Merge git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
Pull crypto update from Herbert Xu: "Here is the crypto update for 3.14: - Improved crypto_memneq helper - Use cyprto_memneq in arch-specific crypto code - Replaced orphaned DCP driver with Freescale MXS DCP driver - Added AVX/AVX2 version of AESNI-GCM encode and decode - Added AMD Cryptographic Coprocessor (CCP) driver - Misc fixes" * git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6: (41 commits) crypto: aesni - fix build on x86 (32bit) crypto: mxs - Fix sparse non static symbol warning crypto: ccp - CCP device enabled/disabled changes crypto: ccp - Cleanup hash invocation calls crypto: ccp - Change data length declarations to u64 crypto: ccp - Check for caller result area before using it crypto: ccp - Cleanup scatterlist usage crypto: ccp - Apply appropriate gfp_t type to memory allocations crypto: drivers - Sort drivers/crypto/Makefile ARM: mxs: dts: Enable DCP for MXS crypto: mxs - Add Freescale MXS DCP driver crypto: mxs - Remove the old DCP driver crypto: ahash - Fully restore ahash request before completing crypto: aesni - fix build on x86 (32bit) crypto: talitos - Remove redundant dev_set_drvdata crypto: ccp - Remove redundant dev_set_drvdata crypto: crypto4xx - Remove redundant dev_set_drvdata crypto: caam - simplify and harden key parsing crypto: omap-sham - Fix Polling mode for larger blocks crypto: tcrypt - Added speed tests for AEAD crypto alogrithms in tcrypt test suite ...
This commit is contained in:
commit
13c789a6b2
|
@ -0,0 +1,17 @@
|
|||
Freescale DCP (Data Co-Processor) found on i.MX23/i.MX28 .
|
||||
|
||||
Required properties:
|
||||
- compatible : Should be "fsl,<soc>-dcp"
|
||||
- reg : Should contain MXS DCP registers location and length
|
||||
- interrupts : Should contain MXS DCP interrupt numbers, VMI IRQ and DCP IRQ
|
||||
must be supplied, optionally Secure IRQ can be present, but
|
||||
is currently not implemented and not used.
|
||||
|
||||
Example:
|
||||
|
||||
dcp@80028000 {
|
||||
compatible = "fsl,imx28-dcp", "fsl,imx23-dcp";
|
||||
reg = <0x80028000 0x2000>;
|
||||
interrupts = <52 53>;
|
||||
status = "okay";
|
||||
};
|
|
@ -538,6 +538,13 @@ F: drivers/tty/serial/altera_jtaguart.c
|
|||
F: include/linux/altera_uart.h
|
||||
F: include/linux/altera_jtaguart.h
|
||||
|
||||
AMD CRYPTOGRAPHIC COPROCESSOR (CCP) DRIVER
|
||||
M: Tom Lendacky <thomas.lendacky@amd.com>
|
||||
L: linux-crypto@vger.kernel.org
|
||||
S: Supported
|
||||
F: drivers/crypto/ccp/
|
||||
F: include/linux/ccp.h
|
||||
|
||||
AMD FAM15H PROCESSOR POWER MONITORING DRIVER
|
||||
M: Andreas Herrmann <herrmann.der.user@googlemail.com>
|
||||
L: lm-sensors@lm-sensors.org
|
||||
|
|
|
@ -337,8 +337,10 @@
|
|||
};
|
||||
|
||||
dcp@80028000 {
|
||||
compatible = "fsl,imx23-dcp";
|
||||
reg = <0x80028000 0x2000>;
|
||||
status = "disabled";
|
||||
interrupts = <53 54>;
|
||||
status = "okay";
|
||||
};
|
||||
|
||||
pxp@8002a000 {
|
||||
|
|
|
@ -813,9 +813,10 @@
|
|||
};
|
||||
|
||||
dcp: dcp@80028000 {
|
||||
compatible = "fsl,imx28-dcp", "fsl,imx23-dcp";
|
||||
reg = <0x80028000 0x2000>;
|
||||
interrupts = <52 53 54>;
|
||||
compatible = "fsl-dcp";
|
||||
status = "okay";
|
||||
};
|
||||
|
||||
pxp: pxp@8002a000 {
|
||||
|
|
|
@ -237,9 +237,9 @@ static int des3_setkey(struct crypto_tfm *tfm, const u8 *key,
|
|||
struct s390_des_ctx *ctx = crypto_tfm_ctx(tfm);
|
||||
u32 *flags = &tfm->crt_flags;
|
||||
|
||||
if (!(memcmp(key, &key[DES_KEY_SIZE], DES_KEY_SIZE) &&
|
||||
memcmp(&key[DES_KEY_SIZE], &key[DES_KEY_SIZE * 2],
|
||||
DES_KEY_SIZE)) &&
|
||||
if (!(crypto_memneq(key, &key[DES_KEY_SIZE], DES_KEY_SIZE) &&
|
||||
crypto_memneq(&key[DES_KEY_SIZE], &key[DES_KEY_SIZE * 2],
|
||||
DES_KEY_SIZE)) &&
|
||||
(*flags & CRYPTO_TFM_REQ_WEAK_KEY)) {
|
||||
*flags |= CRYPTO_TFM_RES_WEAK_KEY;
|
||||
return -EINVAL;
|
||||
|
|
|
@ -76,6 +76,7 @@ ifeq ($(avx2_supported),yes)
|
|||
endif
|
||||
|
||||
aesni-intel-y := aesni-intel_asm.o aesni-intel_glue.o fpu.o
|
||||
aesni-intel-$(CONFIG_64BIT) += aesni-intel_avx-x86_64.o
|
||||
ghash-clmulni-intel-y := ghash-clmulni-intel_asm.o ghash-clmulni-intel_glue.o
|
||||
sha1-ssse3-y := sha1_ssse3_asm.o sha1_ssse3_glue.o
|
||||
crc32c-intel-y := crc32c-intel_glue.o
|
||||
|
|
File diff suppressed because it is too large
Load Diff
|
@ -101,6 +101,9 @@ asmlinkage void aesni_cbc_dec(struct crypto_aes_ctx *ctx, u8 *out,
|
|||
int crypto_fpu_init(void);
|
||||
void crypto_fpu_exit(void);
|
||||
|
||||
#define AVX_GEN2_OPTSIZE 640
|
||||
#define AVX_GEN4_OPTSIZE 4096
|
||||
|
||||
#ifdef CONFIG_X86_64
|
||||
asmlinkage void aesni_ctr_enc(struct crypto_aes_ctx *ctx, u8 *out,
|
||||
const u8 *in, unsigned int len, u8 *iv);
|
||||
|
@ -150,6 +153,123 @@ asmlinkage void aesni_gcm_dec(void *ctx, u8 *out,
|
|||
u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
|
||||
u8 *auth_tag, unsigned long auth_tag_len);
|
||||
|
||||
|
||||
#ifdef CONFIG_AS_AVX
|
||||
/*
|
||||
* asmlinkage void aesni_gcm_precomp_avx_gen2()
|
||||
* gcm_data *my_ctx_data, context data
|
||||
* u8 *hash_subkey, the Hash sub key input. Data starts on a 16-byte boundary.
|
||||
*/
|
||||
asmlinkage void aesni_gcm_precomp_avx_gen2(void *my_ctx_data, u8 *hash_subkey);
|
||||
|
||||
asmlinkage void aesni_gcm_enc_avx_gen2(void *ctx, u8 *out,
|
||||
const u8 *in, unsigned long plaintext_len, u8 *iv,
|
||||
const u8 *aad, unsigned long aad_len,
|
||||
u8 *auth_tag, unsigned long auth_tag_len);
|
||||
|
||||
asmlinkage void aesni_gcm_dec_avx_gen2(void *ctx, u8 *out,
|
||||
const u8 *in, unsigned long ciphertext_len, u8 *iv,
|
||||
const u8 *aad, unsigned long aad_len,
|
||||
u8 *auth_tag, unsigned long auth_tag_len);
|
||||
|
||||
static void aesni_gcm_enc_avx(void *ctx, u8 *out,
|
||||
const u8 *in, unsigned long plaintext_len, u8 *iv,
|
||||
u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
|
||||
u8 *auth_tag, unsigned long auth_tag_len)
|
||||
{
|
||||
if (plaintext_len < AVX_GEN2_OPTSIZE) {
|
||||
aesni_gcm_enc(ctx, out, in, plaintext_len, iv, hash_subkey, aad,
|
||||
aad_len, auth_tag, auth_tag_len);
|
||||
} else {
|
||||
aesni_gcm_precomp_avx_gen2(ctx, hash_subkey);
|
||||
aesni_gcm_enc_avx_gen2(ctx, out, in, plaintext_len, iv, aad,
|
||||
aad_len, auth_tag, auth_tag_len);
|
||||
}
|
||||
}
|
||||
|
||||
static void aesni_gcm_dec_avx(void *ctx, u8 *out,
|
||||
const u8 *in, unsigned long ciphertext_len, u8 *iv,
|
||||
u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
|
||||
u8 *auth_tag, unsigned long auth_tag_len)
|
||||
{
|
||||
if (ciphertext_len < AVX_GEN2_OPTSIZE) {
|
||||
aesni_gcm_dec(ctx, out, in, ciphertext_len, iv, hash_subkey, aad,
|
||||
aad_len, auth_tag, auth_tag_len);
|
||||
} else {
|
||||
aesni_gcm_precomp_avx_gen2(ctx, hash_subkey);
|
||||
aesni_gcm_dec_avx_gen2(ctx, out, in, ciphertext_len, iv, aad,
|
||||
aad_len, auth_tag, auth_tag_len);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef CONFIG_AS_AVX2
|
||||
/*
|
||||
* asmlinkage void aesni_gcm_precomp_avx_gen4()
|
||||
* gcm_data *my_ctx_data, context data
|
||||
* u8 *hash_subkey, the Hash sub key input. Data starts on a 16-byte boundary.
|
||||
*/
|
||||
asmlinkage void aesni_gcm_precomp_avx_gen4(void *my_ctx_data, u8 *hash_subkey);
|
||||
|
||||
asmlinkage void aesni_gcm_enc_avx_gen4(void *ctx, u8 *out,
|
||||
const u8 *in, unsigned long plaintext_len, u8 *iv,
|
||||
const u8 *aad, unsigned long aad_len,
|
||||
u8 *auth_tag, unsigned long auth_tag_len);
|
||||
|
||||
asmlinkage void aesni_gcm_dec_avx_gen4(void *ctx, u8 *out,
|
||||
const u8 *in, unsigned long ciphertext_len, u8 *iv,
|
||||
const u8 *aad, unsigned long aad_len,
|
||||
u8 *auth_tag, unsigned long auth_tag_len);
|
||||
|
||||
static void aesni_gcm_enc_avx2(void *ctx, u8 *out,
|
||||
const u8 *in, unsigned long plaintext_len, u8 *iv,
|
||||
u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
|
||||
u8 *auth_tag, unsigned long auth_tag_len)
|
||||
{
|
||||
if (plaintext_len < AVX_GEN2_OPTSIZE) {
|
||||
aesni_gcm_enc(ctx, out, in, plaintext_len, iv, hash_subkey, aad,
|
||||
aad_len, auth_tag, auth_tag_len);
|
||||
} else if (plaintext_len < AVX_GEN4_OPTSIZE) {
|
||||
aesni_gcm_precomp_avx_gen2(ctx, hash_subkey);
|
||||
aesni_gcm_enc_avx_gen2(ctx, out, in, plaintext_len, iv, aad,
|
||||
aad_len, auth_tag, auth_tag_len);
|
||||
} else {
|
||||
aesni_gcm_precomp_avx_gen4(ctx, hash_subkey);
|
||||
aesni_gcm_enc_avx_gen4(ctx, out, in, plaintext_len, iv, aad,
|
||||
aad_len, auth_tag, auth_tag_len);
|
||||
}
|
||||
}
|
||||
|
||||
static void aesni_gcm_dec_avx2(void *ctx, u8 *out,
|
||||
const u8 *in, unsigned long ciphertext_len, u8 *iv,
|
||||
u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
|
||||
u8 *auth_tag, unsigned long auth_tag_len)
|
||||
{
|
||||
if (ciphertext_len < AVX_GEN2_OPTSIZE) {
|
||||
aesni_gcm_dec(ctx, out, in, ciphertext_len, iv, hash_subkey,
|
||||
aad, aad_len, auth_tag, auth_tag_len);
|
||||
} else if (ciphertext_len < AVX_GEN4_OPTSIZE) {
|
||||
aesni_gcm_precomp_avx_gen2(ctx, hash_subkey);
|
||||
aesni_gcm_dec_avx_gen2(ctx, out, in, ciphertext_len, iv, aad,
|
||||
aad_len, auth_tag, auth_tag_len);
|
||||
} else {
|
||||
aesni_gcm_precomp_avx_gen4(ctx, hash_subkey);
|
||||
aesni_gcm_dec_avx_gen4(ctx, out, in, ciphertext_len, iv, aad,
|
||||
aad_len, auth_tag, auth_tag_len);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
static void (*aesni_gcm_enc_tfm)(void *ctx, u8 *out,
|
||||
const u8 *in, unsigned long plaintext_len, u8 *iv,
|
||||
u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
|
||||
u8 *auth_tag, unsigned long auth_tag_len);
|
||||
|
||||
static void (*aesni_gcm_dec_tfm)(void *ctx, u8 *out,
|
||||
const u8 *in, unsigned long ciphertext_len, u8 *iv,
|
||||
u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
|
||||
u8 *auth_tag, unsigned long auth_tag_len);
|
||||
|
||||
static inline struct
|
||||
aesni_rfc4106_gcm_ctx *aesni_rfc4106_gcm_ctx_get(struct crypto_aead *tfm)
|
||||
{
|
||||
|
@ -915,7 +1035,7 @@ static int __driver_rfc4106_encrypt(struct aead_request *req)
|
|||
dst = src;
|
||||
}
|
||||
|
||||
aesni_gcm_enc(aes_ctx, dst, src, (unsigned long)req->cryptlen, iv,
|
||||
aesni_gcm_enc_tfm(aes_ctx, dst, src, (unsigned long)req->cryptlen, iv,
|
||||
ctx->hash_subkey, assoc, (unsigned long)req->assoclen, dst
|
||||
+ ((unsigned long)req->cryptlen), auth_tag_len);
|
||||
|
||||
|
@ -996,12 +1116,12 @@ static int __driver_rfc4106_decrypt(struct aead_request *req)
|
|||
dst = src;
|
||||
}
|
||||
|
||||
aesni_gcm_dec(aes_ctx, dst, src, tempCipherLen, iv,
|
||||
aesni_gcm_dec_tfm(aes_ctx, dst, src, tempCipherLen, iv,
|
||||
ctx->hash_subkey, assoc, (unsigned long)req->assoclen,
|
||||
authTag, auth_tag_len);
|
||||
|
||||
/* Compare generated tag with passed in tag. */
|
||||
retval = memcmp(src + tempCipherLen, authTag, auth_tag_len) ?
|
||||
retval = crypto_memneq(src + tempCipherLen, authTag, auth_tag_len) ?
|
||||
-EBADMSG : 0;
|
||||
|
||||
if (one_entry_in_sg) {
|
||||
|
@ -1353,6 +1473,27 @@ static int __init aesni_init(void)
|
|||
|
||||
if (!x86_match_cpu(aesni_cpu_id))
|
||||
return -ENODEV;
|
||||
#ifdef CONFIG_X86_64
|
||||
#ifdef CONFIG_AS_AVX2
|
||||
if (boot_cpu_has(X86_FEATURE_AVX2)) {
|
||||
pr_info("AVX2 version of gcm_enc/dec engaged.\n");
|
||||
aesni_gcm_enc_tfm = aesni_gcm_enc_avx2;
|
||||
aesni_gcm_dec_tfm = aesni_gcm_dec_avx2;
|
||||
} else
|
||||
#endif
|
||||
#ifdef CONFIG_AS_AVX
|
||||
if (boot_cpu_has(X86_FEATURE_AVX)) {
|
||||
pr_info("AVX version of gcm_enc/dec engaged.\n");
|
||||
aesni_gcm_enc_tfm = aesni_gcm_enc_avx;
|
||||
aesni_gcm_dec_tfm = aesni_gcm_dec_avx;
|
||||
} else
|
||||
#endif
|
||||
{
|
||||
pr_info("SSE version of gcm_enc/dec engaged.\n");
|
||||
aesni_gcm_enc_tfm = aesni_gcm_enc;
|
||||
aesni_gcm_dec_tfm = aesni_gcm_dec;
|
||||
}
|
||||
#endif
|
||||
|
||||
err = crypto_fpu_init();
|
||||
if (err)
|
||||
|
|
|
@ -2,11 +2,6 @@
|
|||
# Cryptographic API
|
||||
#
|
||||
|
||||
# memneq MUST be built with -Os or -O0 to prevent early-return optimizations
|
||||
# that will defeat memneq's actual purpose to prevent timing attacks.
|
||||
CFLAGS_REMOVE_memneq.o := -O1 -O2 -O3
|
||||
CFLAGS_memneq.o := -Os
|
||||
|
||||
obj-$(CONFIG_CRYPTO) += crypto.o
|
||||
crypto-y := api.o cipher.o compress.o memneq.o
|
||||
|
||||
|
|
|
@ -213,7 +213,10 @@ static void ahash_op_unaligned_done(struct crypto_async_request *req, int err)
|
|||
|
||||
ahash_op_unaligned_finish(areq, err);
|
||||
|
||||
complete(data, err);
|
||||
areq->base.complete = complete;
|
||||
areq->base.data = data;
|
||||
|
||||
complete(&areq->base, err);
|
||||
}
|
||||
|
||||
static int ahash_op_unaligned(struct ahash_request *req,
|
||||
|
|
|
@ -72,6 +72,7 @@ __crypto_memneq_generic(const void *a, const void *b, size_t size)
|
|||
#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
|
||||
while (size >= sizeof(unsigned long)) {
|
||||
neq |= *(unsigned long *)a ^ *(unsigned long *)b;
|
||||
OPTIMIZER_HIDE_VAR(neq);
|
||||
a += sizeof(unsigned long);
|
||||
b += sizeof(unsigned long);
|
||||
size -= sizeof(unsigned long);
|
||||
|
@ -79,6 +80,7 @@ __crypto_memneq_generic(const void *a, const void *b, size_t size)
|
|||
#endif /* CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS */
|
||||
while (size > 0) {
|
||||
neq |= *(unsigned char *)a ^ *(unsigned char *)b;
|
||||
OPTIMIZER_HIDE_VAR(neq);
|
||||
a += 1;
|
||||
b += 1;
|
||||
size -= 1;
|
||||
|
@ -89,33 +91,61 @@ __crypto_memneq_generic(const void *a, const void *b, size_t size)
|
|||
/* Loop-free fast-path for frequently used 16-byte size */
|
||||
static inline unsigned long __crypto_memneq_16(const void *a, const void *b)
|
||||
{
|
||||
unsigned long neq = 0;
|
||||
|
||||
#ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
|
||||
if (sizeof(unsigned long) == 8)
|
||||
return ((*(unsigned long *)(a) ^ *(unsigned long *)(b))
|
||||
| (*(unsigned long *)(a+8) ^ *(unsigned long *)(b+8)));
|
||||
else if (sizeof(unsigned int) == 4)
|
||||
return ((*(unsigned int *)(a) ^ *(unsigned int *)(b))
|
||||
| (*(unsigned int *)(a+4) ^ *(unsigned int *)(b+4))
|
||||
| (*(unsigned int *)(a+8) ^ *(unsigned int *)(b+8))
|
||||
| (*(unsigned int *)(a+12) ^ *(unsigned int *)(b+12)));
|
||||
else
|
||||
if (sizeof(unsigned long) == 8) {
|
||||
neq |= *(unsigned long *)(a) ^ *(unsigned long *)(b);
|
||||
OPTIMIZER_HIDE_VAR(neq);
|
||||
neq |= *(unsigned long *)(a+8) ^ *(unsigned long *)(b+8);
|
||||
OPTIMIZER_HIDE_VAR(neq);
|
||||
} else if (sizeof(unsigned int) == 4) {
|
||||
neq |= *(unsigned int *)(a) ^ *(unsigned int *)(b);
|
||||
OPTIMIZER_HIDE_VAR(neq);
|
||||
neq |= *(unsigned int *)(a+4) ^ *(unsigned int *)(b+4);
|
||||
OPTIMIZER_HIDE_VAR(neq);
|
||||
neq |= *(unsigned int *)(a+8) ^ *(unsigned int *)(b+8);
|
||||
OPTIMIZER_HIDE_VAR(neq);
|
||||
neq |= *(unsigned int *)(a+12) ^ *(unsigned int *)(b+12);
|
||||
OPTIMIZER_HIDE_VAR(neq);
|
||||
} else
|
||||
#endif /* CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS */
|
||||
return ((*(unsigned char *)(a) ^ *(unsigned char *)(b))
|
||||
| (*(unsigned char *)(a+1) ^ *(unsigned char *)(b+1))
|
||||
| (*(unsigned char *)(a+2) ^ *(unsigned char *)(b+2))
|
||||
| (*(unsigned char *)(a+3) ^ *(unsigned char *)(b+3))
|
||||
| (*(unsigned char *)(a+4) ^ *(unsigned char *)(b+4))
|
||||
| (*(unsigned char *)(a+5) ^ *(unsigned char *)(b+5))
|
||||
| (*(unsigned char *)(a+6) ^ *(unsigned char *)(b+6))
|
||||
| (*(unsigned char *)(a+7) ^ *(unsigned char *)(b+7))
|
||||
| (*(unsigned char *)(a+8) ^ *(unsigned char *)(b+8))
|
||||
| (*(unsigned char *)(a+9) ^ *(unsigned char *)(b+9))
|
||||
| (*(unsigned char *)(a+10) ^ *(unsigned char *)(b+10))
|
||||
| (*(unsigned char *)(a+11) ^ *(unsigned char *)(b+11))
|
||||
| (*(unsigned char *)(a+12) ^ *(unsigned char *)(b+12))
|
||||
| (*(unsigned char *)(a+13) ^ *(unsigned char *)(b+13))
|
||||
| (*(unsigned char *)(a+14) ^ *(unsigned char *)(b+14))
|
||||
| (*(unsigned char *)(a+15) ^ *(unsigned char *)(b+15)));
|
||||
{
|
||||
neq |= *(unsigned char *)(a) ^ *(unsigned char *)(b);
|
||||
OPTIMIZER_HIDE_VAR(neq);
|
||||
neq |= *(unsigned char *)(a+1) ^ *(unsigned char *)(b+1);
|
||||
OPTIMIZER_HIDE_VAR(neq);
|
||||
neq |= *(unsigned char *)(a+2) ^ *(unsigned char *)(b+2);
|
||||
OPTIMIZER_HIDE_VAR(neq);
|
||||
neq |= *(unsigned char *)(a+3) ^ *(unsigned char *)(b+3);
|
||||
OPTIMIZER_HIDE_VAR(neq);
|
||||
neq |= *(unsigned char *)(a+4) ^ *(unsigned char *)(b+4);
|
||||
OPTIMIZER_HIDE_VAR(neq);
|
||||
neq |= *(unsigned char *)(a+5) ^ *(unsigned char *)(b+5);
|
||||
OPTIMIZER_HIDE_VAR(neq);
|
||||
neq |= *(unsigned char *)(a+6) ^ *(unsigned char *)(b+6);
|
||||
OPTIMIZER_HIDE_VAR(neq);
|
||||
neq |= *(unsigned char *)(a+7) ^ *(unsigned char *)(b+7);
|
||||
OPTIMIZER_HIDE_VAR(neq);
|
||||
neq |= *(unsigned char *)(a+8) ^ *(unsigned char *)(b+8);
|
||||
OPTIMIZER_HIDE_VAR(neq);
|
||||
neq |= *(unsigned char *)(a+9) ^ *(unsigned char *)(b+9);
|
||||
OPTIMIZER_HIDE_VAR(neq);
|
||||
neq |= *(unsigned char *)(a+10) ^ *(unsigned char *)(b+10);
|
||||
OPTIMIZER_HIDE_VAR(neq);
|
||||
neq |= *(unsigned char *)(a+11) ^ *(unsigned char *)(b+11);
|
||||
OPTIMIZER_HIDE_VAR(neq);
|
||||
neq |= *(unsigned char *)(a+12) ^ *(unsigned char *)(b+12);
|
||||
OPTIMIZER_HIDE_VAR(neq);
|
||||
neq |= *(unsigned char *)(a+13) ^ *(unsigned char *)(b+13);
|
||||
OPTIMIZER_HIDE_VAR(neq);
|
||||
neq |= *(unsigned char *)(a+14) ^ *(unsigned char *)(b+14);
|
||||
OPTIMIZER_HIDE_VAR(neq);
|
||||
neq |= *(unsigned char *)(a+15) ^ *(unsigned char *)(b+15);
|
||||
OPTIMIZER_HIDE_VAR(neq);
|
||||
}
|
||||
|
||||
return neq;
|
||||
}
|
||||
|
||||
/* Compare two areas of memory without leaking timing information,
|
||||
|
|
|
@ -78,7 +78,7 @@ static int pcrypt_do_parallel(struct padata_priv *padata, unsigned int *cb_cpu,
|
|||
cpu = *cb_cpu;
|
||||
|
||||
rcu_read_lock_bh();
|
||||
cpumask = rcu_dereference(pcrypt->cb_cpumask);
|
||||
cpumask = rcu_dereference_bh(pcrypt->cb_cpumask);
|
||||
if (cpumask_test_cpu(cpu, cpumask->mask))
|
||||
goto out;
|
||||
|
||||
|
|
270
crypto/tcrypt.c
270
crypto/tcrypt.c
|
@ -137,7 +137,272 @@ out:
|
|||
return ret;
|
||||
}
|
||||
|
||||
static int test_aead_jiffies(struct aead_request *req, int enc,
|
||||
int blen, int sec)
|
||||
{
|
||||
unsigned long start, end;
|
||||
int bcount;
|
||||
int ret;
|
||||
|
||||
for (start = jiffies, end = start + sec * HZ, bcount = 0;
|
||||
time_before(jiffies, end); bcount++) {
|
||||
if (enc)
|
||||
ret = crypto_aead_encrypt(req);
|
||||
else
|
||||
ret = crypto_aead_decrypt(req);
|
||||
|
||||
if (ret)
|
||||
return ret;
|
||||
}
|
||||
|
||||
printk("%d operations in %d seconds (%ld bytes)\n",
|
||||
bcount, sec, (long)bcount * blen);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int test_aead_cycles(struct aead_request *req, int enc, int blen)
|
||||
{
|
||||
unsigned long cycles = 0;
|
||||
int ret = 0;
|
||||
int i;
|
||||
|
||||
local_irq_disable();
|
||||
|
||||
/* Warm-up run. */
|
||||
for (i = 0; i < 4; i++) {
|
||||
if (enc)
|
||||
ret = crypto_aead_encrypt(req);
|
||||
else
|
||||
ret = crypto_aead_decrypt(req);
|
||||
|
||||
if (ret)
|
||||
goto out;
|
||||
}
|
||||
|
||||
/* The real thing. */
|
||||
for (i = 0; i < 8; i++) {
|
||||
cycles_t start, end;
|
||||
|
||||
start = get_cycles();
|
||||
if (enc)
|
||||
ret = crypto_aead_encrypt(req);
|
||||
else
|
||||
ret = crypto_aead_decrypt(req);
|
||||
end = get_cycles();
|
||||
|
||||
if (ret)
|
||||
goto out;
|
||||
|
||||
cycles += end - start;
|
||||
}
|
||||
|
||||
out:
|
||||
local_irq_enable();
|
||||
|
||||
if (ret == 0)
|
||||
printk("1 operation in %lu cycles (%d bytes)\n",
|
||||
(cycles + 4) / 8, blen);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
static u32 block_sizes[] = { 16, 64, 256, 1024, 8192, 0 };
|
||||
static u32 aead_sizes[] = { 16, 64, 256, 512, 1024, 2048, 4096, 8192, 0 };
|
||||
|
||||
#define XBUFSIZE 8
|
||||
#define MAX_IVLEN 32
|
||||
|
||||
static int testmgr_alloc_buf(char *buf[XBUFSIZE])
|
||||
{
|
||||
int i;
|
||||
|
||||
for (i = 0; i < XBUFSIZE; i++) {
|
||||
buf[i] = (void *)__get_free_page(GFP_KERNEL);
|
||||
if (!buf[i])
|
||||
goto err_free_buf;
|
||||
}
|
||||
|
||||
return 0;
|
||||
|
||||
err_free_buf:
|
||||
while (i-- > 0)
|
||||
free_page((unsigned long)buf[i]);
|
||||
|
||||
return -ENOMEM;
|
||||
}
|
||||
|
||||
static void testmgr_free_buf(char *buf[XBUFSIZE])
|
||||
{
|
||||
int i;
|
||||
|
||||
for (i = 0; i < XBUFSIZE; i++)
|
||||
free_page((unsigned long)buf[i]);
|
||||
}
|
||||
|
||||
static void sg_init_aead(struct scatterlist *sg, char *xbuf[XBUFSIZE],
|
||||
unsigned int buflen)
|
||||
{
|
||||
int np = (buflen + PAGE_SIZE - 1)/PAGE_SIZE;
|
||||
int k, rem;
|
||||
|
||||
np = (np > XBUFSIZE) ? XBUFSIZE : np;
|
||||
rem = buflen % PAGE_SIZE;
|
||||
if (np > XBUFSIZE) {
|
||||
rem = PAGE_SIZE;
|
||||
np = XBUFSIZE;
|
||||
}
|
||||
sg_init_table(sg, np);
|
||||
for (k = 0; k < np; ++k) {
|
||||
if (k == (np-1))
|
||||
sg_set_buf(&sg[k], xbuf[k], rem);
|
||||
else
|
||||
sg_set_buf(&sg[k], xbuf[k], PAGE_SIZE);
|
||||
}
|
||||
}
|
||||
|
||||
static void test_aead_speed(const char *algo, int enc, unsigned int sec,
|
||||
struct aead_speed_template *template,
|
||||
unsigned int tcount, u8 authsize,
|
||||
unsigned int aad_size, u8 *keysize)
|
||||
{
|
||||
unsigned int i, j;
|
||||
struct crypto_aead *tfm;
|
||||
int ret = -ENOMEM;
|
||||
const char *key;
|
||||
struct aead_request *req;
|
||||
struct scatterlist *sg;
|
||||
struct scatterlist *asg;
|
||||
struct scatterlist *sgout;
|
||||
const char *e;
|
||||
void *assoc;
|
||||
char iv[MAX_IVLEN];
|
||||
char *xbuf[XBUFSIZE];
|
||||
char *xoutbuf[XBUFSIZE];
|
||||
char *axbuf[XBUFSIZE];
|
||||
unsigned int *b_size;
|
||||
unsigned int iv_len;
|
||||
|
||||
if (enc == ENCRYPT)
|
||||
e = "encryption";
|
||||
else
|
||||
e = "decryption";
|
||||
|
||||
if (testmgr_alloc_buf(xbuf))
|
||||
goto out_noxbuf;
|
||||
if (testmgr_alloc_buf(axbuf))
|
||||
goto out_noaxbuf;
|
||||
if (testmgr_alloc_buf(xoutbuf))
|
||||
goto out_nooutbuf;
|
||||
|
||||
sg = kmalloc(sizeof(*sg) * 8 * 3, GFP_KERNEL);
|
||||
if (!sg)
|
||||
goto out_nosg;
|
||||
asg = &sg[8];
|
||||
sgout = &asg[8];
|
||||
|
||||
|
||||
printk(KERN_INFO "\ntesting speed of %s %s\n", algo, e);
|
||||
|
||||
tfm = crypto_alloc_aead(algo, 0, 0);
|
||||
|
||||
if (IS_ERR(tfm)) {
|
||||
pr_err("alg: aead: Failed to load transform for %s: %ld\n", algo,
|
||||
PTR_ERR(tfm));
|
||||
return;
|
||||
}
|
||||
|
||||
req = aead_request_alloc(tfm, GFP_KERNEL);
|
||||
if (!req) {
|
||||
pr_err("alg: aead: Failed to allocate request for %s\n",
|
||||
algo);
|
||||
goto out;
|
||||
}
|
||||
|
||||
i = 0;
|
||||
do {
|
||||
b_size = aead_sizes;
|
||||
do {
|
||||
assoc = axbuf[0];
|
||||
|
||||
if (aad_size < PAGE_SIZE)
|
||||
memset(assoc, 0xff, aad_size);
|
||||
else {
|
||||
pr_err("associate data length (%u) too big\n",
|
||||
aad_size);
|
||||
goto out_nosg;
|
||||
}
|
||||
sg_init_one(&asg[0], assoc, aad_size);
|
||||
|
||||
if ((*keysize + *b_size) > TVMEMSIZE * PAGE_SIZE) {
|
||||
pr_err("template (%u) too big for tvmem (%lu)\n",
|
||||
*keysize + *b_size,
|
||||
TVMEMSIZE * PAGE_SIZE);
|
||||
goto out;
|
||||
}
|
||||
|
||||
key = tvmem[0];
|
||||
for (j = 0; j < tcount; j++) {
|
||||
if (template[j].klen == *keysize) {
|
||||
key = template[j].key;
|
||||
break;
|
||||
}
|
||||
}
|
||||
ret = crypto_aead_setkey(tfm, key, *keysize);
|
||||
ret = crypto_aead_setauthsize(tfm, authsize);
|
||||
|
||||
iv_len = crypto_aead_ivsize(tfm);
|
||||
if (iv_len)
|
||||
memset(&iv, 0xff, iv_len);
|
||||
|
||||
crypto_aead_clear_flags(tfm, ~0);
|
||||
printk(KERN_INFO "test %u (%d bit key, %d byte blocks): ",
|
||||
i, *keysize * 8, *b_size);
|
||||
|
||||
|
||||
memset(tvmem[0], 0xff, PAGE_SIZE);
|
||||
|
||||
if (ret) {
|
||||
pr_err("setkey() failed flags=%x\n",
|
||||
crypto_aead_get_flags(tfm));
|
||||
goto out;
|
||||
}
|
||||
|
||||
sg_init_aead(&sg[0], xbuf,
|
||||
*b_size + (enc ? authsize : 0));
|
||||
|
||||
sg_init_aead(&sgout[0], xoutbuf,
|
||||
*b_size + (enc ? authsize : 0));
|
||||
|
||||
aead_request_set_crypt(req, sg, sgout, *b_size, iv);
|
||||
aead_request_set_assoc(req, asg, aad_size);
|
||||
|
||||
if (sec)
|
||||
ret = test_aead_jiffies(req, enc, *b_size, sec);
|
||||
else
|
||||
ret = test_aead_cycles(req, enc, *b_size);
|
||||
|
||||
if (ret) {
|
||||
pr_err("%s() failed return code=%d\n", e, ret);
|
||||
break;
|
||||
}
|
||||
b_size++;
|
||||
i++;
|
||||
} while (*b_size);
|
||||
keysize++;
|
||||
} while (*keysize);
|
||||
|
||||
out:
|
||||
crypto_free_aead(tfm);
|
||||
kfree(sg);
|
||||
out_nosg:
|
||||
testmgr_free_buf(xoutbuf);
|
||||
out_nooutbuf:
|
||||
testmgr_free_buf(axbuf);
|
||||
out_noaxbuf:
|
||||
testmgr_free_buf(xbuf);
|
||||
out_noxbuf:
|
||||
return;
|
||||
}
|
||||
|
||||
static void test_cipher_speed(const char *algo, int enc, unsigned int sec,
|
||||
struct cipher_speed_template *template,
|
||||
|
@ -1427,6 +1692,11 @@ static int do_test(int m)
|
|||
speed_template_32_64);
|
||||
break;
|
||||
|
||||
case 211:
|
||||
test_aead_speed("rfc4106(gcm(aes))", ENCRYPT, sec,
|
||||
NULL, 0, 16, 8, aead_speed_template_20);
|
||||
break;
|
||||
|
||||
case 300:
|
||||
/* fall through */
|
||||
|
||||
|
|
|
@ -22,6 +22,11 @@ struct cipher_speed_template {
|
|||
unsigned int klen;
|
||||
};
|
||||
|
||||
struct aead_speed_template {
|
||||
const char *key;
|
||||
unsigned int klen;
|
||||
};
|
||||
|
||||
struct hash_speed {
|
||||
unsigned int blen; /* buffer length */
|
||||
unsigned int plen; /* per-update length */
|
||||
|
@ -57,6 +62,11 @@ static u8 speed_template_32_48[] = {32, 48, 0};
|
|||
static u8 speed_template_32_48_64[] = {32, 48, 64, 0};
|
||||
static u8 speed_template_32_64[] = {32, 64, 0};
|
||||
|
||||
/*
|
||||
* AEAD speed tests
|
||||
*/
|
||||
static u8 aead_speed_template_20[] = {20, 0};
|
||||
|
||||
/*
|
||||
* Digest speed tests
|
||||
*/
|
||||
|
|
|
@ -289,16 +289,6 @@ config CRYPTO_DEV_SAHARA
|
|||
This option enables support for the SAHARA HW crypto accelerator
|
||||
found in some Freescale i.MX chips.
