Staging: comedi: add jr3_pci driver
hardware driver for JR3/PCI force sensor board From: Anders Blomdell <anders.blomdell@control.lth.se> Cc: David Schleef <ds@schleef.org> Cc: Frank Mori Hess <fmhess@users.sourceforge.net> Cc: Ian Abbott <abbotti@mev.co.uk> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
This commit is contained in:
parent
c4beb34e46
commit
07b509e658
|
@ -0,0 +1,972 @@
|
|||
/*
|
||||
comedi/drivers/jr3_pci.c
|
||||
hardware driver for JR3/PCI force sensor board
|
||||
|
||||
COMEDI - Linux Control and Measurement Device Interface
|
||||
Copyright (C) 2007 Anders Blomdell <anders.blomdell@control.lth.se>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program; if not, write to the Free Software
|
||||
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
||||
|
||||
*/
|
||||
/*
|
||||
Driver: jr3_pci
|
||||
Description: JR3/PCI force sensor board
|
||||
Author: Anders Blomdell <anders.blomdell@control.lth.se>
|
||||
Status: works
|
||||
Devices: [JR3] PCI force sensor board (jr3_pci)
|
||||
|
||||
The DSP on the board requires initialization code, which can
|
||||
be loaded by placing it in /lib/firmware/comedi.
|
||||
The initialization code should be somewhere on the media you got
|
||||
with your card. One version is available from http://www.comedi.org
|
||||
in the comedi_nonfree_firmware tarball.
|
||||
|
||||
Configuration options:
|
||||
[0] - PCI bus number - if bus number and slot number are 0,
|
||||
then driver search for first unused card
|
||||
[1] - PCI slot number
|
||||
|
||||
*/
|
||||
|
||||
#include "../comedidev.h"
|
||||
|
||||
#include <linux/delay.h>
|
||||
#include <linux/ctype.h>
|
||||
#include <linux/firmware.h>
|
||||
#include "comedi_pci.h"
|
||||
#include "jr3_pci.h"
|
||||
|
||||
/* Hotplug firmware loading stuff */
|
||||
|
||||
static void comedi_fw_release(struct device *dev)
|
||||
{
|
||||
printk(KERN_DEBUG "firmware_sample_driver: ghost_release\n");
|
||||
}
|
||||
|
||||
static struct device comedi_fw_device = {
|
||||
.bus_id = "comedi",
|
||||
.release = comedi_fw_release
|
||||
};
|
||||
|
||||
typedef int comedi_firmware_callback(comedi_device * dev,
|
||||
const u8 * data, size_t size);
|
||||
|
||||
static int comedi_load_firmware(comedi_device * dev,
|
||||
char *name, comedi_firmware_callback cb)
|
||||
{
|
||||
int result = 0;
|
||||
const struct firmware *fw;
|
||||
char *firmware_path;
|
||||
static const char *prefix = "comedi/";
|
||||
|
||||
firmware_path = kmalloc(strlen(prefix) + strlen(name) + 1, GFP_KERNEL);
|
||||
if (!firmware_path) {
|
||||
result = -ENOMEM;
|
||||
} else {
|
||||
firmware_path[0] = '\0';
|
||||
strcat(firmware_path, prefix);
|
||||
strcat(firmware_path, name);
|
||||
result = device_register(&comedi_fw_device);
|
||||
if (result == 0) {
|
||||
result = request_firmware(&fw, firmware_path,
|
||||
&comedi_fw_device);
|
||||
if (result == 0) {
|
||||
if (!cb) {
|
||||
result = -EINVAL;
|
||||
} else {
|
||||
result = cb(dev, fw->data, fw->size);
|
||||
}
|
||||
release_firmware(fw);
|
||||
}
|
||||
device_unregister(&comedi_fw_device);
|
||||
}
|
||||
kfree(firmware_path);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
#define PCI_VENDOR_ID_JR3 0x1762
|
||||
#define PCI_DEVICE_ID_JR3_1_CHANNEL 0x3111
|
||||
#define PCI_DEVICE_ID_JR3_2_CHANNEL 0x3112
|
||||
#define PCI_DEVICE_ID_JR3_3_CHANNEL 0x3113
|
||||
#define PCI_DEVICE_ID_JR3_4_CHANNEL 0x3114
|
||||
|
||||
static int jr3_pci_attach(comedi_device * dev, comedi_devconfig * it);
|
||||
static int jr3_pci_detach(comedi_device * dev);
|
||||
|
||||
static comedi_driver driver_jr3_pci = {
|
||||
driver_name:"jr3_pci",
|
||||
module:THIS_MODULE,
|
||||
attach:jr3_pci_attach,
|
||||
detach:jr3_pci_detach,
|
||||
};
|
||||
|
||||
static DEFINE_PCI_DEVICE_TABLE(jr3_pci_pci_table) = {
|
||||
{PCI_VENDOR_ID_JR3, PCI_DEVICE_ID_JR3_1_CHANNEL,
|
||||
PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
|
||||
{PCI_VENDOR_ID_JR3, PCI_DEVICE_ID_JR3_2_CHANNEL,
|
||||
PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
|
||||
{PCI_VENDOR_ID_JR3, PCI_DEVICE_ID_JR3_3_CHANNEL,
|
||||
PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
|
||||
{PCI_VENDOR_ID_JR3, PCI_DEVICE_ID_JR3_4_CHANNEL,
|
||||
PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
|
||||
{0}
|
||||
};
|
||||
|
||||
MODULE_DEVICE_TABLE(pci, jr3_pci_pci_table);
|
||||
|
||||
typedef struct {
|
||||
struct pci_dev *pci_dev;
|
||||
int pci_enabled;
|
||||
volatile jr3_t *iobase;
|
||||
int n_channels;
|
||||
struct timer_list timer;
|
||||
} jr3_pci_dev_private;
|
||||
|
||||
typedef struct {
|
||||
int min;
|
||||
int max;
|
||||
} poll_delay_t;
|
||||
|
||||
typedef struct {
|
||||
volatile jr3_channel_t *channel;
|
||||
unsigned long next_time_min;
|
||||
unsigned long next_time_max;
|
||||
enum { state_jr3_poll,
|
||||
state_jr3_init_wait_for_offset,
|
||||
state_jr3_init_transform_complete,
|
||||
state_jr3_init_set_full_scale_complete,
|
||||
state_jr3_init_use_offset_complete,
|
||||
state_jr3_done
|
||||
} state;
|
||||
int channel_no;
|
||||
int serial_no;
|
||||
int model_no;
|
||||
struct {
|
||||
int length;
|
||||
comedi_krange range;
|
||||
} range[9];
|
||||
const comedi_lrange *range_table_list[8 * 7 + 2];
|
||||
lsampl_t maxdata_list[8 * 7 + 2];
|
||||
u16 errors;
|
||||
int retries;
|
||||
} jr3_pci_subdev_private;
|
||||
|
||||
static poll_delay_t poll_delay_min_max(int min, int max)
|
||||
{
|
||||
poll_delay_t result;
|
||||
|
||||
result.min = min;
|
||||
result.max = max;
|
||||
return result;
|
||||
}
|
||||
|
||||
static int is_complete(volatile jr3_channel_t * channel)
|
||||
{
|
||||
return get_s16(&channel->command_word0) == 0;
|
||||
}
|
||||
|
||||
typedef struct {
|
||||
struct {
|
||||
u16 link_type;
|
||||
s16 link_amount;
|
||||
} link[8];
|
||||
} transform_t;
|
||||
|
||||
static void set_transforms(volatile jr3_channel_t * channel,
|
||||
transform_t transf, short num)
|
||||
{
|
||||
int i;
|
||||
|
||||
num &= 0x000f; // Make sure that 0 <= num <= 15
|
||||
for (i = 0; i < 8; i++) {
|
||||
|
||||
set_u16(&channel->transforms[num].link[i].link_type,
|
||||
transf.link[i].link_type);
|
||||
comedi_udelay(1);
|
||||
set_s16(&channel->transforms[num].link[i].link_amount,
|
||||
transf.link[i].link_amount);
|
||||
comedi_udelay(1);
|
||||
if (transf.link[i].link_type == end_x_form) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void use_transform(volatile jr3_channel_t * channel, short transf_num)
|
||||
{
|
||||
set_s16(&channel->command_word0, 0x0500 + (transf_num & 0x000f));
|
||||
}
|
||||
|
||||
static void use_offset(volatile jr3_channel_t * channel, short offset_num)
|
||||
{
|
||||
set_s16(&channel->command_word0, 0x0600 + (offset_num & 0x000f));
|
||||
}
|
||||
|
||||
static void set_offset(volatile jr3_channel_t * channel)
