unicore32 core architecture: mm related: consistent device DMA handling

This patch implements consistent device DMA handling of memory management.
DMA device operations are also here.

Signed-off-by: Guan Xuetao <gxt@mprc.pku.edu.cn>
Reviewed-by: Arnd Bergmann <arnd@arndb.de>
This commit is contained in:
GuanXuetao 2011-01-15 18:18:29 +08:00
parent 56372b0b2f
commit 10c9c10c31
10 changed files with 1207 additions and 0 deletions

View File

@ -0,0 +1,211 @@
/*
* linux/arch/unicore32/include/asm/cacheflush.h
*
* Code specific to PKUnity SoC and UniCore ISA
*
* Copyright (C) 2001-2010 GUAN Xue-tao
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#ifndef __UNICORE_CACHEFLUSH_H__
#define __UNICORE_CACHEFLUSH_H__
#include <linux/mm.h>
#include <asm/shmparam.h>
#define CACHE_COLOUR(vaddr) ((vaddr & (SHMLBA - 1)) >> PAGE_SHIFT)
/*
* This flag is used to indicate that the page pointed to by a pte is clean
* and does not require cleaning before returning it to the user.
*/
#define PG_dcache_clean PG_arch_1
/*
* MM Cache Management
* ===================
*
* The arch/unicore32/mm/cache.S files implement these methods.
*
* Start addresses are inclusive and end addresses are exclusive;
* start addresses should be rounded down, end addresses up.
*
* See Documentation/cachetlb.txt for more information.
* Please note that the implementation of these, and the required
* effects are cache-type (VIVT/VIPT/PIPT) specific.
*
* flush_icache_all()
*
* Unconditionally clean and invalidate the entire icache.
* Currently only needed for cache-v6.S and cache-v7.S, see
* __flush_icache_all for the generic implementation.
*
* flush_kern_all()
*
* Unconditionally clean and invalidate the entire cache.
*
* flush_user_all()
*
* Clean and invalidate all user space cache entries
* before a change of page tables.
*
* flush_user_range(start, end, flags)
*
* Clean and invalidate a range of cache entries in the
* specified address space before a change of page tables.
* - start - user start address (inclusive, page aligned)
* - end - user end address (exclusive, page aligned)
* - flags - vma->vm_flags field
*
* coherent_kern_range(start, end)
*
* Ensure coherency between the Icache and the Dcache in the
* region described by start, end. If you have non-snooping
* Harvard caches, you need to implement this function.
* - start - virtual start address
* - end - virtual end address
*
* coherent_user_range(start, end)
*
* Ensure coherency between the Icache and the Dcache in the
* region described by start, end. If you have non-snooping
* Harvard caches, you need to implement this function.
* - start - virtual start address
* - end - virtual end address
*
* flush_kern_dcache_area(kaddr, size)
*
* Ensure that the data held in page is written back.
* - kaddr - page address
* - size - region size
*
* DMA Cache Coherency
* ===================
*
* dma_flush_range(start, end)
*
* Clean and invalidate the specified virtual address range.
* - start - virtual start address
* - end - virtual end address
*/
extern void __cpuc_flush_icache_all(void);
extern void __cpuc_flush_kern_all(void);
extern void __cpuc_flush_user_all(void);
extern void __cpuc_flush_user_range(unsigned long, unsigned long, unsigned int);
extern void __cpuc_coherent_kern_range(unsigned long, unsigned long);
extern void __cpuc_coherent_user_range(unsigned long, unsigned long);
extern void __cpuc_flush_dcache_area(void *, size_t);
extern void __cpuc_flush_kern_dcache_area(void *addr, size_t size);
/*
* These are private to the dma-mapping API. Do not use directly.