|
||||
|
||||
config CRYPTO_DEV_DCP
|
||||
tristate "Support for the DCP engine"
|
||||
depends on ARCH_MXS && OF
|
||||
select CRYPTO_BLKCIPHER
|
||||
select CRYPTO_AES
|
||||
select CRYPTO_CBC
|
||||
help
|
||||
This options enables support for the hardware crypto-acceleration
|
||||
capabilities of the DCP co-processor
|
||||
|
||||
config CRYPTO_DEV_S5P
|
||||
tristate "Support for Samsung S5PV210 crypto accelerator"
|
||||
depends on ARCH_S5PV210
|
||||
|
@ -399,4 +389,33 @@ config CRYPTO_DEV_ATMEL_SHA
|
|||
To compile this driver as a module, choose M here: the module
|
||||
will be called atmel-sha.
|
||||
|
||||
config CRYPTO_DEV_CCP
|
||||
bool "Support for AMD Cryptographic Coprocessor"
|
||||
depends on X86 && PCI
|
||||
default n
|
||||
help
|
||||
The AMD Cryptographic Coprocessor provides hardware support
|
||||
for encryption, hashing and related operations.
|
||||
|
||||
if CRYPTO_DEV_CCP
|
||||
source "drivers/crypto/ccp/Kconfig"
|
||||
endif
|
||||
|
||||
config CRYPTO_DEV_MXS_DCP
|
||||
tristate "Support for Freescale MXS DCP"
|
||||
depends on ARCH_MXS
|
||||
select CRYPTO_SHA1
|
||||
select CRYPTO_SHA256
|
||||
select CRYPTO_CBC
|
||||
select CRYPTO_ECB
|
||||
select CRYPTO_AES
|
||||
select CRYPTO_BLKCIPHER
|
||||
select CRYPTO_ALGAPI
|
||||
help
|
||||
The Freescale i.MX23/i.MX28 has SHA1/SHA256 and AES128 CBC/ECB
|
||||
co-processor on the die.
|
||||
|
||||
To compile this driver as a module, choose M here: the module
|
||||
will be called mxs-dcp.
|
||||
|
||||
endif # CRYPTO_HW
|
||||
|
|
|
@ -1,24 +1,25 @@
|
|||
obj-$(CONFIG_CRYPTO_DEV_PADLOCK_AES) += padlock-aes.o
|
||||
obj-$(CONFIG_CRYPTO_DEV_PADLOCK_SHA) += padlock-sha.o
|
||||
obj-$(CONFIG_CRYPTO_DEV_ATMEL_AES) += atmel-aes.o
|
||||
obj-$(CONFIG_CRYPTO_DEV_ATMEL_SHA) += atmel-sha.o
|
||||
obj-$(CONFIG_CRYPTO_DEV_ATMEL_TDES) += atmel-tdes.o
|
||||
obj-$(CONFIG_CRYPTO_DEV_BFIN_CRC) += bfin_crc.o
|
||||
obj-$(CONFIG_CRYPTO_DEV_CCP) += ccp/
|
||||
obj-$(CONFIG_CRYPTO_DEV_FSL_CAAM) += caam/
|
||||
obj-$(CONFIG_CRYPTO_DEV_GEODE) += geode-aes.o
|
||||
obj-$(CONFIG_CRYPTO_DEV_HIFN_795X) += hifn_795x.o
|
||||
obj-$(CONFIG_CRYPTO_DEV_IXP4XX) += ixp4xx_crypto.o
|
||||
obj-$(CONFIG_CRYPTO_DEV_MV_CESA) += mv_cesa.o
|
||||
obj-$(CONFIG_CRYPTO_DEV_MXS_DCP) += mxs-dcp.o
|
||||
obj-$(CONFIG_CRYPTO_DEV_NIAGARA2) += n2_crypto.o
|
||||
n2_crypto-y := n2_core.o n2_asm.o
|
||||
obj-$(CONFIG_CRYPTO_DEV_HIFN_795X) += hifn_795x.o
|
||||
obj-$(CONFIG_CRYPTO_DEV_MV_CESA) += mv_cesa.o
|
||||
obj-$(CONFIG_CRYPTO_DEV_TALITOS) += talitos.o
|
||||
obj-$(CONFIG_CRYPTO_DEV_FSL_CAAM) += caam/
|
||||
obj-$(CONFIG_CRYPTO_DEV_IXP4XX) += ixp4xx_crypto.o
|
||||
obj-$(CONFIG_CRYPTO_DEV_PPC4XX) += amcc/
|
||||
obj-$(CONFIG_CRYPTO_DEV_OMAP_SHAM) += omap-sham.o
|
||||
obj-$(CONFIG_CRYPTO_DEV_NX) += nx/
|
||||
obj-$(CONFIG_CRYPTO_DEV_OMAP_AES) += omap-aes.o
|
||||
obj-$(CONFIG_CRYPTO_DEV_OMAP_SHAM) += omap-sham.o
|
||||
obj-$(CONFIG_CRYPTO_DEV_PADLOCK_AES) += padlock-aes.o
|
||||
obj-$(CONFIG_CRYPTO_DEV_PADLOCK_SHA) += padlock-sha.o
|
||||
obj-$(CONFIG_CRYPTO_DEV_PICOXCELL) += picoxcell_crypto.o
|
||||
obj-$(CONFIG_CRYPTO_DEV_SAHARA) += sahara.o
|
||||
obj-$(CONFIG_CRYPTO_DEV_DCP) += dcp.o
|
||||
obj-$(CONFIG_CRYPTO_DEV_PPC4XX) += amcc/
|
||||
obj-$(CONFIG_CRYPTO_DEV_S5P) += s5p-sss.o
|
||||
obj-$(CONFIG_CRYPTO_DEV_SAHARA) += sahara.o
|
||||
obj-$(CONFIG_CRYPTO_DEV_TALITOS) += talitos.o
|
||||
obj-$(CONFIG_CRYPTO_DEV_TEGRA_AES) += tegra-aes.o
|
||||
obj-$(CONFIG_CRYPTO_DEV_UX500) += ux500/
|
||||
obj-$(CONFIG_CRYPTO_DEV_BFIN_CRC) += bfin_crc.o
|
||||
obj-$(CONFIG_CRYPTO_DEV_NX) += nx/
|
||||
obj-$(CONFIG_CRYPTO_DEV_ATMEL_AES) += atmel-aes.o
|
||||
obj-$(CONFIG_CRYPTO_DEV_ATMEL_TDES) += atmel-tdes.o
|
||||
obj-$(CONFIG_CRYPTO_DEV_ATMEL_SHA) += atmel-sha.o
|
||||
|
|
|
@ -724,7 +724,6 @@ static void crypto4xx_stop_all(struct crypto4xx_core_device *core_dev)
|
|||
crypto4xx_destroy_pdr(core_dev->dev);
|
||||
crypto4xx_destroy_gdr(core_dev->dev);
|
||||
crypto4xx_destroy_sdr(core_dev->dev);
|
||||
dev_set_drvdata(core_dev->device, NULL);
|
||||
iounmap(core_dev->dev->ce_base);
|
||||
kfree(core_dev->dev);
|
||||
kfree(core_dev);
|
||||
|
|
|
@ -467,24 +467,10 @@ static int aead_setkey(struct crypto_aead *aead,
|
|||
static const u8 mdpadlen[] = { 16, 20, 32, 32, 64, 64 };
|
||||
struct caam_ctx *ctx = crypto_aead_ctx(aead);
|
||||
struct device *jrdev = ctx->jrdev;
|
||||
struct rtattr *rta = (void *)key;
|
||||
struct crypto_authenc_key_param *param;
|
||||
unsigned int authkeylen;
|
||||
unsigned int enckeylen;
|
||||
struct crypto_authenc_keys keys;
|
||||
int ret = 0;
|
||||
|
||||
param = RTA_DATA(rta);
|
||||
enckeylen = be32_to_cpu(param->enckeylen);
|
||||
|
||||
key += RTA_ALIGN(rta->rta_len);
|
||||
keylen -= RTA_ALIGN(rta->rta_len);
|
||||
|
||||
if (keylen < enckeylen)
|
||||
goto badkey;
|
||||
|
||||
authkeylen = keylen - enckeylen;
|
||||
|
||||
if (keylen > CAAM_MAX_KEY_SIZE)
|
||||
if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
|
||||
goto badkey;
|
||||
|
||||
/* Pick class 2 key length from algorithm submask */
|
||||
|
@ -492,25 +478,29 @@ static int aead_setkey(struct crypto_aead *aead,
|
|||
OP_ALG_ALGSEL_SHIFT] * 2;
|
||||
ctx->split_key_pad_len = ALIGN(ctx->split_key_len, 16);
|
||||
|
||||
if (ctx->split_key_pad_len + keys.enckeylen > CAAM_MAX_KEY_SIZE)
|
||||
goto badkey;
|
||||
|
||||
#ifdef DEBUG
|
||||
printk(KERN_ERR "keylen %d enckeylen %d authkeylen %d\n",
|
||||
keylen, enckeylen, authkeylen);
|
||||
keys.authkeylen + keys.enckeylen, keys.enckeylen,
|
||||
keys.authkeylen);
|
||||
printk(KERN_ERR "split_key_len %d split_key_pad_len %d\n",
|
||||
ctx->split_key_len, ctx->split_key_pad_len);
|
||||
print_hex_dump(KERN_ERR, "key in @"__stringify(__LINE__)": ",
|
||||
DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1);
|
||||
#endif
|
||||
|
||||
ret = gen_split_aead_key(ctx, key, authkeylen);
|
||||
ret = gen_split_aead_key(ctx, keys.authkey, keys.authkeylen);
|
||||
if (ret) {
|
||||
goto badkey;
|
||||
}
|
||||
|
||||
/* postpend encryption key to auth split key */
|
||||
memcpy(ctx->key + ctx->split_key_pad_len, key + authkeylen, enckeylen);
|
||||
memcpy(ctx->key + ctx->split_key_pad_len, keys.enckey, keys.enckeylen);
|
||||
|
||||
ctx->key_dma = dma_map_single(jrdev, ctx->key, ctx->split_key_pad_len +
|
||||
enckeylen, DMA_TO_DEVICE);
|
||||
keys.enckeylen, DMA_TO_DEVICE);
|
||||
if (dma_mapping_error(jrdev, ctx->key_dma)) {
|
||||
dev_err(jrdev, "unable to map key i/o memory\n");
|
||||
return -ENOMEM;
|
||||
|
@ -518,15 +508,15 @@ static int aead_setkey(struct crypto_aead *aead,
|
|||
#ifdef DEBUG
|
||||
print_hex_dump(KERN_ERR, "ctx.key@"__stringify(__LINE__)": ",
|
||||
DUMP_PREFIX_ADDRESS, 16, 4, ctx->key,
|
||||
ctx->split_key_pad_len + enckeylen, 1);
|
||||
ctx->split_key_pad_len + keys.enckeylen, 1);
|
||||
#endif
|
||||
|
||||
ctx->enckeylen = enckeylen;
|
||||
ctx->enckeylen = keys.enckeylen;
|
||||
|
||||
ret = aead_set_sh_desc(aead);
|
||||
if (ret) {
|
||||
dma_unmap_single(jrdev, ctx->key_dma, ctx->split_key_pad_len +
|
||||
enckeylen, DMA_TO_DEVICE);
|
||||
keys.enckeylen, DMA_TO_DEVICE);
|
||||
}
|
||||
|
||||
return ret;
|
||||
|
|
|
@ -0,0 +1,24 @@
|
|||
config CRYPTO_DEV_CCP_DD
|
||||
tristate "Cryptographic Coprocessor device driver"
|
||||
depends on CRYPTO_DEV_CCP
|
||||
default m
|
||||
select HW_RANDOM
|
||||
help
|
||||
Provides the interface to use the AMD Cryptographic Coprocessor
|
||||
which can be used to accelerate or offload encryption operations
|
||||
such as SHA, AES and more. If you choose 'M' here, this module
|
||||
will be called ccp.
|
||||
|
||||
config CRYPTO_DEV_CCP_CRYPTO
|
||||
tristate "Encryption and hashing acceleration support"
|
||||
depends on CRYPTO_DEV_CCP_DD
|
||||
default m
|
||||
select CRYPTO_ALGAPI
|
||||
select CRYPTO_HASH
|
||||
select CRYPTO_BLKCIPHER
|
||||
select CRYPTO_AUTHENC
|
||||
help
|
||||
Support for using the cryptographic API with the AMD Cryptographic
|
||||
Coprocessor. This module supports acceleration and offload of SHA
|
||||
and AES algorithms. If you choose 'M' here, this module will be
|
||||
called ccp_crypto.
|
|
@ -0,0 +1,10 @@
|
|||
obj-$(CONFIG_CRYPTO_DEV_CCP_DD) += ccp.o
|
||||
ccp-objs := ccp-dev.o ccp-ops.o
|
||||
ccp-objs += ccp-pci.o
|
||||
|
||||
obj-$(CONFIG_CRYPTO_DEV_CCP_CRYPTO) += ccp-crypto.o
|
||||
ccp-crypto-objs := ccp-crypto-main.o \
|
||||
ccp-crypto-aes.o \
|
||||
ccp-crypto-aes-cmac.o \
|
||||
ccp-crypto-aes-xts.o \
|
||||
ccp-crypto-sha.o
|
|
@ -0,0 +1,365 @@
|
|||
/*
|
||||
* AMD Cryptographic Coprocessor (CCP) AES CMAC crypto API support
|
||||
*
|
||||
* Copyright (C) 2013 Advanced Micro Devices, Inc.
|
||||
*
|
||||
* Author: Tom Lendacky <thomas.lendacky@amd.com>
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License version 2 as
|
||||
* published by the Free Software Foundation.
|
||||
*/
|
||||
|
||||
#include <linux/module.h>
|
||||
#include <linux/sched.h>
|
||||
#include <linux/delay.h>
|
||||
#include <linux/scatterlist.h>
|
||||
#include <linux/crypto.h>
|
||||
#include <crypto/algapi.h>
|
||||
#include <crypto/aes.h>
|
||||
#include <crypto/hash.h>
|
||||
#include <crypto/internal/hash.h>
|
||||
#include <crypto/scatterwalk.h>
|
||||
|
||||
#include "ccp-crypto.h"
|
||||
|
||||
|
||||
static int ccp_aes_cmac_complete(struct crypto_async_request *async_req,
|
||||
int ret)
|
||||
{
|
||||
struct ahash_request *req = ahash_request_cast(async_req);
|
||||
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
|
||||
struct ccp_aes_cmac_req_ctx *rctx = ahash_request_ctx(req);
|
||||
unsigned int digest_size = crypto_ahash_digestsize(tfm);
|
||||
|
||||
if (ret)
|
||||
goto e_free;
|
||||
|
||||
if (rctx->hash_rem) {
|
||||
/* Save remaining data to buffer */
|
||||
unsigned int offset = rctx->nbytes - rctx->hash_rem;
|
||||
scatterwalk_map_and_copy(rctx->buf, rctx->src,
|
||||
offset, rctx->hash_rem, 0);
|
||||
rctx->buf_count = rctx->hash_rem;
|
||||
} else
|
||||
rctx->buf_count = 0;
|
||||
|
||||
/* Update result area if supplied */
|
||||
if (req->result)
|
||||
memcpy(req->result, rctx->iv, digest_size);
|
||||
|
||||
e_free:
|
||||
sg_free_table(&rctx->data_sg);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int ccp_do_cmac_update(struct ahash_request *req, unsigned int nbytes,
|
||||
unsigned int final)
|
||||
{
|
||||
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
|
||||
struct ccp_ctx *ctx = crypto_ahash_ctx(tfm);
|
||||
struct ccp_aes_cmac_req_ctx *rctx = ahash_request_ctx(req);
|
||||
struct scatterlist *sg, *cmac_key_sg = NULL;
|
||||
unsigned int block_size =
|
||||
crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
|
||||
unsigned int need_pad, sg_count;
|
||||
gfp_t gfp;
|
||||
u64 len;
|
||||
int ret;
|
||||
|
||||
if (!ctx->u.aes.key_len)
|
||||
return -EINVAL;
|
||||
|
||||
if (nbytes)
|
||||
rctx->null_msg = 0;
|
||||
|
||||
len = (u64)rctx->buf_count + (u64)nbytes;
|
||||
|
||||
if (!final && (len <= block_size)) {
|
||||
scatterwalk_map_and_copy(rctx->buf + rctx->buf_count, req->src,
|
||||
0, nbytes, 0);
|
||||
rctx->buf_count += nbytes;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
rctx->src = req->src;
|
||||
rctx->nbytes = nbytes;
|
||||
|
||||
rctx->final = final;
|
||||
rctx->hash_rem = final ? 0 : len & (block_size - 1);
|
||||
rctx->hash_cnt = len - rctx->hash_rem;
|
||||
if (!final && !rctx->hash_rem) {
|
||||
/* CCP can't do zero length final, so keep some data around */
|
||||
rctx->hash_cnt -= block_size;
|
||||
rctx->hash_rem = block_size;
|
||||
}
|
||||
|
||||
if (final && (rctx->null_msg || (len & (block_size - 1))))
|
||||
need_pad = 1;
|
||||
else
|
||||
need_pad = 0;
|
||||
|
||||
sg_init_one(&rctx->iv_sg, rctx->iv, sizeof(rctx->iv));
|
||||
|
||||
/* Build the data scatterlist table - allocate enough entries for all
|
||||
* possible data pieces (buffer, input data, padding)
|
||||
*/
|
||||
sg_count = (nbytes) ? sg_nents(req->src) + 2 : 2;
|
||||
gfp = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
|
||||
GFP_KERNEL : GFP_ATOMIC;
|
||||
ret = sg_alloc_table(&rctx->data_sg, sg_count, gfp);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
sg = NULL;
|
||||
if (rctx->buf_count) {
|
||||
sg_init_one(&rctx->buf_sg, rctx->buf, rctx->buf_count);
|
||||
sg = ccp_crypto_sg_table_add(&rctx->data_sg, &rctx->buf_sg);
|
||||
}
|
||||
|
||||
if (nbytes)
|
||||
sg = ccp_crypto_sg_table_add(&rctx->data_sg, req->src);
|
||||
|
||||
if (need_pad) {
|
||||
int pad_length = block_size - (len & (block_size - 1));
|
||||
|
||||
rctx->hash_cnt += pad_length;
|
||||
|
||||
memset(rctx->pad, 0, sizeof(rctx->pad));
|
||||
rctx->pad[0] = 0x80;
|
||||
sg_init_one(&rctx->pad_sg, rctx->pad, pad_length);
|
||||
sg = ccp_crypto_sg_table_add(&rctx->data_sg, &rctx->pad_sg);
|
||||
}
|
||||
if (sg) {
|
||||
sg_mark_end(sg);
|
||||
sg = rctx->data_sg.sgl;
|
||||
}
|
||||
|
||||
/* Initialize the K1/K2 scatterlist */
|
||||
if (final)
|
||||
cmac_key_sg = (need_pad) ? &ctx->u.aes.k2_sg
|
||||
: &ctx->u.aes.k1_sg;
|
||||
|
||||
memset(&rctx->cmd, 0, sizeof(rctx->cmd));
|
||||
INIT_LIST_HEAD(&rctx->cmd.entry);
|
||||
rctx->cmd.engine = CCP_ENGINE_AES;
|
||||
rctx->cmd.u.aes.type = ctx->u.aes.type;
|
||||
rctx->cmd.u.aes.mode = ctx->u.aes.mode;
|
||||
rctx->cmd.u.aes.action = CCP_AES_ACTION_ENCRYPT;
|
||||
rctx->cmd.u.aes.key = &ctx->u.aes.key_sg;
|
||||
rctx->cmd.u.aes.key_len = ctx->u.aes.key_len;
|
||||
rctx->cmd.u.aes.iv = &rctx->iv_sg;
|
||||
rctx->cmd.u.aes.iv_len = AES_BLOCK_SIZE;
|
||||
rctx->cmd.u.aes.src = sg;
|
||||
rctx->cmd.u.aes.src_len = rctx->hash_cnt;
|
||||
rctx->cmd.u.aes.dst = NULL;
|
||||
rctx->cmd.u.aes.cmac_key = cmac_key_sg;
|
||||
rctx->cmd.u.aes.cmac_key_len = ctx->u.aes.kn_len;
|
||||
rctx->cmd.u.aes.cmac_final = final;
|
||||
|
||||
ret = ccp_crypto_enqueue_request(&req->base, &rctx->cmd);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int ccp_aes_cmac_init(struct ahash_request *req)
|
||||
{
|
||||
struct ccp_aes_cmac_req_ctx *rctx = ahash_request_ctx(req);
|
||||
|
||||
memset(rctx, 0, sizeof(*rctx));
|
||||
|
||||
rctx->null_msg = 1;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int ccp_aes_cmac_update(struct ahash_request *req)
|
||||
{
|
||||
return ccp_do_cmac_update(req, req->nbytes, 0);
|
||||
}
|
||||
|
||||
static int ccp_aes_cmac_final(struct ahash_request *req)
|
||||
{
|
||||
return ccp_do_cmac_update(req, 0, 1);
|
||||
}
|
||||
|
||||
static int ccp_aes_cmac_finup(struct ahash_request *req)
|
||||
{
|
||||
return ccp_do_cmac_update(req, req->nbytes, 1);
|
||||
}
|
||||
|
||||
static int ccp_aes_cmac_digest(struct ahash_request *req)
|
||||
{
|
||||
int ret;
|
||||
|
||||
ret = ccp_aes_cmac_init(req);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
return ccp_aes_cmac_finup(req);
|
||||
}
|
||||
|
||||
static int ccp_aes_cmac_setkey(struct crypto_ahash *tfm, const u8 *key,
|
||||
unsigned int key_len)
|
||||
{
|
||||
struct ccp_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm));
|
||||
struct ccp_crypto_ahash_alg *alg =
|
||||
ccp_crypto_ahash_alg(crypto_ahash_tfm(tfm));
|
||||
u64 k0_hi, k0_lo, k1_hi, k1_lo, k2_hi, k2_lo;
|
||||
u64 rb_hi = 0x00, rb_lo = 0x87;
|
||||
__be64 *gk;
|
||||
int ret;
|
||||
|
||||
switch (key_len) {
|
||||
case AES_KEYSIZE_128:
|
||||
ctx->u.aes.type = CCP_AES_TYPE_128;
|
||||
break;
|
||||
case AES_KEYSIZE_192:
|
||||
ctx->u.aes.type = CCP_AES_TYPE_192;
|
||||
break;
|
||||
case AES_KEYSIZE_256:
|
||||
ctx->u.aes.type = CCP_AES_TYPE_256;
|
||||
break;
|
||||
default:
|
||||
crypto_ahash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
|
||||
return -EINVAL;
|
||||
}
|
||||
ctx->u.aes.mode = alg->mode;
|
||||
|
||||
/* Set to zero until complete */
|
||||
ctx->u.aes.key_len = 0;
|
||||
|
||||
/* Set the key for the AES cipher used to generate the keys */
|
||||
ret = crypto_cipher_setkey(ctx->u.aes.tfm_cipher, key, key_len);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
/* Encrypt a block of zeroes - use key area in context */
|
||||
memset(ctx->u.aes.key, 0, sizeof(ctx->u.aes.key));
|
||||
crypto_cipher_encrypt_one(ctx->u.aes.tfm_cipher, ctx->u.aes.key,
|
||||
ctx->u.aes.key);
|
||||
|
||||
/* Generate K1 and K2 */
|
||||
k0_hi = be64_to_cpu(*((__be64 *)ctx->u.aes.key));
|
||||
k0_lo = be64_to_cpu(*((__be64 *)ctx->u.aes.key + 1));
|
||||
|
||||
k1_hi = (k0_hi << 1) | (k0_lo >> 63);
|
||||
k1_lo = k0_lo << 1;
|
||||
if (ctx->u.aes.key[0] & 0x80) {
|
||||
k1_hi ^= rb_hi;
|
||||
k1_lo ^= rb_lo;
|
||||
}
|
||||
gk = (__be64 *)ctx->u.aes.k1;
|
||||
*gk = cpu_to_be64(k1_hi);
|
||||
gk++;
|
||||
*gk = cpu_to_be64(k1_lo);
|
||||
|
||||
k2_hi = (k1_hi << 1) | (k1_lo >> 63);
|
||||
k2_lo = k1_lo << 1;
|
||||
if (ctx->u.aes.k1[0] & 0x80) {
|
||||
k2_hi ^= rb_hi;
|
||||
k2_lo ^= rb_lo;
|
||||
}
|
||||
gk = (__be64 *)ctx->u.aes.k2;
|
||||
*gk = cpu_to_be64(k2_hi);
|
||||
gk++;
|
||||
*gk = cpu_to_be64(k2_lo);
|
||||
|
||||
ctx->u.aes.kn_len = sizeof(ctx->u.aes.k1);
|
||||
sg_init_one(&ctx->u.aes.k1_sg, ctx->u.aes.k1, sizeof(ctx->u.aes.k1));
|
||||
sg_init_one(&ctx->u.aes.k2_sg, ctx->u.aes.k2, sizeof(ctx->u.aes.k2));
|
||||
|
||||
/* Save the supplied key */
|
||||
memset(ctx->u.aes.key, 0, sizeof(ctx->u.aes.key));
|
||||
memcpy(ctx->u.aes.key, key, key_len);
|
||||
ctx->u.aes.key_len = key_len;
|
||||
sg_init_one(&ctx->u.aes.key_sg, ctx->u.aes.key, key_len);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int ccp_aes_cmac_cra_init(struct crypto_tfm *tfm)
|
||||
{
|
||||
struct ccp_ctx *ctx = crypto_tfm_ctx(tfm);
|
||||
struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
|
||||
struct crypto_cipher *cipher_tfm;
|
||||
|
||||
ctx->complete = ccp_aes_cmac_complete;
|
||||
ctx->u.aes.key_len = 0;
|
||||
|
||||
crypto_ahash_set_reqsize(ahash, sizeof(struct ccp_aes_cmac_req_ctx));
|
||||
|
||||
cipher_tfm = crypto_alloc_cipher("aes", 0,
|
||||
CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK);
|
||||
if (IS_ERR(cipher_tfm)) {
|
||||
pr_warn("could not load aes cipher driver\n");
|
||||
return PTR_ERR(cipher_tfm);
|
||||
}
|
||||
ctx->u.aes.tfm_cipher = cipher_tfm;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void ccp_aes_cmac_cra_exit(struct crypto_tfm *tfm)
|
||||
{
|
||||
struct ccp_ctx *ctx = crypto_tfm_ctx(tfm);
|
||||
|
||||
if (ctx->u.aes.tfm_cipher)
|
||||
crypto_free_cipher(ctx->u.aes.tfm_cipher);
|
||||
ctx->u.aes.tfm_cipher = NULL;
|
||||
}
|
||||
|
||||
int ccp_register_aes_cmac_algs(struct list_head *head)
|
||||
{
|
||||
struct ccp_crypto_ahash_alg *ccp_alg;
|
||||
struct ahash_alg *alg;
|
||||
struct hash_alg_common *halg;
|
||||
struct crypto_alg *base;
|
||||
int ret;
|
||||
|
||||
ccp_alg = kzalloc(sizeof(*ccp_alg), GFP_KERNEL);
|
||||
if (!ccp_alg)
|
||||
return -ENOMEM;
|
||||
|
||||
INIT_LIST_HEAD(&ccp_alg->entry);
|
||||
ccp_alg->mode = CCP_AES_MODE_CMAC;
|
||||
|
||||
alg = &ccp_alg->alg;
|
||||
alg->init = ccp_aes_cmac_init;
|
||||
alg->update = ccp_aes_cmac_update;
|
||||
alg->final = ccp_aes_cmac_final;
|
||||
alg->finup = ccp_aes_cmac_finup;
|
||||
alg->digest = ccp_aes_cmac_digest;
|
||||
alg->setkey = ccp_aes_cmac_setkey;
|
||||
|
||||
halg = &alg->halg;
|
||||
halg->digestsize = AES_BLOCK_SIZE;
|
||||
|
||||
base = &halg->base;
|
||||
snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "cmac(aes)");
|
||||
snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "cmac-aes-ccp");
|
||||
base->cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC |
|
||||
CRYPTO_ALG_KERN_DRIVER_ONLY |
|
||||
CRYPTO_ALG_NEED_FALLBACK;
|
||||
base->cra_blocksize = AES_BLOCK_SIZE;
|
||||
base->cra_ctxsize = sizeof(struct ccp_ctx);
|
||||
base->cra_priority = CCP_CRA_PRIORITY;
|
||||
base->cra_type = &crypto_ahash_type;
|
||||
base->cra_init = ccp_aes_cmac_cra_init;
|
||||
base->cra_exit = ccp_aes_cmac_cra_exit;
|
||||
base->cra_module = THIS_MODULE;
|
||||
|
||||
ret = crypto_register_ahash(alg);
|
||||
if (ret) {
|
||||
pr_err("%s ahash algorithm registration error (%d)\n",
|
||||
base->cra_name, ret);
|
||||
kfree(ccp_alg);
|
||||
return ret;
|
||||
}
|
||||
|
||||
list_add(&ccp_alg->entry, head);
|
||||
|
||||
return 0;
|
||||
}
|
|
@ -0,0 +1,279 @@
|
|||
/*
|
||||
* AMD Cryptographic Coprocessor (CCP) AES XTS crypto API support
|
||||
*
|
||||
* Copyright (C) 2013 Advanced Micro Devices, Inc.