|
||||
{
|
||||
set_s16(&channel->command_word0, 0x0700);
|
||||
}
|
||||
|
||||
typedef struct {
|
||||
s16 fx;
|
||||
s16 fy;
|
||||
s16 fz;
|
||||
s16 mx;
|
||||
s16 my;
|
||||
s16 mz;
|
||||
} six_axis_t;
|
||||
|
||||
static void set_full_scales(volatile jr3_channel_t * channel,
|
||||
six_axis_t full_scale)
|
||||
{
|
||||
printk("%d %d %d %d %d %d\n",
|
||||
full_scale.fx,
|
||||
full_scale.fy,
|
||||
full_scale.fz, full_scale.mx, full_scale.my, full_scale.mz);
|
||||
set_s16(&channel->full_scale.fx, full_scale.fx);
|
||||
set_s16(&channel->full_scale.fy, full_scale.fy);
|
||||
set_s16(&channel->full_scale.fz, full_scale.fz);
|
||||
set_s16(&channel->full_scale.mx, full_scale.mx);
|
||||
set_s16(&channel->full_scale.my, full_scale.my);
|
||||
set_s16(&channel->full_scale.mz, full_scale.mz);
|
||||
set_s16(&channel->command_word0, 0x0a00);
|
||||
}
|
||||
|
||||
static six_axis_t get_min_full_scales(volatile jr3_channel_t * channel)
|
||||
{
|
||||
six_axis_t result;
|
||||
result.fx = get_s16(&channel->min_full_scale.fx);
|
||||
result.fy = get_s16(&channel->min_full_scale.fy);
|
||||
result.fz = get_s16(&channel->min_full_scale.fz);
|
||||
result.mx = get_s16(&channel->min_full_scale.mx);
|
||||
result.my = get_s16(&channel->min_full_scale.my);
|
||||
result.mz = get_s16(&channel->min_full_scale.mz);
|
||||
return result;
|
||||
}
|
||||
|
||||
static six_axis_t get_max_full_scales(volatile jr3_channel_t * channel)
|
||||
{
|
||||
six_axis_t result;
|
||||
result.fx = get_s16(&channel->max_full_scale.fx);
|
||||
result.fy = get_s16(&channel->max_full_scale.fy);
|
||||
result.fz = get_s16(&channel->max_full_scale.fz);
|
||||
result.mx = get_s16(&channel->max_full_scale.mx);
|
||||
result.my = get_s16(&channel->max_full_scale.my);
|
||||
result.mz = get_s16(&channel->max_full_scale.mz);
|
||||
return result;
|
||||
}
|
||||
|
||||
static int jr3_pci_ai_insn_read(comedi_device * dev, comedi_subdevice * s,
|
||||
comedi_insn * insn, lsampl_t * data)
|
||||
{
|
||||
int result;
|
||||
jr3_pci_subdev_private *p;
|
||||
int channel;
|
||||
|
||||
p = s->private;
|
||||
channel = CR_CHAN(insn->chanspec);
|
||||
if (p == NULL || channel > 57) {
|
||||
result = -EINVAL;
|
||||
} else {
|
||||
int i;
|
||||
|
||||
result = insn->n;
|
||||
if (p->state != state_jr3_done ||
|
||||
(get_u16(&p->channel->
|
||||
errors) & (watch_dog | watch_dog2 |
|
||||
sensor_change))) {
|
||||
/* No sensor or sensor changed */
|
||||
if (p->state == state_jr3_done) {
|
||||
/* Restart polling */
|
||||
p->state = state_jr3_poll;
|
||||
}
|
||||
result = -EAGAIN;
|
||||
}
|
||||
for (i = 0; i < insn->n; i++) {
|
||||
if (channel < 56) {
|
||||
int axis, filter;
|
||||
|
||||
axis = channel % 8;
|
||||
filter = channel / 8;
|
||||
if (p->state != state_jr3_done) {
|
||||
data[i] = 0;
|
||||
} else {
|
||||
int F = 0;
|
||||
switch (axis) {
|
||||
case 0:{
|
||||
F = get_s16(&p->
|
||||
channel->
|
||||
filter[filter].
|
||||
fx);
|
||||
}
|
||||
break;
|
||||
case 1:{
|
||||
F = get_s16(&p->
|
||||
channel->
|
||||
filter[filter].
|
||||
fy);
|
||||
}
|
||||
break;
|
||||
case 2:{
|
||||
F = get_s16(&p->
|
||||
channel->
|
||||
filter[filter].
|
||||
fz);
|
||||
}
|
||||
break;
|
||||
case 3:{
|
||||
F = get_s16(&p->
|
||||
channel->
|
||||
filter[filter].
|
||||
mx);
|
||||
}
|
||||
break;
|
||||
case 4:{
|
||||
F = get_s16(&p->
|
||||
channel->
|
||||
filter[filter].
|
||||
my);
|
||||
}
|
||||
break;
|
||||
case 5:{
|
||||
F = get_s16(&p->
|
||||
channel->
|
||||
filter[filter].
|
||||
mz);
|
||||
}
|
||||
break;
|
||||
case 6:{
|
||||
F = get_s16(&p->
|
||||
channel->
|
||||
filter[filter].
|
||||
v1);
|
||||
}
|
||||
break;
|
||||
case 7:{
|
||||
F = get_s16(&p->
|
||||
channel->
|
||||
filter[filter].
|
||||
v2);
|
||||
}
|
||||
break;
|
||||
}
|
||||
data[i] = F + 0x4000;
|
||||
}
|
||||
} else if (channel == 56) {
|
||||
if (p->state != state_jr3_done) {
|
||||
data[i] = 0;
|
||||
} else {
|
||||
data[i] =
|
||||
get_u16(&p->channel->model_no);
|
||||
}
|
||||
} else if (channel == 57) {
|
||||
if (p->state != state_jr3_done) {
|
||||
data[i] = 0;
|
||||
} else {
|
||||
data[i] =
|
||||
get_u16(&p->channel->serial_no);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
static void jr3_pci_open(comedi_device * dev)
|
||||
{
|
||||
int i;
|
||||
jr3_pci_dev_private *devpriv = dev->private;
|
||||
|
||||
printk("jr3_pci_open\n");
|
||||
for (i = 0; i < devpriv->n_channels; i++) {
|
||||
jr3_pci_subdev_private *p;
|
||||
|
||||
p = dev->subdevices[i].private;
|
||||
if (p) {
|
||||
printk("serial: %p %d (%d)\n", p, p->serial_no,
|
||||
p->channel_no);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
int read_idm_word(const u8 * data, size_t size, int *pos, unsigned int *val)
|
||||
{
|
||||
int result = 0;
|
||||
if (pos != 0 && val != 0) {
|
||||
// Skip over non hex
|
||||
for (; *pos < size && !isxdigit(data[*pos]); (*pos)++) {
|
||||
}
|
||||
// Collect value
|
||||
*val = 0;
|
||||
for (; *pos < size && isxdigit(data[*pos]); (*pos)++) {
|
||||
char ch = tolower(data[*pos]);
|
||||
result = 1;
|
||||
if ('0' <= ch && ch <= '9') {
|
||||
*val = (*val << 4) + (ch - '0');
|
||||
} else if ('a' <= ch && ch <= 'f') {
|
||||
*val = (*val << 4) + (ch - 'a' + 10);
|
||||
}
|
||||
}
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
static int jr3_download_firmware(comedi_device * dev, const u8 * data,
|
||||
size_t size)
|
||||
{
|
||||
/*
|
||||
* IDM file format is:
|
||||
* { count, address, data <count> } *
|
||||
* ffff
|
||||
*/
|
||||
int result, more, pos, OK;
|
||||
|
||||
result = 0;
|
||||
more = 1;
|
||||
pos = 0;
|
||||
OK = 0;
|
||||
while (more) {
|
||||
unsigned int count, addr;
|
||||
|
||||
more = more && read_idm_word(data, size, &pos, &count);
|
||||
if (more && count == 0xffff) {
|
||||
OK = 1;
|
||||
break;
|
||||
}
|
||||
more = more && read_idm_word(data, size, &pos, &addr);
|
||||
while (more && count > 0) {
|
||||
unsigned int dummy;
|
||||
more = more && read_idm_word(data, size, &pos, &dummy);
|
||||
count--;
|
||||
}
|
||||
}
|
||||
|
||||
if (!OK) {
|
||||
result = -ENODATA;
|
||||
} else {
|
||||
int i;
|
||||
jr3_pci_dev_private *p = dev->private;
|
||||
|
||||
for (i = 0; i < p->n_channels; i++) {
|
||||
jr3_pci_subdev_private *sp;
|
||||
|
||||
sp = dev->subdevices[i].private;
|
||||
more = 1;
|
||||
pos = 0;
|
||||
while (more) {
|
||||
unsigned int count, addr;
|
||||
more = more
|
||||
&& read_idm_word(data, size, &pos,
|
||||
&count);
|
||||
if (more && count == 0xffff) {
|
||||
break;
|
||||
}
|
||||
more = more
|
||||
&& read_idm_word(data, size, &pos,
|
||||
&addr);
|
||||
printk("Loading#%d %4.4x bytes at %4.4x\n", i,
|
||||
count, addr);
|
||||
while (more && count > 0) {
|
||||
if (addr & 0x4000) {
|
||||
// 16 bit data, never seen in real life!!