* Their sole purpose is to ensure that data held in the cache
* is visible to DMA, or data written by DMA to system memory is
* visible to the CPU.
*/
extern void __cpuc_dma_clean_range(unsigned long, unsigned long);
extern void __cpuc_dma_flush_range(unsigned long, unsigned long);
/*
* Copy user data from/to a page which is mapped into a different
* processes address space. Really, we want to allow our "user
* space" model to handle this.
*/
extern void copy_to_user_page(struct vm_area_struct *, struct page *,
unsigned long, void *, const void *, unsigned long);
#define copy_from_user_page(vma, page, vaddr, dst, src, len) \
do { \
memcpy(dst, src, len); \
} while (0)
/*
* Convert calls to our calling convention.
*/
/* Invalidate I-cache */
static inline void __flush_icache_all(void)
{
asm("movc p0.c5, %0, #20;\n"
"nop; nop; nop; nop; nop; nop; nop; nop\n"
:
: "r" (0));
}
#define flush_cache_all() __cpuc_flush_kern_all()
extern void flush_cache_mm(struct mm_struct *mm);
extern void flush_cache_range(struct vm_area_struct *vma,
unsigned long start, unsigned long end);
extern void flush_cache_page(struct vm_area_struct *vma,
unsigned long user_addr, unsigned long pfn);
#define flush_cache_dup_mm(mm) flush_cache_mm(mm)
/*
* flush_cache_user_range is used when we want to ensure that the
* Harvard caches are synchronised for the user space address range.
* This is used for the UniCore private sys_cacheflush system call.
*/
#define flush_cache_user_range(vma, start, end) \
__cpuc_coherent_user_range((start) & PAGE_MASK, PAGE_ALIGN(end))
/*
* Perform necessary cache operations to ensure that data previously
* stored within this range of addresses can be executed by the CPU.
*/
#define flush_icache_range(s, e) __cpuc_coherent_kern_range(s, e)
/*
* Perform necessary cache operations to ensure that the TLB will
* see data written in the specified area.
*/
#define clean_dcache_area(start, size) cpu_dcache_clean_area(start, size)
/*
* flush_dcache_page is used when the kernel has written to the page
* cache page at virtual address page->virtual.
*
* If this page isn't mapped (ie, page_mapping == NULL), or it might
* have userspace mappings, then we _must_ always clean + invalidate
* the dcache entries associated with the kernel mapping.
*
* Otherwise we can defer the operation, and clean the cache when we are
* about to change to user space. This is the same method as used on SPARC64.
* See update_mmu_cache for the user space part.
*/
#define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 1
extern void flush_dcache_page(struct page *);
#define flush_dcache_mmap_lock(mapping) \
spin_lock_irq(&(mapping)->tree_lock)
#define flush_dcache_mmap_unlock(mapping) \
spin_unlock_irq(&(mapping)->tree_lock)
#define flush_icache_user_range(vma, page, addr, len) \
flush_dcache_page(page)
/*
* We don't appear to need to do anything here. In fact, if we did, we'd
* duplicate cache flushing elsewhere performed by flush_dcache_page().
*/
#define flush_icache_page(vma, page) do { } while (0)
/*
* flush_cache_vmap() is used when creating mappings (eg, via vmap,
* vmalloc, ioremap etc) in kernel space for pages. On non-VIPT
* caches, since the direct-mappings of these pages may contain cached
* data, we need to do a full cache flush to ensure that writebacks
* don't corrupt data placed into these pages via the new mappings.
*/
static inline void flush_cache_vmap(unsigned long start, unsigned long end)
{
}
static inline void flush_cache_vunmap(unsigned long start, unsigned long end)
{
}
#endif