|
||||
*
|
||||
* Author: Tom Lendacky <thomas.lendacky@amd.com>
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License version 2 as
|
||||
* published by the Free Software Foundation.
|
||||
*/
|
||||
|
||||
#include <linux/module.h>
|
||||
#include <linux/sched.h>
|
||||
#include <linux/delay.h>
|
||||
#include <linux/scatterlist.h>
|
||||
#include <linux/crypto.h>
|
||||
#include <crypto/algapi.h>
|
||||
#include <crypto/aes.h>
|
||||
#include <crypto/scatterwalk.h>
|
||||
|
||||
#include "ccp-crypto.h"
|
||||
|
||||
|
||||
struct ccp_aes_xts_def {
|
||||
const char *name;
|
||||
const char *drv_name;
|
||||
};
|
||||
|
||||
static struct ccp_aes_xts_def aes_xts_algs[] = {
|
||||
{
|
||||
.name = "xts(aes)",
|
||||
.drv_name = "xts-aes-ccp",
|
||||
},
|
||||
};
|
||||
|
||||
struct ccp_unit_size_map {
|
||||
unsigned int size;
|
||||
u32 value;
|
||||
};
|
||||
|
||||
static struct ccp_unit_size_map unit_size_map[] = {
|
||||
{
|
||||
.size = 4096,
|
||||
.value = CCP_XTS_AES_UNIT_SIZE_4096,
|
||||
},
|
||||
{
|
||||
.size = 2048,
|
||||
.value = CCP_XTS_AES_UNIT_SIZE_2048,
|
||||
},
|
||||
{
|
||||
.size = 1024,
|
||||
.value = CCP_XTS_AES_UNIT_SIZE_1024,
|
||||
},
|
||||
{
|
||||
.size = 512,
|
||||
.value = CCP_XTS_AES_UNIT_SIZE_512,
|
||||
},
|
||||
{
|
||||
.size = 256,
|
||||
.value = CCP_XTS_AES_UNIT_SIZE__LAST,
|
||||
},
|
||||
{
|
||||
.size = 128,
|
||||
.value = CCP_XTS_AES_UNIT_SIZE__LAST,
|
||||
},
|
||||
{
|
||||
.size = 64,
|
||||
.value = CCP_XTS_AES_UNIT_SIZE__LAST,
|
||||
},
|
||||
{
|
||||
.size = 32,
|
||||
.value = CCP_XTS_AES_UNIT_SIZE__LAST,
|
||||
},
|
||||
{
|
||||
.size = 16,
|
||||
.value = CCP_XTS_AES_UNIT_SIZE_16,
|
||||
},
|
||||
{
|
||||
.size = 1,
|
||||
.value = CCP_XTS_AES_UNIT_SIZE__LAST,
|
||||
},
|
||||
};
|
||||
|
||||
static int ccp_aes_xts_complete(struct crypto_async_request *async_req, int ret)
|
||||
{
|
||||
struct ablkcipher_request *req = ablkcipher_request_cast(async_req);
|
||||
struct ccp_aes_req_ctx *rctx = ablkcipher_request_ctx(req);
|
||||
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
memcpy(req->info, rctx->iv, AES_BLOCK_SIZE);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int ccp_aes_xts_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
|
||||
unsigned int key_len)
|
||||
{
|
||||
struct ccp_ctx *ctx = crypto_tfm_ctx(crypto_ablkcipher_tfm(tfm));
|
||||
|
||||
/* Only support 128-bit AES key with a 128-bit Tweak key,
|
||||
* otherwise use the fallback
|
||||
*/
|
||||
switch (key_len) {
|
||||
case AES_KEYSIZE_128 * 2:
|
||||
memcpy(ctx->u.aes.key, key, key_len);
|
||||
break;
|
||||
}
|
||||
ctx->u.aes.key_len = key_len / 2;
|
||||
sg_init_one(&ctx->u.aes.key_sg, ctx->u.aes.key, key_len);
|
||||
|
||||
return crypto_ablkcipher_setkey(ctx->u.aes.tfm_ablkcipher, key,
|
||||
key_len);
|
||||
}
|
||||
|
||||
static int ccp_aes_xts_crypt(struct ablkcipher_request *req,
|
||||
unsigned int encrypt)
|
||||
{
|
||||
struct crypto_tfm *tfm =
|
||||
crypto_ablkcipher_tfm(crypto_ablkcipher_reqtfm(req));
|
||||
struct ccp_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
|
||||
struct ccp_aes_req_ctx *rctx = ablkcipher_request_ctx(req);
|
||||
unsigned int unit;
|
||||
int ret;
|
||||
|
||||
if (!ctx->u.aes.key_len)
|
||||
return -EINVAL;
|
||||
|
||||
if (req->nbytes & (AES_BLOCK_SIZE - 1))
|
||||
return -EINVAL;
|
||||
|
||||
if (!req->info)
|
||||
return -EINVAL;
|
||||
|
||||
for (unit = 0; unit < ARRAY_SIZE(unit_size_map); unit++)
|
||||
if (!(req->nbytes & (unit_size_map[unit].size - 1)))
|
||||
break;
|
||||
|
||||
if ((unit_size_map[unit].value == CCP_XTS_AES_UNIT_SIZE__LAST) ||
|
||||
(ctx->u.aes.key_len != AES_KEYSIZE_128)) {
|
||||
/* Use the fallback to process the request for any
|
||||
* unsupported unit sizes or key sizes
|
||||
*/
|
||||
ablkcipher_request_set_tfm(req, ctx->u.aes.tfm_ablkcipher);
|
||||
ret = (encrypt) ? crypto_ablkcipher_encrypt(req) :
|
||||
crypto_ablkcipher_decrypt(req);
|
||||
ablkcipher_request_set_tfm(req, __crypto_ablkcipher_cast(tfm));
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
memcpy(rctx->iv, req->info, AES_BLOCK_SIZE);
|
||||
sg_init_one(&rctx->iv_sg, rctx->iv, AES_BLOCK_SIZE);
|
||||
|
||||
memset(&rctx->cmd, 0, sizeof(rctx->cmd));
|
||||
INIT_LIST_HEAD(&rctx->cmd.entry);
|
||||
rctx->cmd.engine = CCP_ENGINE_XTS_AES_128;
|
||||
rctx->cmd.u.xts.action = (encrypt) ? CCP_AES_ACTION_ENCRYPT
|
||||
: CCP_AES_ACTION_DECRYPT;
|
||||
rctx->cmd.u.xts.unit_size = unit_size_map[unit].value;
|
||||
rctx->cmd.u.xts.key = &ctx->u.aes.key_sg;
|
||||
rctx->cmd.u.xts.key_len = ctx->u.aes.key_len;
|
||||
rctx->cmd.u.xts.iv = &rctx->iv_sg;
|
||||
rctx->cmd.u.xts.iv_len = AES_BLOCK_SIZE;
|
||||
rctx->cmd.u.xts.src = req->src;
|
||||
rctx->cmd.u.xts.src_len = req->nbytes;
|
||||
rctx->cmd.u.xts.dst = req->dst;
|
||||
|
||||
ret = ccp_crypto_enqueue_request(&req->base, &rctx->cmd);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int ccp_aes_xts_encrypt(struct ablkcipher_request *req)
|
||||
{
|
||||
return ccp_aes_xts_crypt(req, 1);
|
||||
}
|
||||
|
||||
static int ccp_aes_xts_decrypt(struct ablkcipher_request *req)
|
||||
{
|
||||
return ccp_aes_xts_crypt(req, 0);
|
||||
}
|
||||
|
||||
static int ccp_aes_xts_cra_init(struct crypto_tfm *tfm)
|
||||
{
|
||||
struct ccp_ctx *ctx = crypto_tfm_ctx(tfm);
|
||||
struct crypto_ablkcipher *fallback_tfm;
|
||||
|
||||
ctx->complete = ccp_aes_xts_complete;
|
||||
ctx->u.aes.key_len = 0;
|
||||
|
||||
fallback_tfm = crypto_alloc_ablkcipher(tfm->__crt_alg->cra_name, 0,
|
||||
CRYPTO_ALG_ASYNC |
|
||||
CRYPTO_ALG_NEED_FALLBACK);
|
||||
if (IS_ERR(fallback_tfm)) {
|
||||
pr_warn("could not load fallback driver %s\n",
|
||||
tfm->__crt_alg->cra_name);
|
||||
return PTR_ERR(fallback_tfm);
|
||||
}
|
||||
ctx->u.aes.tfm_ablkcipher = fallback_tfm;
|
||||
|
||||
tfm->crt_ablkcipher.reqsize = sizeof(struct ccp_aes_req_ctx) +
|
||||
fallback_tfm->base.crt_ablkcipher.reqsize;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void ccp_aes_xts_cra_exit(struct crypto_tfm *tfm)
|
||||
{
|
||||
struct ccp_ctx *ctx = crypto_tfm_ctx(tfm);
|
||||
|
||||
if (ctx->u.aes.tfm_ablkcipher)
|
||||
crypto_free_ablkcipher(ctx->u.aes.tfm_ablkcipher);
|
||||
ctx->u.aes.tfm_ablkcipher = NULL;
|
||||
}
|
||||
|
||||
|
||||
static int ccp_register_aes_xts_alg(struct list_head *head,
|
||||
const struct ccp_aes_xts_def *def)
|
||||
{
|
||||
struct ccp_crypto_ablkcipher_alg *ccp_alg;
|
||||
struct crypto_alg *alg;
|
||||
int ret;
|
||||
|
||||
ccp_alg = kzalloc(sizeof(*ccp_alg), GFP_KERNEL);
|
||||
if (!ccp_alg)
|
||||
return -ENOMEM;
|
||||
|
||||
INIT_LIST_HEAD(&ccp_alg->entry);
|
||||
|
||||
alg = &ccp_alg->alg;
|
||||
|
||||
snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s", def->name);
|
||||
snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
|
||||
def->drv_name);
|
||||
alg->cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC |
|
||||
CRYPTO_ALG_KERN_DRIVER_ONLY |
|
||||
CRYPTO_ALG_NEED_FALLBACK;
|
||||
alg->cra_blocksize = AES_BLOCK_SIZE;
|
||||
alg->cra_ctxsize = sizeof(struct ccp_ctx);
|
||||
alg->cra_priority = CCP_CRA_PRIORITY;
|
||||
alg->cra_type = &crypto_ablkcipher_type;
|
||||
alg->cra_ablkcipher.setkey = ccp_aes_xts_setkey;
|
||||
alg->cra_ablkcipher.encrypt = ccp_aes_xts_encrypt;
|
||||
alg->cra_ablkcipher.decrypt = ccp_aes_xts_decrypt;
|
||||
alg->cra_ablkcipher.min_keysize = AES_MIN_KEY_SIZE * 2;
|
||||
alg->cra_ablkcipher.max_keysize = AES_MAX_KEY_SIZE * 2;
|
||||
alg->cra_ablkcipher.ivsize = AES_BLOCK_SIZE;
|
||||
alg->cra_init = ccp_aes_xts_cra_init;
|
||||
alg->cra_exit = ccp_aes_xts_cra_exit;
|
||||
alg->cra_module = THIS_MODULE;
|
||||
|
||||
ret = crypto_register_alg(alg);
|
||||
if (ret) {
|
||||
pr_err("%s ablkcipher algorithm registration error (%d)\n",
|
||||
alg->cra_name, ret);
|
||||
kfree(ccp_alg);
|
||||
return ret;
|
||||
}
|
||||
|
||||
list_add(&ccp_alg->entry, head);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
int ccp_register_aes_xts_algs(struct list_head *head)
|
||||
{
|
||||
int i, ret;
|
||||
|
||||
for (i = 0; i < ARRAY_SIZE(aes_xts_algs); i++) {
|
||||
ret = ccp_register_aes_xts_alg(head, &aes_xts_algs[i]);
|
||||
if (ret)
|
||||
return ret;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
|
@ -0,0 +1,369 @@
|
|||
/*
|
||||
* AMD Cryptographic Coprocessor (CCP) AES crypto API support
|
||||
*
|
||||
* Copyright (C) 2013 Advanced Micro Devices, Inc.
|
||||
*
|
||||
* Author: Tom Lendacky <thomas.lendacky@amd.com>
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License version 2 as
|
||||
* published by the Free Software Foundation.
|
||||
*/
|
||||
|
||||
#include <linux/module.h>
|
||||
#include <linux/sched.h>
|
||||
#include <linux/delay.h>
|
||||
#include <linux/scatterlist.h>
|
||||
#include <linux/crypto.h>
|
||||
#include <crypto/algapi.h>
|
||||
#include <crypto/aes.h>
|
||||
#include <crypto/ctr.h>
|
||||
#include <crypto/scatterwalk.h>
|
||||
|
||||
#include "ccp-crypto.h"
|
||||
|
||||
|
||||
static int ccp_aes_complete(struct crypto_async_request *async_req, int ret)
|
||||
{
|
||||
struct ablkcipher_request *req = ablkcipher_request_cast(async_req);
|
||||
struct ccp_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
|
||||
struct ccp_aes_req_ctx *rctx = ablkcipher_request_ctx(req);
|
||||
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
if (ctx->u.aes.mode != CCP_AES_MODE_ECB)
|
||||
memcpy(req->info, rctx->iv, AES_BLOCK_SIZE);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int ccp_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
|
||||
unsigned int key_len)
|
||||
{
|
||||
struct ccp_ctx *ctx = crypto_tfm_ctx(crypto_ablkcipher_tfm(tfm));
|
||||
struct ccp_crypto_ablkcipher_alg *alg =
|
||||
ccp_crypto_ablkcipher_alg(crypto_ablkcipher_tfm(tfm));
|
||||
|
||||
switch (key_len) {
|
||||
case AES_KEYSIZE_128:
|
||||
ctx->u.aes.type = CCP_AES_TYPE_128;
|
||||
break;
|
||||
case AES_KEYSIZE_192:
|
||||
ctx->u.aes.type = CCP_AES_TYPE_192;
|
||||
break;
|
||||
case AES_KEYSIZE_256:
|
||||
ctx->u.aes.type = CCP_AES_TYPE_256;
|
||||
break;
|
||||
default:
|
||||
crypto_ablkcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
|
||||
return -EINVAL;
|
||||
}
|
||||
ctx->u.aes.mode = alg->mode;
|
||||
ctx->u.aes.key_len = key_len;
|
||||
|
||||
memcpy(ctx->u.aes.key, key, key_len);
|
||||
sg_init_one(&ctx->u.aes.key_sg, ctx->u.aes.key, key_len);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int ccp_aes_crypt(struct ablkcipher_request *req, bool encrypt)
|
||||
{
|
||||
struct ccp_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
|
||||
struct ccp_aes_req_ctx *rctx = ablkcipher_request_ctx(req);
|
||||
struct scatterlist *iv_sg = NULL;
|
||||
unsigned int iv_len = 0;
|
||||
int ret;
|
||||
|
||||
if (!ctx->u.aes.key_len)
|
||||
return -EINVAL;
|
||||
|
||||
if (((ctx->u.aes.mode == CCP_AES_MODE_ECB) ||
|
||||
(ctx->u.aes.mode == CCP_AES_MODE_CBC) ||
|
||||
(ctx->u.aes.mode == CCP_AES_MODE_CFB)) &&
|
||||
(req->nbytes & (AES_BLOCK_SIZE - 1)))
|
||||
return -EINVAL;
|
||||
|
||||
if (ctx->u.aes.mode != CCP_AES_MODE_ECB) {
|
||||
if (!req->info)
|
||||
return -EINVAL;
|
||||
|
||||
memcpy(rctx->iv, req->info, AES_BLOCK_SIZE);
|
||||
iv_sg = &rctx->iv_sg;
|
||||
iv_len = AES_BLOCK_SIZE;
|
||||
sg_init_one(iv_sg, rctx->iv, iv_len);
|
||||
}
|
||||
|
||||
memset(&rctx->cmd, 0, sizeof(rctx->cmd));
|
||||
INIT_LIST_HEAD(&rctx->cmd.entry);
|
||||
rctx->cmd.engine = CCP_ENGINE_AES;
|
||||
rctx->cmd.u.aes.type = ctx->u.aes.type;
|
||||
rctx->cmd.u.aes.mode = ctx->u.aes.mode;
|
||||
rctx->cmd.u.aes.action =
|
||||
(encrypt) ? CCP_AES_ACTION_ENCRYPT : CCP_AES_ACTION_DECRYPT;
|
||||
rctx->cmd.u.aes.key = &ctx->u.aes.key_sg;
|
||||
rctx->cmd.u.aes.key_len = ctx->u.aes.key_len;
|
||||
rctx->cmd.u.aes.iv = iv_sg;
|
||||
rctx->cmd.u.aes.iv_len = iv_len;
|
||||
rctx->cmd.u.aes.src = req->src;
|
||||
rctx->cmd.u.aes.src_len = req->nbytes;
|
||||
rctx->cmd.u.aes.dst = req->dst;
|
||||
|
||||
ret = ccp_crypto_enqueue_request(&req->base, &rctx->cmd);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int ccp_aes_encrypt(struct ablkcipher_request *req)
|
||||
{
|
||||
return ccp_aes_crypt(req, true);
|
||||
}
|
||||
|
||||
static int ccp_aes_decrypt(struct ablkcipher_request *req)
|
||||
{
|
||||
return ccp_aes_crypt(req, false);
|
||||
}
|
||||
|
||||
static int ccp_aes_cra_init(struct crypto_tfm *tfm)
|
||||
{
|
||||
struct ccp_ctx *ctx = crypto_tfm_ctx(tfm);
|
||||
|
||||
ctx->complete = ccp_aes_complete;
|
||||
ctx->u.aes.key_len = 0;
|
||||
|
||||
tfm->crt_ablkcipher.reqsize = sizeof(struct ccp_aes_req_ctx);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void ccp_aes_cra_exit(struct crypto_tfm *tfm)
|
||||
{
|
||||
}
|
||||
|
||||
static int ccp_aes_rfc3686_complete(struct crypto_async_request *async_req,
|
||||
int ret)
|
||||
{
|
||||
struct ablkcipher_request *req = ablkcipher_request_cast(async_req);
|
||||
struct ccp_aes_req_ctx *rctx = ablkcipher_request_ctx(req);
|
||||
|
||||
/* Restore the original pointer */
|
||||
req->info = rctx->rfc3686_info;
|
||||
|
||||
return ccp_aes_complete(async_req, ret);
|
||||
}
|
||||
|
||||
static int ccp_aes_rfc3686_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
|
||||
unsigned int key_len)
|
||||
{
|
||||
struct ccp_ctx *ctx = crypto_tfm_ctx(crypto_ablkcipher_tfm(tfm));
|
||||
|
||||
if (key_len < CTR_RFC3686_NONCE_SIZE)
|
||||
return -EINVAL;
|
||||
|
||||
key_len -= CTR_RFC3686_NONCE_SIZE;
|
||||
memcpy(ctx->u.aes.nonce, key + key_len, CTR_RFC3686_NONCE_SIZE);
|
||||
|
||||
return ccp_aes_setkey(tfm, key, key_len);
|
||||
}
|
||||
|
||||
static int ccp_aes_rfc3686_crypt(struct ablkcipher_request *req, bool encrypt)
|
||||
{
|
||||
struct ccp_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
|
||||
struct ccp_aes_req_ctx *rctx = ablkcipher_request_ctx(req);
|
||||
u8 *iv;
|
||||
|
||||
/* Initialize the CTR block */
|
||||
iv = rctx->rfc3686_iv;
|
||||
memcpy(iv, ctx->u.aes.nonce, CTR_RFC3686_NONCE_SIZE);
|
||||
|
||||
iv += CTR_RFC3686_NONCE_SIZE;
|
||||
memcpy(iv, req->info, CTR_RFC3686_IV_SIZE);
|
||||
|
||||
iv += CTR_RFC3686_IV_SIZE;
|
||||
*(__be32 *)iv = cpu_to_be32(1);
|
||||
|
||||
/* Point to the new IV */
|
||||
rctx->rfc3686_info = req->info;
|
||||
req->info = rctx->rfc3686_iv;
|
||||
|
||||
return ccp_aes_crypt(req, encrypt);
|
||||
}
|
||||
|
||||
static int ccp_aes_rfc3686_encrypt(struct ablkcipher_request *req)
|
||||
{
|
||||
return ccp_aes_rfc3686_crypt(req, true);
|
||||
}
|
||||
|
||||
static int ccp_aes_rfc3686_decrypt(struct ablkcipher_request *req)
|
||||
{
|
||||
return ccp_aes_rfc3686_crypt(req, false);
|
||||
}
|
||||
|
||||
static int ccp_aes_rfc3686_cra_init(struct crypto_tfm *tfm)
|
||||
{
|
||||
struct ccp_ctx *ctx = crypto_tfm_ctx(tfm);
|
||||
|
||||
ctx->complete = ccp_aes_rfc3686_complete;
|
||||
ctx->u.aes.key_len = 0;
|
||||
|
||||
tfm->crt_ablkcipher.reqsize = sizeof(struct ccp_aes_req_ctx);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void ccp_aes_rfc3686_cra_exit(struct crypto_tfm *tfm)
|
||||
{
|
||||
}
|
||||
|
||||
static struct crypto_alg ccp_aes_defaults = {
|
||||
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
|
||||
CRYPTO_ALG_ASYNC |
|
||||
CRYPTO_ALG_KERN_DRIVER_ONLY |
|
||||
CRYPTO_ALG_NEED_FALLBACK,
|
||||
.cra_blocksize = AES_BLOCK_SIZE,
|
||||
.cra_ctxsize = sizeof(struct ccp_ctx),
|
||||
.cra_priority = CCP_CRA_PRIORITY,
|
||||
.cra_type = &crypto_ablkcipher_type,
|
||||
.cra_init = ccp_aes_cra_init,
|
||||
.cra_exit = ccp_aes_cra_exit,
|
||||
.cra_module = THIS_MODULE,
|
||||
.cra_ablkcipher = {
|
||||
.setkey = ccp_aes_setkey,
|
||||
.encrypt = ccp_aes_encrypt,
|
||||
.decrypt = ccp_aes_decrypt,
|
||||
.min_keysize = AES_MIN_KEY_SIZE,
|
||||
.max_keysize = AES_MAX_KEY_SIZE,
|
||||
},
|
||||
};
|
||||
|
||||
static struct crypto_alg ccp_aes_rfc3686_defaults = {
|
||||
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
|
||||
CRYPTO_ALG_ASYNC |
|
||||
CRYPTO_ALG_KERN_DRIVER_ONLY |
|
||||
CRYPTO_ALG_NEED_FALLBACK,
|
||||
.cra_blocksize = CTR_RFC3686_BLOCK_SIZE,
|
||||
.cra_ctxsize = sizeof(struct ccp_ctx),
|
||||
.cra_priority = CCP_CRA_PRIORITY,
|
||||
.cra_type = &crypto_ablkcipher_type,
|
||||
.cra_init = ccp_aes_rfc3686_cra_init,
|
||||
.cra_exit = ccp_aes_rfc3686_cra_exit,
|
||||
.cra_module = THIS_MODULE,
|
||||
.cra_ablkcipher = {
|
||||
.setkey = ccp_aes_rfc3686_setkey,
|
||||
.encrypt = ccp_aes_rfc3686_encrypt,
|
||||
.decrypt = ccp_aes_rfc3686_decrypt,
|
||||
.min_keysize = AES_MIN_KEY_SIZE + CTR_RFC3686_NONCE_SIZE,
|
||||
.max_keysize = AES_MAX_KEY_SIZE + CTR_RFC3686_NONCE_SIZE,
|
||||
},
|
||||
};
|
||||
|
||||
struct ccp_aes_def {
|
||||
enum ccp_aes_mode mode;
|
||||
const char *name;
|
||||
const char *driver_name;
|
||||
unsigned int blocksize;
|
||||
unsigned int ivsize;
|
||||
struct crypto_alg *alg_defaults;
|
||||
};
|
||||
|
||||
static struct ccp_aes_def aes_algs[] = {
|
||||
{
|
||||
.mode = CCP_AES_MODE_ECB,
|
||||
.name = "ecb(aes)",
|
||||
.driver_name = "ecb-aes-ccp",
|
||||
.blocksize = AES_BLOCK_SIZE,
|
||||
.ivsize = 0,
|
||||
.alg_defaults = &ccp_aes_defaults,
|
||||
},
|
||||
{
|
||||
.mode = CCP_AES_MODE_CBC,
|
||||
.name = "cbc(aes)",
|
||||
.driver_name = "cbc-aes-ccp",
|
||||
.blocksize = AES_BLOCK_SIZE,
|
||||
.ivsize = AES_BLOCK_SIZE,
|
||||
.alg_defaults = &ccp_aes_defaults,
|
||||
},
|
||||
{
|
||||
.mode = CCP_AES_MODE_CFB,
|
||||
.name = "cfb(aes)",
|
||||
.driver_name = "cfb-aes-ccp",
|
||||
.blocksize = AES_BLOCK_SIZE,
|
||||
.ivsize = AES_BLOCK_SIZE,
|
||||
.alg_defaults = &ccp_aes_defaults,
|
||||
},
|
||||
{
|
||||
.mode = CCP_AES_MODE_OFB,
|
||||
.name = "ofb(aes)",
|
||||
.driver_name = "ofb-aes-ccp",
|
||||
.blocksize = 1,
|
||||
.ivsize = AES_BLOCK_SIZE,
|
||||
.alg_defaults = &ccp_aes_defaults,
|
||||
},
|
||||
{
|
||||
.mode = CCP_AES_MODE_CTR,
|
||||
.name = "ctr(aes)",
|
||||
.driver_name = "ctr-aes-ccp",
|
||||
.blocksize = 1,
|
||||
.ivsize = AES_BLOCK_SIZE,
|
||||
.alg_defaults = &ccp_aes_defaults,
|
||||
},
|
||||
{
|
||||
.mode = CCP_AES_MODE_CTR,
|
||||
.name = "rfc3686(ctr(aes))",
|
||||
.driver_name = "rfc3686-ctr-aes-ccp",
|
||||
.blocksize = 1,
|
||||
.ivsize = CTR_RFC3686_IV_SIZE,
|
||||
.alg_defaults = &ccp_aes_rfc3686_defaults,
|
||||
},
|
||||
};
|
||||
|
||||
static int ccp_register_aes_alg(struct list_head *head,
|
||||
const struct ccp_aes_def *def)
|
||||
{
|
||||
struct ccp_crypto_ablkcipher_alg *ccp_alg;
|
||||
struct crypto_alg *alg;
|
||||
int ret;
|
||||
|
||||
ccp_alg = kzalloc(sizeof(*ccp_alg), GFP_KERNEL);
|
||||
if (!ccp_alg)
|
||||
return -ENOMEM;
|
||||
|
||||
INIT_LIST_HEAD(&ccp_alg->entry);
|
||||
|
||||
ccp_alg->mode = def->mode;
|
||||
|
||||
/* Copy the defaults and override as necessary */
|
||||
alg = &ccp_alg->alg;
|
||||
*alg = *def->alg_defaults;
|
||||
snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s", def->name);
|
||||
snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
|
||||
def->driver_name);
|
||||
alg->cra_blocksize = def->blocksize;
|
||||
alg->cra_ablkcipher.ivsize = def->ivsize;
|
||||
|
||||
ret = crypto_register_alg(alg);
|
||||
if (ret) {
|
||||
pr_err("%s ablkcipher algorithm registration error (%d)\n",
|
||||
alg->cra_name, ret);
|
||||
kfree(ccp_alg);
|
||||
return ret;
|
||||
}
|
||||
|
||||
list_add(&ccp_alg->entry, head);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
int ccp_register_aes_algs(struct list_head *head)
|
||||
{
|
||||
int i, ret;
|
||||
|
||||
for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
|
||||
ret = ccp_register_aes_alg(head, &aes_algs[i]);
|
||||
if (ret)
|
||||
return ret;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
|
@ -0,0 +1,432 @@
|
|||
/*
|
||||
* AMD Cryptographic Coprocessor (CCP) crypto API support
|
||||
*
|
||||
* Copyright (C) 2013 Advanced Micro Devices, Inc.
|
||||
*
|
||||
* Author: Tom Lendacky <thomas.lendacky@amd.com>
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License version 2 as
|
||||
* published by the Free Software Foundation.
|
||||
*/
|
||||
|
||||
#include <linux/module.h>
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/list.h>
|
||||
#include <linux/ccp.h>
|
||||
#include <linux/scatterlist.h>
|
||||
#include <crypto/internal/hash.h>
|
||||
|
||||
#include "ccp-crypto.h"
|
||||
|
||||
MODULE_AUTHOR("Tom Lendacky <thomas.lendacky@amd.com>");
|
||||
MODULE_LICENSE("GPL");
|
||||
MODULE_VERSION("1.0.0");
|
||||
MODULE_DESCRIPTION("AMD Cryptographic Coprocessor crypto API support");
|
||||
|
||||
|
||||
/* List heads for the supported algorithms */
|
||||
static LIST_HEAD(hash_algs);
|
||||
static LIST_HEAD(cipher_algs);
|
||||
|
||||
/* For any tfm, requests for that tfm on the same CPU must be returned
|
||||
* in the order received. With multiple queues available, the CCP can
|
||||
* process more than one cmd at a time. Therefore we must maintain
|
||||
* a cmd list to insure the proper ordering of requests on a given tfm/cpu
|
||||
* combination.
|
||||
*/
|
||||
struct ccp_crypto_cpu_queue {
|
||||
struct list_head cmds;
|
||||
struct list_head *backlog;
|
||||
unsigned int cmd_count;
|
||||
};
|
||||
#define CCP_CRYPTO_MAX_QLEN 50
|
||||
|
||||
struct ccp_crypto_percpu_queue {
|
||||
struct ccp_crypto_cpu_queue __percpu *cpu_queue;
|
||||
};
|
||||
static struct ccp_crypto_percpu_queue req_queue;
|
||||
|
||||
struct ccp_crypto_cmd {
|
||||
struct list_head entry;
|
||||
|
||||
struct ccp_cmd *cmd;
|
||||
|
||||
/* Save the crypto_tfm and crypto_async_request addresses
|
||||
* separately to avoid any reference to a possibly invalid
|
||||
* crypto_async_request structure after invoking the request
|
||||
* callback
|
||||
*/
|
||||
struct crypto_async_request *req;
|
||||
struct crypto_tfm *tfm;
|
||||
|
||||
/* Used for held command processing to determine state */
|
||||
int ret;
|
||||
|
||||
int cpu;
|
||||
};
|
||||
|
||||
struct ccp_crypto_cpu {
|
||||
struct work_struct work;
|
||||
struct completion completion;
|
||||
struct ccp_crypto_cmd *crypto_cmd;
|
||||
int err;
|
||||
};
|
||||
|
||||
|
||||
static inline bool ccp_crypto_success(int err)
|
||||
{
|
||||
if (err && (err != -EINPROGRESS) && (err != -EBUSY))
|
||||
return false;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/*
|
||||
* ccp_crypto_cmd_complete must be called while running on the appropriate
|
||||
* cpu and the caller must have done a get_cpu to disable preemption
|
||||
*/
|
||||
static struct ccp_crypto_cmd *ccp_crypto_cmd_complete(
|
||||
struct ccp_crypto_cmd *crypto_cmd, struct ccp_crypto_cmd **backlog)
|
||||
{
|
||||
struct ccp_crypto_cpu_queue *cpu_queue;
|
||||
struct ccp_crypto_cmd *held = NULL, *tmp;
|
||||
|
||||
*backlog = NULL;
|
||||
|
||||
cpu_queue = this_cpu_ptr(req_queue.cpu_queue);
|
||||
|
||||
/* Held cmds will be after the current cmd in the queue so start
|
||||
* searching for a cmd with a matching tfm for submission.
|
||||
*/
|
||||
tmp = crypto_cmd;
|
||||
list_for_each_entry_continue(tmp, &cpu_queue->cmds, entry) {
|
||||
if (crypto_cmd->tfm != tmp->tfm)
|
||||
continue;
|
||||
held = tmp;
|
||||
break;
|
||||
}
|
||||
|
||||
/* Process the backlog:
|
||||
* Because cmds can be executed from any point in the cmd list
|
||||
* special precautions have to be taken when handling the backlog.
