linux-sg2042/drivers/mtd/chips/cfi_cmdset_0002.c

2931 lines
79 KiB
C
Raw Normal View History

/*
* Common Flash Interface support:
* AMD & Fujitsu Standard Vendor Command Set (ID 0x0002)
*
* Copyright (C) 2000 Crossnet Co. <info@crossnet.co.jp>
* Copyright (C) 2004 Arcom Control Systems Ltd <linux@arcom.com>
* Copyright (C) 2005 MontaVista Software Inc. <source@mvista.com>
*
* 2_by_8 routines added by Simon Munton
*
* 4_by_16 work by Carolyn J. Smith
*
* XIP support hooks by Vitaly Wool (based on code for Intel flash
* by Nicolas Pitre)
*
* 25/09/2008 Christopher Moore: TopBottom fixup for many Macronix with CFI V1.0
*
* Occasionally maintained by Thayne Harbaugh tharbaugh at lnxi dot com
*
* This code is GPL
*/
#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <asm/io.h>
#include <asm/byteorder.h>
#include <linux/errno.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/reboot.h>
mtd: cfi_cmdset_0002: Support Persistent Protection Bits (PPB) locking Currently cfi_cmdset_0002.c does not support PPB locking of sectors. This patch adds support for this locking/unlocking mechanism. It is needed on some platforms, since newer U-Boot versions do support this PPB locking and protect for example their environment sector(s) this way. This PPB locking/unlocking will be enabled for all devices supported by cfi_cmdset_0002 reporting 8 in the CFI word 0x49 (Sector Protect/Unprotect scheme). Please note that PPB locking does support sector-by-sector locking. But the whole chip can only be unlocked together. So unlocking one sector will automatically unlock all sectors of this device. Because of this chip limitation, the PPB unlocking function saves the current locking status of all sectors before unlocking the whole device. After unlocking the saved locking status is re-configured. This way only the addressed sectors will be unlocked. To selectively enable this advanced sector protection mechanism, the device-tree property "use-advanced-sector-protection" has been created. To enable support for this locking this property needs to be present in the flash DT node. E.g.: nor_flash@0,0 { compatible = "amd,s29gl256n", "cfi-flash"; bank-width = <2>; use-advanced-sector-protection; ... Tested with Spansion S29GL512S10THI and Micron JS28F512M29EWx flash devices. Signed-off-by: Stefan Roese <sr@denx.de> Tested-by: Holger Brunck <holger.brunck@keymile.com> Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
2013-01-18 20:10:05 +08:00
#include <linux/of.h>
#include <linux/of_platform.h>
#include <linux/mtd/map.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/cfi.h>
#include <linux/mtd/xip.h>
#define AMD_BOOTLOC_BUG
#define FORCE_WORD_WRITE 0
#define MAX_RETRIES 3
#define SST49LF004B 0x0060
#define SST49LF040B 0x0050
#define SST49LF008A 0x005a
#define AT49BV6416 0x00d6
static int cfi_amdstd_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
static int cfi_amdstd_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
static int cfi_amdstd_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
static int cfi_amdstd_erase_chip(struct mtd_info *, struct erase_info *);
static int cfi_amdstd_erase_varsize(struct mtd_info *, struct erase_info *);
static void cfi_amdstd_sync (struct mtd_info *);
static int cfi_amdstd_suspend (struct mtd_info *);
static void cfi_amdstd_resume (struct mtd_info *);
static int cfi_amdstd_reboot(struct notifier_block *, unsigned long, void *);
static int cfi_amdstd_get_fact_prot_info(struct mtd_info *, size_t,
size_t *, struct otp_info *);
static int cfi_amdstd_get_user_prot_info(struct mtd_info *, size_t,
size_t *, struct otp_info *);
static int cfi_amdstd_secsi_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
static int cfi_amdstd_read_fact_prot_reg(struct mtd_info *, loff_t, size_t,
size_t *, u_char *);
static int cfi_amdstd_read_user_prot_reg(struct mtd_info *, loff_t, size_t,
size_t *, u_char *);
static int cfi_amdstd_write_user_prot_reg(struct mtd_info *, loff_t, size_t,
size_t *, u_char *);
static int cfi_amdstd_lock_user_prot_reg(struct mtd_info *, loff_t, size_t);
static int cfi_amdstd_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
size_t *retlen, const u_char *buf);
static void cfi_amdstd_destroy(struct mtd_info *);
struct mtd_info *cfi_cmdset_0002(struct map_info *, int);
static struct mtd_info *cfi_amdstd_setup (struct mtd_info *);
static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr);
#include "fwh_lock.h"
static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