View File

@ -0,0 +1,124 @@
/*
* linux/arch/unicore32/include/asm/dma-mapping.h
*
* Code specific to PKUnity SoC and UniCore ISA
*
* Copyright (C) 2001-2010 GUAN Xue-tao
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#ifndef __UNICORE_DMA_MAPPING_H__
#define __UNICORE_DMA_MAPPING_H__
#ifdef __KERNEL__
#include <linux/mm_types.h>
#include <linux/scatterlist.h>
#include <linux/swiotlb.h>
#include <asm-generic/dma-coherent.h>
#include <asm/memory.h>
#include <asm/cacheflush.h>
extern struct dma_map_ops swiotlb_dma_map_ops;
static inline struct dma_map_ops *get_dma_ops(struct device *dev)
{
return &swiotlb_dma_map_ops;
}
static inline int dma_supported(struct device *dev, u64 mask)
{
struct dma_map_ops *dma_ops = get_dma_ops(dev);
if (unlikely(dma_ops == NULL))
return 0;
return dma_ops->dma_supported(dev, mask);
}
static inline int dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
{
struct dma_map_ops *dma_ops = get_dma_ops(dev);
if (dma_ops->mapping_error)
return dma_ops->mapping_error(dev, dma_addr);
return 0;
}
#include <asm-generic/dma-mapping-common.h>
static inline bool dma_capable(struct device *dev, dma_addr_t addr, size_t size)
{
if (dev && dev->dma_mask)
return addr + size - 1 <= *dev->dma_mask;
return 1;
}
static inline dma_addr_t phys_to_dma(struct device *dev, phys_addr_t paddr)
{
return paddr;
}
static inline phys_addr_t dma_to_phys(struct device *dev, dma_addr_t daddr)
{
return daddr;
}
static inline void dma_mark_clean(void *addr, size_t size) {}
static inline int dma_set_mask(struct device *dev, u64 dma_mask)
{
if (!dev->dma_mask || !dma_supported(dev, dma_mask))
return -EIO;
*dev->dma_mask = dma_mask;
return 0;
}
static inline void *dma_alloc_coherent(struct device *dev, size_t size,
dma_addr_t *dma_handle, gfp_t flag)
{
struct dma_map_ops *dma_ops = get_dma_ops(dev);
return dma_ops->alloc_coherent(dev, size, dma_handle, flag);
}
static inline void dma_free_coherent(struct device *dev, size_t size,
void *cpu_addr, dma_addr_t dma_handle)
{
struct dma_map_ops *dma_ops = get_dma_ops(dev);
dma_ops->free_coherent(dev, size, cpu_addr, dma_handle);
}
#define dma_alloc_noncoherent(d, s, h, f) dma_alloc_coherent(d, s, h, f)
#define dma_free_noncoherent(d, s, v, h) dma_free_coherent(d, s, v, h)
static inline void dma_cache_sync(struct device *dev, void *vaddr,
size_t size, enum dma_data_direction direction)
{
unsigned long start = (unsigned long)vaddr;
unsigned long end = start + size;
switch (direction) {
case DMA_NONE:
BUG();
case DMA_FROM_DEVICE:
case DMA_BIDIRECTIONAL: /* writeback and invalidate */
__cpuc_dma_flush_range(start, end);
break;
case DMA_TO_DEVICE: /* writeback only */
__cpuc_dma_clean_range(start, end);
break;
}
}
#endif /* __KERNEL__ */
#endif