|
||||
*/
|
||||
if (cpu_queue->backlog != &cpu_queue->cmds) {
|
||||
/* Skip over this cmd if it is the next backlog cmd */
|
||||
if (cpu_queue->backlog == &crypto_cmd->entry)
|
||||
cpu_queue->backlog = crypto_cmd->entry.next;
|
||||
|
||||
*backlog = container_of(cpu_queue->backlog,
|
||||
struct ccp_crypto_cmd, entry);
|
||||
cpu_queue->backlog = cpu_queue->backlog->next;
|
||||
|
||||
/* Skip over this cmd if it is now the next backlog cmd */
|
||||
if (cpu_queue->backlog == &crypto_cmd->entry)
|
||||
cpu_queue->backlog = crypto_cmd->entry.next;
|
||||
}
|
||||
|
||||
/* Remove the cmd entry from the list of cmds */
|
||||
cpu_queue->cmd_count--;
|
||||
list_del(&crypto_cmd->entry);
|
||||
|
||||
return held;
|
||||
}
|
||||
|
||||
static void ccp_crypto_complete_on_cpu(struct work_struct *work)
|
||||
{
|
||||
struct ccp_crypto_cpu *cpu_work =
|
||||
container_of(work, struct ccp_crypto_cpu, work);
|
||||
struct ccp_crypto_cmd *crypto_cmd = cpu_work->crypto_cmd;
|
||||
struct ccp_crypto_cmd *held, *next, *backlog;
|
||||
struct crypto_async_request *req = crypto_cmd->req;
|
||||
struct ccp_ctx *ctx = crypto_tfm_ctx(req->tfm);
|
||||
int cpu, ret;
|
||||
|
||||
cpu = get_cpu();
|
||||
|
||||
if (cpu_work->err == -EINPROGRESS) {
|
||||
/* Only propogate the -EINPROGRESS if necessary */
|
||||
if (crypto_cmd->ret == -EBUSY) {
|
||||
crypto_cmd->ret = -EINPROGRESS;
|
||||
req->complete(req, -EINPROGRESS);
|
||||
}
|
||||
|
||||
goto e_cpu;
|
||||
}
|
||||
|
||||
/* Operation has completed - update the queue before invoking
|
||||
* the completion callbacks and retrieve the next cmd (cmd with
|
||||
* a matching tfm) that can be submitted to the CCP.
|
||||
*/
|
||||
held = ccp_crypto_cmd_complete(crypto_cmd, &backlog);
|
||||
if (backlog) {
|
||||
backlog->ret = -EINPROGRESS;
|
||||
backlog->req->complete(backlog->req, -EINPROGRESS);
|
||||
}
|
||||
|
||||
/* Transition the state from -EBUSY to -EINPROGRESS first */
|
||||
if (crypto_cmd->ret == -EBUSY)
|
||||
req->complete(req, -EINPROGRESS);
|
||||
|
||||
/* Completion callbacks */
|
||||
ret = cpu_work->err;
|
||||
if (ctx->complete)
|
||||
ret = ctx->complete(req, ret);
|
||||
req->complete(req, ret);
|
||||
|
||||
/* Submit the next cmd */
|
||||
while (held) {
|
||||
ret = ccp_enqueue_cmd(held->cmd);
|
||||
if (ccp_crypto_success(ret))
|
||||
break;
|
||||
|
||||
/* Error occurred, report it and get the next entry */
|
||||
held->req->complete(held->req, ret);
|
||||
|
||||
next = ccp_crypto_cmd_complete(held, &backlog);
|
||||
if (backlog) {
|
||||
backlog->ret = -EINPROGRESS;
|
||||
backlog->req->complete(backlog->req, -EINPROGRESS);
|
||||
}
|
||||
|
||||
kfree(held);
|
||||
held = next;
|
||||
}
|
||||
|
||||
kfree(crypto_cmd);
|
||||
|
||||
e_cpu:
|
||||
put_cpu();
|
||||
|
||||
complete(&cpu_work->completion);
|
||||
}
|
||||
|
||||
static void ccp_crypto_complete(void *data, int err)
|
||||
{
|
||||
struct ccp_crypto_cmd *crypto_cmd = data;
|
||||
struct ccp_crypto_cpu cpu_work;
|
||||
|
||||
INIT_WORK(&cpu_work.work, ccp_crypto_complete_on_cpu);
|
||||
init_completion(&cpu_work.completion);
|
||||
cpu_work.crypto_cmd = crypto_cmd;
|
||||
cpu_work.err = err;
|
||||
|
||||
schedule_work_on(crypto_cmd->cpu, &cpu_work.work);
|
||||
|
||||
/* Keep the completion call synchronous */
|
||||
wait_for_completion(&cpu_work.completion);
|
||||
}
|
||||
|
||||
static int ccp_crypto_enqueue_cmd(struct ccp_crypto_cmd *crypto_cmd)
|
||||
{
|
||||
struct ccp_crypto_cpu_queue *cpu_queue;
|
||||
struct ccp_crypto_cmd *active = NULL, *tmp;
|
||||
int cpu, ret;
|
||||
|
||||
cpu = get_cpu();
|
||||
crypto_cmd->cpu = cpu;
|
||||
|
||||
cpu_queue = this_cpu_ptr(req_queue.cpu_queue);
|
||||
|
||||
/* Check if the cmd can/should be queued */
|
||||
if (cpu_queue->cmd_count >= CCP_CRYPTO_MAX_QLEN) {
|
||||
ret = -EBUSY;
|
||||
if (!(crypto_cmd->cmd->flags & CCP_CMD_MAY_BACKLOG))
|
||||
goto e_cpu;
|
||||
}
|
||||
|
||||
/* Look for an entry with the same tfm. If there is a cmd
|
||||
* with the same tfm in the list for this cpu then the current
|
||||
* cmd cannot be submitted to the CCP yet.
|
||||
*/
|
||||
list_for_each_entry(tmp, &cpu_queue->cmds, entry) {
|
||||
if (crypto_cmd->tfm != tmp->tfm)
|
||||
continue;
|
||||
active = tmp;
|
||||
break;
|
||||
}
|
||||
|
||||
ret = -EINPROGRESS;
|
||||
if (!active) {
|
||||
ret = ccp_enqueue_cmd(crypto_cmd->cmd);
|
||||
if (!ccp_crypto_success(ret))
|
||||
goto e_cpu;
|
||||
}
|
||||
|
||||
if (cpu_queue->cmd_count >= CCP_CRYPTO_MAX_QLEN) {
|
||||
ret = -EBUSY;
|
||||
if (cpu_queue->backlog == &cpu_queue->cmds)
|
||||
cpu_queue->backlog = &crypto_cmd->entry;
|
||||
}
|
||||
crypto_cmd->ret = ret;
|
||||
|
||||
cpu_queue->cmd_count++;
|
||||
list_add_tail(&crypto_cmd->entry, &cpu_queue->cmds);
|
||||
|
||||
e_cpu:
|
||||
put_cpu();
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
/**
|
||||
* ccp_crypto_enqueue_request - queue an crypto async request for processing
|
||||
* by the CCP
|
||||
*
|
||||
* @req: crypto_async_request struct to be processed
|
||||
* @cmd: ccp_cmd struct to be sent to the CCP
|
||||
*/
|
||||
int ccp_crypto_enqueue_request(struct crypto_async_request *req,
|
||||
struct ccp_cmd *cmd)
|
||||
{
|
||||
struct ccp_crypto_cmd *crypto_cmd;
|
||||
gfp_t gfp;
|
||||
int ret;
|
||||
|
||||
gfp = req->flags & CRYPTO_TFM_REQ_MAY_SLEEP ? GFP_KERNEL : GFP_ATOMIC;
|
||||
|
||||
crypto_cmd = kzalloc(sizeof(*crypto_cmd), gfp);
|
||||
if (!crypto_cmd)
|
||||
return -ENOMEM;
|
||||
|
||||
/* The tfm pointer must be saved and not referenced from the
|
||||
* crypto_async_request (req) pointer because it is used after
|
||||
* completion callback for the request and the req pointer
|
||||
* might not be valid anymore.
|
||||
*/
|
||||
crypto_cmd->cmd = cmd;
|
||||
crypto_cmd->req = req;
|
||||
crypto_cmd->tfm = req->tfm;
|
||||
|
||||
cmd->callback = ccp_crypto_complete;
|
||||
cmd->data = crypto_cmd;
|
||||
|
||||
if (req->flags & CRYPTO_TFM_REQ_MAY_BACKLOG)
|
||||
cmd->flags |= CCP_CMD_MAY_BACKLOG;
|
||||
else
|
||||
cmd->flags &= ~CCP_CMD_MAY_BACKLOG;
|
||||
|
||||
ret = ccp_crypto_enqueue_cmd(crypto_cmd);
|
||||
if (!ccp_crypto_success(ret))
|
||||
kfree(crypto_cmd);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
struct scatterlist *ccp_crypto_sg_table_add(struct sg_table *table,
|
||||
struct scatterlist *sg_add)
|
||||
{
|
||||
struct scatterlist *sg, *sg_last = NULL;
|
||||
|
||||
for (sg = table->sgl; sg; sg = sg_next(sg))
|
||||
if (!sg_page(sg))
|
||||
break;
|
||||
BUG_ON(!sg);
|
||||
|
||||
for (; sg && sg_add; sg = sg_next(sg), sg_add = sg_next(sg_add)) {
|
||||
sg_set_page(sg, sg_page(sg_add), sg_add->length,
|
||||
sg_add->offset);
|
||||
sg_last = sg;
|
||||
}
|
||||
BUG_ON(sg_add);
|
||||
|
||||
return sg_last;
|
||||
}
|
||||
|
||||
static int ccp_register_algs(void)
|
||||
{
|
||||
int ret;
|
||||
|
||||
ret = ccp_register_aes_algs(&cipher_algs);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
ret = ccp_register_aes_cmac_algs(&hash_algs);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
ret = ccp_register_aes_xts_algs(&cipher_algs);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
ret = ccp_register_sha_algs(&hash_algs);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void ccp_unregister_algs(void)
|
||||
{
|
||||
struct ccp_crypto_ahash_alg *ahash_alg, *ahash_tmp;
|
||||
struct ccp_crypto_ablkcipher_alg *ablk_alg, *ablk_tmp;
|
||||
|
||||
list_for_each_entry_safe(ahash_alg, ahash_tmp, &hash_algs, entry) {
|
||||
crypto_unregister_ahash(&ahash_alg->alg);
|
||||
list_del(&ahash_alg->entry);
|
||||
kfree(ahash_alg);
|
||||
}
|
||||
|
||||
list_for_each_entry_safe(ablk_alg, ablk_tmp, &cipher_algs, entry) {
|
||||
crypto_unregister_alg(&ablk_alg->alg);
|
||||
list_del(&ablk_alg->entry);
|
||||
kfree(ablk_alg);
|
||||
}
|
||||
}
|
||||
|
||||
static int ccp_init_queues(void)
|
||||
{
|
||||
struct ccp_crypto_cpu_queue *cpu_queue;
|
||||
int cpu;
|
||||
|
||||
req_queue.cpu_queue = alloc_percpu(struct ccp_crypto_cpu_queue);
|
||||
if (!req_queue.cpu_queue)
|
||||
return -ENOMEM;
|
||||
|
||||
for_each_possible_cpu(cpu) {
|
||||
cpu_queue = per_cpu_ptr(req_queue.cpu_queue, cpu);
|
||||
INIT_LIST_HEAD(&cpu_queue->cmds);
|
||||
cpu_queue->backlog = &cpu_queue->cmds;
|
||||
cpu_queue->cmd_count = 0;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void ccp_fini_queue(void)
|
||||
{
|
||||
struct ccp_crypto_cpu_queue *cpu_queue;
|
||||
int cpu;
|
||||
|
||||
for_each_possible_cpu(cpu) {
|
||||
cpu_queue = per_cpu_ptr(req_queue.cpu_queue, cpu);
|
||||
BUG_ON(!list_empty(&cpu_queue->cmds));
|
||||
}
|
||||
free_percpu(req_queue.cpu_queue);
|
||||
}
|
||||
|
||||
static int ccp_crypto_init(void)
|
||||
{
|
||||
int ret;
|
||||
|
||||
ret = ccp_init_queues();
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
ret = ccp_register_algs();
|
||||
if (ret) {
|
||||
ccp_unregister_algs();
|
||||
ccp_fini_queue();
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
static void ccp_crypto_exit(void)
|
||||
{
|
||||
ccp_unregister_algs();
|
||||
ccp_fini_queue();
|
||||
}
|
||||
|
||||
module_init(ccp_crypto_init);
|
||||
module_exit(ccp_crypto_exit);
|
|
@ -0,0 +1,517 @@
|
|||
/*
|
||||
* AMD Cryptographic Coprocessor (CCP) SHA crypto API support
|
||||
*
|
||||
* Copyright (C) 2013 Advanced Micro Devices, Inc.
|
||||
*
|
||||
* Author: Tom Lendacky <thomas.lendacky@amd.com>
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License version 2 as
|
||||
* published by the Free Software Foundation.
|
||||
*/
|
||||
|
||||
#include <linux/module.h>
|
||||
#include <linux/sched.h>
|
||||
#include <linux/delay.h>
|
||||
#include <linux/scatterlist.h>
|
||||
#include <linux/crypto.h>
|
||||
#include <crypto/algapi.h>
|
||||
#include <crypto/hash.h>
|
||||
#include <crypto/internal/hash.h>
|
||||
#include <crypto/sha.h>
|
||||
#include <crypto/scatterwalk.h>
|
||||
|
||||
#include "ccp-crypto.h"
|
||||
|
||||
|
||||
struct ccp_sha_result {
|
||||
struct completion completion;
|
||||
int err;
|
||||
};
|
||||
|
||||
static void ccp_sync_hash_complete(struct crypto_async_request *req, int err)
|
||||
{
|
||||
struct ccp_sha_result *result = req->data;
|
||||
|
||||
if (err == -EINPROGRESS)
|
||||
return;
|
||||
|
||||
result->err = err;
|
||||
complete(&result->completion);
|
||||
}
|
||||
|
||||
static int ccp_sync_hash(struct crypto_ahash *tfm, u8 *buf,
|
||||
struct scatterlist *sg, unsigned int len)
|
||||
{
|
||||
struct ccp_sha_result result;
|
||||
struct ahash_request *req;
|
||||
int ret;
|
||||
|
||||
init_completion(&result.completion);
|
||||
|
||||
req = ahash_request_alloc(tfm, GFP_KERNEL);
|
||||
if (!req)
|
||||
return -ENOMEM;
|
||||
|
||||
ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
|
||||
ccp_sync_hash_complete, &result);
|
||||
ahash_request_set_crypt(req, sg, buf, len);
|
||||
|
||||
ret = crypto_ahash_digest(req);
|
||||
if ((ret == -EINPROGRESS) || (ret == -EBUSY)) {
|
||||
ret = wait_for_completion_interruptible(&result.completion);
|
||||
if (!ret)
|
||||
ret = result.err;
|
||||
}
|
||||
|
||||
ahash_request_free(req);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int ccp_sha_finish_hmac(struct crypto_async_request *async_req)
|
||||
{
|
||||
struct ahash_request *req = ahash_request_cast(async_req);
|
||||
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
|
||||
struct ccp_ctx *ctx = crypto_ahash_ctx(tfm);
|
||||
struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
|
||||
struct scatterlist sg[2];
|
||||
unsigned int block_size =
|
||||
crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
|
||||
unsigned int digest_size = crypto_ahash_digestsize(tfm);
|
||||
|
||||
sg_init_table(sg, ARRAY_SIZE(sg));
|
||||
sg_set_buf(&sg[0], ctx->u.sha.opad, block_size);
|
||||
sg_set_buf(&sg[1], rctx->ctx, digest_size);
|
||||
|
||||
return ccp_sync_hash(ctx->u.sha.hmac_tfm, req->result, sg,
|
||||
block_size + digest_size);
|
||||
}
|
||||
|
||||
static int ccp_sha_complete(struct crypto_async_request *async_req, int ret)
|
||||
{
|
||||
struct ahash_request *req = ahash_request_cast(async_req);
|
||||
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
|
||||
struct ccp_ctx *ctx = crypto_ahash_ctx(tfm);
|
||||
struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
|
||||
unsigned int digest_size = crypto_ahash_digestsize(tfm);
|
||||
|
||||
if (ret)
|
||||
goto e_free;
|
||||
|
||||
if (rctx->hash_rem) {
|
||||
/* Save remaining data to buffer */
|
||||
unsigned int offset = rctx->nbytes - rctx->hash_rem;
|
||||
scatterwalk_map_and_copy(rctx->buf, rctx->src,
|
||||
offset, rctx->hash_rem, 0);
|
||||
rctx->buf_count = rctx->hash_rem;
|
||||
} else
|
||||
rctx->buf_count = 0;
|
||||
|
||||
/* Update result area if supplied */
|
||||
if (req->result)
|
||||
memcpy(req->result, rctx->ctx, digest_size);
|
||||
|
||||
/* If we're doing an HMAC, we need to perform that on the final op */
|
||||
if (rctx->final && ctx->u.sha.key_len)
|
||||
ret = ccp_sha_finish_hmac(async_req);
|
||||
|
||||
e_free:
|
||||
sg_free_table(&rctx->data_sg);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int ccp_do_sha_update(struct ahash_request *req, unsigned int nbytes,
|
||||
unsigned int final)
|
||||
{
|
||||
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
|
||||
struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
|
||||
struct scatterlist *sg;
|
||||
unsigned int block_size =
|
||||
crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
|
||||
unsigned int sg_count;
|
||||
gfp_t gfp;
|
||||
u64 len;
|
||||
int ret;
|
||||
|
||||
len = (u64)rctx->buf_count + (u64)nbytes;
|
||||
|
||||
if (!final && (len <= block_size)) {
|
||||
scatterwalk_map_and_copy(rctx->buf + rctx->buf_count, req->src,
|
||||
0, nbytes, 0);
|
||||
rctx->buf_count += nbytes;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
rctx->src = req->src;
|
||||
rctx->nbytes = nbytes;
|
||||
|
||||
rctx->final = final;
|
||||
rctx->hash_rem = final ? 0 : len & (block_size - 1);
|
||||
rctx->hash_cnt = len - rctx->hash_rem;
|
||||
if (!final && !rctx->hash_rem) {
|
||||
/* CCP can't do zero length final, so keep some data around */
|
||||
rctx->hash_cnt -= block_size;
|
||||
rctx->hash_rem = block_size;
|
||||
}
|
||||
|
||||
/* Initialize the context scatterlist */
|
||||
sg_init_one(&rctx->ctx_sg, rctx->ctx, sizeof(rctx->ctx));
|
||||
|
||||
sg = NULL;
|
||||
if (rctx->buf_count && nbytes) {
|
||||
/* Build the data scatterlist table - allocate enough entries
|
||||
* for both data pieces (buffer and input data)
|
||||
*/
|
||||
gfp = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
|
||||
GFP_KERNEL : GFP_ATOMIC;
|
||||
sg_count = sg_nents(req->src) + 1;
|
||||
ret = sg_alloc_table(&rctx->data_sg, sg_count, gfp);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
sg_init_one(&rctx->buf_sg, rctx->buf, rctx->buf_count);
|
||||
sg = ccp_crypto_sg_table_add(&rctx->data_sg, &rctx->buf_sg);
|
||||
sg = ccp_crypto_sg_table_add(&rctx->data_sg, req->src);
|
||||
sg_mark_end(sg);
|
||||
|
||||
sg = rctx->data_sg.sgl;
|
||||
} else if (rctx->buf_count) {
|
||||
sg_init_one(&rctx->buf_sg, rctx->buf, rctx->buf_count);
|
||||
|
||||
sg = &rctx->buf_sg;
|
||||
} else if (nbytes) {
|
||||
sg = req->src;
|
||||
}
|
||||
|
||||
rctx->msg_bits += (rctx->hash_cnt << 3); /* Total in bits */
|
||||
|
||||
memset(&rctx->cmd, 0, sizeof(rctx->cmd));
|
||||
INIT_LIST_HEAD(&rctx->cmd.entry);
|
||||
rctx->cmd.engine = CCP_ENGINE_SHA;
|
||||
rctx->cmd.u.sha.type = rctx->type;
|
||||
rctx->cmd.u.sha.ctx = &rctx->ctx_sg;
|
||||
rctx->cmd.u.sha.ctx_len = sizeof(rctx->ctx);
|
||||
rctx->cmd.u.sha.src = sg;
|
||||
rctx->cmd.u.sha.src_len = rctx->hash_cnt;
|
||||
rctx->cmd.u.sha.final = rctx->final;
|
||||
rctx->cmd.u.sha.msg_bits = rctx->msg_bits;
|
||||
|
||||
rctx->first = 0;
|
||||
|
||||
ret = ccp_crypto_enqueue_request(&req->base, &rctx->cmd);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int ccp_sha_init(struct ahash_request *req)
|
||||
{
|
||||
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
|
||||
struct ccp_ctx *ctx = crypto_ahash_ctx(tfm);
|
||||
struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
|
||||
struct ccp_crypto_ahash_alg *alg =
|
||||
ccp_crypto_ahash_alg(crypto_ahash_tfm(tfm));
|
||||
unsigned int block_size =
|
||||
crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
|
||||
|
||||
memset(rctx, 0, sizeof(*rctx));
|
||||
|
||||
memcpy(rctx->ctx, alg->init, sizeof(rctx->ctx));
|
||||
rctx->type = alg->type;
|
||||
rctx->first = 1;
|
||||
|
||||
if (ctx->u.sha.key_len) {
|
||||
/* Buffer the HMAC key for first update */
|
||||
memcpy(rctx->buf, ctx->u.sha.ipad, block_size);
|
||||
rctx->buf_count = block_size;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int ccp_sha_update(struct ahash_request *req)
|
||||
{
|
||||
return ccp_do_sha_update(req, req->nbytes, 0);
|
||||
}
|
||||
|
||||
static int ccp_sha_final(struct ahash_request *req)
|
||||
{
|
||||
return ccp_do_sha_update(req, 0, 1);
|
||||
}
|
||||
|
||||
static int ccp_sha_finup(struct ahash_request *req)
|
||||
{
|
||||
return ccp_do_sha_update(req, req->nbytes, 1);
|
||||
}
|
||||
|
||||
static int ccp_sha_digest(struct ahash_request *req)
|
||||
{
|
||||
int ret;
|
||||
|
||||
ret = ccp_sha_init(req);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
return ccp_sha_finup(req);
|
||||
}
|
||||
|
||||
static int ccp_sha_setkey(struct crypto_ahash *tfm, const u8 *key,
|
||||
unsigned int key_len)
|
||||
{
|
||||
struct ccp_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm));
|
||||
struct scatterlist sg;
|
||||
unsigned int block_size =
|
||||
crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
|
||||
unsigned int digest_size = crypto_ahash_digestsize(tfm);
|
||||
int i, ret;
|
||||
|
||||
/* Set to zero until complete */
|
||||
ctx->u.sha.key_len = 0;
|
||||
|
||||
/* Clear key area to provide zero padding for keys smaller
|
||||
* than the block size
|
||||
*/
|
||||
memset(ctx->u.sha.key, 0, sizeof(ctx->u.sha.key));
|
||||
|
||||
if (key_len > block_size) {
|
||||
/* Must hash the input key */
|
||||
sg_init_one(&sg, key, key_len);
|
||||
ret = ccp_sync_hash(tfm, ctx->u.sha.key, &sg, key_len);
|
||||
if (ret) {
|
||||
crypto_ahash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
key_len = digest_size;
|
||||
} else
|
||||
memcpy(ctx->u.sha.key, key, key_len);
|
||||
|
||||
for (i = 0; i < block_size; i++) {
|
||||
ctx->u.sha.ipad[i] = ctx->u.sha.key[i] ^ 0x36;
|
||||
ctx->u.sha.opad[i] = ctx->u.sha.key[i] ^ 0x5c;
|
||||
}
|
||||
|
||||
ctx->u.sha.key_len = key_len;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int ccp_sha_cra_init(struct crypto_tfm *tfm)
|
||||
{
|
||||
struct ccp_ctx *ctx = crypto_tfm_ctx(tfm);
|
||||
struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
|
||||
|
||||
ctx->complete = ccp_sha_complete;
|
||||
ctx->u.sha.key_len = 0;
|
||||
|
||||
crypto_ahash_set_reqsize(ahash, sizeof(struct ccp_sha_req_ctx));
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void ccp_sha_cra_exit(struct crypto_tfm *tfm)
|
||||
{
|
||||
}
|
||||
|
||||
static int ccp_hmac_sha_cra_init(struct crypto_tfm *tfm)
|
||||
{
|
||||
struct ccp_ctx *ctx = crypto_tfm_ctx(tfm);
|
||||
struct ccp_crypto_ahash_alg *alg = ccp_crypto_ahash_alg(tfm);
|
||||
struct crypto_ahash *hmac_tfm;
|
||||
|
||||
hmac_tfm = crypto_alloc_ahash(alg->child_alg,
|
||||
CRYPTO_ALG_TYPE_AHASH, 0);
|
||||
if (IS_ERR(hmac_tfm)) {
|
||||
pr_warn("could not load driver %s need for HMAC support\n",
|
||||
alg->child_alg);
|
||||
return PTR_ERR(hmac_tfm);
|
||||
}
|
||||
|
||||
ctx->u.sha.hmac_tfm = hmac_tfm;
|
||||
|
||||
return ccp_sha_cra_init(tfm);
|
||||
}
|
||||
|
||||
static void ccp_hmac_sha_cra_exit(struct crypto_tfm *tfm)
|
||||
{
|
||||
struct ccp_ctx *ctx = crypto_tfm_ctx(tfm);
|
||||
|
||||
if (ctx->u.sha.hmac_tfm)
|
||||
crypto_free_ahash(ctx->u.sha.hmac_tfm);
|
||||
|
||||
ccp_sha_cra_exit(tfm);
|
||||
}
|
||||
|
||||
static const __be32 sha1_init[CCP_SHA_CTXSIZE / sizeof(__be32)] = {
|
||||
cpu_to_be32(SHA1_H0), cpu_to_be32(SHA1_H1),
|
||||
cpu_to_be32(SHA1_H2), cpu_to_be32(SHA1_H3),
|
||||
cpu_to_be32(SHA1_H4), 0, 0, 0,
|
||||
};
|
||||
|
||||
static const __be32 sha224_init[CCP_SHA_CTXSIZE / sizeof(__be32)] = {
|
||||
cpu_to_be32(SHA224_H0), cpu_to_be32(SHA224_H1),
|
||||
cpu_to_be32(SHA224_H2), cpu_to_be32(SHA224_H3),
|
||||
cpu_to_be32(SHA224_H4), cpu_to_be32(SHA224_H5),
|
||||
cpu_to_be32(SHA224_H6), cpu_to_be32(SHA224_H7),
|
||||
};
|
||||
|
||||
static const __be32 sha256_init[CCP_SHA_CTXSIZE / sizeof(__be32)] = {
|
||||
cpu_to_be32(SHA256_H0), cpu_to_be32(SHA256_H1),
|
||||
cpu_to_be32(SHA256_H2), cpu_to_be32(SHA256_H3),
|
||||
cpu_to_be32(SHA256_H4), cpu_to_be32(SHA256_H5),
|
||||
cpu_to_be32(SHA256_H6), cpu_to_be32(SHA256_H7),
|
||||
};
|
||||
|
||||
struct ccp_sha_def {
|
||||
const char *name;
|
||||
const char *drv_name;
|
||||
const __be32 *init;
|
||||
enum ccp_sha_type type;
|
||||
u32 digest_size;
|
||||
u32 block_size;
|
||||
};
|
||||
|
||||
static struct ccp_sha_def sha_algs[] = {
|
||||
{
|
||||
.name = "sha1",
|
||||
.drv_name = "sha1-ccp",
|
||||
.init = sha1_init,
|
||||
.type = CCP_SHA_TYPE_1,
|
||||
.digest_size = SHA1_DIGEST_SIZE,
|
||||
.block_size = SHA1_BLOCK_SIZE,
|
||||
},
|
||||
{
|
||||
.name = "sha224",
|
||||
.drv_name = "sha224-ccp",
|
||||
.init = sha224_init,
|
||||
.type = CCP_SHA_TYPE_224,
|
||||
.digest_size = SHA224_DIGEST_SIZE,
|
||||
.block_size = SHA224_BLOCK_SIZE,
|
||||
},
|
||||
{
|
||||
.name = "sha256",
|
||||
.drv_name = "sha256-ccp",
|
||||
.init = sha256_init,
|
||||
.type = CCP_SHA_TYPE_256,
|
||||
.digest_size = SHA256_DIGEST_SIZE,
|
||||
.block_size = SHA256_BLOCK_SIZE,
|
||||
},
|
||||
};
|
||||
|
||||
static int ccp_register_hmac_alg(struct list_head *head,
|
||||
const struct ccp_sha_def *def,
|
||||
const struct ccp_crypto_ahash_alg *base_alg)
|
||||
{
|
||||
struct ccp_crypto_ahash_alg *ccp_alg;
|
||||
struct ahash_alg *alg;
|
||||
struct hash_alg_common *halg;
|
||||
struct crypto_alg *base;
|
||||
int ret;
|
||||
|
||||
ccp_alg = kzalloc(sizeof(*ccp_alg), GFP_KERNEL);
|
||||
if (!ccp_alg)
|
||||
return -ENOMEM;
|
||||
|
||||
/* Copy the base algorithm and only change what's necessary */
|
||||
*ccp_alg = *base_alg;
|
||||
INIT_LIST_HEAD(&ccp_alg->entry);
|
||||
|
||||
strncpy(ccp_alg->child_alg, def->name, CRYPTO_MAX_ALG_NAME);
|
||||
|
||||
alg = &ccp_alg->alg;
|
||||
alg->setkey = ccp_sha_setkey;
|
||||
|
||||
halg = &alg->halg;
|
||||
|
||||
base = &halg->base;
|
||||
snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)", def->name);
|
||||
snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "hmac-%s",
|
||||
def->drv_name);
|
||||
base->cra_init = ccp_hmac_sha_cra_init;
|
||||
base->cra_exit = ccp_hmac_sha_cra_exit;
|
||||
|
||||
ret = crypto_register_ahash(alg);
|
||||
if (ret) {
|
||||
pr_err("%s ahash algorithm registration error (%d)\n",
|
||||
base->cra_name, ret);
|
||||
kfree(ccp_alg);
|
||||
return ret;
|
||||
}
|
||||
|
||||
list_add(&ccp_alg->entry, head);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int ccp_register_sha_alg(struct list_head *head,
|
||||
const struct ccp_sha_def *def)
|
||||
{
|
||||
struct ccp_crypto_ahash_alg *ccp_alg;
|
||||
struct ahash_alg *alg;
|
||||
struct hash_alg_common *halg;
|
||||
struct crypto_alg *base;
|
||||
int ret;
|
||||
|
||||
ccp_alg = kzalloc(sizeof(*ccp_alg), GFP_KERNEL);
|
||||
if (!ccp_alg)
|
||||
return -ENOMEM;
|
||||
|
||||
INIT_LIST_HEAD(&ccp_alg->entry);
|
||||
|
||||
ccp_alg->init = def->init;
|
||||
ccp_alg->type = def->type;
|
||||
|
||||
alg = &ccp_alg->alg;
|
||||
alg->init = ccp_sha_init;
|
||||
alg->update = ccp_sha_update;
|
||||
alg->final = ccp_sha_final;
|
||||
alg->finup = ccp_sha_finup;
|
||||
alg->digest = ccp_sha_digest;
|
||||
|
||||
halg = &alg->halg;
|
||||
halg->digestsize = def->digest_size;
|
||||
|
||||
base = &halg->base;
|
||||
snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", def->name);
|
||||
snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
|
||||
def->drv_name);
|
||||
base->cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC |
|
||||
CRYPTO_ALG_KERN_DRIVER_ONLY |
|
||||
CRYPTO_ALG_NEED_FALLBACK;
|
||||
base->cra_blocksize = def->block_size;
|
||||
base->cra_ctxsize = sizeof(struct ccp_ctx);
|
||||
base->cra_priority = CCP_CRA_PRIORITY;
|
||||
base->cra_type = &crypto_ahash_type;
|
||||
base->cra_init = ccp_sha_cra_init;
|
||||
base->cra_exit = ccp_sha_cra_exit;
|
||||
base->cra_module = THIS_MODULE;
|
||||
|
||||
ret = crypto_register_ahash(alg);
|
||||
if (ret) {
|
||||
pr_err("%s ahash algorithm registration error (%d)\n",
|
||||
base->cra_name, ret);
|
||||
kfree(ccp_alg);
|
||||
return ret;
|
||||
}
|
||||
|
||||
list_add(&ccp_alg->entry, head);
|
||||
|
||||
ret = ccp_register_hmac_alg(head, def, ccp_alg);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
int ccp_register_sha_algs(struct list_head *head)
|
||||
{
|
||||
int i, ret;
|
||||
|
||||
for (i = 0; i < ARRAY_SIZE(sha_algs); i++) {
|
||||
ret = ccp_register_sha_alg(head, &sha_algs[i]);
|
||||
if (ret)
|
||||
return ret;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
|
@ -0,0 +1,197 @@
|
|||
/*
|
||||
* AMD Cryptographic Coprocessor (CCP) crypto API support
|
||||
*
|
||||
* Copyright (C) 2013 Advanced Micro Devices, Inc.