|
||||
unsigned int data1;
|
||||
|
||||
more = more
|
||||
&& read_idm_word(data,
|
||||
size, &pos, &data1);
|
||||
count--;
|
||||
// printk("jr3_data, not tested\n");
|
||||
// jr3[addr + 0x20000 * pnum] = data1;
|
||||
} else {
|
||||
// Download 24 bit program
|
||||
unsigned int data1, data2;
|
||||
|
||||
more = more
|
||||
&& read_idm_word(data,
|
||||
size, &pos, &data1);
|
||||
more = more
|
||||
&& read_idm_word(data,
|
||||
size, &pos, &data2);
|
||||
count -= 2;
|
||||
if (more) {
|
||||
set_u16(&p->iobase->
|
||||
channel[i].
|
||||
program_low
|
||||
[addr], data1);
|
||||
comedi_udelay(1);
|
||||
set_u16(&p->iobase->
|
||||
channel[i].
|
||||
program_high
|
||||
[addr], data2);
|
||||
comedi_udelay(1);
|
||||
|
||||
}
|
||||
}
|
||||
addr++;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
static poll_delay_t jr3_pci_poll_subdevice(comedi_subdevice * s)
|
||||
{
|
||||
poll_delay_t result = poll_delay_min_max(1000, 2000);
|
||||
jr3_pci_subdev_private *p = s->private;
|
||||
|
||||
if (p) {
|
||||
volatile jr3_channel_t *channel = p->channel;
|
||||
int errors = get_u16(&channel->errors);
|
||||
|
||||
if (errors != p->errors) {
|
||||
printk("Errors: %x -> %x\n", p->errors, errors);
|
||||
p->errors = errors;
|
||||
}
|
||||
if (errors & (watch_dog | watch_dog2 | sensor_change)) {
|
||||
// Sensor communication lost, force poll mode
|
||||
p->state = state_jr3_poll;
|
||||
|
||||
}
|
||||
switch (p->state) {
|
||||
case state_jr3_poll:{
|
||||
u16 model_no = get_u16(&channel->model_no);
|
||||
u16 serial_no = get_u16(&channel->serial_no);
|
||||
if ((errors & (watch_dog | watch_dog2)) ||
|
||||
model_no == 0 || serial_no == 0) {
|
||||
// Still no sensor, keep on polling. Since it takes up to
|
||||
// 10 seconds for offsets to stabilize, polling each
|
||||
// second should suffice.
|
||||
result = poll_delay_min_max(1000, 2000);
|
||||
} else {
|
||||
p->retries = 0;
|
||||
p->state =
|
||||
state_jr3_init_wait_for_offset;
|
||||
result = poll_delay_min_max(1000, 2000);
|
||||
}
|
||||
}
|
||||
break;
|
||||
case state_jr3_init_wait_for_offset:{
|
||||
p->retries++;
|
||||
if (p->retries < 10) {
|
||||
// Wait for offeset to stabilize (< 10 s according to manual)
|
||||
result = poll_delay_min_max(1000, 2000);
|
||||
} else {
|
||||
transform_t transf;
|
||||
|
||||
p->model_no =
|
||||
get_u16(&channel->model_no);
|
||||
p->serial_no =
|
||||
get_u16(&channel->serial_no);
|
||||
|
||||
printk("Setting transform for channel %d\n", p->channel_no);
|
||||
printk("Sensor Model = %i\n",
|
||||
p->model_no);
|
||||
printk("Sensor Serial = %i\n",
|
||||
p->serial_no);
|
||||
|
||||
// Transformation all zeros
|
||||
transf.link[0].link_type =
|
||||
(enum link_types)0;
|
||||
transf.link[0].link_amount = 0;
|
||||
transf.link[1].link_type =
|
||||
(enum link_types)0;
|
||||
transf.link[1].link_amount = 0;
|
||||
transf.link[2].link_type =
|
||||
(enum link_types)0;
|
||||
transf.link[2].link_amount = 0;
|
||||
transf.link[3].link_type =
|
||||
(enum link_types)0;
|
||||
transf.link[3].link_amount = 0;
|
||||
|
||||
set_transforms(channel, transf, 0);
|
||||
use_transform(channel, 0);
|
||||
p->state =
|
||||
state_jr3_init_transform_complete;
|
||||
result = poll_delay_min_max(20, 100); // Allow 20 ms for completion
|
||||
}
|
||||
} break;
|
||||
case state_jr3_init_transform_complete:{
|
||||
if (!is_complete(channel)) {
|
||||
printk("state_jr3_init_transform_complete complete = %d\n", is_complete(channel));
|
||||
result = poll_delay_min_max(20, 100);
|
||||
} else {
|
||||
// Set full scale
|
||||
six_axis_t min_full_scale;
|
||||
six_axis_t max_full_scale;
|
||||
|
||||
min_full_scale =
|
||||
get_min_full_scales(channel);
|
||||
printk("Obtained Min. Full Scales:\n");
|
||||
printk("%i ", (min_full_scale).fx);
|
||||
printk("%i ", (min_full_scale).fy);
|
||||
printk("%i ", (min_full_scale).fz);
|
||||
printk("%i ", (min_full_scale).mx);
|
||||
printk("%i ", (min_full_scale).my);
|
||||
printk("%i ", (min_full_scale).mz);
|
||||
printk("\n");
|
||||
|
||||
max_full_scale =
|
||||
get_max_full_scales(channel);
|
||||
printk("Obtained Max. Full Scales:\n");
|
||||
printk("%i ", (max_full_scale).fx);
|
||||
printk("%i ", (max_full_scale).fy);
|
||||
printk("%i ", (max_full_scale).fz);
|
||||
printk("%i ", (max_full_scale).mx);
|
||||
printk("%i ", (max_full_scale).my);
|
||||
printk("%i ", (max_full_scale).mz);
|
||||
printk("\n");
|
||||
|
||||
set_full_scales(channel,
|
||||
max_full_scale);
|
||||
|
||||
p->state =
|
||||
state_jr3_init_set_full_scale_complete;
|
||||
result = poll_delay_min_max(20, 100); // Allow 20 ms for completion
|
||||
}
|
||||
}
|
||||
break;
|
||||
case state_jr3_init_set_full_scale_complete:{
|
||||
if (!is_complete(channel)) {
|
||||
printk("state_jr3_init_set_full_scale_complete complete = %d\n", is_complete(channel));
|
||||
result = poll_delay_min_max(20, 100);
|
||||
} else {
|
||||
volatile force_array_t *full_scale;
|
||||
|
||||
// Use ranges in kN or we will overflow arount 2000N!
|
||||
full_scale = &channel->full_scale;
|
||||
p->range[0].range.min =
|
||||
-get_s16(&full_scale->fx) *
|
||||
1000;
|
||||
p->range[0].range.max =
|
||||
get_s16(&full_scale->fx) * 1000;
|
||||
p->range[1].range.min =
|
||||
-get_s16(&full_scale->fy) *
|
||||
1000;
|
||||
p->range[1].range.max =
|
||||
get_s16(&full_scale->fy) * 1000;
|
||||
p->range[2].range.min =
|
||||
-get_s16(&full_scale->fz) *
|
||||
1000;
|
||||
p->range[2].range.max =
|
||||
get_s16(&full_scale->fz) * 1000;
|
||||
p->range[3].range.min =
|
||||
-get_s16(&full_scale->mx) * 100;
|
||||
p->range[3].range.max =
|
||||
get_s16(&full_scale->mx) * 100;
|
||||
p->range[4].range.min =
|
||||
-get_s16(&full_scale->my) * 100;
|
||||
p->range[4].range.max =
|
||||
get_s16(&full_scale->my) * 100;
|
||||
p->range[5].range.min =
|
||||
-get_s16(&full_scale->mz) * 100;
|
||||
p->range[5].range.max =
|
||||
get_s16(&full_scale->mz) * 100;
|
||||
p->range[6].range.min = -get_s16(&full_scale->v1) * 100; // ??
|
||||
p->range[6].range.max = get_s16(&full_scale->v1) * 100; // ??
|
||||
p->range[7].range.min = -get_s16(&full_scale->v2) * 100; // ??
|
||||
p->range[7].range.max = get_s16(&full_scale->v2) * 100; // ??
|
||||
p->range[8].range.min = 0;
|
||||
p->range[8].range.max = 65535;
|
||||
|
||||
{
|
||||
int i;
|
||||
for (i = 0; i < 9; i++) {
|
||||
printk("%d %d - %d\n",
|
||||
i,
|
||||
p->range[i].
