcache_dstmem);
#define ZCACHE_DSTMEM_ORDER 1
static int zcache_compress(struct page *from, void **out_va, size_t *out_len)
{
int ret = 0;
unsigned char *dmem = __get_cpu_var(zcache_dstmem);
unsigned char *wmem = __get_cpu_var(zcache_workmem);
char *from_va;
BUG_ON(!irqs_disabled());
if (unlikely(dmem == NULL || wmem == NULL))
goto out; /* no buffer, so can't compress */
if (unlikely(dmem == NULL))
goto out; /* no buffer or no compressor so can't compress */
*out_len = PAGE_SIZE << ZCACHE_DSTMEM_ORDER;
from_va = kmap_atomic(from, KM_USER0);
mb();
ret = lzo1x_1_compress(from_va, PAGE_SIZE, dmem, out_len, wmem);
BUG_ON(ret != LZO_E_OK);
ret = zcache_comp_op(ZCACHE_COMPOP_COMPRESS, from_va, PAGE_SIZE, dmem,
(unsigned int *)out_len);
BUG_ON(ret);
*out_va = dmem;
kunmap_atomic(from_va, KM_USER0);
ret = 1;
@ -1312,29 +1346,48 @@ out:
return ret;
}
static int zcache_comp_cpu_up(int cpu)
{
struct crypto_comp *tfm;
tfm = crypto_alloc_comp(zcache_comp_name, 0, 0);
if (IS_ERR(tfm))
return NOTIFY_BAD;
*per_cpu_ptr(zcache_comp_pcpu_tfms, cpu) = tfm;
return NOTIFY_OK;
}
static void zcache_comp_cpu_down(int cpu)
{
struct crypto_comp *tfm;
tfm = *per_cpu_ptr(zcache_comp_pcpu_tfms, cpu);
crypto_free_comp(tfm);
*per_cpu_ptr(zcache_comp_pcpu_tfms, cpu) = NULL;
}
static int zcache_cpu_notifier(struct notifier_block *nb,
unsigned long action, void *pcpu)
{
int cpu = (long)pcpu;
int ret, cpu = (long)pcpu;
struct zcache_preload *kp;
switch (action) {
case CPU_UP_PREPARE:
ret = zcache_comp_cpu_up(cpu);
if (ret != NOTIFY_OK) {
pr_err("zcache: can't allocate compressor transform\n");
return ret;
}
per_cpu(zcache_dstmem, cpu) = (void *)__get_free_pages(
GFP_KERNEL | __GFP_REPEAT,
LZO_DSTMEM_PAGE_ORDER),
per_cpu(zcache_workmem, cpu) =
kzalloc(LZO1X_MEM_COMPRESS,
GFP_KERNEL | __GFP_REPEAT);
GFP_KERNEL | __GFP_REPEAT, ZCACHE_DSTMEM_ORDER);
break;
case CPU_DEAD:
case CPU_UP_CANCELED:
zcache_comp_cpu_down(cpu);
free_pages((unsigned long)per_cpu(zcache_dstmem, cpu),
LZO_DSTMEM_PAGE_ORDER);
ZCACHE_DSTMEM_ORDER);
per_cpu(zcache_dstmem, cpu) = NULL;
kfree(per_cpu(zcache_workmem, cpu));
per_cpu(zcache_workmem, cpu) = NULL;
kp = &per_cpu(zcache_preloads, cpu);
while (kp->nr) {
kmem_cache_free(zcache_objnode_cache,
@ -1919,6 +1972,44 @@ static int __init no_frontswap(char *s)
__setup("nofrontswap", no_frontswap);
static int __init enable_zcache_compressor(char *s)
{
strncpy(zcache_comp_name, s, ZCACHE_COMP_NAME_SZ);
zcache_enabled = 1;
return 1;
}
__setup("zcache=", enable_zcache_compressor);
static int zcache_comp_init(void)
{
int ret = 0;
/* check crypto algorithm */
if (*zcache_comp_name != '\0') {
ret = crypto_has_comp(zcache_comp_name, 0, 0);
if (!ret)
pr_info("zcache: %s not supported\n",
zcache_comp_name);
}
if (!ret)
strcpy(zcache_comp_name, "lzo");
ret = crypto_has_comp(zcache_comp_name, 0, 0);
if (!ret) {
ret = 1;
goto out;
}
pr_info("zcache: using %s compressor\n", zcache_comp_name);
/* alloc percpu transforms */
ret = 0;
zcache_comp_pcpu_tfms = alloc_percpu(struct crypto_comp *);
if (!zcache_comp_pcpu_tfms)
ret = 1;
out:
return ret;
}
static int __init zcache_init(void)
{
int ret = 0;
@ -1941,6 +2032,11 @@ static int __init zcache_init(void)
pr_err("zcache: can't register cpu notifier\n");
goto out;
}
ret = zcache_comp_init();
if (ret) {
pr_err("zcache: compressor initialization failed\n");
goto out;
}
for_each_online_cpu(cpu) {
void *pcpu = (void *)(long)cpu;
zcache_cpu_notifier(&zcache_cpu_notifier_block,