|
||||
*
|
||||
* Author: Tom Lendacky <thomas.lendacky@amd.com>
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License version 2 as
|
||||
* published by the Free Software Foundation.
|
||||
*/
|
||||
|
||||
#ifndef __CCP_CRYPTO_H__
|
||||
#define __CCP_CRYPTO_H__
|
||||
|
||||
|
||||
#include <linux/list.h>
|
||||
#include <linux/wait.h>
|
||||
#include <linux/pci.h>
|
||||
#include <linux/ccp.h>
|
||||
#include <linux/crypto.h>
|
||||
#include <crypto/algapi.h>
|
||||
#include <crypto/aes.h>
|
||||
#include <crypto/ctr.h>
|
||||
#include <crypto/hash.h>
|
||||
#include <crypto/sha.h>
|
||||
|
||||
|
||||
#define CCP_CRA_PRIORITY 300
|
||||
|
||||
struct ccp_crypto_ablkcipher_alg {
|
||||
struct list_head entry;
|
||||
|
||||
u32 mode;
|
||||
|
||||
struct crypto_alg alg;
|
||||
};
|
||||
|
||||
struct ccp_crypto_ahash_alg {
|
||||
struct list_head entry;
|
||||
|
||||
const __be32 *init;
|
||||
u32 type;
|
||||
u32 mode;
|
||||
|
||||
/* Child algorithm used for HMAC, CMAC, etc */
|
||||
char child_alg[CRYPTO_MAX_ALG_NAME];
|
||||
|
||||
struct ahash_alg alg;
|
||||
};
|
||||
|
||||
static inline struct ccp_crypto_ablkcipher_alg *
|
||||
ccp_crypto_ablkcipher_alg(struct crypto_tfm *tfm)
|
||||
{
|
||||
struct crypto_alg *alg = tfm->__crt_alg;
|
||||
|
||||
return container_of(alg, struct ccp_crypto_ablkcipher_alg, alg);
|
||||
}
|
||||
|
||||
static inline struct ccp_crypto_ahash_alg *
|
||||
ccp_crypto_ahash_alg(struct crypto_tfm *tfm)
|
||||
{
|
||||
struct crypto_alg *alg = tfm->__crt_alg;
|
||||
struct ahash_alg *ahash_alg;
|
||||
|
||||
ahash_alg = container_of(alg, struct ahash_alg, halg.base);
|
||||
|
||||
return container_of(ahash_alg, struct ccp_crypto_ahash_alg, alg);
|
||||
}
|
||||
|
||||
|
||||
/***** AES related defines *****/
|
||||
struct ccp_aes_ctx {
|
||||
/* Fallback cipher for XTS with unsupported unit sizes */
|
||||
struct crypto_ablkcipher *tfm_ablkcipher;
|
||||
|
||||
/* Cipher used to generate CMAC K1/K2 keys */
|
||||
struct crypto_cipher *tfm_cipher;
|
||||
|
||||
enum ccp_engine engine;
|
||||
enum ccp_aes_type type;
|
||||
enum ccp_aes_mode mode;
|
||||
|
||||
struct scatterlist key_sg;
|
||||
unsigned int key_len;
|
||||
u8 key[AES_MAX_KEY_SIZE];
|
||||
|
||||
u8 nonce[CTR_RFC3686_NONCE_SIZE];
|
||||
|
||||
/* CMAC key structures */
|
||||
struct scatterlist k1_sg;
|
||||
struct scatterlist k2_sg;
|
||||
unsigned int kn_len;
|
||||
u8 k1[AES_BLOCK_SIZE];
|
||||
u8 k2[AES_BLOCK_SIZE];
|
||||
};
|
||||
|
||||
struct ccp_aes_req_ctx {
|
||||
struct scatterlist iv_sg;
|
||||
u8 iv[AES_BLOCK_SIZE];
|
||||
|
||||
/* Fields used for RFC3686 requests */
|
||||
u8 *rfc3686_info;
|
||||
u8 rfc3686_iv[AES_BLOCK_SIZE];
|
||||
|
||||
struct ccp_cmd cmd;
|
||||
};
|
||||
|
||||
struct ccp_aes_cmac_req_ctx {
|
||||
unsigned int null_msg;
|
||||
unsigned int final;
|
||||
|
||||
struct scatterlist *src;
|
||||
unsigned int nbytes;
|
||||
|
||||
u64 hash_cnt;
|
||||
unsigned int hash_rem;
|
||||
|
||||
struct sg_table data_sg;
|
||||
|
||||
struct scatterlist iv_sg;
|
||||
u8 iv[AES_BLOCK_SIZE];
|
||||
|
||||
struct scatterlist buf_sg;
|
||||
unsigned int buf_count;
|
||||
u8 buf[AES_BLOCK_SIZE];
|
||||
|
||||
struct scatterlist pad_sg;
|
||||
unsigned int pad_count;
|
||||
u8 pad[AES_BLOCK_SIZE];
|
||||
|
||||
struct ccp_cmd cmd;
|
||||
};
|
||||
|
||||
/***** SHA related defines *****/
|
||||
#define MAX_SHA_CONTEXT_SIZE SHA256_DIGEST_SIZE
|
||||
#define MAX_SHA_BLOCK_SIZE SHA256_BLOCK_SIZE
|
||||
|
||||
struct ccp_sha_ctx {
|
||||
unsigned int key_len;
|
||||
u8 key[MAX_SHA_BLOCK_SIZE];
|
||||
u8 ipad[MAX_SHA_BLOCK_SIZE];
|
||||
u8 opad[MAX_SHA_BLOCK_SIZE];
|
||||
struct crypto_ahash *hmac_tfm;
|
||||
};
|
||||
|
||||
struct ccp_sha_req_ctx {
|
||||
enum ccp_sha_type type;
|
||||
|
||||
u64 msg_bits;
|
||||
|
||||
unsigned int first;
|
||||
unsigned int final;
|
||||
|
||||
struct scatterlist *src;
|
||||
unsigned int nbytes;
|
||||
|
||||
u64 hash_cnt;
|
||||
unsigned int hash_rem;
|
||||
|
||||
struct sg_table data_sg;
|
||||
|
||||
struct scatterlist ctx_sg;
|
||||
u8 ctx[MAX_SHA_CONTEXT_SIZE];
|
||||
|
||||
struct scatterlist buf_sg;
|
||||
unsigned int buf_count;
|
||||
u8 buf[MAX_SHA_BLOCK_SIZE];
|
||||
|
||||
/* HMAC support field */
|
||||
struct scatterlist pad_sg;
|
||||
|
||||
/* CCP driver command */
|
||||
struct ccp_cmd cmd;
|
||||
};
|
||||
|
||||
/***** Common Context Structure *****/
|
||||
struct ccp_ctx {
|
||||
int (*complete)(struct crypto_async_request *req, int ret);
|
||||
|
||||
union {
|
||||
struct ccp_aes_ctx aes;
|
||||
struct ccp_sha_ctx sha;
|
||||
} u;
|
||||
};
|
||||
|
||||
int ccp_crypto_enqueue_request(struct crypto_async_request *req,
|
||||
struct ccp_cmd *cmd);
|
||||
struct scatterlist *ccp_crypto_sg_table_add(struct sg_table *table,
|
||||
struct scatterlist *sg_add);
|
||||
|
||||
int ccp_register_aes_algs(struct list_head *head);
|
||||
int ccp_register_aes_cmac_algs(struct list_head *head);
|
||||
int ccp_register_aes_xts_algs(struct list_head *head);
|
||||
int ccp_register_sha_algs(struct list_head *head);
|
||||
|
||||
#endif
|
|
@ -0,0 +1,595 @@
|
|||
/*
|
||||
* AMD Cryptographic Coprocessor (CCP) driver
|
||||
*
|
||||
* Copyright (C) 2013 Advanced Micro Devices, Inc.
|
||||
*
|
||||
* Author: Tom Lendacky <thomas.lendacky@amd.com>
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License version 2 as
|
||||
* published by the Free Software Foundation.
|
||||
*/
|
||||
|
||||
#include <linux/module.h>
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/kthread.h>
|
||||
#include <linux/sched.h>
|
||||
#include <linux/interrupt.h>
|
||||
#include <linux/spinlock.h>
|
||||
#include <linux/mutex.h>
|
||||
#include <linux/delay.h>
|
||||
#include <linux/hw_random.h>
|
||||
#include <linux/cpu.h>
|
||||
#include <asm/cpu_device_id.h>
|
||||
#include <linux/ccp.h>
|
||||
|
||||
#include "ccp-dev.h"
|
||||
|
||||
MODULE_AUTHOR("Tom Lendacky <thomas.lendacky@amd.com>");
|
||||
MODULE_LICENSE("GPL");
|
||||
MODULE_VERSION("1.0.0");
|
||||
MODULE_DESCRIPTION("AMD Cryptographic Coprocessor driver");
|
||||
|
||||
|
||||
static struct ccp_device *ccp_dev;
|
||||
static inline struct ccp_device *ccp_get_device(void)
|
||||
{
|
||||
return ccp_dev;
|
||||
}
|
||||
|
||||
static inline void ccp_add_device(struct ccp_device *ccp)
|
||||
{
|
||||
ccp_dev = ccp;
|
||||
}
|
||||
|
||||
static inline void ccp_del_device(struct ccp_device *ccp)
|
||||
{
|
||||
ccp_dev = NULL;
|
||||
}
|
||||
|
||||
/**
|
||||
* ccp_enqueue_cmd - queue an operation for processing by the CCP
|
||||
*
|
||||
* @cmd: ccp_cmd struct to be processed
|
||||
*
|
||||
* Queue a cmd to be processed by the CCP. If queueing the cmd
|
||||
* would exceed the defined length of the cmd queue the cmd will
|
||||
* only be queued if the CCP_CMD_MAY_BACKLOG flag is set and will
|
||||
* result in a return code of -EBUSY.
|
||||
*
|
||||
* The callback routine specified in the ccp_cmd struct will be
|
||||
* called to notify the caller of completion (if the cmd was not
|
||||
* backlogged) or advancement out of the backlog. If the cmd has
|
||||
* advanced out of the backlog the "err" value of the callback
|
||||
* will be -EINPROGRESS. Any other "err" value during callback is
|
||||
* the result of the operation.
|
||||
*
|
||||
* The cmd has been successfully queued if:
|
||||
* the return code is -EINPROGRESS or
|
||||
* the return code is -EBUSY and CCP_CMD_MAY_BACKLOG flag is set
|
||||
*/
|
||||
int ccp_enqueue_cmd(struct ccp_cmd *cmd)
|
||||
{
|
||||
struct ccp_device *ccp = ccp_get_device();
|
||||
unsigned long flags;
|
||||
unsigned int i;
|
||||
int ret;
|
||||
|
||||
if (!ccp)
|
||||
return -ENODEV;
|
||||
|
||||
/* Caller must supply a callback routine */
|
||||
if (!cmd->callback)
|
||||
return -EINVAL;
|
||||
|
||||
cmd->ccp = ccp;
|
||||
|
||||
spin_lock_irqsave(&ccp->cmd_lock, flags);
|
||||
|
||||
i = ccp->cmd_q_count;
|
||||
|
||||
if (ccp->cmd_count >= MAX_CMD_QLEN) {
|
||||
ret = -EBUSY;
|
||||
if (cmd->flags & CCP_CMD_MAY_BACKLOG)
|
||||
list_add_tail(&cmd->entry, &ccp->backlog);
|
||||
} else {
|
||||
ret = -EINPROGRESS;
|
||||
ccp->cmd_count++;
|
||||
list_add_tail(&cmd->entry, &ccp->cmd);
|
||||
|
||||
/* Find an idle queue */
|
||||
if (!ccp->suspending) {
|
||||
for (i = 0; i < ccp->cmd_q_count; i++) {
|
||||
if (ccp->cmd_q[i].active)
|
||||
continue;
|
||||
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
spin_unlock_irqrestore(&ccp->cmd_lock, flags);
|
||||
|
||||
/* If we found an idle queue, wake it up */
|
||||
if (i < ccp->cmd_q_count)
|
||||
wake_up_process(ccp->cmd_q[i].kthread);
|
||||
|
||||
return ret;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(ccp_enqueue_cmd);
|
||||
|
||||
static void ccp_do_cmd_backlog(struct work_struct *work)
|
||||
{
|
||||
struct ccp_cmd *cmd = container_of(work, struct ccp_cmd, work);
|
||||
struct ccp_device *ccp = cmd->ccp;
|
||||
unsigned long flags;
|
||||
unsigned int i;
|
||||
|
||||
cmd->callback(cmd->data, -EINPROGRESS);
|
||||
|
||||
spin_lock_irqsave(&ccp->cmd_lock, flags);
|
||||
|
||||
ccp->cmd_count++;
|
||||
list_add_tail(&cmd->entry, &ccp->cmd);
|
||||
|
||||
/* Find an idle queue */
|
||||
for (i = 0; i < ccp->cmd_q_count; i++) {
|
||||
if (ccp->cmd_q[i].active)
|
||||
continue;
|
||||
|
||||
break;
|
||||
}
|
||||
|
||||
spin_unlock_irqrestore(&ccp->cmd_lock, flags);
|
||||
|
||||
/* If we found an idle queue, wake it up */
|
||||
if (i < ccp->cmd_q_count)
|
||||
wake_up_process(ccp->cmd_q[i].kthread);
|
||||
}
|
||||
|
||||
static struct ccp_cmd *ccp_dequeue_cmd(struct ccp_cmd_queue *cmd_q)
|
||||
{
|
||||
struct ccp_device *ccp = cmd_q->ccp;
|
||||
struct ccp_cmd *cmd = NULL;
|
||||
struct ccp_cmd *backlog = NULL;
|
||||
unsigned long flags;
|
||||
|
||||
spin_lock_irqsave(&ccp->cmd_lock, flags);
|
||||
|
||||
cmd_q->active = 0;
|
||||
|
||||
if (ccp->suspending) {
|
||||
cmd_q->suspended = 1;
|
||||
|
||||
spin_unlock_irqrestore(&ccp->cmd_lock, flags);
|
||||
wake_up_interruptible(&ccp->suspend_queue);
|
||||
|
||||
return NULL;
|
||||
}
|
||||
|
||||
if (ccp->cmd_count) {
|
||||
cmd_q->active = 1;
|
||||
|
||||
cmd = list_first_entry(&ccp->cmd, struct ccp_cmd, entry);
|
||||
list_del(&cmd->entry);
|
||||
|
||||
ccp->cmd_count--;
|
||||
}
|
||||
|
||||
if (!list_empty(&ccp->backlog)) {
|
||||
backlog = list_first_entry(&ccp->backlog, struct ccp_cmd,
|
||||
entry);
|
||||
list_del(&backlog->entry);
|
||||
}
|
||||
|
||||
spin_unlock_irqrestore(&ccp->cmd_lock, flags);
|
||||
|
||||
if (backlog) {
|
||||
INIT_WORK(&backlog->work, ccp_do_cmd_backlog);
|
||||
schedule_work(&backlog->work);
|
||||
}
|
||||
|
||||
return cmd;
|
||||
}
|
||||
|
||||
static void ccp_do_cmd_complete(struct work_struct *work)
|
||||
{
|
||||
struct ccp_cmd *cmd = container_of(work, struct ccp_cmd, work);
|
||||
|
||||
cmd->callback(cmd->data, cmd->ret);
|
||||
}
|
||||
|
||||
static int ccp_cmd_queue_thread(void *data)
|
||||
{
|
||||
struct ccp_cmd_queue *cmd_q = (struct ccp_cmd_queue *)data;
|
||||
struct ccp_cmd *cmd;
|
||||
|
||||
set_current_state(TASK_INTERRUPTIBLE);
|
||||
while (!kthread_should_stop()) {
|
||||
schedule();
|
||||
|
||||
set_current_state(TASK_INTERRUPTIBLE);
|
||||
|
||||
cmd = ccp_dequeue_cmd(cmd_q);
|
||||
if (!cmd)
|
||||
continue;
|
||||
|
||||
__set_current_state(TASK_RUNNING);
|
||||
|
||||
/* Execute the command */
|
||||
cmd->ret = ccp_run_cmd(cmd_q, cmd);
|
||||
|
||||
/* Schedule the completion callback */
|
||||
INIT_WORK(&cmd->work, ccp_do_cmd_complete);
|
||||
schedule_work(&cmd->work);
|
||||
}
|
||||
|
||||
__set_current_state(TASK_RUNNING);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int ccp_trng_read(struct hwrng *rng, void *data, size_t max, bool wait)
|
||||
{
|
||||
struct ccp_device *ccp = container_of(rng, struct ccp_device, hwrng);
|
||||
u32 trng_value;
|
||||
int len = min_t(int, sizeof(trng_value), max);
|
||||
|
||||
/*
|
||||
* Locking is provided by the caller so we can update device
|
||||
* hwrng-related fields safely
|
||||
*/
|
||||
trng_value = ioread32(ccp->io_regs + TRNG_OUT_REG);
|
||||
if (!trng_value) {
|
||||
/* Zero is returned if not data is available or if a
|
||||
* bad-entropy error is present. Assume an error if
|
||||
* we exceed TRNG_RETRIES reads of zero.
|
||||
*/
|
||||
if (ccp->hwrng_retries++ > TRNG_RETRIES)
|
||||
return -EIO;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Reset the counter and save the rng value */
|
||||
ccp->hwrng_retries = 0;
|
||||
memcpy(data, &trng_value, len);
|
||||
|
||||
return len;
|
||||
}
|
||||
|
||||
/**
|
||||
* ccp_alloc_struct - allocate and initialize the ccp_device struct
|
||||
*
|
||||
* @dev: device struct of the CCP
|
||||
*/
|
||||
struct ccp_device *ccp_alloc_struct(struct device *dev)
|
||||
{
|
||||
struct ccp_device *ccp;
|
||||
|
||||
ccp = kzalloc(sizeof(*ccp), GFP_KERNEL);
|
||||
if (ccp == NULL) {
|
||||
dev_err(dev, "unable to allocate device struct\n");
|
||||
return NULL;
|
||||
}
|
||||
ccp->dev = dev;
|
||||
|
||||
INIT_LIST_HEAD(&ccp->cmd);
|
||||
INIT_LIST_HEAD(&ccp->backlog);
|
||||
|
||||
spin_lock_init(&ccp->cmd_lock);
|
||||
mutex_init(&ccp->req_mutex);
|
||||
mutex_init(&ccp->ksb_mutex);
|
||||
ccp->ksb_count = KSB_COUNT;
|
||||
ccp->ksb_start = 0;
|
||||
|
||||
return ccp;
|
||||
}
|
||||
|
||||
/**
|
||||
* ccp_init - initialize the CCP device
|
||||
*
|
||||
* @ccp: ccp_device struct
|
||||
*/
|
||||
int ccp_init(struct ccp_device *ccp)
|
||||
{
|
||||
struct device *dev = ccp->dev;
|
||||
struct ccp_cmd_queue *cmd_q;
|
||||
struct dma_pool *dma_pool;
|
||||
char dma_pool_name[MAX_DMAPOOL_NAME_LEN];
|
||||
unsigned int qmr, qim, i;
|
||||
int ret;
|
||||
|
||||
/* Find available queues */
|
||||
qim = 0;
|
||||
qmr = ioread32(ccp->io_regs + Q_MASK_REG);
|
||||
for (i = 0; i < MAX_HW_QUEUES; i++) {
|
||||
if (!(qmr & (1 << i)))
|
||||
continue;
|
||||
|
||||
/* Allocate a dma pool for this queue */
|
||||
snprintf(dma_pool_name, sizeof(dma_pool_name), "ccp_q%d", i);
|
||||
dma_pool = dma_pool_create(dma_pool_name, dev,
|
||||
CCP_DMAPOOL_MAX_SIZE,
|
||||
CCP_DMAPOOL_ALIGN, 0);
|
||||
if (!dma_pool) {
|
||||
dev_err(dev, "unable to allocate dma pool\n");
|
||||
ret = -ENOMEM;
|
||||
goto e_pool;
|
||||
}
|
||||
|
||||
cmd_q = &ccp->cmd_q[ccp->cmd_q_count];
|
||||
ccp->cmd_q_count++;
|
||||
|
||||
cmd_q->ccp = ccp;
|
||||
cmd_q->id = i;
|
||||
cmd_q->dma_pool = dma_pool;
|
||||
|
||||
/* Reserve 2 KSB regions for the queue */
|
||||
cmd_q->ksb_key = KSB_START + ccp->ksb_start++;
|
||||
cmd_q->ksb_ctx = KSB_START + ccp->ksb_start++;
|
||||
ccp->ksb_count -= 2;
|
||||
|
||||
/* Preset some register values and masks that are queue
|
||||
* number dependent
|
||||
*/
|
||||
cmd_q->reg_status = ccp->io_regs + CMD_Q_STATUS_BASE +
|
||||
(CMD_Q_STATUS_INCR * i);
|
||||
cmd_q->reg_int_status = ccp->io_regs + CMD_Q_INT_STATUS_BASE +
|
||||
(CMD_Q_STATUS_INCR * i);
|
||||
cmd_q->int_ok = 1 << (i * 2);
|
||||
cmd_q->int_err = 1 << ((i * 2) + 1);
|
||||
|
||||
cmd_q->free_slots = CMD_Q_DEPTH(ioread32(cmd_q->reg_status));
|
||||
|
||||
init_waitqueue_head(&cmd_q->int_queue);
|
||||
|
||||
/* Build queue interrupt mask (two interrupts per queue) */
|
||||
qim |= cmd_q->int_ok | cmd_q->int_err;
|
||||
|
||||
dev_dbg(dev, "queue #%u available\n", i);
|
||||
}
|
||||
if (ccp->cmd_q_count == 0) {
|
||||
dev_notice(dev, "no command queues available\n");
|
||||
ret = -EIO;
|
||||
goto e_pool;
|
||||
}
|
||||
dev_notice(dev, "%u command queues available\n", ccp->cmd_q_count);
|
||||
|
||||
/* Disable and clear interrupts until ready */
|
||||
iowrite32(0x00, ccp->io_regs + IRQ_MASK_REG);
|
||||
for (i = 0; i < ccp->cmd_q_count; i++) {
|
||||
cmd_q = &ccp->cmd_q[i];
|
||||
|
||||
ioread32(cmd_q->reg_int_status);
|
||||
ioread32(cmd_q->reg_status);
|
||||
}
|
||||
iowrite32(qim, ccp->io_regs + IRQ_STATUS_REG);
|
||||
|
||||
/* Request an irq */
|
||||
ret = ccp->get_irq(ccp);
|
||||
if (ret) {
|
||||
dev_err(dev, "unable to allocate an IRQ\n");
|
||||
goto e_pool;
|
||||
}
|
||||
|
||||
/* Initialize the queues used to wait for KSB space and suspend */
|
||||
init_waitqueue_head(&ccp->ksb_queue);
|
||||
init_waitqueue_head(&ccp->suspend_queue);
|
||||
|
||||
/* Create a kthread for each queue */
|
||||
for (i = 0; i < ccp->cmd_q_count; i++) {
|
||||
struct task_struct *kthread;
|
||||
|
||||
cmd_q = &ccp->cmd_q[i];
|
||||
|
||||
kthread = kthread_create(ccp_cmd_queue_thread, cmd_q,
|
||||
"ccp-q%u", cmd_q->id);
|
||||
if (IS_ERR(kthread)) {
|
||||
dev_err(dev, "error creating queue thread (%ld)\n",
|
||||
PTR_ERR(kthread));
|
||||
ret = PTR_ERR(kthread);
|
||||
goto e_kthread;
|
||||
}
|
||||
|
||||
cmd_q->kthread = kthread;
|
||||
wake_up_process(kthread);
|
||||
}
|
||||
|
||||
/* Register the RNG */
|
||||
ccp->hwrng.name = "ccp-rng";
|
||||
ccp->hwrng.read = ccp_trng_read;
|
||||
ret = hwrng_register(&ccp->hwrng);
|
||||
if (ret) {
|
||||
dev_err(dev, "error registering hwrng (%d)\n", ret);
|
||||
goto e_kthread;
|
||||
}
|
||||
|
||||
/* Make the device struct available before enabling interrupts */
|
||||
ccp_add_device(ccp);
|
||||
|
||||
/* Enable interrupts */
|
||||
iowrite32(qim, ccp->io_regs + IRQ_MASK_REG);
|
||||
|
||||
return 0;
|
||||
|
||||
e_kthread:
|
||||
for (i = 0; i < ccp->cmd_q_count; i++)
|
||||
if (ccp->cmd_q[i].kthread)
|
||||
kthread_stop(ccp->cmd_q[i].kthread);
|
||||
|
||||
ccp->free_irq(ccp);
|
||||
|
||||
e_pool:
|
||||
for (i = 0; i < ccp->cmd_q_count; i++)
|
||||
dma_pool_destroy(ccp->cmd_q[i].dma_pool);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
/**
|
||||
* ccp_destroy - tear down the CCP device
|
||||
*
|
||||
* @ccp: ccp_device struct
|
||||
*/
|
||||
void ccp_destroy(struct ccp_device *ccp)
|
||||
{
|
||||
struct ccp_cmd_queue *cmd_q;
|
||||
struct ccp_cmd *cmd;
|
||||
unsigned int qim, i;
|
||||
|
||||
/* Remove general access to the device struct */
|
||||
ccp_del_device(ccp);
|
||||
|
||||
/* Unregister the RNG */
|
||||
hwrng_unregister(&ccp->hwrng);
|
||||
|
||||
/* Stop the queue kthreads */
|
||||
for (i = 0; i < ccp->cmd_q_count; i++)
|
||||
if (ccp->cmd_q[i].kthread)
|
||||
kthread_stop(ccp->cmd_q[i].kthread);
|
||||
|
||||
/* Build queue interrupt mask (two interrupt masks per queue) */
|
||||
qim = 0;
|
||||
for (i = 0; i < ccp->cmd_q_count; i++) {
|
||||
cmd_q = &ccp->cmd_q[i];
|
||||
qim |= cmd_q->int_ok | cmd_q->int_err;
|
||||
}
|
||||
|
||||
/* Disable and clear interrupts */
|
||||
iowrite32(0x00, ccp->io_regs + IRQ_MASK_REG);
|
||||
for (i = 0; i < ccp->cmd_q_count; i++) {
|
||||
cmd_q = &ccp->cmd_q[i];
|
||||
|
||||
ioread32(cmd_q->reg_int_status);
|
||||
ioread32(cmd_q->reg_status);
|
||||
}
|
||||
iowrite32(qim, ccp->io_regs + IRQ_STATUS_REG);
|
||||
|
||||
ccp->free_irq(ccp);
|
||||
|
||||
for (i = 0; i < ccp->cmd_q_count; i++)
|
||||
dma_pool_destroy(ccp->cmd_q[i].dma_pool);
|
||||
|
||||
/* Flush the cmd and backlog queue */
|
||||
while (!list_empty(&ccp->cmd)) {
|
||||
/* Invoke the callback directly with an error code */
|
||||
cmd = list_first_entry(&ccp->cmd, struct ccp_cmd, entry);
|
||||
list_del(&cmd->entry);
|
||||
cmd->callback(cmd->data, -ENODEV);
|
||||
}
|
||||
while (!list_empty(&ccp->backlog)) {
|
||||
/* Invoke the callback directly with an error code */
|
||||
cmd = list_first_entry(&ccp->backlog, struct ccp_cmd, entry);
|
||||
list_del(&cmd->entry);
|
||||
cmd->callback(cmd->data, -ENODEV);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* ccp_irq_handler - handle interrupts generated by the CCP device
|
||||
*
|
||||
* @irq: the irq associated with the interrupt
|
||||
* @data: the data value supplied when the irq was created
|
||||
*/
|
||||
irqreturn_t ccp_irq_handler(int irq, void *data)
|
||||
{
|
||||
struct device *dev = data;
|
||||
struct ccp_device *ccp = dev_get_drvdata(dev);
|
||||
struct ccp_cmd_queue *cmd_q;
|
||||
u32 q_int, status;
|
||||
unsigned int i;
|
||||
|
||||
status = ioread32(ccp->io_regs + IRQ_STATUS_REG);
|
||||
|
||||
for (i = 0; i < ccp->cmd_q_count; i++) {
|
||||
cmd_q = &ccp->cmd_q[i];
|
||||
|
||||
q_int = status & (cmd_q->int_ok | cmd_q->int_err);
|
||||
if (q_int) {
|
||||
cmd_q->int_status = status;
|
||||
cmd_q->q_status = ioread32(cmd_q->reg_status);
|
||||
cmd_q->q_int_status = ioread32(cmd_q->reg_int_status);
|
||||
|
||||
/* On error, only save the first error value */
|
||||
if ((q_int & cmd_q->int_err) && !cmd_q->cmd_error)
|
||||
cmd_q->cmd_error = CMD_Q_ERROR(cmd_q->q_status);
|
||||
|
||||
cmd_q->int_rcvd = 1;
|
||||
|
||||
/* Acknowledge the interrupt and wake the kthread */
|
||||
iowrite32(q_int, ccp->io_regs + IRQ_STATUS_REG);
|
||||
wake_up_interruptible(&cmd_q->int_queue);
|
||||
}
|
||||
}
|
||||
|
||||
return IRQ_HANDLED;
|
||||
}
|
||||
|
||||
#ifdef CONFIG_PM
|
||||
bool ccp_queues_suspended(struct ccp_device *ccp)
|
||||
{
|
||||
unsigned int suspended = 0;
|
||||
unsigned long flags;
|
||||
unsigned int i;
|
||||
|
||||
spin_lock_irqsave(&ccp->cmd_lock, flags);
|
||||
|
||||
for (i = 0; i < ccp->cmd_q_count; i++)
|
||||
if (ccp->cmd_q[i].suspended)
|
||||
suspended++;
|
||||
|
||||
spin_unlock_irqrestore(&ccp->cmd_lock, flags);
|
||||
|
||||
return ccp->cmd_q_count == suspended;
|
||||
}
|
||||
#endif
|
||||
|
||||
static const struct x86_cpu_id ccp_support[] = {
|
||||
{ X86_VENDOR_AMD, 22, },
|
||||
};
|
||||
|
||||
static int __init ccp_mod_init(void)
|
||||
{
|
||||
struct cpuinfo_x86 *cpuinfo = &boot_cpu_data;
|
||||
int ret;
|
||||
|
||||
if (!x86_match_cpu(ccp_support))
|
||||
return -ENODEV;
|
||||
|
||||
switch (cpuinfo->x86) {
|
||||
case 22:
|
||||
if ((cpuinfo->x86_model < 48) || (cpuinfo->x86_model > 63))
|
||||
return -ENODEV;
|
||||
|
||||
ret = ccp_pci_init();
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
/* Don't leave the driver loaded if init failed */
|
||||
if (!ccp_get_device()) {
|
||||
ccp_pci_exit();
|
||||
return -ENODEV;
|
||||
}
|
||||
|
||||
return 0;
|
||||
|
||||
break;
|
||||
}
|
||||
|
||||
return -ENODEV;
|
||||
}
|
||||
|
||||
static void __exit ccp_mod_exit(void)
|
||||
{
|
||||
struct cpuinfo_x86 *cpuinfo = &boot_cpu_data;
|
||||
|
||||
switch (cpuinfo->x86) {
|
||||
case 22:
|
||||
ccp_pci_exit();
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
module_init(ccp_mod_init);
|
||||
module_exit(ccp_mod_exit);
|
|
@ -0,0 +1,272 @@
|
|||
/*
|
||||
* AMD Cryptographic Coprocessor (CCP) driver
|
||||
*
|
||||
* Copyright (C) 2013 Advanced Micro Devices, Inc.
|
||||
*
|
||||
* Author: Tom Lendacky <thomas.lendacky@amd.com>
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License version 2 as
|
||||
* published by the Free Software Foundation.