|
||||
range.min,
|
||||
p->range[i].
|
||||
range.max);
|
||||
}
|
||||
}
|
||||
|
||||
use_offset(channel, 0);
|
||||
p->state =
|
||||
state_jr3_init_use_offset_complete;
|
||||
result = poll_delay_min_max(40, 100); // Allow 40 ms for completion
|
||||
}
|
||||
}
|
||||
break;
|
||||
case state_jr3_init_use_offset_complete:{
|
||||
if (!is_complete(channel)) {
|
||||
printk("state_jr3_init_use_offset_complete complete = %d\n", is_complete(channel));
|
||||
result = poll_delay_min_max(20, 100);
|
||||
} else {
|
||||
printk("Default offsets %d %d %d %d %d %d\n", get_s16(&channel->offsets.fx), get_s16(&channel->offsets.fy), get_s16(&channel->offsets.fz), get_s16(&channel->offsets.mx), get_s16(&channel->offsets.my), get_s16(&channel->offsets.mz));
|
||||
|
||||
set_s16(&channel->offsets.fx, 0);
|
||||
set_s16(&channel->offsets.fy, 0);
|
||||
set_s16(&channel->offsets.fz, 0);
|
||||
set_s16(&channel->offsets.mx, 0);
|
||||
set_s16(&channel->offsets.my, 0);
|
||||
set_s16(&channel->offsets.mz, 0);
|
||||
|
||||
set_offset(channel);
|
||||
|
||||
p->state = state_jr3_done;
|
||||
}
|
||||
}
|
||||
break;
|
||||
case state_jr3_done:{
|
||||
poll_delay_min_max(10000, 20000);
|
||||
}
|
||||
break;
|
||||
default:{
|
||||
poll_delay_min_max(1000, 2000);
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
static void jr3_pci_poll_dev(unsigned long data)
|
||||
{
|
||||
unsigned long flags;
|
||||
comedi_device *dev = (comedi_device *) data;
|
||||
jr3_pci_dev_private *devpriv = dev->private;
|
||||
unsigned long now;
|
||||
int delay;
|
||||
int i;
|
||||
|
||||
comedi_spin_lock_irqsave(&dev->spinlock, flags);
|
||||
delay = 1000;
|
||||
now = jiffies;
|
||||
// Poll all channels that are ready to be polled
|
||||
for (i = 0; i < devpriv->n_channels; i++) {
|
||||
jr3_pci_subdev_private *subdevpriv = dev->subdevices[i].private;
|
||||
if (now > subdevpriv->next_time_min) {
|
||||
poll_delay_t sub_delay;
|
||||
|
||||
sub_delay = jr3_pci_poll_subdevice(&dev->subdevices[i]);
|
||||
subdevpriv->next_time_min =
|
||||
jiffies + msecs_to_jiffies(sub_delay.min);
|
||||
subdevpriv->next_time_max =
|
||||
jiffies + msecs_to_jiffies(sub_delay.max);
|
||||
if (sub_delay.max && sub_delay.max < delay) {
|
||||
// Wake up as late as possible -> poll as many channels as
|
||||
// possible at once
|
||||
delay = sub_delay.max;
|
||||
}
|
||||
}
|
||||
}
|
||||
comedi_spin_unlock_irqrestore(&dev->spinlock, flags);
|
||||
|
||||
devpriv->timer.expires = jiffies + msecs_to_jiffies(delay);
|
||||
add_timer(&devpriv->timer);
|
||||
}
|
||||
|
||||
static int jr3_pci_attach(comedi_device * dev, comedi_devconfig * it)
|
||||
{
|
||||
int result = 0;
|
||||
struct pci_dev *card = NULL;
|
||||
int opt_bus, opt_slot, i;
|
||||
jr3_pci_dev_private *devpriv;
|
||||
|
||||
printk("comedi%d: jr3_pci\n", dev->minor);
|
||||
|
||||
opt_bus = it->options[0];
|
||||
opt_slot = it->options[1];
|
||||
|
||||
if (sizeof(jr3_channel_t) != 0xc00) {
|
||||
printk("sizeof(jr3_channel_t) = %x [expected %x]\n",
|
||||
(unsigned)sizeof(jr3_channel_t), 0xc00);
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
result = alloc_private(dev, sizeof(jr3_pci_dev_private));
|
||||
if (result < 0) {
|
||||
return -ENOMEM;
|
||||
}
|
||||
card = NULL;
|
||||
devpriv = dev->private;
|
||||
init_timer(&devpriv->timer);
|
||||
while (1) {
|
||||
card = pci_get_device(PCI_VENDOR_ID_JR3, PCI_ANY_ID, card);
|
||||
if (card == NULL) {
|
||||
/* No card found */
|
||||
break;
|
||||
} else {
|
||||
switch (card->device) {
|
||||
case PCI_DEVICE_ID_JR3_1_CHANNEL:{
|
||||
devpriv->n_channels = 1;
|
||||
}
|
||||
break;
|
||||
case PCI_DEVICE_ID_JR3_2_CHANNEL:{
|
||||
devpriv->n_channels = 2;
|
||||
}
|
||||
break;
|
||||
case PCI_DEVICE_ID_JR3_3_CHANNEL:{
|
||||
devpriv->n_channels = 3;
|
||||
}
|
||||
break;
|
||||
case PCI_DEVICE_ID_JR3_4_CHANNEL:{
|
||||
devpriv->n_channels = 4;
|
||||
}
|
||||
break;
|
||||
default:{
|
||||
devpriv->n_channels = 0;
|
||||
}
|
||||
}
|
||||
if (devpriv->n_channels >= 1) {
|
||||
if (opt_bus == 0 && opt_slot == 0) {
|
||||
/* Take first available card */
|
||||
break;
|
||||
} else if (opt_bus == card->bus->number &&
|
||||
opt_slot == PCI_SLOT(card->devfn)) {
|
||||
/* Take requested card */
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
if (!card) {
|
||||
printk(" no jr3_pci found\n");
|
||||
return -EIO;
|
||||
} else {
|
||||
devpriv->pci_dev = card;
|
||||
dev->board_name = "jr3_pci";
|
||||
}
|
||||
if ((result = comedi_pci_enable(card, "jr3_pci")) < 0) {
|
||||
return -EIO;
|
||||
}
|
||||
devpriv->pci_enabled = 1;
|
||||
devpriv->iobase = ioremap(pci_resource_start(card, 0), sizeof(jr3_t));
|
||||
result = alloc_subdevices(dev, devpriv->n_channels);
|
||||
if (result < 0)
|
||||
goto out;
|
||||
|
||||
dev->open = jr3_pci_open;
|
||||
for (i = 0; i < devpriv->n_channels; i++) {
|
||||
dev->subdevices[i].type = COMEDI_SUBD_AI;
|
||||
dev->subdevices[i].subdev_flags = SDF_READABLE | SDF_GROUND;
|
||||
dev->subdevices[i].n_chan = 8 * 7 + 2;
|
||||
dev->subdevices[i].insn_read = jr3_pci_ai_insn_read;
|
||||
dev->subdevices[i].private =
|
||||
kzalloc(sizeof(jr3_pci_subdev_private), GFP_KERNEL);
|
||||
if (dev->subdevices[i].private) {
|
||||
jr3_pci_subdev_private *p;
|
||||
int j;
|
||||
|
||||
p = dev->subdevices[i].private;
|
||||
p->channel = &devpriv->iobase->channel[i].data;
|
||||
printk("p->channel %p %p (%tx)\n",
|
||||
p->channel, devpriv->iobase,
|
||||
((char *)(p->channel) -
|
||||
(char *)(devpriv->iobase)));
|
||||
p->channel_no = i;
|
||||
for (j = 0; j < 8; j++) {
|
||||
int k;
|
||||
|
||||
p->range[j].length = 1;
|
||||
p->range[j].range.min = -1000000;
|
||||
p->range[j].range.max = 1000000;
|
||||
for (k = 0; k < 7; k++) {
|
||||
p->range_table_list[j + k * 8] =
|
||||
(comedi_lrange *) & p->range[j];
|
||||
p->maxdata_list[j + k * 8] = 0x7fff;
|
||||
}
|
||||
}
|
||||
p->range[8].length = 1;
|
||||
p->range[8].range.min = 0;
|
||||
p->range[8].range.max = 65536;
|
||||
|
||||
p->range_table_list[56] =
|
||||
(comedi_lrange *) & p->range[8];
|
||||
p->range_table_list[57] =
|
||||
(comedi_lrange *) & p->range[8];
|
||||
p->maxdata_list[56] = 0xffff;
|
||||
p->maxdata_list[57] = 0xffff;
|
||||
// Channel specific range and maxdata
|
||||
dev->subdevices[i].range_table = 0;
|
||||
dev->subdevices[i].range_table_list =
|
||||
p->range_table_list;
|
||||
dev->subdevices[i].maxdata = 0;
|
||||
dev->subdevices[i].maxdata_list = p->maxdata_list;
|
||||
}
|
||||
}
|
||||
|
||||
// Reset DSP card
|
||||
devpriv->iobase->channel[0].reset = 0;
|
||||
|
||||
result = comedi_load_firmware(dev, "jr3pci.idm", jr3_download_firmware);
|
||||
printk("Firmare load %d\n", result);
|
||||
|
||||
if (result < 0) {
|
||||
goto out;
|
||||
}
|
||||
// TODO: use firmware to load preferred offset tables. Suggested format:
|
||||
// model serial Fx Fy Fz Mx My Mz\n
|
||||
//
|
||||
// comedi_load_firmware(dev, "jr3_offsets_table", jr3_download_firmware);
|
||||
|
||||
// It takes a few milliseconds for software to settle
|
||||
// as much as we can read firmware version
|
||||
msleep_interruptible(25);
|
||||
for (i = 0; i < 0x18; i++) {
|
||||
printk("%c",
|
||||
get_u16(&devpriv->iobase->channel[0].data.