mtd: cfi_cmdset_0002: Support Persistent Protection Bits (PPB) locking Currently cfi_cmdset_0002.c does not support PPB locking of sectors. This patch adds support for this locking/unlocking mechanism. It is needed on some platforms, since newer U-Boot versions do support this PPB locking and protect for example their environment sector(s) this way. This PPB locking/unlocking will be enabled for all devices supported by cfi_cmdset_0002 reporting 8 in the CFI word 0x49 (Sector Protect/Unprotect scheme). Please note that PPB locking does support sector-by-sector locking. But the whole chip can only be unlocked together. So unlocking one sector will automatically unlock all sectors of this device. Because of this chip limitation, the PPB unlocking function saves the current locking status of all sectors before unlocking the whole device. After unlocking the saved locking status is re-configured. This way only the addressed sectors will be unlocked. To selectively enable this advanced sector protection mechanism, the device-tree property "use-advanced-sector-protection" has been created. To enable support for this locking this property needs to be present in the flash DT node. E.g.: nor_flash@0,0 { compatible = "amd,s29gl256n", "cfi-flash"; bank-width = <2>; use-advanced-sector-protection; ... Tested with Spansion S29GL512S10THI and Micron JS28F512M29EWx flash devices. Signed-off-by: Stefan Roese <sr@denx.de> Tested-by: Holger Brunck <holger.brunck@keymile.com> Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
2013-01-18 20:10:05 +08:00
static int cfi_ppb_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
static int cfi_ppb_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
static int cfi_ppb_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len);
static struct mtd_chip_driver cfi_amdstd_chipdrv = {
.probe = NULL, /* Not usable directly */
.destroy = cfi_amdstd_destroy,
.name = "cfi_cmdset_0002",
.module = THIS_MODULE
};
/* #define DEBUG_CFI_FEATURES */
#ifdef DEBUG_CFI_FEATURES
static void cfi_tell_features(struct cfi_pri_amdstd *extp)
{
const char* erase_suspend[3] = {
"Not supported", "Read only", "Read/write"
};
const char* top_bottom[6] = {
"No WP", "8x8KiB sectors at top & bottom, no WP",
"Bottom boot", "Top boot",
"Uniform, Bottom WP", "Uniform, Top WP"
};
printk(" Silicon revision: %d\n", extp->SiliconRevision >> 1);
printk(" Address sensitive unlock: %s\n",
(extp->SiliconRevision & 1) ? "Not required" : "Required");
if (extp->EraseSuspend < ARRAY_SIZE(erase_suspend))
printk(" Erase Suspend: %s\n", erase_suspend[extp->EraseSuspend]);
else
printk(" Erase Suspend: Unknown value %d\n", extp->EraseSuspend);
if (extp->BlkProt == 0)
printk(" Block protection: Not supported\n");
else
printk(" Block protection: %d sectors per group\n", extp->BlkProt);
printk(" Temporary block unprotect: %s\n",
extp->TmpBlkUnprotect ? "Supported" : "Not supported");
printk(" Block protect/unprotect scheme: %d\n", extp->BlkProtUnprot);
printk(" Number of simultaneous operations: %d\n", extp->SimultaneousOps);
printk(" Burst mode: %s\n",
extp->BurstMode ? "Supported" : "Not supported");
if (extp->PageMode == 0)
printk(" Page mode: Not supported\n");
else
printk(" Page mode: %d word page\n", extp->PageMode << 2);
printk(" Vpp Supply Minimum Program/Erase Voltage: %d.%d V\n",
extp->VppMin >> 4, extp->VppMin & 0xf);
printk(" Vpp Supply Maximum Program/Erase Voltage: %d.%d V\n",
extp->VppMax >> 4, extp->VppMax & 0xf);
if (extp->TopBottom < ARRAY_SIZE(top_bottom))
printk(" Top/Bottom Boot Block: %s\n", top_bottom[extp->TopBottom]);
else
printk(" Top/Bottom Boot Block: Unknown value %d\n", extp->TopBottom);
}
#endif
#ifdef AMD_BOOTLOC_BUG
/* Wheee. Bring me the head of someone at AMD. */
static void fixup_amd_bootblock(struct mtd_info *mtd)
{
struct map_info *map = mtd->priv;
struct cfi_private *cfi = map->fldrv_priv;
struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
__u8 major = extp->MajorVersion;
__u8 minor = extp->MinorVersion;
if (((major << 8) | minor) < 0x3131) {
/* CFI version 1.0 => don't trust bootloc */
pr_debug("%s: JEDEC Vendor ID is 0x%02X Device ID is 0x%02X\n",
map->name, cfi->mfr, cfi->id);
/* AFAICS all 29LV400 with a bottom boot block have a device ID
* of 0x22BA in 16-bit mode and 0xBA in 8-bit mode.
* These were badly detected as they have the 0x80 bit set
* so treat them as a special case.
*/
if (((cfi->id == 0xBA) || (cfi->id == 0x22BA)) &&
/* Macronix added CFI to their 2nd generation
* MX29LV400C B/T but AFAICS no other 29LV400 (AMD,
* Fujitsu, Spansion, EON, ESI and older Macronix)
* has CFI.
*
* Therefore also check the manufacturer.
* This reduces the risk of false detection due to
* the 8-bit device ID.