|
||||
*/
|
||||
|
||||
#ifndef __CCP_DEV_H__
|
||||
#define __CCP_DEV_H__
|
||||
|
||||
#include <linux/device.h>
|
||||
#include <linux/pci.h>
|
||||
#include <linux/spinlock.h>
|
||||
#include <linux/mutex.h>
|
||||
#include <linux/list.h>
|
||||
#include <linux/wait.h>
|
||||
#include <linux/dmapool.h>
|
||||
#include <linux/hw_random.h>
|
||||
|
||||
|
||||
#define IO_OFFSET 0x20000
|
||||
|
||||
#define MAX_DMAPOOL_NAME_LEN 32
|
||||
|
||||
#define MAX_HW_QUEUES 5
|
||||
#define MAX_CMD_QLEN 100
|
||||
|
||||
#define TRNG_RETRIES 10
|
||||
|
||||
|
||||
/****** Register Mappings ******/
|
||||
#define Q_MASK_REG 0x000
|
||||
#define TRNG_OUT_REG 0x00c
|
||||
#define IRQ_MASK_REG 0x040
|
||||
#define IRQ_STATUS_REG 0x200
|
||||
|
||||
#define DEL_CMD_Q_JOB 0x124
|
||||
#define DEL_Q_ACTIVE 0x00000200
|
||||
#define DEL_Q_ID_SHIFT 6
|
||||
|
||||
#define CMD_REQ0 0x180
|
||||
#define CMD_REQ_INCR 0x04
|
||||
|
||||
#define CMD_Q_STATUS_BASE 0x210
|
||||
#define CMD_Q_INT_STATUS_BASE 0x214
|
||||
#define CMD_Q_STATUS_INCR 0x20
|
||||
|
||||
#define CMD_Q_CACHE 0x228
|
||||
#define CMD_Q_CACHE_INC 0x20
|
||||
|
||||
#define CMD_Q_ERROR(__qs) ((__qs) & 0x0000003f);
|
||||
#define CMD_Q_DEPTH(__qs) (((__qs) >> 12) & 0x0000000f);
|
||||
|
||||
/****** REQ0 Related Values ******/
|
||||
#define REQ0_WAIT_FOR_WRITE 0x00000004
|
||||
#define REQ0_INT_ON_COMPLETE 0x00000002
|
||||
#define REQ0_STOP_ON_COMPLETE 0x00000001
|
||||
|
||||
#define REQ0_CMD_Q_SHIFT 9
|
||||
#define REQ0_JOBID_SHIFT 3
|
||||
|
||||
/****** REQ1 Related Values ******/
|
||||
#define REQ1_PROTECT_SHIFT 27
|
||||
#define REQ1_ENGINE_SHIFT 23
|
||||
#define REQ1_KEY_KSB_SHIFT 2
|
||||
|
||||
#define REQ1_EOM 0x00000002
|
||||
#define REQ1_INIT 0x00000001
|
||||
|
||||
/* AES Related Values */
|
||||
#define REQ1_AES_TYPE_SHIFT 21
|
||||
#define REQ1_AES_MODE_SHIFT 18
|
||||
#define REQ1_AES_ACTION_SHIFT 17
|
||||
#define REQ1_AES_CFB_SIZE_SHIFT 10
|
||||
|
||||
/* XTS-AES Related Values */
|
||||
#define REQ1_XTS_AES_SIZE_SHIFT 10
|
||||
|
||||
/* SHA Related Values */
|
||||
#define REQ1_SHA_TYPE_SHIFT 21
|
||||
|
||||
/* RSA Related Values */
|
||||
#define REQ1_RSA_MOD_SIZE_SHIFT 10
|
||||
|
||||
/* Pass-Through Related Values */
|
||||
#define REQ1_PT_BW_SHIFT 12
|
||||
#define REQ1_PT_BS_SHIFT 10
|
||||
|
||||
/* ECC Related Values */
|
||||
#define REQ1_ECC_AFFINE_CONVERT 0x00200000
|
||||
#define REQ1_ECC_FUNCTION_SHIFT 18
|
||||
|
||||
/****** REQ4 Related Values ******/
|
||||
#define REQ4_KSB_SHIFT 18
|
||||
#define REQ4_MEMTYPE_SHIFT 16
|
||||
|
||||
/****** REQ6 Related Values ******/
|
||||
#define REQ6_MEMTYPE_SHIFT 16
|
||||
|
||||
|
||||
/****** Key Storage Block ******/
|
||||
#define KSB_START 77
|
||||
#define KSB_END 127
|
||||
#define KSB_COUNT (KSB_END - KSB_START + 1)
|
||||
#define CCP_KSB_BITS 256
|
||||
#define CCP_KSB_BYTES 32
|
||||
|
||||
#define CCP_JOBID_MASK 0x0000003f
|
||||
|
||||
#define CCP_DMAPOOL_MAX_SIZE 64
|
||||
#define CCP_DMAPOOL_ALIGN (1 << 5)
|
||||
|
||||
#define CCP_REVERSE_BUF_SIZE 64
|
||||
|
||||
#define CCP_AES_KEY_KSB_COUNT 1
|
||||
#define CCP_AES_CTX_KSB_COUNT 1
|
||||
|
||||
#define CCP_XTS_AES_KEY_KSB_COUNT 1
|
||||
#define CCP_XTS_AES_CTX_KSB_COUNT 1
|
||||
|
||||
#define CCP_SHA_KSB_COUNT 1
|
||||
|
||||
#define CCP_RSA_MAX_WIDTH 4096
|
||||
|
||||
#define CCP_PASSTHRU_BLOCKSIZE 256
|
||||
#define CCP_PASSTHRU_MASKSIZE 32
|
||||
#define CCP_PASSTHRU_KSB_COUNT 1
|
||||
|
||||
#define CCP_ECC_MODULUS_BYTES 48 /* 384-bits */
|
||||
#define CCP_ECC_MAX_OPERANDS 6
|
||||
#define CCP_ECC_MAX_OUTPUTS 3
|
||||
#define CCP_ECC_SRC_BUF_SIZE 448
|
||||
#define CCP_ECC_DST_BUF_SIZE 192
|
||||
#define CCP_ECC_OPERAND_SIZE 64
|
||||
#define CCP_ECC_OUTPUT_SIZE 64
|
||||
#define CCP_ECC_RESULT_OFFSET 60
|
||||
#define CCP_ECC_RESULT_SUCCESS 0x0001
|
||||
|
||||
|
||||
struct ccp_device;
|
||||
struct ccp_cmd;
|
||||
|
||||
struct ccp_cmd_queue {
|
||||
struct ccp_device *ccp;
|
||||
|
||||
/* Queue identifier */
|
||||
u32 id;
|
||||
|
||||
/* Queue dma pool */
|
||||
struct dma_pool *dma_pool;
|
||||
|
||||
/* Queue reserved KSB regions */
|
||||
u32 ksb_key;
|
||||
u32 ksb_ctx;
|
||||
|
||||
/* Queue processing thread */
|
||||
struct task_struct *kthread;
|
||||
unsigned int active;
|
||||
unsigned int suspended;
|
||||
|
||||
/* Number of free command slots available */
|
||||
unsigned int free_slots;
|
||||
|
||||
/* Interrupt masks */
|
||||
u32 int_ok;
|
||||
u32 int_err;
|
||||
|
||||
/* Register addresses for queue */
|
||||
void __iomem *reg_status;
|
||||
void __iomem *reg_int_status;
|
||||
|
||||
/* Status values from job */
|
||||
u32 int_status;
|
||||
u32 q_status;
|
||||
u32 q_int_status;
|
||||
u32 cmd_error;
|
||||
|
||||
/* Interrupt wait queue */
|
||||
wait_queue_head_t int_queue;
|
||||
unsigned int int_rcvd;
|
||||
} ____cacheline_aligned;
|
||||
|
||||
struct ccp_device {
|
||||
struct device *dev;
|
||||
|
||||
/*
|
||||
* Bus specific device information
|
||||
*/
|
||||
void *dev_specific;
|
||||
int (*get_irq)(struct ccp_device *ccp);
|
||||
void (*free_irq)(struct ccp_device *ccp);
|
||||
|
||||
/*
|
||||
* I/O area used for device communication. The register mapping
|
||||
* starts at an offset into the mapped bar.
|
||||
* The CMD_REQx registers and the Delete_Cmd_Queue_Job register
|
||||
* need to be protected while a command queue thread is accessing
|
||||
* them.
|
||||
*/
|
||||
struct mutex req_mutex ____cacheline_aligned;
|
||||
void __iomem *io_map;
|
||||
void __iomem *io_regs;
|
||||
|
||||
/*
|
||||
* Master lists that all cmds are queued on. Because there can be
|
||||
* more than one CCP command queue that can process a cmd a separate
|
||||
* backlog list is neeeded so that the backlog completion call
|
||||
* completes before the cmd is available for execution.
|
||||
*/
|
||||
spinlock_t cmd_lock ____cacheline_aligned;
|
||||
unsigned int cmd_count;
|
||||
struct list_head cmd;
|
||||
struct list_head backlog;
|
||||
|
||||
/*
|
||||
* The command queues. These represent the queues available on the
|
||||
* CCP that are available for processing cmds
|
||||
*/
|
||||
struct ccp_cmd_queue cmd_q[MAX_HW_QUEUES];
|
||||
unsigned int cmd_q_count;
|
||||
|
||||
/*
|
||||
* Support for the CCP True RNG
|
||||
*/
|
||||
struct hwrng hwrng;
|
||||
unsigned int hwrng_retries;
|
||||
|
||||
/*
|
||||
* A counter used to generate job-ids for cmds submitted to the CCP
|
||||
*/
|
||||
atomic_t current_id ____cacheline_aligned;
|
||||
|
||||
/*
|
||||
* The CCP uses key storage blocks (KSB) to maintain context for certain
|
||||
* operations. To prevent multiple cmds from using the same KSB range
|
||||
* a command queue reserves a KSB range for the duration of the cmd.
|
||||
* Each queue, will however, reserve 2 KSB blocks for operations that
|
||||
* only require single KSB entries (eg. AES context/iv and key) in order
|
||||
* to avoid allocation contention. This will reserve at most 10 KSB
|
||||
* entries, leaving 40 KSB entries available for dynamic allocation.
|
||||
*/
|
||||
struct mutex ksb_mutex ____cacheline_aligned;
|
||||
DECLARE_BITMAP(ksb, KSB_COUNT);
|
||||
wait_queue_head_t ksb_queue;
|
||||
unsigned int ksb_avail;
|
||||
unsigned int ksb_count;
|
||||
u32 ksb_start;
|
||||
|
||||
/* Suspend support */
|
||||
unsigned int suspending;
|
||||
wait_queue_head_t suspend_queue;
|
||||
};
|
||||
|
||||
|
||||
int ccp_pci_init(void);
|
||||
void ccp_pci_exit(void);
|
||||
|
||||
struct ccp_device *ccp_alloc_struct(struct device *dev);
|
||||
int ccp_init(struct ccp_device *ccp);
|
||||
void ccp_destroy(struct ccp_device *ccp);
|
||||
bool ccp_queues_suspended(struct ccp_device *ccp);
|
||||
|
||||
irqreturn_t ccp_irq_handler(int irq, void *data);
|
||||
|
||||
int ccp_run_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd);
|
||||
|
||||
#endif
|
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,361 @@
|
|||
/*
|
||||
* AMD Cryptographic Coprocessor (CCP) driver
|
||||
*
|
||||
* Copyright (C) 2013 Advanced Micro Devices, Inc.
|
||||
*
|
||||
* Author: Tom Lendacky <thomas.lendacky@amd.com>
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License version 2 as
|
||||
* published by the Free Software Foundation.
|
||||
*/
|
||||
|
||||
#include <linux/module.h>
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/pci.h>
|
||||
#include <linux/pci_ids.h>
|
||||
#include <linux/kthread.h>
|
||||
#include <linux/sched.h>
|
||||
#include <linux/interrupt.h>
|
||||
#include <linux/spinlock.h>
|
||||
#include <linux/delay.h>
|
||||
#include <linux/ccp.h>
|
||||
|
||||
#include "ccp-dev.h"
|
||||
|
||||
#define IO_BAR 2
|
||||
#define MSIX_VECTORS 2
|
||||
|
||||
struct ccp_msix {
|
||||
u32 vector;
|
||||
char name[16];
|
||||
};
|
||||
|
||||
struct ccp_pci {
|
||||
int msix_count;
|
||||
struct ccp_msix msix[MSIX_VECTORS];
|
||||
};
|
||||
|
||||
static int ccp_get_msix_irqs(struct ccp_device *ccp)
|
||||
{
|
||||
struct ccp_pci *ccp_pci = ccp->dev_specific;
|
||||
struct device *dev = ccp->dev;
|
||||
struct pci_dev *pdev = container_of(dev, struct pci_dev, dev);
|
||||
struct msix_entry msix_entry[MSIX_VECTORS];
|
||||
unsigned int name_len = sizeof(ccp_pci->msix[0].name) - 1;
|
||||
int v, ret;
|
||||
|
||||
for (v = 0; v < ARRAY_SIZE(msix_entry); v++)
|
||||
msix_entry[v].entry = v;
|
||||
|
||||
while ((ret = pci_enable_msix(pdev, msix_entry, v)) > 0)
|
||||
v = ret;
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
ccp_pci->msix_count = v;
|
||||
for (v = 0; v < ccp_pci->msix_count; v++) {
|
||||
/* Set the interrupt names and request the irqs */
|
||||
snprintf(ccp_pci->msix[v].name, name_len, "ccp-%u", v);
|
||||
ccp_pci->msix[v].vector = msix_entry[v].vector;
|
||||
ret = request_irq(ccp_pci->msix[v].vector, ccp_irq_handler,
|
||||
0, ccp_pci->msix[v].name, dev);
|
||||
if (ret) {
|
||||
dev_notice(dev, "unable to allocate MSI-X IRQ (%d)\n",
|
||||
ret);
|
||||
goto e_irq;
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
|
||||
e_irq:
|
||||
while (v--)
|
||||
free_irq(ccp_pci->msix[v].vector, dev);
|
||||
|
||||
pci_disable_msix(pdev);
|
||||
|
||||
ccp_pci->msix_count = 0;
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int ccp_get_msi_irq(struct ccp_device *ccp)
|
||||
{
|
||||
struct device *dev = ccp->dev;
|
||||
struct pci_dev *pdev = container_of(dev, struct pci_dev, dev);
|
||||
int ret;
|
||||
|
||||
ret = pci_enable_msi(pdev);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
ret = request_irq(pdev->irq, ccp_irq_handler, 0, "ccp", dev);
|
||||
if (ret) {
|
||||
dev_notice(dev, "unable to allocate MSI IRQ (%d)\n", ret);
|
||||
goto e_msi;
|
||||
}
|
||||
|
||||
return 0;
|
||||
|
||||
e_msi:
|
||||
pci_disable_msi(pdev);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int ccp_get_irqs(struct ccp_device *ccp)
|
||||
{
|
||||
struct device *dev = ccp->dev;
|
||||
int ret;
|
||||
|
||||
ret = ccp_get_msix_irqs(ccp);
|
||||
if (!ret)
|
||||
return 0;
|
||||
|
||||
/* Couldn't get MSI-X vectors, try MSI */
|
||||
dev_notice(dev, "could not enable MSI-X (%d), trying MSI\n", ret);
|
||||
ret = ccp_get_msi_irq(ccp);
|
||||
if (!ret)
|
||||
return 0;
|
||||
|
||||
/* Couldn't get MSI interrupt */
|
||||
dev_notice(dev, "could not enable MSI (%d)\n", ret);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
static void ccp_free_irqs(struct ccp_device *ccp)
|
||||
{
|
||||
struct ccp_pci *ccp_pci = ccp->dev_specific;
|
||||
struct device *dev = ccp->dev;
|
||||
struct pci_dev *pdev = container_of(dev, struct pci_dev, dev);
|
||||
|
||||
if (ccp_pci->msix_count) {
|
||||
while (ccp_pci->msix_count--)
|
||||
free_irq(ccp_pci->msix[ccp_pci->msix_count].vector,
|
||||
dev);
|
||||
pci_disable_msix(pdev);
|
||||
} else {
|
||||
free_irq(pdev->irq, dev);
|
||||
pci_disable_msi(pdev);
|
||||
}
|
||||
}
|
||||
|
||||
static int ccp_find_mmio_area(struct ccp_device *ccp)
|
||||
{
|
||||
struct device *dev = ccp->dev;
|
||||
struct pci_dev *pdev = container_of(dev, struct pci_dev, dev);
|
||||
resource_size_t io_len;
|
||||
unsigned long io_flags;
|
||||
int bar;
|
||||
|
||||
io_flags = pci_resource_flags(pdev, IO_BAR);
|
||||
io_len = pci_resource_len(pdev, IO_BAR);
|
||||
if ((io_flags & IORESOURCE_MEM) && (io_len >= (IO_OFFSET + 0x800)))
|
||||
return IO_BAR;
|
||||
|
||||
for (bar = 0; bar < PCI_STD_RESOURCE_END; bar++) {
|
||||
io_flags = pci_resource_flags(pdev, bar);
|
||||
io_len = pci_resource_len(pdev, bar);
|
||||
if ((io_flags & IORESOURCE_MEM) &&
|
||||
(io_len >= (IO_OFFSET + 0x800)))
|
||||
return bar;
|
||||
}
|
||||
|
||||
return -EIO;
|
||||
}
|
||||
|
||||
static int ccp_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id)
|
||||
{
|
||||
struct ccp_device *ccp;
|
||||
struct ccp_pci *ccp_pci;
|
||||
struct device *dev = &pdev->dev;
|
||||
unsigned int bar;
|
||||
int ret;
|
||||
|
||||
ret = -ENOMEM;
|
||||
ccp = ccp_alloc_struct(dev);
|
||||
if (!ccp)
|
||||
goto e_err;
|
||||
|
||||
ccp_pci = kzalloc(sizeof(*ccp_pci), GFP_KERNEL);
|
||||
if (!ccp_pci) {
|
||||
ret = -ENOMEM;
|
||||
goto e_free1;
|
||||
}
|
||||
ccp->dev_specific = ccp_pci;
|
||||
ccp->get_irq = ccp_get_irqs;
|
||||
ccp->free_irq = ccp_free_irqs;
|
||||
|
||||
ret = pci_request_regions(pdev, "ccp");
|
||||
if (ret) {
|
||||
dev_err(dev, "pci_request_regions failed (%d)\n", ret);
|
||||
goto e_free2;
|
||||
}
|
||||
|
||||
ret = pci_enable_device(pdev);
|
||||
if (ret) {
|
||||
dev_err(dev, "pci_enable_device failed (%d)\n", ret);
|
||||
goto e_regions;
|
||||
}
|
||||
|
||||
pci_set_master(pdev);
|
||||
|
||||
ret = ccp_find_mmio_area(ccp);
|
||||
if (ret < 0)
|
||||
goto e_device;
|
||||
bar = ret;
|
||||
|
||||
ret = -EIO;
|
||||
ccp->io_map = pci_iomap(pdev, bar, 0);
|
||||
if (ccp->io_map == NULL) {
|
||||
dev_err(dev, "pci_iomap failed\n");
|
||||
goto e_device;
|
||||
}
|
||||
ccp->io_regs = ccp->io_map + IO_OFFSET;
|
||||
|
||||
ret = dma_set_mask(dev, DMA_BIT_MASK(48));
|
||||
if (ret == 0) {
|
||||
ret = dma_set_coherent_mask(dev, DMA_BIT_MASK(48));
|
||||
if (ret) {
|
||||
dev_err(dev,
|
||||
"pci_set_consistent_dma_mask failed (%d)\n",
|
||||
ret);
|
||||
goto e_bar0;
|
||||
}
|
||||
} else {
|
||||
ret = dma_set_mask(dev, DMA_BIT_MASK(32));
|
||||
if (ret) {
|
||||
dev_err(dev, "pci_set_dma_mask failed (%d)\n", ret);
|
||||
goto e_bar0;
|
||||
}
|
||||
}
|
||||
|
||||
dev_set_drvdata(dev, ccp);
|
||||
|
||||
ret = ccp_init(ccp);
|
||||
if (ret)
|
||||
goto e_bar0;
|
||||
|
||||
dev_notice(dev, "enabled\n");
|
||||
|
||||
return 0;
|
||||
|
||||
e_bar0:
|
||||
pci_iounmap(pdev, ccp->io_map);
|
||||
|
||||
e_device:
|
||||
pci_disable_device(pdev);
|
||||
|
||||
e_regions:
|
||||
pci_release_regions(pdev);
|
||||
|
||||
e_free2:
|
||||
kfree(ccp_pci);
|
||||
|
||||
e_free1:
|
||||
kfree(ccp);
|
||||
|
||||
e_err:
|
||||
dev_notice(dev, "initialization failed\n");
|
||||
return ret;
|
||||
}
|
||||
|
||||
static void ccp_pci_remove(struct pci_dev *pdev)
|
||||
{
|
||||
struct device *dev = &pdev->dev;
|
||||
struct ccp_device *ccp = dev_get_drvdata(dev);
|
||||
|
||||
if (!ccp)
|
||||
return;
|
||||
|
||||
ccp_destroy(ccp);
|
||||
|
||||
pci_iounmap(pdev, ccp->io_map);
|
||||
|
||||
pci_disable_device(pdev);
|
||||
|
||||
pci_release_regions(pdev);
|
||||
|
||||
kfree(ccp);
|
||||
|
||||
dev_notice(dev, "disabled\n");
|
||||
}
|
||||
|
||||
#ifdef CONFIG_PM
|
||||
static int ccp_pci_suspend(struct pci_dev *pdev, pm_message_t state)
|
||||
{
|
||||
struct device *dev = &pdev->dev;
|
||||
struct ccp_device *ccp = dev_get_drvdata(dev);
|
||||
unsigned long flags;
|
||||
unsigned int i;
|
||||
|
||||
spin_lock_irqsave(&ccp->cmd_lock, flags);
|
||||
|
||||
ccp->suspending = 1;
|
||||
|
||||
/* Wake all the queue kthreads to prepare for suspend */
|
||||
for (i = 0; i < ccp->cmd_q_count; i++)
|
||||
wake_up_process(ccp->cmd_q[i].kthread);
|
||||
|
||||
spin_unlock_irqrestore(&ccp->cmd_lock, flags);
|
||||
|
||||
/* Wait for all queue kthreads to say they're done */
|
||||
while (!ccp_queues_suspended(ccp))
|
||||
wait_event_interruptible(ccp->suspend_queue,
|
||||
ccp_queues_suspended(ccp));
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int ccp_pci_resume(struct pci_dev *pdev)
|
||||
{
|
||||
struct device *dev = &pdev->dev;
|
||||
struct ccp_device *ccp = dev_get_drvdata(dev);
|
||||
unsigned long flags;
|
||||
unsigned int i;
|
||||
|
||||
spin_lock_irqsave(&ccp->cmd_lock, flags);
|
||||
|
||||
ccp->suspending = 0;
|
||||
|
||||
/* Wake up all the kthreads */
|
||||
for (i = 0; i < ccp->cmd_q_count; i++) {
|
||||
ccp->cmd_q[i].suspended = 0;
|
||||
wake_up_process(ccp->cmd_q[i].kthread);
|
||||
}
|
||||
|
||||
spin_unlock_irqrestore(&ccp->cmd_lock, flags);
|
||||
|
||||
return 0;
|
||||
}
|
||||
#endif
|
||||
|
||||
static DEFINE_PCI_DEVICE_TABLE(ccp_pci_table) = {
|
||||
{ PCI_VDEVICE(AMD, 0x1537), },
|
||||
/* Last entry must be zero */
|
||||
{ 0, }
|
||||
};
|
||||
MODULE_DEVICE_TABLE(pci, ccp_pci_table);
|
||||
|
||||
static struct pci_driver ccp_pci_driver = {
|
||||
.name = "AMD Cryptographic Coprocessor",
|
||||
.id_table = ccp_pci_table,
|
||||
.probe = ccp_pci_probe,
|
||||
.remove = ccp_pci_remove,
|
||||
#ifdef CONFIG_PM
|
||||
.suspend = ccp_pci_suspend,
|
||||
.resume = ccp_pci_resume,
|
||||
#endif
|
||||
};
|
||||
|
||||
int ccp_pci_init(void)
|
||||
{
|
||||
return pci_register_driver(&ccp_pci_driver);
|
||||
}
|
||||
|
||||
void ccp_pci_exit(void)
|
||||
{
|
||||
pci_unregister_driver(&ccp_pci_driver);
|
||||
}
|
|
@ -1,903 +0,0 @@
|
|||
/*
|
||||
* Cryptographic API.
|
||||
*
|
||||
* Support for DCP cryptographic accelerator.
|
||||
*
|
||||
* Copyright (c) 2013
|
||||
* Author: Tobias Rauter <tobias.rauter@gmail.com>
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License version 2 as published
|
||||
* by the Free Software Foundation.
|
||||
*
|
||||
* Based on tegra-aes.c, dcp.c (from freescale SDK) and sahara.c
|
||||
*/
|
||||
#include <linux/module.h>
|
||||
#include <linux/init.h>
|
||||
#include <linux/errno.h>
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/platform_device.h>
|
||||
#include <linux/dma-mapping.h>
|
||||
#include <linux/io.h>
|
||||
#include <linux/mutex.h>
|
||||
#include <linux/interrupt.h>
|
||||
#include <linux/completion.h>
|
||||
#include <linux/workqueue.h>
|
||||
#include <linux/delay.h>
|
||||
#include <linux/crypto.h>
|
||||
#include <linux/miscdevice.h>
|
||||
|
||||
#include <crypto/scatterwalk.h>
|
||||
#include <crypto/aes.h>
|
||||
|
||||
|
||||
/* IOCTL for DCP OTP Key AES - taken from Freescale's SDK*/
|
||||
#define DBS_IOCTL_BASE 'd'
|
||||
#define DBS_ENC _IOW(DBS_IOCTL_BASE, 0x00, uint8_t[16])
|
||||
#define DBS_DEC _IOW(DBS_IOCTL_BASE, 0x01, uint8_t[16])
|
||||
|
||||
/* DCP channel used for AES */
|
||||
#define USED_CHANNEL 1
|
||||
/* Ring Buffers' maximum size */
|
||||
#define DCP_MAX_PKG 20
|
||||
|
||||
/* Control Register */
|
||||
#define DCP_REG_CTRL 0x000
|
||||
#define DCP_CTRL_SFRST (1<<31)
|
||||
#define DCP_CTRL_CLKGATE (1<<30)
|
||||
#define DCP_CTRL_CRYPTO_PRESENT (1<<29)
|
||||
#define DCP_CTRL_SHA_PRESENT (1<<28)
|
||||
#define DCP_CTRL_GATHER_RES_WRITE (1<<23)
|
||||
#define DCP_CTRL_ENABLE_CONTEXT_CACHE (1<<22)
|
||||
#define DCP_CTRL_ENABLE_CONTEXT_SWITCH (1<<21)
|
||||
#define DCP_CTRL_CH_IRQ_E_0 0x01
|
||||
#define DCP_CTRL_CH_IRQ_E_1 0x02
|
||||
#define DCP_CTRL_CH_IRQ_E_2 0x04
|
||||
#define DCP_CTRL_CH_IRQ_E_3 0x08
|
||||
|
||||
/* Status register */
|
||||
#define DCP_REG_STAT 0x010
|
||||
#define DCP_STAT_OTP_KEY_READY (1<<28)
|
||||
#define DCP_STAT_CUR_CHANNEL(stat) ((stat>>24)&0x0F)
|
||||
#define DCP_STAT_READY_CHANNEL(stat) ((stat>>16)&0x0F)
|
||||
#define DCP_STAT_IRQ(stat) (stat&0x0F)
|
||||
#define DCP_STAT_CHAN_0 (0x01)
|
||||
#define DCP_STAT_CHAN_1 (0x02)
|
||||
#define DCP_STAT_CHAN_2 (0x04)
|
||||
#define DCP_STAT_CHAN_3 (0x08)
|
||||
|
||||
/* Channel Control Register */
|
||||
#define DCP_REG_CHAN_CTRL 0x020
|
||||
#define DCP_CHAN_CTRL_CH0_IRQ_MERGED (1<<16)
|
||||
#define DCP_CHAN_CTRL_HIGH_PRIO_0 (0x0100)
|
||||
#define DCP_CHAN_CTRL_HIGH_PRIO_1 (0x0200)
|
||||
#define DCP_CHAN_CTRL_HIGH_PRIO_2 (0x0400)
|
||||
#define DCP_CHAN_CTRL_HIGH_PRIO_3 (0x0800)
|
||||
#define DCP_CHAN_CTRL_ENABLE_0 (0x01)
|
||||
#define DCP_CHAN_CTRL_ENABLE_1 (0x02)
|
||||
#define DCP_CHAN_CTRL_ENABLE_2 (0x04)
|
||||
#define DCP_CHAN_CTRL_ENABLE_3 (0x08)
|
||||
|
||||
/*
|
||||
* Channel Registers:
|
||||
* The DCP has 4 channels. Each of this channels
|
||||
* has 4 registers (command pointer, semaphore, status and options).