View File

@ -0,0 +1,23 @@
/*
* linux/arch/unicore32/include/asm/dma.h
*
* Code specific to PKUnity SoC and UniCore ISA
*
* Copyright (C) 2001-2010 GUAN Xue-tao
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#ifndef __UNICORE_DMA_H__
#define __UNICORE_DMA_H__
#include <asm/memory.h>
#include <asm-generic/dma.h>
#ifdef CONFIG_PCI
extern int isa_dma_bridge_buggy;
#endif
#endif /* __UNICORE_DMA_H__ */

View File

@ -0,0 +1,195 @@
/*
* linux/arch/unicore32/include/asm/tlbflush.h
*
* Code specific to PKUnity SoC and UniCore ISA
*
* Copyright (C) 2001-2010 GUAN Xue-tao
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#ifndef __UNICORE_TLBFLUSH_H__
#define __UNICORE_TLBFLUSH_H__
#ifndef __ASSEMBLY__
#include <linux/sched.h>
extern void __cpu_flush_user_tlb_range(unsigned long, unsigned long,
struct vm_area_struct *);
extern void __cpu_flush_kern_tlb_range(unsigned long, unsigned long);
/*
* TLB Management
* ==============
*
* The arch/unicore/mm/tlb-*.S files implement these methods.
*
* The TLB specific code is expected to perform whatever tests it
* needs to determine if it should invalidate the TLB for each
* call. Start addresses are inclusive and end addresses are
* exclusive; it is safe to round these addresses down.
*
* flush_tlb_all()
*
* Invalidate the entire TLB.
*
* flush_tlb_mm(mm)
*
* Invalidate all TLB entries in a particular address
* space.
* - mm - mm_struct describing address space
*
* flush_tlb_range(mm,start,end)
*
* Invalidate a range of TLB entries in the specified
* address space.
* - mm - mm_struct describing address space
* - start - start address (may not be aligned)
* - end - end address (exclusive, may not be aligned)
*
* flush_tlb_page(vaddr,vma)
*
* Invalidate the specified page in the specified address range.
* - vaddr - virtual address (may not be aligned)
* - vma - vma_struct describing address range
*
* flush_kern_tlb_page(kaddr)
*
* Invalidate the TLB entry for the specified page. The address
* will be in the kernels virtual memory space. Current uses
* only require the D-TLB to be invalidated.
* - kaddr - Kernel virtual memory address
*/
static inline void local_flush_tlb_all(void)
{
const int zero = 0;
/* TLB invalidate all */
asm("movc p0.c6, %0, #6; nop; nop; nop; nop; nop; nop; nop; nop"
: : "r" (zero) : "cc");
}
static inline void local_flush_tlb_mm(struct mm_struct *mm)
{
const int zero = 0;
if (cpumask_test_cpu(get_cpu(), mm_cpumask(mm))) {
/* TLB invalidate all */
asm("movc p0.c6, %0, #6; nop; nop; nop; nop; nop; nop; nop; nop"
: : "r" (zero) : "cc");
}
put_cpu();
}
static inline void
local_flush_tlb_page(struct vm_area_struct *vma, unsigned long uaddr)
{
if (cpumask_test_cpu(smp_processor_id(), mm_cpumask(vma->vm_mm))) {
#ifndef CONFIG_CPU_TLB_SINGLE_ENTRY_DISABLE
/* iTLB invalidate page */
asm("movc p0.c6, %0, #5; nop; nop; nop; nop; nop; nop; nop; nop"
: : "r" (uaddr & PAGE_MASK) : "cc");