|
||||
copyright[i]) >> 8);
|
||||
}
|
||||
|
||||
// Start card timer
|
||||
for (i = 0; i < devpriv->n_channels; i++) {
|
||||
jr3_pci_subdev_private *p = dev->subdevices[i].private;
|
||||
|
||||
p->next_time_min = jiffies + msecs_to_jiffies(500);
|
||||
p->next_time_max = jiffies + msecs_to_jiffies(2000);
|
||||
}
|
||||
|
||||
devpriv->timer.data = (unsigned long)dev;
|
||||
devpriv->timer.function = jr3_pci_poll_dev;
|
||||
devpriv->timer.expires = jiffies + msecs_to_jiffies(1000);
|
||||
add_timer(&devpriv->timer);
|
||||
|
||||
out:
|
||||
return result;
|
||||
}
|
||||
|
||||
static int jr3_pci_detach(comedi_device * dev)
|
||||
{
|
||||
int i;
|
||||
jr3_pci_dev_private *devpriv = dev->private;
|
||||
|
||||
printk("comedi%d: jr3_pci: remove\n", dev->minor);
|
||||
if (devpriv) {
|
||||
del_timer_sync(&devpriv->timer);
|
||||
|
||||
if (dev->subdevices) {
|
||||
for (i = 0; i < devpriv->n_channels; i++) {
|
||||
kfree(dev->subdevices[i].private);
|
||||
}
|
||||
}
|
||||
|
||||
if (devpriv->iobase) {
|
||||
iounmap((void *)devpriv->iobase);
|
||||
}
|
||||
if (devpriv->pci_enabled) {
|
||||
comedi_pci_disable(devpriv->pci_dev);
|
||||
}
|
||||
|
||||
if (devpriv->pci_dev) {
|
||||
pci_dev_put(devpriv->pci_dev);
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
COMEDI_PCI_INITCLEANUP(driver_jr3_pci, jr3_pci_pci_table);
|
|
@ -0,0 +1,634 @@
|
|||
// Helper types to take care of the fact that the DSP card memory
|
||||
// is 16 bits, but aligned on a 32 bit PCI boundary
|
||||
typedef u32 u_val_t;
|
||||
|
||||
typedef s32 s_val_t;
|
||||
|
||||
static inline u16 get_u16(volatile const u_val_t * p)
|
||||
{
|
||||
return (u16) readl(p);
|
||||
}
|
||||
|
||||
static inline void set_u16(volatile u_val_t * p, u16 val)
|
||||
{
|
||||
writel(val, p);
|
||||
}
|
||||
|
||||
static inline s16 get_s16(volatile const s_val_t * p)
|
||||
{
|
||||
return (s16) readl(p);
|
||||
}
|
||||
|
||||
static inline void set_s16(volatile s_val_t * p, s16 val)
|
||||
{
|
||||
writel(val, p);
|
||||
}
|
||||
|
||||
// The raw data is stored in a format which facilitates rapid
|
||||
// processing by the JR3 DSP chip. The raw_channel structure shows the
|
||||
// format for a single channel of data. Each channel takes four,
|
||||
// two-byte words.
|
||||
//
|
||||
// Raw_time is an unsigned integer which shows the value of the JR3
|
||||
// DSP's internal clock at the time the sample was received. The clock
|
||||
// runs at 1/10 the JR3 DSP cycle time. JR3's slowest DSP runs at 10
|
||||
// Mhz. At 10 Mhz raw_time would therefore clock at 1 Mhz.
|
||||
//
|
||||
// Raw_data is the raw data received directly from the sensor. The
|
||||
// sensor data stream is capable of representing 16 different
|
||||
// channels. Channel 0 shows the excitation voltage at the sensor. It
|
||||
// is used to regulate the voltage over various cable lengths.
|
||||
// Channels 1-6 contain the coupled force data Fx through Mz. Channel
|
||||
// 7 contains the sensor's calibration data. The use of channels 8-15
|
||||
// varies with different sensors.
|
||||
typedef struct raw_channel {
|
||||
u_val_t raw_time;
|
||||
s_val_t raw_data;
|
||||
s_val_t reserved[2];
|
||||
} raw_channel_t;
|
||||
|
||||
// The force_array structure shows the layout for the decoupled and
|
||||
// filtered force data.
|
||||
typedef struct force_array {
|
||||
s_val_t fx;
|
||||
s_val_t fy;
|
||||
s_val_t fz;
|
||||
s_val_t mx;
|
||||
s_val_t my;
|
||||
s_val_t mz;
|
||||
s_val_t v1;
|
||||
s_val_t v2;
|
||||
} force_array_t;
|
||||
|
||||
// The six_axis_array structure shows the layout for the offsets and
|
||||
// the full scales.
|
||||
typedef struct six_axis_array {
|
||||
s_val_t fx;
|
||||
s_val_t fy;
|
||||
s_val_t fz;
|
||||
s_val_t mx;
|
||||
s_val_t my;
|
||||
s_val_t mz;
|
||||
} six_axis_array_t;
|
||||
|
||||
// VECT_BITS
|
||||
// The vect_bits structure shows the layout for indicating
|
||||
// which axes to use in computing the vectors. Each bit signifies
|
||||
// selection of a single axis. The V1x axis bit corresponds to a hex
|
||||
// value of 0x0001 and the V2z bit corresponds to a hex value of
|
||||
// 0x0020. Example: to specify the axes V1x, V1y, V2x, and V2z the
|
||||
// pattern would be 0x002b. Vector 1 defaults to a force vector and
|
||||
// vector 2 defaults to a moment vector. It is possible to change one
|
||||
// or the other so that two force vectors or two moment vectors are
|
||||
// calculated. Setting the changeV1 bit or the changeV2 bit will
|
||||
// change that vector to be the opposite of its default. Therefore to
|
||||
// have two force vectors, set changeV1 to 1.
|
||||
|
||||
typedef enum {
|
||||
fx = 0x0001,
|
||||
fy = 0x0002,
|
||||
fz = 0x0004,
|
||||
mx = 0x0008,
|
||||
my = 0x0010,
|
||||
mz = 0x0020,
|
||||
changeV2 = 0x0040,
|
||||
changeV1 = 0x0080
|
||||
} vect_bits_t;
|
||||
|
||||
// WARNING_BITS
|
||||
// The warning_bits structure shows the bit pattern for the warning
|
||||
// word. The bit fields are shown from bit 0 (lsb) to bit 15 (msb).
|
||||
//
|
||||
// XX_NEAR_SET
|
||||
// The xx_near_sat bits signify that the indicated axis has reached or
|
||||
// exceeded the near saturation value.
|
||||
|
||||
typedef enum {
|
||||
fx_near_sat = 0x0001,
|
||||
fy_near_sat = 0x0002,
|
||||
fz_near_sat = 0x0004,
|
||||
mx_near_sat = 0x0008,
|
||||
my_near_sat = 0x0010,
|
||||
mz_near_sat = 0x0020
|
||||
} warning_bits_t;
|
||||
|
||||
// ERROR_BITS
|
||||
// XX_SAT
|
||||
// MEMORY_ERROR
|
||||
// SENSOR_CHANGE
|
||||
//
|
||||
// The error_bits structure shows the bit pattern for the error word.
|
||||
// The bit fields are shown from bit 0 (lsb) to bit 15 (msb). The
|
||||
// xx_sat bits signify that the indicated axis has reached or exceeded
|
||||
// the saturation value. The memory_error bit indicates that a problem
|
||||
// was detected in the on-board RAM during the power-up
|
||||
// initialization. The sensor_change bit indicates that a sensor other
|
||||
// than the one originally plugged in has passed its CRC check. This
|
||||
// bit latches, and must be reset by the user.