|
||||
* The address of register REG of channel CHAN is obtained by
|
||||
* dcp_chan_reg(REG, CHAN)
|
||||
*/
|
||||
#define DCP_REG_CHAN_PTR 0x00000100
|
||||
#define DCP_REG_CHAN_SEMA 0x00000110
|
||||
#define DCP_REG_CHAN_STAT 0x00000120
|
||||
#define DCP_REG_CHAN_OPT 0x00000130
|
||||
|
||||
#define DCP_CHAN_STAT_NEXT_CHAIN_IS_0 0x010000
|
||||
#define DCP_CHAN_STAT_NO_CHAIN 0x020000
|
||||
#define DCP_CHAN_STAT_CONTEXT_ERROR 0x030000
|
||||
#define DCP_CHAN_STAT_PAYLOAD_ERROR 0x040000
|
||||
#define DCP_CHAN_STAT_INVALID_MODE 0x050000
|
||||
#define DCP_CHAN_STAT_PAGEFAULT 0x40
|
||||
#define DCP_CHAN_STAT_DST 0x20
|
||||
#define DCP_CHAN_STAT_SRC 0x10
|
||||
#define DCP_CHAN_STAT_PACKET 0x08
|
||||
#define DCP_CHAN_STAT_SETUP 0x04
|
||||
#define DCP_CHAN_STAT_MISMATCH 0x02
|
||||
|
||||
/* hw packet control*/
|
||||
|
||||
#define DCP_PKT_PAYLOAD_KEY (1<<11)
|
||||
#define DCP_PKT_OTP_KEY (1<<10)
|
||||
#define DCP_PKT_CIPHER_INIT (1<<9)
|
||||
#define DCP_PKG_CIPHER_ENCRYPT (1<<8)
|
||||
#define DCP_PKT_CIPHER_ENABLE (1<<5)
|
||||
#define DCP_PKT_DECR_SEM (1<<1)
|
||||
#define DCP_PKT_CHAIN (1<<2)
|
||||
#define DCP_PKT_IRQ 1
|
||||
|
||||
#define DCP_PKT_MODE_CBC (1<<4)
|
||||
#define DCP_PKT_KEYSELECT_OTP (0xFF<<8)
|
||||
|
||||
/* cipher flags */
|
||||
#define DCP_ENC 0x0001
|
||||
#define DCP_DEC 0x0002
|
||||
#define DCP_ECB 0x0004
|
||||
#define DCP_CBC 0x0008
|
||||
#define DCP_CBC_INIT 0x0010
|
||||
#define DCP_NEW_KEY 0x0040
|
||||
#define DCP_OTP_KEY 0x0080
|
||||
#define DCP_AES 0x1000
|
||||
|
||||
/* DCP Flags */
|
||||
#define DCP_FLAG_BUSY 0x01
|
||||
#define DCP_FLAG_PRODUCING 0x02
|
||||
|
||||
/* clock defines */
|
||||
#define CLOCK_ON 1
|
||||
#define CLOCK_OFF 0
|
||||
|
||||
struct dcp_dev_req_ctx {
|
||||
int mode;
|
||||
};
|
||||
|
||||
struct dcp_op {
|
||||
unsigned int flags;
|
||||
u8 key[AES_KEYSIZE_128];
|
||||
int keylen;
|
||||
|
||||
struct ablkcipher_request *req;
|
||||
struct crypto_ablkcipher *fallback;
|
||||
|
||||
uint32_t stat;
|
||||
uint32_t pkt1;
|
||||
uint32_t pkt2;
|
||||
struct ablkcipher_walk walk;
|
||||
};
|
||||
|
||||
struct dcp_dev {
|
||||
struct device *dev;
|
||||
void __iomem *dcp_regs_base;
|
||||
|
||||
int dcp_vmi_irq;
|
||||
int dcp_irq;
|
||||
|
||||
spinlock_t queue_lock;
|
||||
struct crypto_queue queue;
|
||||
|
||||
uint32_t pkt_produced;
|
||||
uint32_t pkt_consumed;
|
||||
|
||||
struct dcp_hw_packet *hw_pkg[DCP_MAX_PKG];
|
||||
dma_addr_t hw_phys_pkg;
|
||||
|
||||
/* [KEY][IV] Both with 16 Bytes */
|
||||
u8 *payload_base;
|
||||
dma_addr_t payload_base_dma;
|
||||
|
||||
|
||||
struct tasklet_struct done_task;
|
||||
struct tasklet_struct queue_task;
|
||||
struct timer_list watchdog;
|
||||
|
||||
unsigned long flags;
|
||||
|
||||
struct dcp_op *ctx;
|
||||
|
||||
struct miscdevice dcp_bootstream_misc;
|
||||
};
|
||||
|
||||
struct dcp_hw_packet {
|
||||
uint32_t next;
|
||||
uint32_t pkt1;
|
||||
uint32_t pkt2;
|
||||
uint32_t src;
|
||||
uint32_t dst;
|
||||
uint32_t size;
|
||||
uint32_t payload;
|
||||
uint32_t stat;
|
||||
};
|
||||
|
||||
static struct dcp_dev *global_dev;
|
||||
|
||||
static inline u32 dcp_chan_reg(u32 reg, int chan)
|
||||
{
|
||||
return reg + (chan) * 0x40;
|
||||
}
|
||||
|
||||
static inline void dcp_write(struct dcp_dev *dev, u32 data, u32 reg)
|
||||
{
|
||||
writel(data, dev->dcp_regs_base + reg);
|
||||
}
|
||||
|
||||
static inline void dcp_set(struct dcp_dev *dev, u32 data, u32 reg)
|
||||
{
|
||||
writel(data, dev->dcp_regs_base + (reg | 0x04));
|
||||
}
|
||||
|
||||
static inline void dcp_clear(struct dcp_dev *dev, u32 data, u32 reg)
|
||||
{
|
||||
writel(data, dev->dcp_regs_base + (reg | 0x08));
|
||||
}
|
||||
|
||||
static inline void dcp_toggle(struct dcp_dev *dev, u32 data, u32 reg)
|
||||
{
|
||||
writel(data, dev->dcp_regs_base + (reg | 0x0C));
|
||||
}
|
||||
|
||||
static inline unsigned int dcp_read(struct dcp_dev *dev, u32 reg)
|
||||
{
|
||||
return readl(dev->dcp_regs_base + reg);
|
||||
}
|
||||
|
||||
static void dcp_dma_unmap(struct dcp_dev *dev, struct dcp_hw_packet *pkt)
|
||||
{
|
||||
dma_unmap_page(dev->dev, pkt->src, pkt->size, DMA_TO_DEVICE);
|
||||
dma_unmap_page(dev->dev, pkt->dst, pkt->size, DMA_FROM_DEVICE);
|
||||
dev_dbg(dev->dev, "unmap packet %x", (unsigned int) pkt);
|
||||
}
|
||||
|
||||
static int dcp_dma_map(struct dcp_dev *dev,
|
||||
struct ablkcipher_walk *walk, struct dcp_hw_packet *pkt)
|
||||
{
|
||||
dev_dbg(dev->dev, "map packet %x", (unsigned int) pkt);
|
||||
/* align to length = 16 */
|
||||
pkt->size = walk->nbytes - (walk->nbytes % 16);
|
||||
|
||||
pkt->src = dma_map_page(dev->dev, walk->src.page, walk->src.offset,
|
||||
pkt->size, DMA_TO_DEVICE);
|
||||
|
||||
if (pkt->src == 0) {
|
||||
dev_err(dev->dev, "Unable to map src");
|
||||
return -ENOMEM;
|
||||
}
|
||||
|
||||
pkt->dst = dma_map_page(dev->dev, walk->dst.page, walk->dst.offset,
|
||||
pkt->size, DMA_FROM_DEVICE);
|
||||
|
||||
if (pkt->dst == 0) {
|
||||
dev_err(dev->dev, "Unable to map dst");
|
||||
dma_unmap_page(dev->dev, pkt->src, pkt->size, DMA_TO_DEVICE);
|
||||
return -ENOMEM;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void dcp_op_one(struct dcp_dev *dev, struct dcp_hw_packet *pkt,
|
||||
uint8_t last)
|
||||
{
|
||||
struct dcp_op *ctx = dev->ctx;
|
||||
pkt->pkt1 = ctx->pkt1;
|
||||
pkt->pkt2 = ctx->pkt2;
|
||||
|
||||
pkt->payload = (u32) dev->payload_base_dma;
|
||||
pkt->stat = 0;
|
||||
|
||||
if (ctx->flags & DCP_CBC_INIT) {
|
||||
pkt->pkt1 |= DCP_PKT_CIPHER_INIT;
|
||||
ctx->flags &= ~DCP_CBC_INIT;
|
||||
}
|
||||
|
||||
mod_timer(&dev->watchdog, jiffies + msecs_to_jiffies(500));
|
||||
pkt->pkt1 |= DCP_PKT_IRQ;
|
||||
if (!last)
|
||||
pkt->pkt1 |= DCP_PKT_CHAIN;
|
||||
|
||||
dev->pkt_produced++;
|
||||
|
||||
dcp_write(dev, 1,
|
||||
dcp_chan_reg(DCP_REG_CHAN_SEMA, USED_CHANNEL));
|
||||
}
|
||||
|
||||
static void dcp_op_proceed(struct dcp_dev *dev)
|
||||
{
|
||||
struct dcp_op *ctx = dev->ctx;
|
||||
struct dcp_hw_packet *pkt;
|
||||
|
||||
while (ctx->walk.nbytes) {
|
||||
int err = 0;
|
||||
|
||||
pkt = dev->hw_pkg[dev->pkt_produced % DCP_MAX_PKG];
|
||||
err = dcp_dma_map(dev, &ctx->walk, pkt);
|
||||
if (err) {
|
||||
dev->ctx->stat |= err;
|
||||
/* start timer to wait for already set up calls */
|
||||
mod_timer(&dev->watchdog,
|
||||
jiffies + msecs_to_jiffies(500));
|
||||
break;
|
||||
}
|
||||
|
||||
|
||||
err = ctx->walk.nbytes - pkt->size;
|
||||
ablkcipher_walk_done(dev->ctx->req, &dev->ctx->walk, err);
|
||||
|
||||
dcp_op_one(dev, pkt, ctx->walk.nbytes == 0);
|
||||
/* we have to wait if no space is left in buffer */
|
||||
if (dev->pkt_produced - dev->pkt_consumed == DCP_MAX_PKG)
|
||||
break;
|
||||
}
|
||||
clear_bit(DCP_FLAG_PRODUCING, &dev->flags);
|
||||
}
|
||||
|
||||
static void dcp_op_start(struct dcp_dev *dev, uint8_t use_walk)
|
||||
{
|
||||
struct dcp_op *ctx = dev->ctx;
|
||||
|
||||
if (ctx->flags & DCP_NEW_KEY) {
|
||||
memcpy(dev->payload_base, ctx->key, ctx->keylen);
|
||||
ctx->flags &= ~DCP_NEW_KEY;
|
||||
}
|
||||
|
||||
ctx->pkt1 = 0;
|
||||
ctx->pkt1 |= DCP_PKT_CIPHER_ENABLE;
|
||||
ctx->pkt1 |= DCP_PKT_DECR_SEM;
|
||||
|
||||
if (ctx->flags & DCP_OTP_KEY)
|
||||
ctx->pkt1 |= DCP_PKT_OTP_KEY;
|
||||
else
|
||||
ctx->pkt1 |= DCP_PKT_PAYLOAD_KEY;
|
||||
|
||||
if (ctx->flags & DCP_ENC)
|
||||
ctx->pkt1 |= DCP_PKG_CIPHER_ENCRYPT;
|
||||
|
||||
ctx->pkt2 = 0;
|
||||
if (ctx->flags & DCP_CBC)
|
||||
ctx->pkt2 |= DCP_PKT_MODE_CBC;
|
||||
|
||||
dev->pkt_produced = 0;
|
||||
dev->pkt_consumed = 0;
|
||||
|
||||
ctx->stat = 0;
|
||||
dcp_clear(dev, -1, dcp_chan_reg(DCP_REG_CHAN_STAT, USED_CHANNEL));
|
||||
dcp_write(dev, (u32) dev->hw_phys_pkg,
|
||||
dcp_chan_reg(DCP_REG_CHAN_PTR, USED_CHANNEL));
|
||||
|
||||
set_bit(DCP_FLAG_PRODUCING, &dev->flags);
|
||||
|
||||
if (use_walk) {
|
||||
ablkcipher_walk_init(&ctx->walk, ctx->req->dst,
|
||||
ctx->req->src, ctx->req->nbytes);
|
||||
ablkcipher_walk_phys(ctx->req, &ctx->walk);
|
||||
dcp_op_proceed(dev);
|
||||
} else {
|
||||
dcp_op_one(dev, dev->hw_pkg[0], 1);
|
||||
clear_bit(DCP_FLAG_PRODUCING, &dev->flags);
|
||||
}
|
||||
}
|
||||
|
||||
static void dcp_done_task(unsigned long data)
|
||||
{
|
||||
struct dcp_dev *dev = (struct dcp_dev *)data;
|
||||
struct dcp_hw_packet *last_packet;
|
||||
int fin;
|
||||
fin = 0;
|
||||
|
||||
for (last_packet = dev->hw_pkg[(dev->pkt_consumed) % DCP_MAX_PKG];
|
||||
last_packet->stat == 1;
|
||||
last_packet =
|
||||
dev->hw_pkg[++(dev->pkt_consumed) % DCP_MAX_PKG]) {
|
||||
|
||||
dcp_dma_unmap(dev, last_packet);
|
||||
last_packet->stat = 0;
|
||||
fin++;
|
||||
}
|
||||
/* the last call of this function already consumed this IRQ's packet */
|
||||
if (fin == 0)
|
||||
return;
|
||||
|
||||
dev_dbg(dev->dev,
|
||||
"Packet(s) done with status %x; finished: %d, produced:%d, complete consumed: %d",
|
||||
dev->ctx->stat, fin, dev->pkt_produced, dev->pkt_consumed);
|
||||
|
||||
last_packet = dev->hw_pkg[(dev->pkt_consumed - 1) % DCP_MAX_PKG];
|
||||
if (!dev->ctx->stat && last_packet->pkt1 & DCP_PKT_CHAIN) {
|
||||
if (!test_and_set_bit(DCP_FLAG_PRODUCING, &dev->flags))
|
||||
dcp_op_proceed(dev);
|
||||
return;
|
||||
}
|
||||
|
||||
while (unlikely(dev->pkt_consumed < dev->pkt_produced)) {
|
||||
dcp_dma_unmap(dev,
|
||||
dev->hw_pkg[dev->pkt_consumed++ % DCP_MAX_PKG]);
|
||||
}
|
||||
|
||||
if (dev->ctx->flags & DCP_OTP_KEY) {
|
||||
/* we used the miscdevice, no walk to finish */
|
||||
clear_bit(DCP_FLAG_BUSY, &dev->flags);
|
||||
return;
|
||||
}
|
||||
|
||||
ablkcipher_walk_complete(&dev->ctx->walk);
|
||||
dev->ctx->req->base.complete(&dev->ctx->req->base,
|
||||
dev->ctx->stat);
|
||||
dev->ctx->req = NULL;
|
||||
/* in case there are other requests in the queue */
|
||||
tasklet_schedule(&dev->queue_task);
|
||||
}
|
||||
|
||||
static void dcp_watchdog(unsigned long data)
|
||||
{
|
||||
struct dcp_dev *dev = (struct dcp_dev *)data;
|
||||
dev->ctx->stat |= dcp_read(dev,
|
||||
dcp_chan_reg(DCP_REG_CHAN_STAT, USED_CHANNEL));
|
||||
|
||||
dev_err(dev->dev, "Timeout, Channel status: %x", dev->ctx->stat);
|
||||
|
||||
if (!dev->ctx->stat)
|
||||
dev->ctx->stat = -ETIMEDOUT;
|
||||
|
||||
dcp_done_task(data);
|
||||
}
|
||||
|
||||
|
||||
static irqreturn_t dcp_common_irq(int irq, void *context)
|
||||
{
|
||||
u32 msk;
|
||||
struct dcp_dev *dev = (struct dcp_dev *) context;
|
||||
|
||||
del_timer(&dev->watchdog);
|
||||
|
||||
msk = DCP_STAT_IRQ(dcp_read(dev, DCP_REG_STAT));
|
||||
dcp_clear(dev, msk, DCP_REG_STAT);
|
||||
if (msk == 0)
|
||||
return IRQ_NONE;
|
||||
|
||||
dev->ctx->stat |= dcp_read(dev,
|
||||
dcp_chan_reg(DCP_REG_CHAN_STAT, USED_CHANNEL));
|
||||
|
||||
if (msk & DCP_STAT_CHAN_1)
|
||||
tasklet_schedule(&dev->done_task);
|
||||
|
||||
return IRQ_HANDLED;
|
||||
}
|
||||
|
||||
static irqreturn_t dcp_vmi_irq(int irq, void *context)
|
||||
{
|
||||
return dcp_common_irq(irq, context);
|
||||
}
|
||||
|
||||
static irqreturn_t dcp_irq(int irq, void *context)
|
||||
{
|
||||
return dcp_common_irq(irq, context);
|
||||
}
|
||||
|
||||
static void dcp_crypt(struct dcp_dev *dev, struct dcp_op *ctx)
|
||||
{
|
||||
dev->ctx = ctx;
|
||||
|
||||
if ((ctx->flags & DCP_CBC) && ctx->req->info) {
|
||||
ctx->flags |= DCP_CBC_INIT;
|
||||
memcpy(dev->payload_base + AES_KEYSIZE_128,
|
||||
ctx->req->info, AES_KEYSIZE_128);
|
||||
}
|
||||
|
||||
dcp_op_start(dev, 1);
|
||||
}
|
||||
|
||||
static void dcp_queue_task(unsigned long data)
|
||||
{
|
||||
struct dcp_dev *dev = (struct dcp_dev *) data;
|
||||
struct crypto_async_request *async_req, *backlog;
|
||||
struct crypto_ablkcipher *tfm;
|
||||
struct dcp_op *ctx;
|
||||
struct dcp_dev_req_ctx *rctx;
|
||||
struct ablkcipher_request *req;
|
||||
unsigned long flags;
|
||||
|
||||
spin_lock_irqsave(&dev->queue_lock, flags);
|
||||
|
||||
backlog = crypto_get_backlog(&dev->queue);
|
||||
async_req = crypto_dequeue_request(&dev->queue);
|
||||
|
||||
spin_unlock_irqrestore(&dev->queue_lock, flags);
|
||||
|
||||
if (!async_req)
|
||||
goto ret_nothing_done;
|
||||
|
||||
if (backlog)
|
||||
backlog->complete(backlog, -EINPROGRESS);
|
||||
|
||||
req = ablkcipher_request_cast(async_req);
|
||||
tfm = crypto_ablkcipher_reqtfm(req);
|
||||
rctx = ablkcipher_request_ctx(req);
|
||||
ctx = crypto_ablkcipher_ctx(tfm);
|
||||
|
||||
if (!req->src || !req->dst)
|
||||
goto ret_nothing_done;
|
||||
|
||||
ctx->flags |= rctx->mode;
|
||||
ctx->req = req;
|
||||
|
||||
dcp_crypt(dev, ctx);
|
||||
|
||||
return;
|
||||
|
||||
ret_nothing_done:
|
||||
clear_bit(DCP_FLAG_BUSY, &dev->flags);
|
||||
}
|
||||
|
||||
|
||||
static int dcp_cra_init(struct crypto_tfm *tfm)
|
||||
{
|
||||
const char *name = tfm->__crt_alg->cra_name;
|
||||
struct dcp_op *ctx = crypto_tfm_ctx(tfm);
|
||||
|
||||
tfm->crt_ablkcipher.reqsize = sizeof(struct dcp_dev_req_ctx);
|
||||
|
||||
ctx->fallback = crypto_alloc_ablkcipher(name, 0,
|
||||
CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK);
|
||||
|
||||
if (IS_ERR(ctx->fallback)) {
|
||||
dev_err(global_dev->dev, "Error allocating fallback algo %s\n",
|
||||
name);
|
||||
return PTR_ERR(ctx->fallback);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void dcp_cra_exit(struct crypto_tfm *tfm)
|
||||
{
|
||||
struct dcp_op *ctx = crypto_tfm_ctx(tfm);
|
||||
|
||||
if (ctx->fallback)
|
||||
crypto_free_ablkcipher(ctx->fallback);
|
||||
|
||||
ctx->fallback = NULL;
|
||||
}
|
||||
|
||||
/* async interface */
|
||||
static int dcp_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
|
||||
unsigned int len)
|
||||
{
|
||||
struct dcp_op *ctx = crypto_ablkcipher_ctx(tfm);
|
||||
unsigned int ret = 0;
|
||||
ctx->keylen = len;
|
||||
ctx->flags = 0;
|
||||
if (len == AES_KEYSIZE_128) {
|
||||
if (memcmp(ctx->key, key, AES_KEYSIZE_128)) {
|
||||
memcpy(ctx->key, key, len);
|
||||
ctx->flags |= DCP_NEW_KEY;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
ctx->fallback->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
|
||||
ctx->fallback->base.crt_flags |=
|
||||
(tfm->base.crt_flags & CRYPTO_TFM_REQ_MASK);
|
||||
|
||||
ret = crypto_ablkcipher_setkey(ctx->fallback, key, len);
|
||||
if (ret) {
|
||||
struct crypto_tfm *tfm_aux = crypto_ablkcipher_tfm(tfm);
|
||||
|
||||
tfm_aux->crt_flags &= ~CRYPTO_TFM_RES_MASK;
|
||||
tfm_aux->crt_flags |=
|
||||
(ctx->fallback->base.crt_flags & CRYPTO_TFM_RES_MASK);
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int dcp_aes_cbc_crypt(struct ablkcipher_request *req, int mode)
|
||||
{
|
||||
struct dcp_dev_req_ctx *rctx = ablkcipher_request_ctx(req);
|
||||
struct dcp_dev *dev = global_dev;
|
||||
unsigned long flags;
|
||||
int err = 0;
|
||||
|
||||
if (!IS_ALIGNED(req->nbytes, AES_BLOCK_SIZE))
|
||||
return -EINVAL;
|
||||
|
||||
rctx->mode = mode;
|
||||
|
||||
spin_lock_irqsave(&dev->queue_lock, flags);
|
||||
err = ablkcipher_enqueue_request(&dev->queue, req);
|
||||
spin_unlock_irqrestore(&dev->queue_lock, flags);
|
||||
|
||||
flags = test_and_set_bit(DCP_FLAG_BUSY, &dev->flags);
|
||||
|
||||
if (!(flags & DCP_FLAG_BUSY))
|
||||
tasklet_schedule(&dev->queue_task);
|
||||
|
||||
return err;
|
||||
}
|
||||
|
||||
static int dcp_aes_cbc_encrypt(struct ablkcipher_request *req)
|
||||
{
|
||||
struct crypto_tfm *tfm =
|
||||
crypto_ablkcipher_tfm(crypto_ablkcipher_reqtfm(req));
|
||||
struct dcp_op *ctx = crypto_ablkcipher_ctx(
|
||||
crypto_ablkcipher_reqtfm(req));
|
||||
|
||||
if (unlikely(ctx->keylen != AES_KEYSIZE_128)) {
|
||||
int err = 0;
|
||||
ablkcipher_request_set_tfm(req, ctx->fallback);
|
||||
err = crypto_ablkcipher_encrypt(req);
|
||||
ablkcipher_request_set_tfm(req, __crypto_ablkcipher_cast(tfm));
|
||||
return err;
|
||||
}
|
||||
|
||||
return dcp_aes_cbc_crypt(req, DCP_AES | DCP_ENC | DCP_CBC);
|
||||
}
|
||||
|
||||
static int dcp_aes_cbc_decrypt(struct ablkcipher_request *req)
|
||||
{
|
||||
struct crypto_tfm *tfm =
|
||||
crypto_ablkcipher_tfm(crypto_ablkcipher_reqtfm(req));
|
||||
struct dcp_op *ctx = crypto_ablkcipher_ctx(
|
||||
crypto_ablkcipher_reqtfm(req));
|
||||
|
||||
if (unlikely(ctx->keylen != AES_KEYSIZE_128)) {
|
||||
int err = 0;
|
||||
ablkcipher_request_set_tfm(req, ctx->fallback);
|
||||
err = crypto_ablkcipher_decrypt(req);
|
||||
ablkcipher_request_set_tfm(req, __crypto_ablkcipher_cast(tfm));
|
||||
return err;
|
||||
}
|
||||
return dcp_aes_cbc_crypt(req, DCP_AES | DCP_DEC | DCP_CBC);
|
||||
}
|
||||
|
||||
static struct crypto_alg algs[] = {
|
||||
{
|
||||
.cra_name = "cbc(aes)",
|
||||
.cra_driver_name = "dcp-cbc-aes",
|
||||
.cra_alignmask = 3,
|
||||
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC |
|
||||
CRYPTO_ALG_NEED_FALLBACK,
|
||||
.cra_blocksize = AES_KEYSIZE_128,
|
||||
.cra_type = &crypto_ablkcipher_type,
|
||||
.cra_priority = 300,
|
||||
.cra_u.ablkcipher = {
|
||||
.min_keysize = AES_KEYSIZE_128,
|
||||
.max_keysize = AES_KEYSIZE_128,
|
||||
.setkey = dcp_aes_setkey,
|
||||
.encrypt = dcp_aes_cbc_encrypt,
|
||||
.decrypt = dcp_aes_cbc_decrypt,
|
||||
.ivsize = AES_KEYSIZE_128,
|
||||
}
|
||||
|
||||
},
|
||||
};
|
||||
|
||||
/* DCP bootstream verification interface: uses OTP key for crypto */
|
||||
static int dcp_bootstream_open(struct inode *inode, struct file *file)
|
||||
{
|
||||
file->private_data = container_of((file->private_data),
|
||||
struct dcp_dev, dcp_bootstream_misc);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static long dcp_bootstream_ioctl(struct file *file,
|
||||
unsigned int cmd, unsigned long arg)
|
||||
{
|
||||
struct dcp_dev *dev = (struct dcp_dev *) file->private_data;
|
||||
void __user *argp = (void __user *)arg;
|
||||
int ret;
|
||||
|
||||
if (dev == NULL)
|
||||
return -EBADF;
|
||||
|
||||
if (cmd != DBS_ENC && cmd != DBS_DEC)
|
||||
return -EINVAL;
|
||||
|
||||
if (copy_from_user(dev->payload_base, argp, 16))
|
||||
return -EFAULT;
|
||||
|
||||
if (test_and_set_bit(DCP_FLAG_BUSY, &dev->flags))
|
||||
return -EAGAIN;
|
||||
|
||||
dev->ctx = kzalloc(sizeof(struct dcp_op), GFP_KERNEL);
|
||||
if (!dev->ctx) {
|
||||
dev_err(dev->dev,
|
||||
"cannot allocate context for OTP crypto");
|
||||
clear_bit(DCP_FLAG_BUSY, &dev->flags);
|
||||
return -ENOMEM;
|
||||
}
|
||||
|
||||
dev->ctx->flags = DCP_AES | DCP_ECB | DCP_OTP_KEY | DCP_CBC_INIT;
|
||||
dev->ctx->flags |= (cmd == DBS_ENC) ? DCP_ENC : DCP_DEC;
|
||||
dev->hw_pkg[0]->src = dev->payload_base_dma;
|
||||
dev->hw_pkg[0]->dst = dev->payload_base_dma;
|
||||
dev->hw_pkg[0]->size = 16;
|
||||
|
||||
dcp_op_start(dev, 0);
|
||||
|
||||
while (test_bit(DCP_FLAG_BUSY, &dev->flags))
|
||||
cpu_relax();
|
||||
|
||||
ret = dev->ctx->stat;
|
||||
if (!ret && copy_to_user(argp, dev->payload_base, 16))
|
||||
ret = -EFAULT;
|
||||
|
||||
kfree(dev->ctx);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
static const struct file_operations dcp_bootstream_fops = {
|
||||
.owner = THIS_MODULE,
|
||||
.unlocked_ioctl = dcp_bootstream_ioctl,
|
||||
.open = dcp_bootstream_open,
|
||||
};
|
||||
|
||||
static int dcp_probe(struct platform_device *pdev)
|
||||
{
|
||||
struct dcp_dev *dev = NULL;
|
||||
struct resource *r;
|
||||
int i, ret, j;
|
||||
|
||||
dev = devm_kzalloc(&pdev->dev, sizeof(*dev), GFP_KERNEL);
|
||||
if (!dev)
|
||||
return -ENOMEM;
|
||||
|
||||
global_dev = dev;
|
||||
dev->dev = &pdev->dev;
|
||||
|
||||
platform_set_drvdata(pdev, dev);
|
||||
|
||||
r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
|
||||
dev->dcp_regs_base = devm_ioremap_resource(&pdev->dev, r);
|
||||
if (IS_ERR(dev->dcp_regs_base))
|
||||
return PTR_ERR(dev->dcp_regs_base);
|
||||
|
||||
dcp_set(dev, DCP_CTRL_SFRST, DCP_REG_CTRL);
|
||||
udelay(10);
|
||||
dcp_clear(dev, DCP_CTRL_SFRST | DCP_CTRL_CLKGATE, DCP_REG_CTRL);
|
||||
|
||||
dcp_write(dev, DCP_CTRL_GATHER_RES_WRITE |
|
||||
DCP_CTRL_ENABLE_CONTEXT_CACHE | DCP_CTRL_CH_IRQ_E_1,
|
||||
DCP_REG_CTRL);
|
||||
|
||||
dcp_write(dev, DCP_CHAN_CTRL_ENABLE_1, DCP_REG_CHAN_CTRL);
|
||||
|
||||
for (i = 0; i < 4; i++)
|
||||
dcp_clear(dev, -1, dcp_chan_reg(DCP_REG_CHAN_STAT, i));
|
||||
|
||||
dcp_clear(dev, -1, DCP_REG_STAT);
|
||||
|
||||
|
||||
r = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
|
||||
if (!r) {
|
||||
dev_err(&pdev->dev, "can't get IRQ resource (0)\n");
|
||||
return -EIO;
|
||||
}
|
||||
dev->dcp_vmi_irq = r->start;
|
||||
ret = devm_request_irq(&pdev->dev, dev->dcp_vmi_irq, dcp_vmi_irq, 0,
|
||||
"dcp", dev);
|
||||
if (ret != 0) {
|
||||
dev_err(&pdev->dev, "can't request_irq (0)\n");
|
||||
return -EIO;
|
||||
}
|
||||
|
||||
r = platform_get_resource(pdev, IORESOURCE_IRQ, 1);
|
||||
if (!r) {
|
||||
dev_err(&pdev->dev, "can't get IRQ resource (1)\n");
|
||||
return -EIO;
|
||||
}
|
||||
dev->dcp_irq = r->start;
|
||||
ret = devm_request_irq(&pdev->dev, dev->dcp_irq, dcp_irq, 0, "dcp",
|
||||
dev);
|
||||
if (ret != 0) {
|
||||
dev_err(&pdev->dev, "can't request_irq (1)\n");
|
||||
return -EIO;
|
||||
}
|
||||
|
||||
dev->hw_pkg[0] = dma_alloc_coherent(&pdev->dev,
|
||||
DCP_MAX_PKG * sizeof(struct dcp_hw_packet),
|
||||
&dev->hw_phys_pkg,
|
||||
GFP_KERNEL);
|
||||
if (!dev->hw_pkg[0]) {
|
||||
dev_err(&pdev->dev, "Could not allocate hw descriptors\n");
|
||||
return -ENOMEM;
|
||||
}
|
||||
|
||||
for (i = 1; i < DCP_MAX_PKG; i++) {
|
||||
dev->hw_pkg[i - 1]->next = dev->hw_phys_pkg
|
||||
+ i * sizeof(struct dcp_hw_packet);
|
||||
dev->hw_pkg[i] = dev->hw_pkg[i - 1] + 1;
|
||||
}
|
||||
dev->hw_pkg[i - 1]->next = dev->hw_phys_pkg;
|
||||
|
||||
|
||||
dev->payload_base = dma_alloc_coherent(&pdev->dev, 2 * AES_KEYSIZE_128,
|
||||
&dev->payload_base_dma, GFP_KERNEL);
|
||||
if (!dev->payload_base) {
|
||||
dev_err(&pdev->dev, "Could not allocate memory for key\n");
|
||||
ret = -ENOMEM;
|
||||
goto err_free_hw_packet;
|
||||
}
|
||||
tasklet_init(&dev->queue_task, dcp_queue_task,
|
||||
(unsigned long) dev);
|
||||
tasklet_init(&dev->done_task, dcp_done_task,
|
||||
(unsigned long) dev);
|
||||
spin_lock_init(&dev->queue_lock);
|
||||
|
||||
crypto_init_queue(&dev->queue, 10);
|
||||
|
||||
init_timer(&dev->watchdog);
|
||||
dev->watchdog.function = &dcp_watchdog;
|
||||
dev->watchdog.data = (unsigned long)dev;
|
||||
|
||||
dev->dcp_bootstream_misc.minor = MISC_DYNAMIC_MINOR,
|
||||
dev->dcp_bootstream_misc.name = "dcpboot",
|
||||
dev->dcp_bootstream_misc.fops = &dcp_bootstream_fops,
|
||||
ret = misc_register(&dev->dcp_bootstream_misc);
|
||||
if (ret != 0) {
|
||||
dev_err(dev->dev, "Unable to register misc device\n");
|
||||
goto err_free_key_iv;
|
||||
}
|
||||
|
||||
for (i = 0; i < ARRAY_SIZE(algs); i++) {
|
||||
algs[i].cra_priority = 300;
|
||||
algs[i].cra_ctxsize = sizeof(struct dcp_op);
|
||||
algs[i].cra_module = THIS_MODULE;
|
||||
algs[i].cra_init = dcp_cra_init;
|
||||
algs[i].cra_exit = dcp_cra_exit;
|
||||
if (crypto_register_alg(&algs[i])) {
|
||||
dev_err(&pdev->dev, "register algorithm failed\n");
|
||||
ret = -ENOMEM;
|
||||
goto err_unregister;
|
||||
}
|
||||
}
|
||||
dev_notice(&pdev->dev, "DCP crypto enabled.!\n");
|
||||
|
||||
return 0;
|
||||
|
||||
err_unregister:
|
||||
for (j = 0; j < i; j++)
|
||||
crypto_unregister_alg(&algs[j]);
|
||||
err_free_key_iv:
|
||||
tasklet_kill(&dev->done_task);
|
||||
tasklet_kill(&dev->queue_task);
|
||||
dma_free_coherent(&pdev->dev, 2 * AES_KEYSIZE_128, dev->payload_base,
|
||||
dev->payload_base_dma);
|
||||
err_free_hw_packet:
|
||||
dma_free_coherent(&pdev->dev, DCP_MAX_PKG *
|
||||
sizeof(struct dcp_hw_packet), dev->hw_pkg[0],
|
||||
dev->hw_phys_pkg);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int dcp_remove(struct platform_device *pdev)
|
||||
{
|
||||
struct dcp_dev *dev;
|
||||
int j;
|
||||
dev = platform_get_drvdata(pdev);
|
||||
|
||||
misc_deregister(&dev->dcp_bootstream_misc);
|
||||
|
||||
for (j = 0; j < ARRAY_SIZE(algs); j++)
|
||||
crypto_unregister_alg(&algs[j]);
|
||||
|
||||
tasklet_kill(&dev->done_task);
|
||||
tasklet_kill(&dev->queue_task);
|
||||
|
||||
dma_free_coherent(&pdev->dev, 2 * AES_KEYSIZE_128, dev->payload_base,
|
||||
dev->payload_base_dma);
|
||||
|
||||
dma_free_coherent(&pdev->dev,
|
||||
DCP_MAX_PKG * sizeof(struct dcp_hw_packet),
|
||||
dev->hw_pkg[0], dev->hw_phys_pkg);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static struct of_device_id fs_dcp_of_match[] = {
|
||||
{ .compatible = "fsl-dcp"},
|
||||
{},
|
||||
};
|
||||
|
||||
static struct platform_driver fs_dcp_driver = {
|
||||
.probe = dcp_probe,
|
||||
.remove = dcp_remove,
|
||||
.driver = {
|
||||
.name = "fsl-dcp",
|
||||
.owner = THIS_MODULE,
|
||||
.of_match_table = fs_dcp_of_match
|
||||
}
|
||||
};
|
||||
|
||||
module_platform_driver(fs_dcp_driver);
|
||||
|
||||
|
||||
MODULE_AUTHOR("Tobias Rauter <tobias.rauter@gmail.com>");
|
||||
MODULE_DESCRIPTION("Freescale DCP Crypto Driver");
|
||||
MODULE_LICENSE("GPL");
|
File diff suppressed because it is too large
Load Diff
|
@ -784,6 +784,7 @@ static int omap_aes_ctr_decrypt(struct ablkcipher_request *req)
|
|||
static int omap_aes_cra_init(struct crypto_tfm *tfm)
|
||||
{
|
||||
struct omap_aes_dev *dd = NULL;
|
||||
int err;
|
||||
|
||||
/* Find AES device, currently picks the first device */
|
||||
spin_lock_bh(&list_lock);
|
||||
|
@ -792,7 +793,13 @@ static int omap_aes_cra_init(struct crypto_tfm *tfm)
|
|||
}
|
||||
spin_unlock_bh(&list_lock);
|
||||
|
||||
pm_runtime_get_sync(dd->dev);
|
||||
err = pm_runtime_get_sync(dd->dev);
|
||||
if (err < 0) {
|
||||
dev_err(dd->dev, "%s: failed to get_sync(%d)\n",
|
||||
__func__, err);
|
||||
return err;
|
||||
}
|
||||
|
||||
tfm->crt_ablkcipher.reqsize = sizeof(struct omap_aes_reqctx);
|
||||
|
||||
return 0;
|
||||
|
@ -1182,7 +1189,12 @@ static int omap_aes_probe(struct platform_device *pdev)
|
|||
dd->phys_base = res.start;
|
||||
|
||||
pm_runtime_enable(dev);
|
||||
pm_runtime_get_sync(dev);
|
||||
err = pm_runtime_get_sync(dev);
|
||||
if (err < 0) {
|
||||
dev_err(dev, "%s: failed to get_sync(%d)\n",
|
||||
__func__, err);
|
||||
goto err_res;
|
||||
}
|
||||
|
||||
omap_aes_dma_stop(dd);
|
||||
|
||||
|
|
|
@ -789,10 +789,13 @@ static int omap_sham_update_cpu(struct omap_sham_dev *dd)
|
|||
dev_dbg(dd->dev, "cpu: bufcnt: %u, digcnt: %d, final: %d\n",
|
||||
ctx->bufcnt, ctx->digcnt, final);
|
||||
|
||||
bufcnt = ctx->bufcnt;
|
||||
ctx->bufcnt = 0;
|
||||
if (final || (ctx->bufcnt == ctx->buflen && ctx->total)) {
|
||||
bufcnt = ctx->bufcnt;
|
||||
ctx->bufcnt = 0;
|
||||
return omap_sham_xmit_cpu(dd, ctx->buffer, bufcnt, final);
|
||||
}
|
||||
|
||||
return omap_sham_xmit_cpu(dd, ctx->buffer, bufcnt, final);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int omap_sham_update_dma_stop(struct omap_sham_dev *dd)
|
||||
|
@ -1103,6 +1106,9 @@ static int omap_sham_update(struct ahash_request *req)
|
|||
return 0;
|
||||
}
|
||||
|
||||
if (dd->polling_mode)
|
||||
ctx->flags |= BIT(FLAGS_CPU);
|
||||
|
||||
return omap_sham_enqueue(req, OP_UPDATE);
|
||||
}
|
||||
|
||||
|
@ -1970,7 +1976,8 @@ err_algs:
|
|||
crypto_unregister_ahash(
|
||||
&dd->pdata->algs_info[i].algs_list[j]);
|
||||
pm_runtime_disable(dev);
|
||||
dma_release_channel(dd->dma_lch);
|
||||
if (dd->dma_lch)
|
||||
dma_release_channel(dd->dma_lch);
|
||||
data_err:
|
||||
dev_err(dev, "initialization failed.\n");
|
||||
|
||||
|
@ -1994,7 +2001,9 @@ static int omap_sham_remove(struct platform_device *pdev)
|
|||
&dd->pdata->algs_info[i].algs_list[j]);
|
||||
tasklet_kill(&dd->done_task);
|
||||
pm_runtime_disable(&pdev->dev);
|
||||
dma_release_channel(dd->dma_lch);
|
||||
|
||||
if (dd->dma_lch)
|
||||
dma_release_channel(dd->dma_lch);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
|
|
@ -338,20 +338,29 @@ DEF_TALITOS_DONE(ch1_3, TALITOS_ISR_CH_1_3_DONE)
|
|||
static u32 current_desc_hdr(struct device *dev, int ch)
|
||||
{
|
||||
struct talitos_private *priv = dev_get_drvdata(dev);
|
||||
int tail = priv->chan[ch].tail;
|
||||
int tail, iter;
|
||||
dma_addr_t cur_desc;
|
||||
|
||||
cur_desc = in_be32(priv->chan[ch].reg + TALITOS_CDPR_LO);
|
||||
cur_desc = ((u64)in_be32(priv->chan[ch].reg + TALITOS_CDPR)) << 32;
|
||||
cur_desc |= in_be32(priv->chan[ch].reg + TALITOS_CDPR_LO);
|
||||
|
||||
while (priv->chan[ch].fifo[tail].dma_desc != cur_desc) {
|
||||
tail = (tail + 1) & (priv->fifo_len - 1);
|
||||
if (tail == priv->chan[ch].tail) {
|
||||
if (!cur_desc) {
|
||||
dev_err(dev, "CDPR is NULL, giving up search for offending descriptor\n");
|
||||
return 0;
|
||||
}
|
||||
|
||||
tail = priv->chan[ch].tail;
|
||||
|
||||
iter = tail;
|
||||
while (priv->chan[ch].fifo[iter].dma_desc != cur_desc) {
|
||||
iter = (iter + 1) & (priv->fifo_len - 1);
|
||||
if (iter == tail) {
|
||||
dev_err(dev, "couldn't locate current descriptor\n");
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
return priv->chan[ch].fifo[tail].desc->hdr;
|
||||
return priv->chan[ch].fifo[iter].desc->hdr;
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -2486,8 +2495,6 @@ static int talitos_remove(struct platform_device *ofdev)
|
|||
|
||||
iounmap(priv->reg);
|
||||
|
||||
dev_set_drvdata(dev, NULL);
|
||||
|
||||
kfree(priv);
|
||||
|
||||
return 0;
|
||||
|
|
|
@ -0,0 +1,537 @@
|
|||
/*
|
||||
* AMD Cryptographic Coprocessor (CCP) driver
|
||||
*
|
||||
* Copyright (C) 2013 Advanced Micro Devices, Inc.