/* dTLB invalidate page */
asm("movc p0.c6, %0, #3; nop; nop; nop; nop; nop; nop; nop; nop"
: : "r" (uaddr & PAGE_MASK) : "cc");
#else
/* TLB invalidate all */
asm("movc p0.c6, %0, #6; nop; nop; nop; nop; nop; nop; nop; nop"
: : "r" (uaddr & PAGE_MASK) : "cc");
#endif
}
}
static inline void local_flush_tlb_kernel_page(unsigned long kaddr)
{
#ifndef CONFIG_CPU_TLB_SINGLE_ENTRY_DISABLE
/* iTLB invalidate page */
asm("movc p0.c6, %0, #5; nop; nop; nop; nop; nop; nop; nop; nop"
: : "r" (kaddr & PAGE_MASK) : "cc");
/* dTLB invalidate page */
asm("movc p0.c6, %0, #3; nop; nop; nop; nop; nop; nop; nop; nop"
: : "r" (kaddr & PAGE_MASK) : "cc");
#else
/* TLB invalidate all */
asm("movc p0.c6, %0, #6; nop; nop; nop; nop; nop; nop; nop; nop"
: : "r" (kaddr & PAGE_MASK) : "cc");
#endif
}
/*
* flush_pmd_entry
*
* Flush a PMD entry (word aligned, or double-word aligned) to
* RAM if the TLB for the CPU we are running on requires this.
* This is typically used when we are creating PMD entries.
*
* clean_pmd_entry
*
* Clean (but don't drain the write buffer) if the CPU requires
* these operations. This is typically used when we are removing
* PMD entries.
*/
static inline void flush_pmd_entry(pmd_t *pmd)
{
#ifndef CONFIG_CPU_DCACHE_LINE_DISABLE
/* flush dcache line, see dcacheline_flush in proc-macros.S */
asm("mov r1, %0 << #20\n"
"ldw r2, =_stext\n"
"add r2, r2, r1 >> #20\n"
"ldw r1, [r2+], #0x0000\n"
"ldw r1, [r2+], #0x1000\n"
"ldw r1, [r2+], #0x2000\n"
"ldw r1, [r2+], #0x3000\n"
: : "r" (pmd) : "r1", "r2");
#else
/* flush dcache all */
asm("movc p0.c5, %0, #14; nop; nop; nop; nop; nop; nop; nop; nop"
: : "r" (pmd) : "cc");
#endif
}
static inline void clean_pmd_entry(pmd_t *pmd)
{
#ifndef CONFIG_CPU_DCACHE_LINE_DISABLE
/* clean dcache line */
asm("movc p0.c5, %0, #11; nop; nop; nop; nop; nop; nop; nop; nop"
: : "r" (__pa(pmd) & ~(L1_CACHE_BYTES - 1)) : "cc");
#else
/* clean dcache all */
asm("movc p0.c5, %0, #10; nop; nop; nop; nop; nop; nop; nop; nop"
: : "r" (pmd) : "cc");
#endif
}
/*
* Convert calls to our calling convention.
*/
#define local_flush_tlb_range(vma, start, end) \
__cpu_flush_user_tlb_range(start, end, vma)
#define local_flush_tlb_kernel_range(s, e) \
__cpu_flush_kern_tlb_range(s, e)
#define flush_tlb_all local_flush_tlb_all
#define flush_tlb_mm local_flush_tlb_mm
#define flush_tlb_page local_flush_tlb_page
#define flush_tlb_kernel_page local_flush_tlb_kernel_page
#define flush_tlb_range local_flush_tlb_range
#define flush_tlb_kernel_range local_flush_tlb_kernel_range
/*
* if PG_dcache_clean is not set for the page, we need to ensure that any
* cache entries for the kernels virtual memory range are written
* back to the page.
*/
extern void update_mmu_cache(struct vm_area_struct *vma,
unsigned long addr, pte_t *ptep);
extern void do_bad_area(unsigned long addr, unsigned int fsr,
struct pt_regs *regs);
#endif
#endif