|
||||
//
|
||||
// SYSTEM_BUSY
|
||||
//
|
||||
// The system_busy bit indicates that the JR3 DSP is currently busy
|
||||
// and is not calculating force data. This occurs when a new
|
||||
// coordinate transformation, or new sensor full scale is set by the
|
||||
// user. A very fast system using the force data for feedback might
|
||||
// become unstable during the approximately 4 ms needed to accomplish
|
||||
// these calculations. This bit will also become active when a new
|
||||
// sensor is plugged in and the system needs to recalculate the
|
||||
// calibration CRC.
|
||||
//
|
||||
// CAL_CRC_BAD
|
||||
//
|
||||
// The cal_crc_bad bit indicates that the calibration CRC has not
|
||||
// calculated to zero. CRC is short for cyclic redundancy code. It is
|
||||
// a method for determining the integrity of messages in data
|
||||
// communication. The calibration data stored inside the sensor is
|
||||
// transmitted to the JR3 DSP along with the sensor data. The
|
||||
// calibration data has a CRC attached to the end of it, to assist in
|
||||
// determining the completeness and integrity of the calibration data
|
||||
// received from the sensor. There are two reasons the CRC may not
|
||||
// have calculated to zero. The first is that all the calibration data
|
||||
// has not yet been received, the second is that the calibration data
|
||||
// has been corrupted. A typical sensor transmits the entire contents
|
||||
// of its calibration matrix over 30 times a second. Therefore, if
|
||||
// this bit is not zero within a couple of seconds after the sensor
|
||||
// has been plugged in, there is a problem with the sensor's
|
||||
// calibration data.
|
||||
//
|
||||
// WATCH_DOG
|
||||
// WATCH_DOG2
|
||||
//
|
||||
// The watch_dog and watch_dog2 bits are sensor, not processor, watch
|
||||
// dog bits. Watch_dog indicates that the sensor data line seems to be
|
||||
// acting correctly, while watch_dog2 indicates that sensor data and
|
||||
// clock are being received. It is possible for watch_dog2 to go off
|
||||
// while watch_dog does not. This would indicate an improper clock
|
||||
// signal, while data is acting correctly. If either watch dog barks,
|
||||
// the sensor data is not being received correctly.
|
||||
|
||||
typedef enum {
|
||||
fx_sat = 0x0001,
|
||||
fy_sat = 0x0002,
|
||||
fz_sat = 0x0004,
|
||||
mx_sat = 0x0008,
|
||||
my_sat = 0x0010,
|
||||
mz_sat = 0x0020,
|
||||
memory_error = 0x0400,
|
||||
sensor_change = 0x0800,
|
||||
system_busy = 0x1000,
|
||||
cal_crc_bad = 0x2000,
|
||||
watch_dog2 = 0x4000,
|
||||
watch_dog = 0x8000
|
||||
} error_bits_t;
|
||||
|
||||
// THRESH_STRUCT
|
||||
// This structure shows the layout for a single threshold packet inside of a
|
||||
// load envelope. Each load envelope can contain several threshold structures.
|
||||
// 1. data_address contains the address of the data for that threshold. This
|
||||
// includes filtered, unfiltered, raw, rate, counters, error and warning data
|
||||
// 2. threshold is the is the value at which, if data is above or below, the
|
||||
// bits will be set ... (pag.24).
|
||||
// 3. bit_pattern contains the bits that will be set if the threshold value is
|
||||
// met or exceeded.
|
||||
typedef struct thresh_struct {
|
||||
s32 data_address;
|
||||
s32 threshold;
|
||||
s32 bit_pattern;
|
||||
} thresh_struct;
|
||||
|
||||
// LE_STRUCT
|
||||
// Layout of a load enveloped packet. Four thresholds are showed ... for more
|
||||
// see manual (pag.25)
|
||||
// 1. latch_bits is a bit pattern that show which bits the user wants to latch.
|
||||
// The latched bits will not be reset once the threshold which set them is
|
||||
// no longer true. In that case the user must reset them using the reset_bit
|
||||
// command.
|
||||
// 2. number_of_xx_thresholds specify how many GE/LE threshold there are.
|
||||
typedef struct {
|
||||
s32 latch_bits;
|
||||
s32 number_of_ge_thresholds;
|
||||
s32 number_of_le_thresholds;
|
||||
struct thresh_struct thresholds[4];
|
||||
s32 reserved;
|
||||
} le_struct_t;
|
||||
|
||||
// LINK_TYPES
|
||||
// Link types is an enumerated value showing the different possible transform
|
||||
// link types.
|
||||
// 0 - end transform packet
|
||||
// 1 - translate along X axis (TX)
|
||||
// 2 - translate along Y axis (TY)
|
||||
// 3 - translate along Z axis (TZ)
|
||||
// 4 - rotate about X axis (RX)
|
||||
// 5 - rotate about Y axis (RY)
|
||||
// 6 - rotate about Z axis (RZ)
|
||||
// 7 - negate all axes (NEG)
|
||||
typedef enum link_types {
|
||||
end_x_form,
|
||||
tx,
|
||||
ty,
|
||||
tz,
|
||||
rx,
|
||||
ry,
|
||||
rz,
|
||||
neg
|
||||
} link_types;
|
||||
|
||||
// TRANSFORM
|
||||
// Structure used to describe a transform.
|
||||
typedef struct {
|
||||
struct {
|
||||
u_val_t link_type;
|
||||
s_val_t link_amount;
|
||||
} link[8];
|
||||
} intern_transform_t;
|
||||
|
||||
// JR3 force/torque sensor data definition. For more information see sensor and
|
||||
// hardware manuals.
|
||||
|
||||
typedef struct force_sensor_data {
|
||||
// Raw_channels is the area used to store the raw data coming from
|
||||
// the sensor.
|
||||
|
||||
raw_channel_t raw_channels[16]; /* offset 0x0000 */
|
||||
|
||||
// Copyright is a null terminated ASCII string containing the JR3
|
||||
// copyright notice.
|
||||
|
||||
u_val_t copyright[0x0018]; /* offset 0x0040 */
|
||||
s_val_t reserved1[0x0008]; /* offset 0x0058 */
|
||||
|
||||
// Shunts contains the sensor shunt readings. Some JR3 sensors have
|
||||
// the ability to have their gains adjusted. This allows the
|
||||
// hardware full scales to be adjusted to potentially allow
|
||||
// better resolution or dynamic range. For sensors that have
|
||||
// this ability, the gain of each sensor channel is measured at
|
||||
// the time of calibration using a shunt resistor. The shunt
|
||||
// resistor is placed across one arm of the resistor bridge, and
|
||||
// the resulting change in the output of that channel is
|
||||
// measured. This measurement is called the shunt reading, and
|
||||
// is recorded here. If the user has changed the gain of the //
|
||||
// sensor, and made new shunt measurements, those shunt
|
||||
// measurements can be placed here. The JR3 DSP will then scale
|
||||
// the calibration matrix such so that the gains are again
|
||||
// proper for the indicated shunt readings. If shunts is 0, then
|
||||
// the sensor cannot have its gain changed. For details on
|
||||
// changing the sensor gain, and making shunts readings, please
|
||||
// see the sensor manual. To make these values take effect the
|
||||
// user must call either command (5) use transform # (pg. 33) or
|
||||
// command (10) set new full scales (pg. 38).
|
||||
|
||||
six_axis_array_t shunts; /* offset 0x0060 */
|
||||
s32 reserved2[2]; /* offset 0x0066 */
|
||||
|
||||
// Default_FS contains the full scale that is used if the user does
|
||||
// not set a full scale.
|
||||
|
||||
six_axis_array_t default_FS; /* offset 0x0068 */
|
||||
s_val_t reserved3; /* offset 0x006e */
|
||||
|
||||
// Load_envelope_num is the load envelope number that is currently
|
||||
// in use. This value is set by the user after one of the load
|
||||
// envelopes has been initialized.
|
||||
|
||||
s_val_t load_envelope_num; /* offset 0x006f */
|
||||
|
||||
// Min_full_scale is the recommend minimum full scale.
|
||||
//
|
||||
// These values in conjunction with max_full_scale (pg. 9) helps
|
||||
// determine the appropriate value for setting the full scales. The
|
||||
// software allows the user to set the sensor full scale to an
|
||||
// arbitrary value. But setting the full scales has some hazards. If
|
||||
// the full scale is set too low, the data will saturate
|
||||
// prematurely, and dynamic range will be lost. If the full scale is
|
||||
// set too high, then resolution is lost as the data is shifted to
|
||||
// the right and the least significant bits are lost. Therefore the
|
||||
// maximum full scale is the maximum value at which no resolution is
|
||||
// lost, and the minimum full scale is the value at which the data
|
||||
// will not saturate prematurely. These values are calculated
|
||||
// whenever a new coordinate transformation is calculated. It is
|
||||
// possible for the recommended maximum to be less than the
|
||||
// recommended minimum. This comes about primarily when using
|
||||
// coordinate translations. If this is the case, it means that any
|
||||
// full scale selection will be a compromise between dynamic range
|
||||
// and resolution. It is usually recommended to compromise in favor
|
||||
// of resolution which means that the recommend maximum full scale
|
||||
// should be chosen.