|
||||
*
|
||||
* Author: Tom Lendacky <thomas.lendacky@amd.com>
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License version 2 as
|
||||
* published by the Free Software Foundation.
|
||||
*/
|
||||
|
||||
#ifndef __CPP_H__
|
||||
#define __CPP_H__
|
||||
|
||||
#include <linux/scatterlist.h>
|
||||
#include <linux/workqueue.h>
|
||||
#include <linux/list.h>
|
||||
#include <crypto/aes.h>
|
||||
#include <crypto/sha.h>
|
||||
|
||||
|
||||
struct ccp_device;
|
||||
struct ccp_cmd;
|
||||
|
||||
#if defined(CONFIG_CRYPTO_DEV_CCP_DD) || \
|
||||
defined(CONFIG_CRYPTO_DEV_CCP_DD_MODULE)
|
||||
|
||||
/**
|
||||
* ccp_enqueue_cmd - queue an operation for processing by the CCP
|
||||
*
|
||||
* @cmd: ccp_cmd struct to be processed
|
||||
*
|
||||
* Refer to the ccp_cmd struct below for required fields.
|
||||
*
|
||||
* Queue a cmd to be processed by the CCP. If queueing the cmd
|
||||
* would exceed the defined length of the cmd queue the cmd will
|
||||
* only be queued if the CCP_CMD_MAY_BACKLOG flag is set and will
|
||||
* result in a return code of -EBUSY.
|
||||
*
|
||||
* The callback routine specified in the ccp_cmd struct will be
|
||||
* called to notify the caller of completion (if the cmd was not
|
||||
* backlogged) or advancement out of the backlog. If the cmd has
|
||||
* advanced out of the backlog the "err" value of the callback
|
||||
* will be -EINPROGRESS. Any other "err" value during callback is
|
||||
* the result of the operation.
|
||||
*
|
||||
* The cmd has been successfully queued if:
|
||||
* the return code is -EINPROGRESS or
|
||||
* the return code is -EBUSY and CCP_CMD_MAY_BACKLOG flag is set
|
||||
*/
|
||||
int ccp_enqueue_cmd(struct ccp_cmd *cmd);
|
||||
|
||||
#else /* CONFIG_CRYPTO_DEV_CCP_DD is not enabled */
|
||||
|
||||
static inline int ccp_enqueue_cmd(struct ccp_cmd *cmd)
|
||||
{
|
||||
return -ENODEV;
|
||||
}
|
||||
|
||||
#endif /* CONFIG_CRYPTO_DEV_CCP_DD */
|
||||
|
||||
|
||||
/***** AES engine *****/
|
||||
/**
|
||||
* ccp_aes_type - AES key size
|
||||
*
|
||||
* @CCP_AES_TYPE_128: 128-bit key
|
||||
* @CCP_AES_TYPE_192: 192-bit key
|
||||
* @CCP_AES_TYPE_256: 256-bit key
|
||||
*/
|
||||
enum ccp_aes_type {
|
||||
CCP_AES_TYPE_128 = 0,
|
||||
CCP_AES_TYPE_192,
|
||||
CCP_AES_TYPE_256,
|
||||
CCP_AES_TYPE__LAST,
|
||||
};
|
||||
|
||||
/**
|
||||
* ccp_aes_mode - AES operation mode
|
||||
*
|
||||
* @CCP_AES_MODE_ECB: ECB mode
|
||||
* @CCP_AES_MODE_CBC: CBC mode
|
||||
* @CCP_AES_MODE_OFB: OFB mode
|
||||
* @CCP_AES_MODE_CFB: CFB mode
|
||||
* @CCP_AES_MODE_CTR: CTR mode
|
||||
* @CCP_AES_MODE_CMAC: CMAC mode
|
||||
*/
|
||||
enum ccp_aes_mode {
|
||||
CCP_AES_MODE_ECB = 0,
|
||||
CCP_AES_MODE_CBC,
|
||||
CCP_AES_MODE_OFB,
|
||||
CCP_AES_MODE_CFB,
|
||||
CCP_AES_MODE_CTR,
|
||||
CCP_AES_MODE_CMAC,
|
||||
CCP_AES_MODE__LAST,
|
||||
};
|
||||
|
||||
/**
|
||||
* ccp_aes_mode - AES operation mode
|
||||
*
|
||||
* @CCP_AES_ACTION_DECRYPT: AES decrypt operation
|
||||
* @CCP_AES_ACTION_ENCRYPT: AES encrypt operation
|
||||
*/
|
||||
enum ccp_aes_action {
|
||||
CCP_AES_ACTION_DECRYPT = 0,
|
||||
CCP_AES_ACTION_ENCRYPT,
|
||||
CCP_AES_ACTION__LAST,
|
||||
};
|
||||
|
||||
/**
|
||||
* struct ccp_aes_engine - CCP AES operation
|
||||
* @type: AES operation key size
|
||||
* @mode: AES operation mode
|
||||
* @action: AES operation (decrypt/encrypt)
|
||||
* @key: key to be used for this AES operation
|
||||
* @key_len: length in bytes of key
|
||||
* @iv: IV to be used for this AES operation
|
||||
* @iv_len: length in bytes of iv
|
||||
* @src: data to be used for this operation
|
||||
* @dst: data produced by this operation
|
||||
* @src_len: length in bytes of data used for this operation
|
||||
* @cmac_final: indicates final operation when running in CMAC mode
|
||||
* @cmac_key: K1/K2 key used in final CMAC operation
|
||||
* @cmac_key_len: length in bytes of cmac_key
|
||||
*
|
||||
* Variables required to be set when calling ccp_enqueue_cmd():
|
||||
* - type, mode, action, key, key_len, src, dst, src_len
|
||||
* - iv, iv_len for any mode other than ECB
|
||||
* - cmac_final for CMAC mode
|
||||
* - cmac_key, cmac_key_len for CMAC mode if cmac_final is non-zero
|
||||
*
|
||||
* The iv variable is used as both input and output. On completion of the
|
||||
* AES operation the new IV overwrites the old IV.
|
||||
*/
|
||||
struct ccp_aes_engine {
|
||||
enum ccp_aes_type type;
|
||||
enum ccp_aes_mode mode;
|
||||
enum ccp_aes_action action;
|
||||
|
||||
struct scatterlist *key;
|
||||
u32 key_len; /* In bytes */
|
||||
|
||||
struct scatterlist *iv;
|
||||
u32 iv_len; /* In bytes */
|
||||
|
||||
struct scatterlist *src, *dst;
|
||||
u64 src_len; /* In bytes */
|
||||
|
||||
u32 cmac_final; /* Indicates final cmac cmd */
|
||||
struct scatterlist *cmac_key; /* K1/K2 cmac key required for
|
||||
* final cmac cmd */
|
||||
u32 cmac_key_len; /* In bytes */
|
||||
};
|
||||
|
||||
/***** XTS-AES engine *****/
|
||||
/**
|
||||
* ccp_xts_aes_unit_size - XTS unit size
|
||||
*
|
||||
* @CCP_XTS_AES_UNIT_SIZE_16: Unit size of 16 bytes
|
||||
* @CCP_XTS_AES_UNIT_SIZE_512: Unit size of 512 bytes
|
||||
* @CCP_XTS_AES_UNIT_SIZE_1024: Unit size of 1024 bytes
|
||||
* @CCP_XTS_AES_UNIT_SIZE_2048: Unit size of 2048 bytes
|
||||
* @CCP_XTS_AES_UNIT_SIZE_4096: Unit size of 4096 bytes
|
||||
*/
|
||||
enum ccp_xts_aes_unit_size {
|
||||
CCP_XTS_AES_UNIT_SIZE_16 = 0,
|
||||
CCP_XTS_AES_UNIT_SIZE_512,
|
||||
CCP_XTS_AES_UNIT_SIZE_1024,
|
||||
CCP_XTS_AES_UNIT_SIZE_2048,
|
||||
CCP_XTS_AES_UNIT_SIZE_4096,
|
||||
CCP_XTS_AES_UNIT_SIZE__LAST,
|
||||
};
|
||||
|
||||
/**
|
||||
* struct ccp_xts_aes_engine - CCP XTS AES operation
|
||||
* @action: AES operation (decrypt/encrypt)
|
||||
* @unit_size: unit size of the XTS operation
|
||||
* @key: key to be used for this XTS AES operation
|
||||
* @key_len: length in bytes of key
|
||||
* @iv: IV to be used for this XTS AES operation
|
||||
* @iv_len: length in bytes of iv
|
||||
* @src: data to be used for this operation
|
||||
* @dst: data produced by this operation
|
||||
* @src_len: length in bytes of data used for this operation
|
||||
* @final: indicates final XTS operation
|
||||
*
|
||||
* Variables required to be set when calling ccp_enqueue_cmd():
|
||||
* - action, unit_size, key, key_len, iv, iv_len, src, dst, src_len, final
|
||||
*
|
||||
* The iv variable is used as both input and output. On completion of the
|
||||
* AES operation the new IV overwrites the old IV.
|
||||
*/
|
||||
struct ccp_xts_aes_engine {
|
||||
enum ccp_aes_action action;
|
||||
enum ccp_xts_aes_unit_size unit_size;
|
||||
|
||||
struct scatterlist *key;
|
||||
u32 key_len; /* In bytes */
|
||||
|
||||
struct scatterlist *iv;
|
||||
u32 iv_len; /* In bytes */
|
||||
|
||||
struct scatterlist *src, *dst;
|
||||
u64 src_len; /* In bytes */
|
||||
|
||||
u32 final;
|
||||
};
|
||||
|
||||
/***** SHA engine *****/
|
||||
#define CCP_SHA_BLOCKSIZE SHA256_BLOCK_SIZE
|
||||
#define CCP_SHA_CTXSIZE SHA256_DIGEST_SIZE
|
||||
|
||||
/**
|
||||
* ccp_sha_type - type of SHA operation
|
||||
*
|
||||
* @CCP_SHA_TYPE_1: SHA-1 operation
|
||||
* @CCP_SHA_TYPE_224: SHA-224 operation
|
||||
* @CCP_SHA_TYPE_256: SHA-256 operation
|
||||
*/
|
||||
enum ccp_sha_type {
|
||||
CCP_SHA_TYPE_1 = 1,
|
||||
CCP_SHA_TYPE_224,
|
||||
CCP_SHA_TYPE_256,
|
||||
CCP_SHA_TYPE__LAST,
|
||||
};
|
||||
|
||||
/**
|
||||
* struct ccp_sha_engine - CCP SHA operation
|
||||
* @type: Type of SHA operation
|
||||
* @ctx: current hash value
|
||||
* @ctx_len: length in bytes of hash value
|
||||
* @src: data to be used for this operation
|
||||
* @src_len: length in bytes of data used for this operation
|
||||
* @final: indicates final SHA operation
|
||||
* @msg_bits: total length of the message in bits used in final SHA operation
|
||||
*
|
||||
* Variables required to be set when calling ccp_enqueue_cmd():
|
||||
* - type, ctx, ctx_len, src, src_len, final
|
||||
* - msg_bits if final is non-zero
|
||||
*
|
||||
* The ctx variable is used as both input and output. On completion of the
|
||||
* SHA operation the new hash value overwrites the old hash value.
|
||||
*/
|
||||
struct ccp_sha_engine {
|
||||
enum ccp_sha_type type;
|
||||
|
||||
struct scatterlist *ctx;
|
||||
u32 ctx_len; /* In bytes */
|
||||
|
||||
struct scatterlist *src;
|
||||
u64 src_len; /* In bytes */
|
||||
|
||||
u32 final; /* Indicates final sha cmd */
|
||||
u64 msg_bits; /* Message length in bits required for
|
||||
* final sha cmd */
|
||||
};
|
||||
|
||||
/***** RSA engine *****/
|
||||
/**
|
||||
* struct ccp_rsa_engine - CCP RSA operation
|
||||
* @key_size: length in bits of RSA key
|
||||
* @exp: RSA exponent
|
||||
* @exp_len: length in bytes of exponent
|
||||
* @mod: RSA modulus
|
||||
* @mod_len: length in bytes of modulus
|
||||
* @src: data to be used for this operation
|
||||
* @dst: data produced by this operation
|
||||
* @src_len: length in bytes of data used for this operation
|
||||
*
|
||||
* Variables required to be set when calling ccp_enqueue_cmd():
|
||||
* - key_size, exp, exp_len, mod, mod_len, src, dst, src_len
|
||||
*/
|
||||
struct ccp_rsa_engine {
|
||||
u32 key_size; /* In bits */
|
||||
|
||||
struct scatterlist *exp;
|
||||
u32 exp_len; /* In bytes */
|
||||
|
||||
struct scatterlist *mod;
|
||||
u32 mod_len; /* In bytes */
|
||||
|
||||
struct scatterlist *src, *dst;
|
||||
u32 src_len; /* In bytes */
|
||||
};
|
||||
|
||||
/***** Passthru engine *****/
|
||||
/**
|
||||
* ccp_passthru_bitwise - type of bitwise passthru operation
|
||||
*
|
||||
* @CCP_PASSTHRU_BITWISE_NOOP: no bitwise operation performed
|
||||
* @CCP_PASSTHRU_BITWISE_AND: perform bitwise AND of src with mask
|
||||
* @CCP_PASSTHRU_BITWISE_OR: perform bitwise OR of src with mask
|
||||
* @CCP_PASSTHRU_BITWISE_XOR: perform bitwise XOR of src with mask
|
||||
* @CCP_PASSTHRU_BITWISE_MASK: overwrite with mask
|
||||
*/
|
||||
enum ccp_passthru_bitwise {
|
||||
CCP_PASSTHRU_BITWISE_NOOP = 0,
|
||||
CCP_PASSTHRU_BITWISE_AND,
|
||||
CCP_PASSTHRU_BITWISE_OR,
|
||||
CCP_PASSTHRU_BITWISE_XOR,
|
||||
CCP_PASSTHRU_BITWISE_MASK,
|
||||
CCP_PASSTHRU_BITWISE__LAST,
|
||||
};
|
||||
|
||||
/**
|
||||
* ccp_passthru_byteswap - type of byteswap passthru operation
|
||||
*
|
||||
* @CCP_PASSTHRU_BYTESWAP_NOOP: no byte swapping performed
|
||||
* @CCP_PASSTHRU_BYTESWAP_32BIT: swap bytes within 32-bit words
|
||||
* @CCP_PASSTHRU_BYTESWAP_256BIT: swap bytes within 256-bit words
|
||||
*/
|
||||
enum ccp_passthru_byteswap {
|
||||
CCP_PASSTHRU_BYTESWAP_NOOP = 0,
|
||||
CCP_PASSTHRU_BYTESWAP_32BIT,
|
||||
CCP_PASSTHRU_BYTESWAP_256BIT,
|
||||
CCP_PASSTHRU_BYTESWAP__LAST,
|
||||
};
|
||||
|
||||
/**
|
||||
* struct ccp_passthru_engine - CCP pass-through operation
|
||||
* @bit_mod: bitwise operation to perform
|
||||
* @byte_swap: byteswap operation to perform
|
||||
* @mask: mask to be applied to data
|
||||
* @mask_len: length in bytes of mask
|
||||
* @src: data to be used for this operation
|
||||
* @dst: data produced by this operation
|
||||
* @src_len: length in bytes of data used for this operation
|
||||
* @final: indicate final pass-through operation
|
||||
*
|
||||
* Variables required to be set when calling ccp_enqueue_cmd():
|
||||
* - bit_mod, byte_swap, src, dst, src_len
|
||||
* - mask, mask_len if bit_mod is not CCP_PASSTHRU_BITWISE_NOOP
|
||||
*/
|
||||
struct ccp_passthru_engine {
|
||||
enum ccp_passthru_bitwise bit_mod;
|
||||
enum ccp_passthru_byteswap byte_swap;
|
||||
|
||||
struct scatterlist *mask;
|
||||
u32 mask_len; /* In bytes */
|
||||
|
||||
struct scatterlist *src, *dst;
|
||||
u64 src_len; /* In bytes */
|
||||
|
||||
u32 final;
|
||||
};
|
||||
|
||||
/***** ECC engine *****/
|
||||
#define CCP_ECC_MODULUS_BYTES 48 /* 384-bits */
|
||||
#define CCP_ECC_MAX_OPERANDS 6
|
||||
#define CCP_ECC_MAX_OUTPUTS 3
|
||||
|
||||
/**
|
||||
* ccp_ecc_function - type of ECC function
|
||||
*
|
||||
* @CCP_ECC_FUNCTION_MMUL_384BIT: 384-bit modular multiplication
|
||||
* @CCP_ECC_FUNCTION_MADD_384BIT: 384-bit modular addition
|
||||
* @CCP_ECC_FUNCTION_MINV_384BIT: 384-bit multiplicative inverse
|
||||
* @CCP_ECC_FUNCTION_PADD_384BIT: 384-bit point addition
|
||||
* @CCP_ECC_FUNCTION_PMUL_384BIT: 384-bit point multiplication
|
||||
* @CCP_ECC_FUNCTION_PDBL_384BIT: 384-bit point doubling
|
||||
*/
|
||||
enum ccp_ecc_function {
|
||||
CCP_ECC_FUNCTION_MMUL_384BIT = 0,
|
||||
CCP_ECC_FUNCTION_MADD_384BIT,
|
||||
CCP_ECC_FUNCTION_MINV_384BIT,
|
||||
CCP_ECC_FUNCTION_PADD_384BIT,
|
||||
CCP_ECC_FUNCTION_PMUL_384BIT,
|
||||
CCP_ECC_FUNCTION_PDBL_384BIT,
|
||||
};
|
||||
|
||||
/**
|
||||
* struct ccp_ecc_modular_math - CCP ECC modular math parameters
|
||||
* @operand_1: first operand for the modular math operation
|
||||
* @operand_1_len: length of the first operand
|
||||
* @operand_2: second operand for the modular math operation
|
||||
* (not used for CCP_ECC_FUNCTION_MINV_384BIT)
|
||||
* @operand_2_len: length of the second operand
|
||||
* (not used for CCP_ECC_FUNCTION_MINV_384BIT)
|
||||
* @result: result of the modular math operation
|
||||
* @result_len: length of the supplied result buffer
|
||||
*/
|
||||
struct ccp_ecc_modular_math {
|
||||
struct scatterlist *operand_1;
|
||||
unsigned int operand_1_len; /* In bytes */
|
||||
|
||||
struct scatterlist *operand_2;
|
||||
unsigned int operand_2_len; /* In bytes */
|
||||
|
||||
struct scatterlist *result;
|
||||
unsigned int result_len; /* In bytes */
|
||||
};
|
||||
|
||||
/**
|
||||
* struct ccp_ecc_point - CCP ECC point definition
|
||||
* @x: the x coordinate of the ECC point
|
||||
* @x_len: the length of the x coordinate
|
||||
* @y: the y coordinate of the ECC point
|
||||
* @y_len: the length of the y coordinate
|
||||
*/
|
||||
struct ccp_ecc_point {
|
||||
struct scatterlist *x;
|
||||
unsigned int x_len; /* In bytes */
|
||||
|
||||
struct scatterlist *y;
|
||||
unsigned int y_len; /* In bytes */
|
||||
};
|
||||
|
||||
/**
|
||||
* struct ccp_ecc_point_math - CCP ECC point math parameters
|
||||
* @point_1: the first point of the ECC point math operation
|
||||
* @point_2: the second point of the ECC point math operation
|
||||
* (only used for CCP_ECC_FUNCTION_PADD_384BIT)
|
||||
* @domain_a: the a parameter of the ECC curve
|
||||
* @domain_a_len: the length of the a parameter
|
||||
* @scalar: the scalar parameter for the point match operation
|
||||
* (only used for CCP_ECC_FUNCTION_PMUL_384BIT)
|
||||
* @scalar_len: the length of the scalar parameter
|
||||
* (only used for CCP_ECC_FUNCTION_PMUL_384BIT)
|
||||
* @result: the point resulting from the point math operation
|
||||
*/
|
||||
struct ccp_ecc_point_math {
|
||||
struct ccp_ecc_point point_1;
|
||||
struct ccp_ecc_point point_2;
|
||||
|
||||
struct scatterlist *domain_a;
|
||||
unsigned int domain_a_len; /* In bytes */
|
||||
|
||||
struct scatterlist *scalar;
|
||||
unsigned int scalar_len; /* In bytes */
|
||||
|
||||
struct ccp_ecc_point result;
|
||||
};
|
||||
|
||||
/**
|
||||
* struct ccp_ecc_engine - CCP ECC operation
|
||||
* @function: ECC function to perform
|
||||
* @mod: ECC modulus
|
||||
* @mod_len: length in bytes of modulus
|
||||
* @mm: module math parameters
|
||||
* @pm: point math parameters
|
||||
* @ecc_result: result of the ECC operation
|
||||
*
|
||||
* Variables required to be set when calling ccp_enqueue_cmd():
|
||||
* - function, mod, mod_len
|
||||
* - operand, operand_len, operand_count, output, output_len, output_count
|
||||
* - ecc_result
|
||||
*/
|
||||
struct ccp_ecc_engine {
|
||||
enum ccp_ecc_function function;
|
||||
|
||||
struct scatterlist *mod;
|
||||
u32 mod_len; /* In bytes */
|
||||
|
||||
union {
|
||||
struct ccp_ecc_modular_math mm;
|
||||
struct ccp_ecc_point_math pm;
|
||||
} u;
|
||||
|
||||
u16 ecc_result;
|
||||
};
|
||||
|
||||
|
||||
/**
|
||||
* ccp_engine - CCP operation identifiers
|
||||
*
|
||||
* @CCP_ENGINE_AES: AES operation
|
||||
* @CCP_ENGINE_XTS_AES: 128-bit XTS AES operation
|
||||
* @CCP_ENGINE_RSVD1: unused
|
||||
* @CCP_ENGINE_SHA: SHA operation
|
||||
* @CCP_ENGINE_RSA: RSA operation
|
||||
* @CCP_ENGINE_PASSTHRU: pass-through operation
|
||||
* @CCP_ENGINE_ZLIB_DECOMPRESS: unused
|
||||
* @CCP_ENGINE_ECC: ECC operation
|
||||
*/
|
||||
enum ccp_engine {
|
||||
CCP_ENGINE_AES = 0,
|
||||
CCP_ENGINE_XTS_AES_128,
|
||||
CCP_ENGINE_RSVD1,
|
||||
CCP_ENGINE_SHA,
|
||||
CCP_ENGINE_RSA,
|
||||
CCP_ENGINE_PASSTHRU,
|
||||
CCP_ENGINE_ZLIB_DECOMPRESS,
|
||||
CCP_ENGINE_ECC,
|
||||
CCP_ENGINE__LAST,
|
||||
};
|
||||
|
||||
/* Flag values for flags member of ccp_cmd */
|
||||
#define CCP_CMD_MAY_BACKLOG 0x00000001
|
||||
|
||||
/**
|
||||
* struct ccp_cmd - CPP operation request
|
||||
* @entry: list element (ccp driver use only)
|
||||
* @work: work element used for callbacks (ccp driver use only)
|
||||
* @ccp: CCP device to be run on (ccp driver use only)
|
||||
* @ret: operation return code (ccp driver use only)
|
||||
* @flags: cmd processing flags
|
||||
* @engine: CCP operation to perform
|
||||
* @engine_error: CCP engine return code
|
||||
* @u: engine specific structures, refer to specific engine struct below
|
||||
* @callback: operation completion callback function
|
||||
* @data: parameter value to be supplied to the callback function
|
||||
*
|
||||
* Variables required to be set when calling ccp_enqueue_cmd():
|
||||
* - engine, callback
|
||||
* - See the operation structures below for what is required for each
|
||||
* operation.
|
||||
*/
|
||||
struct ccp_cmd {
|
||||
/* The list_head, work_struct, ccp and ret variables are for use
|
||||
* by the CCP driver only.
|
||||
*/
|
||||
struct list_head entry;
|
||||
struct work_struct work;
|
||||
struct ccp_device *ccp;
|
||||
int ret;
|
||||
|
||||
u32 flags;
|
||||
|
||||
enum ccp_engine engine;
|
||||
u32 engine_error;
|
||||
|
||||
union {
|
||||
struct ccp_aes_engine aes;
|
||||
struct ccp_xts_aes_engine xts;
|
||||
struct ccp_sha_engine sha;
|
||||
struct ccp_rsa_engine rsa;
|
||||
struct ccp_passthru_engine passthru;
|
||||
struct ccp_ecc_engine ecc;
|
||||
} u;
|
||||
|
||||
/* Completion callback support */
|
||||
void (*callback)(void *data, int err);
|
||||
void *data;
|
||||
};
|
||||
|
||||
#endif
|
|
@ -37,6 +37,9 @@
|
|||
__asm__ ("" : "=r"(__ptr) : "0"(ptr)); \
|
||||
(typeof(ptr)) (__ptr + (off)); })
|
||||
|
||||
/* Make the optimizer believe the variable can be manipulated arbitrarily. */
|
||||
#define OPTIMIZER_HIDE_VAR(var) __asm__ ("" : "=r" (var) : "0" (var))
|
||||
|
||||
#ifdef __CHECKER__
|
||||
#define __must_be_array(arr) 0
|
||||
#else
|
||||
|
|
|
@ -15,6 +15,7 @@
|
|||
*/
|
||||
#undef barrier
|
||||
#undef RELOC_HIDE
|
||||
#undef OPTIMIZER_HIDE_VAR
|
||||
|
||||
#define barrier() __memory_barrier()
|
||||
|
||||
|
@ -23,6 +24,12 @@
|
|||
__ptr = (unsigned long) (ptr); \
|
||||
(typeof(ptr)) (__ptr + (off)); })
|
||||
|
||||
/* This should act as an optimization barrier on var.
|
||||
* Given that this compiler does not have inline assembly, a compiler barrier
|
||||
* is the best we can do.
|
||||
*/
|
||||
#define OPTIMIZER_HIDE_VAR(var) barrier()
|
||||
|
||||
/* Intel ECC compiler doesn't support __builtin_types_compatible_p() */
|
||||
#define __must_be_array(a) 0
|
||||
|
||||
|
|
|
@ -170,6 +170,10 @@ void ftrace_likely_update(struct ftrace_branch_data *f, int val, int expect);
|
|||
(typeof(ptr)) (__ptr + (off)); })
|
||||
#endif
|
||||
|
||||
#ifndef OPTIMIZER_HIDE_VAR
|
||||
#define OPTIMIZER_HIDE_VAR(var) barrier()
|
||||
#endif
|
||||
|
||||
/* Not-quite-unique ID. */
|
||||
#ifndef __UNIQUE_ID
|
||||
# define __UNIQUE_ID(prefix) __PASTE(__PASTE(__UNIQUE_ID_, prefix), __LINE__)
|
||||
|
|
|
@ -112,7 +112,7 @@ int padata_do_parallel(struct padata_instance *pinst,
|
|||
|
||||
rcu_read_lock_bh();
|
||||
|
||||
pd = rcu_dereference(pinst->pd);
|
||||
pd = rcu_dereference_bh(pinst->pd);
|
||||
|
||||
err = -EINVAL;
|
||||
if (!(pinst->flags & PADATA_INIT) || pinst->flags & PADATA_INVALID)
|
||||
|
|
Loading…
Reference in New Issue