View File

@ -0,0 +1,41 @@
/*
* linux/arch/unicore32/include/mach/dma.h
*
* Code specific to PKUnity SoC and UniCore ISA
*
* Copyright (C) 2001-2010 GUAN Xue-tao
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#ifndef __MACH_PUV3_DMA_H__
#define __MACH_PUV3_DMA_H__
/*
* The PKUnity has six internal DMA channels.
*/
#define MAX_DMA_CHANNELS 6
typedef enum {
DMA_PRIO_HIGH = 0,
DMA_PRIO_MEDIUM = 1,
DMA_PRIO_LOW = 2
} puv3_dma_prio;
/*
* DMA registration
*/
extern int puv3_request_dma(char *name,
puv3_dma_prio prio,
void (*irq_handler)(int, void *),
void (*err_handler)(int, void *),
void *data);
extern void puv3_free_dma(int dma_ch);
#define puv3_stop_dma(ch) (DMAC_CONFIG(ch) &= ~DMAC_CONFIG_EN)
#define puv3_resume_dma(ch) (DMAC_CONFIG(ch) |= DMAC_CONFIG_EN)
#endif /* __MACH_PUV3_DMA_H__ */

180
arch/unicore32/kernel/dma.c Normal file
View File

@ -0,0 +1,180 @@
/*
* linux/arch/unicore32/kernel/dma.c
*
* Code specific to PKUnity SoC and UniCore ISA
*
* Maintained by GUAN Xue-tao <gxt@mprc.pku.edu.cn>
* Copyright (C) 2001-2010 Guan Xuetao
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/interrupt.h>
#include <linux/errno.h>
#include <asm/system.h>
#include <asm/irq.h>
#include <mach/hardware.h>
#include <mach/dma.h>
struct dma_channel {
char *name;
puv3_dma_prio prio;
void (*irq_handler)(int, void *);
void (*err_handler)(int, void *);
void *data;
};
static struct dma_channel dma_channels[MAX_DMA_CHANNELS];
int puv3_request_dma(char *name, puv3_dma_prio prio,
void (*irq_handler)(int, void *),
void (*err_handler)(int, void *),
void *data)
{
unsigned long flags;
int i, found = 0;
/* basic sanity checks */
if (!name)
return -EINVAL;
local_irq_save(flags);
do {
/* try grabbing a DMA channel with the requested priority */
for (i = 0; i < MAX_DMA_CHANNELS; i++) {
if ((dma_channels[i].prio == prio) &&
!dma_channels[i].name) {
found = 1;
break;
}
}
/* if requested prio group is full, try a hier priority */
} while (!found && prio--);
if (found) {
dma_channels[i].name = name;
dma_channels[i].irq_handler = irq_handler;
dma_channels[i].err_handler = err_handler;
dma_channels[i].data = data;
} else {
printk(KERN_WARNING "No more available DMA channels for %s\n",
name);
i = -ENODEV;
}
local_irq_restore(flags);
return i;
}
EXPORT_SYMBOL(puv3_request_dma);
void puv3_free_dma(int dma_ch)
{
unsigned long flags;
if (!dma_channels[dma_ch].name) {
printk(KERN_CRIT
"%s: trying to free channel %d which is already freed\n",
__func__, dma_ch);
return;
}
local_irq_save(flags);
dma_channels[dma_ch].name = NULL;
dma_channels[dma_ch].err_handler = NULL;
local_irq_restore(flags);
}
EXPORT_SYMBOL(puv3_free_dma);
static irqreturn_t dma_irq_handler(int irq, void *dev_id)
{
int i, dint = DMAC_ITCSR;
for (i = 0; i < MAX_DMA_CHANNELS; i++) {
if (dint & DMAC_CHANNEL(i)) {
struct dma_channel *channel = &dma_channels[i];
/* Clear TC interrupt of channel i */
DMAC_ITCCR = DMAC_CHANNEL(i);
DMAC_ITCCR = 0;
if (channel->name && channel->irq_handler) {
channel->irq_handler(i, channel->data);
} else {
/*
* IRQ for an unregistered DMA channel:
* let's clear the interrupts and disable it.
*/
printk(KERN_WARNING "spurious IRQ for"
" DMA channel %d\n", i);
}
}
}
return IRQ_HANDLED;
}
static irqreturn_t dma_err_handler(int irq, void *dev_id)
{
int i, dint = DMAC_IESR;
for (i = 0; i < MAX_DMA_CHANNELS; i++) {
if (dint & DMAC_CHANNEL(i)) {
struct dma_channel *channel = &dma_channels[i];
/* Clear Err interrupt of channel i */
DMAC_IECR = DMAC_CHANNEL(i);
DMAC_IECR = 0;
if (channel->name && channel->err_handler) {
channel->err_handler(i, channel->data);
} else {
/*
* IRQ for an unregistered DMA channel:
* let's clear the interrupts and disable it.
*/
printk(KERN_WARNING "spurious IRQ for"
" DMA channel %d\n", i);
}
}
}
return IRQ_HANDLED;
}
int __init puv3_init_dma(void)
{
int i, ret;
/* dma channel priorities on v8 processors:
* ch 0 - 1 <--> (0) DMA_PRIO_HIGH
* ch 2 - 3 <--> (1) DMA_PRIO_MEDIUM
* ch 4 - 5 <--> (2) DMA_PRIO_LOW
*/
for (i = 0; i < MAX_DMA_CHANNELS; i++) {
puv3_stop_dma(i);
dma_channels[i].name = NULL;
dma_channels[i].prio = min((i & 0x7) >> 1, DMA_PRIO_LOW);
}
ret = request_irq(IRQ_DMA, dma_irq_handler, 0, "DMA", NULL);
if (ret) {
printk(KERN_CRIT "Can't register IRQ for DMA\n");
return ret;
}
ret = request_irq(IRQ_DMAERR, dma_err_handler, 0, "DMAERR", NULL);
if (ret) {
printk(KERN_CRIT "Can't register IRQ for DMAERR\n");
free_irq(IRQ_DMA, "DMA");
return ret;
}
return 0;
}
postcore_initcall(puv3_init_dma);

