Merge branch 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: sched: Increase SCHED_LOAD_SCALE resolution sched: Introduce SCHED_POWER_SCALE to scale cpu_power calculations sched: Cleanup set_load_weight()
This commit is contained in:
commit
15a3d11b0f
|
@ -786,17 +786,39 @@ enum cpu_idle_type {
|
|||
};
|
||||
|
||||
/*
|
||||
* sched-domains (multiprocessor balancing) declarations:
|
||||
* Increase resolution of nice-level calculations for 64-bit architectures.
|
||||
* The extra resolution improves shares distribution and load balancing of
|
||||
* low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
|
||||
* hierarchies, especially on larger systems. This is not a user-visible change
|
||||
* and does not change the user-interface for setting shares/weights.
|
||||
*
|
||||
* We increase resolution only if we have enough bits to allow this increased
|
||||
* resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
|
||||
* when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
|
||||
* increased costs.
|
||||
*/
|
||||
#if BITS_PER_LONG > 32
|
||||
# define SCHED_LOAD_RESOLUTION 10
|
||||
# define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION)
|
||||
# define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION)
|
||||
#else
|
||||
# define SCHED_LOAD_RESOLUTION 0
|
||||
# define scale_load(w) (w)
|
||||
# define scale_load_down(w) (w)
|
||||
#endif
|
||||
|
||||
/*
|
||||
* Increase resolution of nice-level calculations:
|
||||
*/
|
||||
#define SCHED_LOAD_SHIFT 10
|
||||
#define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION)
|
||||
#define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
|
||||
|
||||
#define SCHED_LOAD_SCALE_FUZZ SCHED_LOAD_SCALE
|
||||
/*
|
||||
* Increase resolution of cpu_power calculations
|
||||
*/
|
||||
#define SCHED_POWER_SHIFT 10
|
||||
#define SCHED_POWER_SCALE (1L << SCHED_POWER_SHIFT)
|
||||
|
||||
/*
|
||||
* sched-domains (multiprocessor balancing) declarations:
|
||||
*/
|
||||
#ifdef CONFIG_SMP
|
||||
#define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
|
||||
#define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
|
||||
|
|
|
@ -293,7 +293,7 @@ static DEFINE_SPINLOCK(task_group_lock);
|
|||
* limitation from this.)
|
||||
*/
|
||||
#define MIN_SHARES 2
|
||||
#define MAX_SHARES (1UL << 18)
|
||||
#define MAX_SHARES (1UL << (18 + SCHED_LOAD_RESOLUTION))
|
||||
|
||||
static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
|
||||
#endif
|
||||
|
@ -1330,13 +1330,25 @@ calc_delta_mine(unsigned long delta_exec, unsigned long weight,
|
|||
{
|
||||
u64 tmp;
|
||||
|
||||
tmp = (u64)delta_exec * weight;
|
||||
/*
|
||||
* weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
|
||||
* entities since MIN_SHARES = 2. Treat weight as 1 if less than
|
||||
* 2^SCHED_LOAD_RESOLUTION.