|
||||
//
|
||||
// WARNING: Be sure that the full scale is no less than 0.4% of the
|
||||
// recommended minimum full scale. Full scales below this value will
|
||||
// cause erroneous results.
|
||||
|
||||
six_axis_array_t min_full_scale; /* offset 0x0070 */
|
||||
s_val_t reserved4; /* offset 0x0076 */
|
||||
|
||||
// Transform_num is the transform number that is currently in use.
|
||||
// This value is set by the JR3 DSP after the user has used command
|
||||
// (5) use transform # (pg. 33).
|
||||
|
||||
s_val_t transform_num; /* offset 0x0077 */
|
||||
|
||||
// Max_full_scale is the recommended maximum full scale. See
|
||||
// min_full_scale (pg. 9) for more details.
|
||||
|
||||
six_axis_array_t max_full_scale; /* offset 0x0078 */
|
||||
s_val_t reserved5; /* offset 0x007e */
|
||||
|
||||
// Peak_address is the address of the data which will be monitored
|
||||
// by the peak routine. This value is set by the user. The peak
|
||||
// routine will monitor any 8 contiguous addresses for peak values.
|
||||
// (ex. to watch filter3 data for peaks, set this value to 0x00a8).
|
||||
|
||||
s_val_t peak_address; /* offset 0x007f */
|
||||
|
||||
// Full_scale is the sensor full scales which are currently in use.
|
||||
// Decoupled and filtered data is scaled so that +/- 16384 is equal
|
||||
// to the full scales. The engineering units used are indicated by
|
||||
// the units value discussed on page 16. The full scales for Fx, Fy,
|
||||
// Fz, Mx, My and Mz can be written by the user prior to calling
|
||||
// command (10) set new full scales (pg. 38). The full scales for V1
|
||||
// and V2 are set whenever the full scales are changed or when the
|
||||
// axes used to calculate the vectors are changed. The full scale of
|
||||
// V1 and V2 will always be equal to the largest full scale of the
|
||||
// axes used for each vector respectively.
|
||||
|
||||
force_array_t full_scale; /* offset 0x0080 */
|
||||
|
||||
// Offsets contains the sensor offsets. These values are subtracted from
|
||||
// the sensor data to obtain the decoupled data. The offsets are set a
|
||||
// few seconds (< 10) after the calibration data has been received.
|
||||
// They are set so that the output data will be zero. These values
|
||||
// can be written as well as read. The JR3 DSP will use the values
|
||||
// written here within 2 ms of being written. To set future
|
||||
// decoupled data to zero, add these values to the current decoupled
|
||||
// data values and place the sum here. The JR3 DSP will change these
|
||||
// values when a new transform is applied. So if the offsets are
|
||||
// such that FX is 5 and all other values are zero, after rotating
|
||||
// about Z by 90 degrees, FY would be 5 and all others would be zero.
|
||||
|
||||
six_axis_array_t offsets; /* offset 0x0088 */
|
||||
|
||||
// Offset_num is the number of the offset currently in use. This
|
||||
// value is set by the JR3 DSP after the user has executed the use
|
||||
// offset # command (pg. 34). It can vary between 0 and 15.
|
||||
|
||||
s_val_t offset_num; /* offset 0x008e */
|
||||
|
||||
// Vect_axes is a bit map showing which of the axes are being used
|
||||
// in the vector calculations. This value is set by the JR3 DSP
|
||||
// after the user has executed the set vector axes command (pg. 37).
|
||||
|
||||
u_val_t vect_axes; /* offset 0x008f */
|
||||
|
||||
// Filter0 is the decoupled, unfiltered data from the JR3 sensor.
|
||||
// This data has had the offsets removed.
|
||||
//
|
||||
// These force_arrays hold the filtered data. The decoupled data is
|
||||
// passed through cascaded low pass filters. Each succeeding filter
|
||||
// has a cutoff frequency of 1/4 of the preceding filter. The cutoff
|
||||
// frequency of filter1 is 1/16 of the sample rate from the sensor.
|
||||
// For a typical sensor with a sample rate of 8 kHz, the cutoff
|
||||
// frequency of filter1 would be 500 Hz. The following filters would
|
||||
// cutoff at 125 Hz, 31.25 Hz, 7.813 Hz, 1.953 Hz and 0.4883 Hz.
|
||||
|
||||
struct force_array filter[7]; /* offset 0x0090,
|
||||
offset 0x0098,
|
||||
offset 0x00a0,
|
||||
offset 0x00a8,
|
||||
offset 0x00b0,
|
||||
offset 0x00b8 ,
|
||||
offset 0x00c0 */
|
||||
|
||||
// Rate_data is the calculated rate data. It is a first derivative
|
||||
// calculation. It is calculated at a frequency specified by the
|
||||
// variable rate_divisor (pg. 12). The data on which the rate is
|
||||
// calculated is specified by the variable rate_address (pg. 12).
|
||||
|
||||
force_array_t rate_data; /* offset 0x00c8 */
|
||||
|
||||
// Minimum_data & maximum_data are the minimum and maximum (peak)
|
||||
// data values. The JR3 DSP can monitor any 8 contiguous data items
|
||||
// for minimums and maximums at full sensor bandwidth. This area is
|
||||
// only updated at user request. This is done so that the user does
|
||||
// not miss any peaks. To read the data, use either the read peaks
|
||||
// command (pg. 40), or the read and reset peaks command (pg. 39).
|
||||
// The address of the data to watch for peaks is stored in the
|
||||
// variable peak_address (pg. 10). Peak data is lost when executing
|
||||
// a coordinate transformation or a full scale change. Peak data is
|
||||
// also lost when plugging in a new sensor.
|
||||
|
||||
force_array_t minimum_data; /* offset 0x00d0 */
|
||||
force_array_t maximum_data; /* offset 0x00d8 */
|
||||
|
||||
// Near_sat_value & sat_value contain the value used to determine if
|
||||
// the raw sensor is saturated. Because of decoupling and offset
|
||||
// removal, it is difficult to tell from the processed data if the
|
||||
// sensor is saturated. These values, in conjunction with the error
|
||||
// and warning words (pg. 14), provide this critical information.
|
||||
// These two values may be set by the host processor. These values
|
||||
// are positive signed values, since the saturation logic uses the
|
||||
// absolute values of the raw data. The near_sat_value defaults to
|
||||
// approximately 80% of the ADC's full scale, which is 26214, while
|
||||
// sat_value defaults to the ADC's full scale:
|
||||
//
|
||||
// sat_value = 32768 - 2^(16 - ADC bits)
|
||||
|
||||
s_val_t near_sat_value; /* offset 0x00e0 */
|
||||
s_val_t sat_value; /* offset 0x00e1 */
|
||||
|
||||
// Rate_address, rate_divisor & rate_count contain the data used to
|
||||
// control the calculations of the rates. Rate_address is the
|
||||
// address of the data used for the rate calculation. The JR3 DSP
|
||||
// will calculate rates for any 8 contiguous values (ex. to
|
||||
// calculate rates for filter3 data set rate_address to 0x00a8).
|
||||
// Rate_divisor is how often the rate is calculated. If rate_divisor
|
||||
// is 1, the rates are calculated at full sensor bandwidth. If
|
||||
// rate_divisor is 200, rates are calculated every 200 samples.
|
||||
// Rate_divisor can be any value between 1 and 65536. Set
|
||||
// rate_divisor to 0 to calculate rates every 65536 samples.
|
||||
// Rate_count starts at zero and counts until it equals
|
||||
// rate_divisor, at which point the rates are calculated, and
|
||||
// rate_count is reset to 0. When setting a new rate divisor, it is
|
||||
// a good idea to set rate_count to one less than rate divisor. This
|
||||
// will minimize the time necessary to start the rate calculations.
|
||||
|
||||
s_val_t rate_address; /* offset 0x00e2 */
|
||||
u_val_t rate_divisor; /* offset 0x00e3 */
|
||||
u_val_t rate_count; /* offset 0x00e4 */
|
||||
|
||||
// Command_word2 through command_word0 are the locations used to
|
||||
// send commands to the JR3 DSP. Their usage varies with the command
|
||||
// and is detailed later in the Command Definitions section (pg.
|
||||
// 29). In general the user places values into various memory
|
||||
// locations, and then places the command word into command_word0.
|
||||
// The JR3 DSP will process the command and place a 0 into
|
||||
// command_word0 to indicate successful completion. Alternatively
|
||||
// the JR3 DSP will place a negative number into command_word0 to
|
||||
// indicate an error condition. Please note the command locations
|
||||
// are numbered backwards. (I.E. command_word2 comes before
|
||||
// command_word1).