View File

@ -0,0 +1,212 @@
/*
* linux/arch/unicore32/mm/cache-ucv2.S
*
* Code specific to PKUnity SoC and UniCore ISA
*
* Copyright (C) 2001-2010 GUAN Xue-tao
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This is the "shell" of the UniCore-v2 processor support.
*/
#include <linux/linkage.h>
#include <linux/init.h>
#include <asm/assembler.h>
#include <asm/page.h>
#include "proc-macros.S"
/*
* __cpuc_flush_icache_all()
* __cpuc_flush_kern_all()
* __cpuc_flush_user_all()
*
* Flush the entire cache.
*/
ENTRY(__cpuc_flush_icache_all)
/*FALLTHROUGH*/
ENTRY(__cpuc_flush_kern_all)
/*FALLTHROUGH*/
ENTRY(__cpuc_flush_user_all)
mov r0, #0
movc p0.c5, r0, #14 @ Dcache flush all
nop8
mov r0, #0
movc p0.c5, r0, #20 @ Icache invalidate all
nop8
mov pc, lr
/*
* __cpuc_flush_user_range(start, end, flags)
*
* Flush a range of TLB entries in the specified address space.
*
* - start - start address (may not be aligned)
* - end - end address (exclusive, may not be aligned)
* - flags - vm_area_struct flags describing address space
*/
ENTRY(__cpuc_flush_user_range)
cxor.a r2, #0
beq __cpuc_dma_flush_range
#ifndef CONFIG_CPU_DCACHE_LINE_DISABLE
andn r0, r0, #CACHE_LINESIZE - 1 @ Safety check
sub r1, r1, r0
csub.a r1, #MAX_AREA_SIZE
bsg 2f
andn r1, r1, #CACHE_LINESIZE - 1
add r1, r1, #CACHE_LINESIZE
101: dcacheline_flush r0, r11, r12
add r0, r0, #CACHE_LINESIZE
sub.a r1, r1, #CACHE_LINESIZE
bns 101b
b 3f
#endif
2: mov ip, #0
movc p0.c5, ip, #14 @ Dcache flush all
nop8
3: mov ip, #0
movc p0.c5, ip, #20 @ Icache invalidate all
nop8
mov pc, lr
/*
* __cpuc_coherent_kern_range(start,end)
* __cpuc_coherent_user_range(start,end)
*
* Ensure that the I and D caches are coherent within specified
* region. This is typically used when code has been written to
* a memory region, and will be executed.
*
* - start - virtual start address of region
* - end - virtual end address of region
*/
ENTRY(__cpuc_coherent_kern_range)
/* FALLTHROUGH */
ENTRY(__cpuc_coherent_user_range)
#ifndef CONFIG_CPU_DCACHE_LINE_DISABLE
andn r0, r0, #CACHE_LINESIZE - 1 @ Safety check
sub r1, r1, r0
csub.a r1, #MAX_AREA_SIZE
bsg 2f
andn r1, r1, #CACHE_LINESIZE - 1
add r1, r1, #CACHE_LINESIZE
@ r0 va2pa r10
mov r9, #PAGE_SZ
sub r9, r9, #1 @ PAGE_MASK
101: va2pa r0, r10, r11, r12, r13, 2f @ r10 is PA
b 103f
102: cand.a r0, r9
beq 101b
103: movc p0.c5, r10, #11 @ Dcache clean line of R10
nop8
add r0, r0, #CACHE_LINESIZE
add r10, r10, #CACHE_LINESIZE
sub.a r1, r1, #CACHE_LINESIZE
bns 102b
b 3f
#endif
2: mov ip, #0
movc p0.c5, ip, #10 @ Dcache clean all
nop8
3: mov ip, #0
movc p0.c5, ip, #20 @ Icache invalidate all
nop8
mov pc, lr
/*
* __cpuc_flush_kern_dcache_area(void *addr, size_t size)
*
* - addr - kernel address
* - size - region size
*/
ENTRY(__cpuc_flush_kern_dcache_area)
mov ip, #0
movc p0.c5, ip, #14 @ Dcache flush all
nop8
mov pc, lr
/*
* __cpuc_dma_clean_range(start,end)
* - start - virtual start address of region
* - end - virtual end address of region
*/
ENTRY(__cpuc_dma_clean_range)
#ifndef CONFIG_CPU_DCACHE_LINE_DISABLE
andn r0, r0, #CACHE_LINESIZE - 1
sub r1, r1, r0
andn r1, r1, #CACHE_LINESIZE - 1
add r1, r1, #CACHE_LINESIZE
csub.a r1, #MAX_AREA_SIZE
bsg 2f
@ r0 va2pa r10
mov r9, #PAGE_SZ
sub r9, r9, #1 @ PAGE_MASK
101: va2pa r0, r10, r11, r12, r13, 2f @ r10 is PA
b 1f
102: cand.a r0, r9
beq 101b
1: movc p0.c5, r10, #11 @ Dcache clean line of R10
nop8
add r0, r0, #CACHE_LINESIZE
add r10, r10, #CACHE_LINESIZE
sub.a r1, r1, #CACHE_LINESIZE
bns 102b
mov pc, lr
#endif
2: mov ip, #0
movc p0.c5, ip, #10 @ Dcache clean all
nop8
mov pc, lr
/*
* __cpuc_dma_inv_range(start,end)
* __cpuc_dma_flush_range(start,end)
* - start - virtual start address of region
* - end - virtual end address of region
*/
__cpuc_dma_inv_range:
/* FALLTHROUGH */
ENTRY(__cpuc_dma_flush_range)
#ifndef CONFIG_CPU_DCACHE_LINE_DISABLE
andn r0, r0, #CACHE_LINESIZE - 1
sub r1, r1, r0
andn r1, r1, #CACHE_LINESIZE - 1
add r1, r1, #CACHE_LINESIZE
csub.a r1, #MAX_AREA_SIZE
bsg 2f
@ r0 va2pa r10
101: dcacheline_flush r0, r11, r12
add r0, r0, #CACHE_LINESIZE
sub.a r1, r1, #CACHE_LINESIZE
bns 101b
mov pc, lr
#endif
2: mov ip, #0
movc p0.c5, ip, #14 @ Dcache flush all
nop8
mov pc, lr