|
||||
*/
|
||||
if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
|
||||
tmp = (u64)delta_exec * scale_load_down(weight);
|
||||
else
|
||||
tmp = (u64)delta_exec;
|
||||
|
||||
if (!lw->inv_weight) {
|
||||
if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
|
||||
unsigned long w = scale_load_down(lw->weight);
|
||||
|
||||
if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
|
||||
lw->inv_weight = 1;
|
||||
else if (unlikely(!w))
|
||||
lw->inv_weight = WMULT_CONST;
|
||||
else
|
||||
lw->inv_weight = WMULT_CONST / lw->weight;
|
||||
lw->inv_weight = WMULT_CONST / w;
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -1778,17 +1790,20 @@ static void dec_nr_running(struct rq *rq)
|
|||
|
||||
static void set_load_weight(struct task_struct *p)
|
||||
{
|
||||
int prio = p->static_prio - MAX_RT_PRIO;
|
||||
struct load_weight *load = &p->se.load;
|
||||
|
||||
/*
|
||||
* SCHED_IDLE tasks get minimal weight:
|
||||
*/
|
||||
if (p->policy == SCHED_IDLE) {
|
||||
p->se.load.weight = WEIGHT_IDLEPRIO;
|
||||
p->se.load.inv_weight = WMULT_IDLEPRIO;
|
||||
load->weight = scale_load(WEIGHT_IDLEPRIO);
|
||||
load->inv_weight = WMULT_IDLEPRIO;
|
||||
return;
|
||||
}
|
||||
|
||||
p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
|
||||
p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
|
||||
load->weight = scale_load(prio_to_weight[prio]);
|
||||
load->inv_weight = prio_to_wmult[prio];
|
||||
}
|
||||
|
||||
static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
|
||||
|
@ -6527,7 +6542,7 @@ static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
|
|||
cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
|
||||
|
||||
printk(KERN_CONT " %s", str);
|
||||
if (group->cpu_power != SCHED_LOAD_SCALE) {
|
||||
if (group->cpu_power != SCHED_POWER_SCALE) {
|
||||
printk(KERN_CONT " (cpu_power = %d)",
|
||||
group->cpu_power);
|
||||
}
|
||||
|
@ -7902,7 +7917,7 @@ void __init sched_init(void)
|
|||
#ifdef CONFIG_SMP
|
||||
rq->sd = NULL;
|
||||
rq->rd = NULL;
|
||||
rq->cpu_power = SCHED_LOAD_SCALE;
|
||||
rq->cpu_power = SCHED_POWER_SCALE;
|
||||
rq->post_schedule = 0;
|
||||
rq->active_balance = 0;
|
||||
rq->next_balance = jiffies;
|
||||
|
@ -8806,14 +8821,14 @@ cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
|
|||
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
|
||||
u64 shareval)
|
||||
{
|
||||
return sched_group_set_shares(cgroup_tg(cgrp), shareval);
|
||||
return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
|
||||
}
|
||||
|
||||
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
|
||||
{
|
||||
struct task_group *tg = cgroup_tg(cgrp);
|
||||
|
||||
return (u64) tg->shares;
|
||||
return (u64) scale_load_down(tg->shares);
|
||||
}
|
||||
#endif /* CONFIG_FAIR_GROUP_SCHED */
|
||||
|
||||
|
|
|
@ -1584,7 +1584,7 @@ find_idlest_group(struct sched_domain *sd, struct task_struct *p,
|
|||
}
|
||||
|
||||
/* Adjust by relative CPU power of the group */
|
||||
avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
|
||||
avg_load = (avg_load * SCHED_POWER_SCALE) / group->cpu_power;
|
||||
|
||||
if (local_group) {
|
||||
this_load = avg_load;
|
||||
|
@ -1722,7 +1722,7 @@ select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
|
|||
nr_running += cpu_rq(i)->cfs.nr_running;
|
||||
}
|
||||
|
||||
capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
|
||||
capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
|
||||
|
||||
if (tmp->flags & SD_POWERSAVINGS_BALANCE)
|
||||
nr_running /= 2;
|
||||
|
