mm/sl[aou]b: Get rid of __kmem_cache_destroy

What is done there can be done in __kmem_cache_shutdown.

This affects RCU handling somewhat. On rcu free all slab allocators do
not refer to other management structures than the kmem_cache structure.
Therefore these other structures can be freed before the rcu deferred
free to the page allocator occurs.

Reviewed-by: Joonsoo Kim <js1304@gmail.com>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
This commit is contained in:
Christoph Lameter 2012-09-04 23:38:33 +00:00 committed by Pekka Enberg
parent 8f4c765c22
commit 12c3667fb7
5 changed files with 26 additions and 36 deletions

View File

@ -2208,26 +2208,6 @@ static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
}
}
void __kmem_cache_destroy(struct kmem_cache *cachep)
{
int i;
struct kmem_list3 *l3;
for_each_online_cpu(i)
kfree(cachep->array[i]);
/* NUMA: free the list3 structures */
for_each_online_node(i) {
l3 = cachep->nodelists[i];
if (l3) {
kfree(l3->shared);
free_alien_cache(l3->alien);
kfree(l3);
}
}
}
/**
* calculate_slab_order - calculate size (page order) of slabs
* @cachep: pointer to the cache that is being created
@ -2364,9 +2344,6 @@ static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
* Cannot be called within a int, but can be interrupted.
* The @ctor is run when new pages are allocated by the cache.
*
* @name must be valid until the cache is destroyed. This implies that
* the module calling this has to destroy the cache before getting unloaded.
*
* The flags are
*
* %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
@ -2591,7 +2568,7 @@ __kmem_cache_create (const char *name, size_t size, size_t align,
cachep->refcount = 1;
if (setup_cpu_cache(cachep, gfp)) {
__kmem_cache_destroy(cachep);
__kmem_cache_shutdown(cachep);
return NULL;
}
@ -2766,7 +2743,26 @@ EXPORT_SYMBOL(kmem_cache_shrink);
int __kmem_cache_shutdown(struct kmem_cache *cachep)
{
return __cache_shrink(cachep);
int i;
struct kmem_list3 *l3;
int rc = __cache_shrink(cachep);
if (rc)
return rc;
for_each_online_cpu(i)
kfree(cachep->array[i]);
/* NUMA: free the list3 structures */
for_each_online_node(i) {
l3 = cachep->nodelists[i];
if (l3) {
kfree(l3->shared);
free_alien_cache(l3->alien);
kfree(l3);
}
}
return 0;
}
/*

View File

@ -37,6 +37,5 @@ struct kmem_cache *__kmem_cache_create(const char *name, size_t size,
size_t align, unsigned long flags, void (*ctor)(void *));
int __kmem_cache_shutdown(struct kmem_cache *);
void __kmem_cache_destroy(struct kmem_cache *);
#endif

View File

@ -153,7 +153,6 @@ void kmem_cache_destroy(struct kmem_cache *s)
if (s->flags & SLAB_DESTROY_BY_RCU)
rcu_barrier();
__kmem_cache_destroy(s);
kmem_cache_free(kmem_cache, s);
} else {
list_add(&s->list, &slab_caches);

View File

@ -538,10 +538,6 @@ struct kmem_cache *__kmem_cache_create(const char *name, size_t size,
return c;
}
void __kmem_cache_destroy(struct kmem_cache *c)
{
}
void *kmem_cache_alloc_node(struct kmem_cache *c, gfp_t flags, int node)
{
void *b;

View File

@ -3205,12 +3205,12 @@ static inline int kmem_cache_close(struct kmem_cache *s)
int __kmem_cache_shutdown(struct kmem_cache *s)
{
return kmem_cache_close(s);
}
int rc = kmem_cache_close(s);
void __kmem_cache_destroy(struct kmem_cache *s)
{
sysfs_slab_remove(s);
if (!rc)
sysfs_slab_remove(s);
return rc;
}
/********************************************************************