View File

@ -0,0 +1,34 @@
/*
* Contains routines needed to support swiotlb for UniCore32.
*
* Copyright (C) 2010 Guan Xuetao
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*/
#include <linux/pci.h>
#include <linux/cache.h>
#include <linux/module.h>
#include <linux/dma-mapping.h>
#include <linux/swiotlb.h>
#include <linux/bootmem.h>
#include <asm/dma.h>
struct dma_map_ops swiotlb_dma_map_ops = {
.alloc_coherent = swiotlb_alloc_coherent,
.free_coherent = swiotlb_free_coherent,
.map_sg = swiotlb_map_sg_attrs,
.unmap_sg = swiotlb_unmap_sg_attrs,
.dma_supported = swiotlb_dma_supported,
.map_page = swiotlb_map_page,
.unmap_page = swiotlb_unmap_page,
.sync_single_for_cpu = swiotlb_sync_single_for_cpu,
.sync_single_for_device = swiotlb_sync_single_for_device,
.sync_sg_for_cpu = swiotlb_sync_sg_for_cpu,
.sync_sg_for_device = swiotlb_sync_sg_for_device,
.mapping_error = swiotlb_dma_mapping_error,
};
EXPORT_SYMBOL(swiotlb_dma_map_ops);

98
arch/unicore32/mm/flush.c Normal file
View File

@ -0,0 +1,98 @@
/*
* linux/arch/unicore32/mm/flush.c
*
* Code specific to PKUnity SoC and UniCore ISA
*
* Copyright (C) 2001-2010 GUAN Xue-tao
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/module.h>
#include <linux/mm.h>
#include <linux/pagemap.h>
#include <asm/cacheflush.h>
#include <asm/system.h>
#include <asm/tlbflush.h>
void flush_cache_mm(struct mm_struct *mm)
{
}
void flush_cache_range(struct vm_area_struct *vma, unsigned long start,
unsigned long end)
{
if (vma->vm_flags & VM_EXEC)
__flush_icache_all();
}
void flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr,
unsigned long pfn)
{
}
static void flush_ptrace_access(struct vm_area_struct *vma, struct page *page,
unsigned long uaddr, void *kaddr, unsigned long len)
{
/* VIPT non-aliasing D-cache */
if (vma->vm_flags & VM_EXEC) {
unsigned long addr = (unsigned long)kaddr;
__cpuc_coherent_kern_range(addr, addr + len);
}
}
/*
* Copy user data from/to a page which is mapped into a different
* processes address space. Really, we want to allow our "user
* space" model to handle this.
*
* Note that this code needs to run on the current CPU.
*/
void copy_to_user_page(struct vm_area_struct *vma, struct page *page,
unsigned long uaddr, void *dst, const void *src,
unsigned long len)
{
memcpy(dst, src, len);
flush_ptrace_access(vma, page, uaddr, dst, len);
}
void __flush_dcache_page(struct address_space *mapping, struct page *page)
{
/*
* Writeback any data associated with the kernel mapping of this
* page. This ensures that data in the physical page is mutually
* coherent with the kernels mapping.
*/
__cpuc_flush_kern_dcache_area(page_address(page), PAGE_SIZE);
}
/*
* Ensure cache coherency between kernel mapping and userspace mapping
* of this page.
*/
void flush_dcache_page(struct page *page)
{
struct address_space *mapping;
/*
* The zero page is never written to, so never has any dirty
* cache lines, and therefore never needs to be flushed.
*/
if (page == ZERO_PAGE(0))
return;
mapping = page_mapping(page);
if (mapping && !mapping_mapped(mapping))
clear_bit(PG_dcache_clean, &page->flags);
else {
__flush_dcache_page(mapping, page);
if (mapping)
__flush_icache_all();
set_bit(PG_dcache_clean, &page->flags);
}
}
EXPORT_SYMBOL(flush_dcache_page);

View File

@ -0,0 +1,89 @@
/*
* linux/arch/unicore32/mm/tlb-ucv2.S
*
* Code specific to PKUnity SoC and UniCore ISA
*
* Copyright (C) 2001-2010 GUAN Xue-tao
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/init.h>
#include <linux/linkage.h>
#include <asm/assembler.h>
#include <asm/page.h>
#include <asm/tlbflush.h>
#include "proc-macros.S"
/*
* __cpu_flush_user_tlb_range(start, end, vma)
*
* Invalidate a range of TLB entries in the specified address space.
*
* - start - start address (may not be aligned)
* - end - end address (exclusive, may not be aligned)
* - vma - vma_struct describing address range
*/
ENTRY(__cpu_flush_user_tlb_range)
#ifndef CONFIG_CPU_TLB_SINGLE_ENTRY_DISABLE
mov r0, r0 >> #PAGE_SHIFT @ align address
mov r0, r0 << #PAGE_SHIFT
vma_vm_flags r2, r2 @ get vma->vm_flags
1:
movc p0.c6, r0, #3
nop8
cand.a r2, #VM_EXEC @ Executable area ?
beq 2f
movc p0.c6, r0, #5
nop8
2:
add r0, r0, #PAGE_SZ
csub.a r0, r1
beb 1b
#else
movc p0.c6, r0, #2
nop8
cand.a r2, #VM_EXEC @ Executable area ?
beq 2f
movc p0.c6, r0, #4
nop8
2:
#endif
mov pc, lr
/*
* __cpu_flush_kern_tlb_range(start,end)
*
* Invalidate a range of kernel TLB entries
*
* - start - start address (may not be aligned)
* - end - end address (exclusive, may not be aligned)
*/
ENTRY(__cpu_flush_kern_tlb_range)
#ifndef CONFIG_CPU_TLB_SINGLE_ENTRY_DISABLE
mov r0, r0 >> #PAGE_SHIFT @ align address
mov r0, r0 << #PAGE_SHIFT
1:
movc p0.c6, r0, #3
nop8
movc p0.c6, r0, #5
nop8
add r0, r0, #PAGE_SZ
csub.a r0, r1
beb 1b
#else
movc p0.c6, r0, #2
nop8
movc p0.c6, r0, #4
nop8
#endif
mov pc, lr