|
||||
|
||||
s_val_t command_word2; /* offset 0x00e5 */
|
||||
s_val_t command_word1; /* offset 0x00e6 */
|
||||
s_val_t command_word0; /* offset 0x00e7 */
|
||||
|
||||
// Count1 through count6 are unsigned counters which are incremented
|
||||
// every time the matching filters are calculated. Filter1 is
|
||||
// calculated at the sensor data bandwidth. So this counter would
|
||||
// increment at 8 kHz for a typical sensor. The rest of the counters
|
||||
// are incremented at 1/4 the interval of the counter immediately
|
||||
// preceding it, so they would count at 2 kHz, 500 Hz, 125 Hz etc.
|
||||
// These counters can be used to wait for data. Each time the
|
||||
// counter changes, the corresponding data set can be sampled, and
|
||||
// this will insure that the user gets each sample, once, and only
|
||||
// once.
|
||||
|
||||
u_val_t count1; /* offset 0x00e8 */
|
||||
u_val_t count2; /* offset 0x00e9 */
|
||||
u_val_t count3; /* offset 0x00ea */
|
||||
u_val_t count4; /* offset 0x00eb */
|
||||
u_val_t count5; /* offset 0x00ec */
|
||||
u_val_t count6; /* offset 0x00ed */
|
||||
|
||||
// Error_count is a running count of data reception errors. If this
|
||||
// counter is changing rapidly, it probably indicates a bad sensor
|
||||
// cable connection or other hardware problem. In most installations
|
||||
// error_count should not change at all. But it is possible in an
|
||||
// extremely noisy environment to experience occasional errors even
|
||||
// without a hardware problem. If the sensor is well grounded, this
|
||||
// is probably unavoidable in these environments. On the occasions
|
||||
// where this counter counts a bad sample, that sample is ignored.
|
||||
|
||||
u_val_t error_count; /* offset 0x00ee */
|
||||
|
||||
// Count_x is a counter which is incremented every time the JR3 DSP
|
||||
// searches its job queues and finds nothing to do. It indicates the
|
||||
// amount of idle time the JR3 DSP has available. It can also be
|
||||
// used to determine if the JR3 DSP is alive. See the Performance
|
||||
// Issues section on pg. 49 for more details.
|
||||
|
||||
u_val_t count_x; /* offset 0x00ef */
|
||||
|
||||
// Warnings & errors contain the warning and error bits
|
||||
// respectively. The format of these two words is discussed on page
|
||||
// 21 under the headings warnings_bits and error_bits.
|
||||
|
||||
u_val_t warnings; /* offset 0x00f0 */
|
||||
u_val_t errors; /* offset 0x00f1 */
|
||||
|
||||
// Threshold_bits is a word containing the bits that are set by the
|
||||
// load envelopes. See load_envelopes (pg. 17) and thresh_struct
|
||||
// (pg. 23) for more details.
|
||||
|
||||
s_val_t threshold_bits; /* offset 0x00f2 */
|
||||
|
||||
// Last_crc is the value that shows the actual calculated CRC. CRC
|
||||
// is short for cyclic redundancy code. It should be zero. See the
|
||||
// description for cal_crc_bad (pg. 21) for more information.
|
||||
|
||||
s_val_t last_CRC; /* offset 0x00f3 */
|
||||
|
||||
// EEProm_ver_no contains the version number of the sensor EEProm.
|
||||
// EEProm version numbers can vary between 0 and 255.
|
||||
// Software_ver_no contains the software version number. Version
|
||||
// 3.02 would be stored as 302.
|
||||
|
||||
s_val_t eeprom_ver_no; /* offset 0x00f4 */
|
||||
s_val_t software_ver_no; /* offset 0x00f5 */
|
||||
|
||||
// Software_day & software_year are the release date of the software
|
||||
// the JR3 DSP is currently running. Day is the day of the year,
|
||||
// with January 1 being 1, and December 31, being 365 for non leap
|
||||
// years.
|
||||
|
||||
s_val_t software_day; /* offset 0x00f6 */
|
||||
s_val_t software_year; /* offset 0x00f7 */
|
||||
|
||||
// Serial_no & model_no are the two values which uniquely identify a
|
||||
// sensor. This model number does not directly correspond to the JR3
|
||||
// model number, but it will provide a unique identifier for
|
||||
// different sensor configurations.
|
||||
|
||||
u_val_t serial_no; /* offset 0x00f8 */
|
||||
u_val_t model_no; /* offset 0x00f9 */
|
||||
|
||||
// Cal_day & cal_year are the sensor calibration date. Day is the
|
||||
// day of the year, with January 1 being 1, and December 31, being
|
||||
// 366 for leap years.
|
||||
|
||||
s_val_t cal_day; /* offset 0x00fa */
|
||||
s_val_t cal_year; /* offset 0x00fb */
|
||||
|
||||
// Units is an enumerated read only value defining the engineering
|
||||
// units used in the sensor full scale. The meanings of particular
|
||||
// values are discussed in the section detailing the force_units
|
||||
// structure on page 22. The engineering units are setto customer
|
||||
// specifications during sensor manufacture and cannot be changed by
|
||||
// writing to Units.
|
||||
//
|
||||
// Bits contains the number of bits of resolution of the ADC
|
||||
// currently in use.
|
||||
//
|
||||
// Channels is a bit field showing which channels the current sensor
|
||||
// is capable of sending. If bit 0 is active, this sensor can send
|
||||
// channel 0, if bit 13 is active, this sensor can send channel 13,
|
||||
// etc. This bit can be active, even if the sensor is not currently
|
||||
// sending this channel. Some sensors are configurable as to which
|
||||
// channels to send, and this field only contains information on the
|
||||
// channels available to send, not on the current configuration. To
|
||||
// find which channels are currently being sent, monitor the
|
||||
// Raw_time fields (pg. 19) in the raw_channels array (pg. 7). If
|
||||
// the time is changing periodically, then that channel is being
|
||||
// received.
|
||||
|
||||
u_val_t units; /* offset 0x00fc */
|
||||
s_val_t bits; /* offset 0x00fd */
|
||||
s_val_t channels; /* offset 0x00fe */
|
||||
|
||||
// Thickness specifies the overall thickness of the sensor from
|
||||
// flange to flange. The engineering units for this value are
|
||||
// contained in units (pg. 16). The sensor calibration is relative
|
||||
// to the center of the sensor. This value allows easy coordinate
|
||||
// transformation from the center of the sensor to either flange.
|
||||
|
||||
s_val_t thickness; /* offset 0x00ff */
|
||||
|
||||
// Load_envelopes is a table containing the load envelope
|
||||
// descriptions. There are 16 possible load envelope slots in the
|
||||
// table. The slots are on 16 word boundaries and are numbered 0-15.
|
||||
// Each load envelope needs to start at the beginning of a slot but
|
||||
// need not be fully contained in that slot. That is to say that a
|
||||
// single load envelope can be larger than a single slot. The
|
||||
// software has been tested and ran satisfactorily with 50
|
||||
// thresholds active. A single load envelope this large would take
|
||||
// up 5 of the 16 slots. The load envelope data is laid out in an
|
||||
// order that is most efficient for the JR3 DSP. The structure is
|
||||
// detailed later in the section showing the definition of the
|
||||
// le_struct structure (pg. 23).
|
||||
|
||||
le_struct_t load_envelopes[0x10]; /* offset 0x0100 */
|
||||
|
||||
// Transforms is a table containing the transform descriptions.
|
||||
// There are 16 possible transform slots in the table. The slots are
|
||||
// on 16 word boundaries and are numbered 0-15. Each transform needs
|
||||
// to start at the beginning of a slot but need not be fully
|
||||
// contained in that slot. That is to say that a single transform
|
||||
// can be larger than a single slot. A transform is 2 * no of links
|
||||
// + 1 words in length. So a single slot can contain a transform
|
||||
// with 7 links. Two slots can contain a transform that is 15 links.
|
||||
// The layout is detailed later in the section showing the
|
||||
// definition of the transform structure (pg. 26).
|
||||
|
||||
intern_transform_t transforms[0x10]; /* offset 0x0200 */
|
||||
} jr3_channel_t;
|
||||
|
||||
typedef struct {
|
||||
struct {
|
||||
u_val_t program_low[0x4000]; // 0x00000 - 0x10000
|
||||
jr3_channel_t data; // 0x10000 - 0x10c00
|
||||
char pad2[0x30000 - 0x00c00]; // 0x10c00 - 0x40000
|
||||
u_val_t program_high[0x8000]; // 0x40000 - 0x60000
|
||||
u32 reset; // 0x60000 - 0x60004
|
||||
char pad3[0x20000 - 0x00004]; // 0x60004 - 0x80000
|
||||
} channel[4];
|
||||
} jr3_t;
|
Loading…
Reference in New Issue