@ -2570,7 +2570,7 @@ static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
|
|||
|
||||
unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
|
||||
{
|
||||
return SCHED_LOAD_SCALE;
|
||||
return SCHED_POWER_SCALE;
|
||||
}
|
||||
|
||||
unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
|
||||
|
@ -2607,10 +2607,10 @@ unsigned long scale_rt_power(int cpu)
|
|||
available = total - rq->rt_avg;
|
||||
}
|
||||
|
||||
if (unlikely((s64)total < SCHED_LOAD_SCALE))
|
||||
total = SCHED_LOAD_SCALE;
|
||||
if (unlikely((s64)total < SCHED_POWER_SCALE))
|
||||
total = SCHED_POWER_SCALE;
|
||||
|
||||
total >>= SCHED_LOAD_SHIFT;
|
||||
total >>= SCHED_POWER_SHIFT;
|
||||
|
||||
return div_u64(available, total);
|
||||
}
|
||||
|
@ -2618,7 +2618,7 @@ unsigned long scale_rt_power(int cpu)
|
|||
static void update_cpu_power(struct sched_domain *sd, int cpu)
|
||||
{
|
||||
unsigned long weight = sd->span_weight;
|
||||
unsigned long power = SCHED_LOAD_SCALE;
|
||||
unsigned long power = SCHED_POWER_SCALE;
|
||||
struct sched_group *sdg = sd->groups;
|
||||
|
||||
if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
|
||||
|
@ -2627,7 +2627,7 @@ static void update_cpu_power(struct sched_domain *sd, int cpu)
|
|||
else
|
||||
power *= default_scale_smt_power(sd, cpu);
|
||||
|
||||
power >>= SCHED_LOAD_SHIFT;
|
||||
power >>= SCHED_POWER_SHIFT;
|
||||
}
|
||||
|
||||
sdg->cpu_power_orig = power;
|
||||
|
@ -2637,10 +2637,10 @@ static void update_cpu_power(struct sched_domain *sd, int cpu)
|
|||
else
|
||||
power *= default_scale_freq_power(sd, cpu);
|
||||
|
||||
power >>= SCHED_LOAD_SHIFT;
|
||||
power >>= SCHED_POWER_SHIFT;
|
||||
|
||||
power *= scale_rt_power(cpu);
|
||||
power >>= SCHED_LOAD_SHIFT;
|
||||
power >>= SCHED_POWER_SHIFT;
|
||||
|
||||
if (!power)
|
||||
power = 1;
|
||||
|
@ -2682,7 +2682,7 @@ static inline int
|
|||
fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
|
||||
{
|
||||
/*
|
||||
* Only siblings can have significantly less than SCHED_LOAD_SCALE
|
||||
* Only siblings can have significantly less than SCHED_POWER_SCALE
|
||||
*/
|
||||
if (!(sd->flags & SD_SHARE_CPUPOWER))
|
||||
return 0;
|
||||
|
@ -2770,7 +2770,7 @@ static inline void update_sg_lb_stats(struct sched_domain *sd,
|
|||
}
|
||||
|
||||
/* Adjust by relative CPU power of the group */
|
||||
sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
|
||||
sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->cpu_power;
|
||||
|
||||
/*
|
||||
* Consider the group unbalanced when the imbalance is larger
|
||||
|
@ -2787,7 +2787,8 @@ static inline void update_sg_lb_stats(struct sched_domain *sd,
|
|||
if ((max_cpu_load - min_cpu_load) >= avg_load_per_task && max_nr_running > 1)
|
||||
sgs->group_imb = 1;
|
||||
|
||||
sgs->group_capacity = DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
|
||||
sgs->group_capacity = DIV_ROUND_CLOSEST(group->cpu_power,
|
||||
SCHED_POWER_SCALE);
|
||||
if (!sgs->group_capacity)
|
||||
sgs->group_capacity = fix_small_capacity(sd, group);
|
||||
sgs->group_weight = group->group_weight;
|
||||
|
@ -2961,7 +2962,7 @@ static int check_asym_packing(struct sched_domain *sd,
|
|||
return 0;
|
||||
|
||||
*imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->cpu_power,
|
||||
SCHED_LOAD_SCALE);
|
||||
SCHED_POWER_SCALE);
|
||||
return 1;
|
||||
}
|
||||
|
||||
|
@ -2990,7 +2991,7 @@ static inline void fix_small_imbalance(struct sd_lb_stats *sds,
|
|||
cpu_avg_load_per_task(this_cpu);
|
||||
|
||||
scaled_busy_load_per_task = sds->busiest_load_per_task
|
||||
* SCHED_LOAD_SCALE;
|
||||
* SCHED_POWER_SCALE;
|
||||
scaled_busy_load_per_task /= sds->busiest->cpu_power;
|
||||
|
||||
if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
|
||||
|
@ -3009,10 +3010,10 @@ static inline void fix_small_imbalance(struct sd_lb_stats *sds,
|
|||
min(sds->busiest_load_per_task, sds->max_load);
|
||||
pwr_now += sds->this->cpu_power *
|
||||
min(sds->this_load_per_task, sds->this_load);
|
||||
pwr_now /= SCHED_LOAD_SCALE;
|
||||
pwr_now /= SCHED_POWER_SCALE;
|
||||
|
||||
/* Amount of load we'd subtract */
|
||||
tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
|
||||
tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
|
||||
sds->busiest->cpu_power;
|
||||
if (sds->max_load > tmp)
|
||||
pwr_move += sds->busiest->cpu_power *
|
||||
|
@ -3020,15 +3021,15 @@ static inline void fix_small_imbalance(struct sd_lb_stats *sds,
|
|||
|
||||
/* Amount of load we'd add */
|
||||
if (sds->max_load * sds->busiest->cpu_power <
|
||||
sds->busiest_load_per_task * SCHED_LOAD_SCALE)
|
||||
sds->busiest_load_per_task * SCHED_POWER_SCALE)
|
||||
tmp = (sds->max_load * sds->busiest->cpu_power) /
|
||||
sds->this->cpu_power;
|
||||
else
|
||||
tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
|
||||
tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
|
||||
sds->this->cpu_power;
|
||||
pwr_move += sds->this->cpu_power *
|
||||
min(sds->this_load_per_task, sds->this_load + tmp);
|
||||
pwr_move /= SCHED_LOAD_SCALE;
|
||||
pwr_move /= SCHED_POWER_SCALE;
|
||||
|
||||
/* Move if we gain throughput */
|
||||
if (pwr_move > pwr_now)
|
||||
|
@ -3070,7 +3071,7 @@ static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
|
|||
load_above_capacity = (sds->busiest_nr_running -
|
||||
sds->busiest_group_capacity);
|
||||
|
||||
load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_LOAD_SCALE);
|
||||
load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
|
||||
|
||||
load_above_capacity /= sds->busiest->cpu_power;
|
||||
}
|
||||
|
@ -3090,7 +3091,7 @@ static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
|
|||
/* How much load to actually move to equalise the imbalance */
|
||||
*imbalance = min(max_pull * sds->busiest->cpu_power,
|
||||
(sds->avg_load - sds->this_load) * sds->this->cpu_power)
|
||||
/ SCHED_LOAD_SCALE;
|
||||
/ SCHED_POWER_SCALE;
|
||||
|
||||
/*
|
||||
* if *imbalance is less than the average load per runnable task
|
||||
|
@ -3159,7 +3160,7 @@ find_busiest_group(struct sched_domain *sd, int this_cpu,
|
|||
if (!sds.busiest || sds.busiest_nr_running == 0)
|
||||
goto out_balanced;
|
||||
|
||||
sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
|
||||
sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
|
||||
|
||||
/*
|
||||
* If the busiest group is imbalanced the below checks don't
|
||||
|
@ -3238,7 +3239,8 @@ find_busiest_queue(struct sched_domain *sd, struct sched_group *group,
|
|||
|
||||
for_each_cpu(i, sched_group_cpus(group)) {
|
||||
unsigned long power = power_of(i);
|
||||
unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
|
||||
unsigned long capacity = DIV_ROUND_CLOSEST(power,
|
||||
SCHED_POWER_SCALE);
|
||||
unsigned long wl;
|
||||
|
||||
if (!capacity)
|
||||
|
@ -3263,7 +3265,7 @@ find_busiest_queue(struct sched_domain *sd, struct sched_group *group,
|
|||
* the load can be moved away from the cpu that is potentially
|
||||
* running at a lower capacity.
|
||||
*/
|
||||
wl = (wl * SCHED_LOAD_SCALE) / power;
|
||||
wl = (wl * SCHED_POWER_SCALE) / power;
|
||||
|
||||
if (wl > max_load) {
|
||||
max_load = wl;
|
||||
|
|
Loading…
Reference in New Issue