*/
(cfi->mfr == CFI_MFR_MACRONIX)) {
pr_debug("%s: Macronix MX29LV400C with bottom boot block"
" detected\n", map->name);
extp->TopBottom = 2; /* bottom boot */
} else
if (cfi->id & 0x80) {
printk(KERN_WARNING "%s: JEDEC Device ID is 0x%02X. Assuming broken CFI table.\n", map->name, cfi->id);
extp->TopBottom = 3; /* top boot */
} else {
extp->TopBottom = 2; /* bottom boot */
}
pr_debug("%s: AMD CFI PRI V%c.%c has no boot block field;"
" deduced %s from Device ID\n", map->name, major, minor,
extp->TopBottom == 2 ? "bottom" : "top");
}
}
#endif
static void fixup_use_write_buffers(struct mtd_info *mtd)
{
struct map_info *map = mtd->priv;
struct cfi_private *cfi = map->fldrv_priv;
if (cfi->cfiq->BufWriteTimeoutTyp) {
pr_debug("Using buffer write method\n");
mtd->_write = cfi_amdstd_write_buffers;
}
}
/* Atmel chips don't use the same PRI format as AMD chips */
static void fixup_convert_atmel_pri(struct mtd_info *mtd)
{
struct map_info *map = mtd->priv;
struct cfi_private *cfi = map->fldrv_priv;
struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
struct cfi_pri_atmel atmel_pri;
memcpy(&atmel_pri, extp, sizeof(atmel_pri));
memset((char *)extp + 5, 0, sizeof(*extp) - 5);
if (atmel_pri.Features & 0x02)
extp->EraseSuspend = 2;
/* Some chips got it backwards... */
if (cfi->id == AT49BV6416) {
if (atmel_pri.BottomBoot)
extp->TopBottom = 3;
else
extp->TopBottom = 2;
} else {
if (atmel_pri.BottomBoot)
extp->TopBottom = 2;
else
extp->TopBottom = 3;
}
/* burst write mode not supported */
cfi->cfiq->BufWriteTimeoutTyp = 0;
cfi->cfiq->BufWriteTimeoutMax = 0;
}
static void fixup_use_secsi(struct mtd_info *mtd)
{
/* Setup for chips with a secsi area */
mtd->_read_user_prot_reg = cfi_amdstd_secsi_read;
mtd->_read_fact_prot_reg = cfi_amdstd_secsi_read;
}
static void fixup_use_erase_chip(struct mtd_info *mtd)
{
struct map_info *map = mtd->priv;
struct cfi_private *cfi = map->fldrv_priv;
if ((cfi->cfiq->NumEraseRegions == 1) &&
((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0)) {
mtd->_erase = cfi_amdstd_erase_chip;
}
}
/*
* Some Atmel chips (e.g. the AT49BV6416) power-up with all sectors
* locked by default.
*/
static void fixup_use_atmel_lock(struct mtd_info *mtd)
{
mtd->_lock = cfi_atmel_lock;
mtd->_unlock = cfi_atmel_unlock;
mtd->flags |= MTD_POWERUP_LOCK;
}
static void fixup_old_sst_eraseregion(struct mtd_info *mtd)
{
struct map_info *map = mtd->priv;
struct cfi_private *cfi = map->fldrv_priv;
/*
* These flashes report two separate eraseblock regions based on the
* sector_erase-size and block_erase-size, although they both operate on the
* same memory. This is not allowed according to CFI, so we just pick the
* sector_erase-size.
*/
cfi->cfiq->NumEraseRegions = 1;
}
static void fixup_sst39vf(struct mtd_info *mtd)
{
struct map_info *map = mtd->priv;
struct cfi_private *cfi = map->fldrv_priv;
fixup_old_sst_eraseregion(mtd);
cfi->addr_unlock1 = 0x5555;
cfi->addr_unlock2 = 0x2AAA;
}
static void fixup_sst39vf_rev_b(struct mtd_info *mtd)
{
struct map_info *map = mtd->priv;
struct cfi_private *cfi = map->fldrv_priv;
fixup_old_sst_eraseregion(mtd);
cfi->addr_unlock1 = 0x555;
cfi->addr_unlock2 = 0x2AA;
cfi->sector_erase_cmd = CMD(0x50);
}
static void fixup_sst38vf640x_sectorsize(struct mtd_info *mtd)
{
struct map_info *map = mtd->priv;
struct cfi_private *cfi = map->fldrv_priv;
fixup_sst39vf_rev_b(mtd);
/*
* CFI reports 1024 sectors (0x03ff+1) of 64KBytes (0x0100*256) where
* it should report a size of 8KBytes (0x0020*256).
*/
cfi->cfiq->EraseRegionInfo[0] = 0x002003ff;
pr_warn("%s: Bad 38VF640x CFI data; adjusting sector size from 64 to 8KiB\n",
mtd->name);
}
static void fixup_s29gl064n_sectors(struct mtd_info *mtd)
{
struct map_info *map = mtd->priv;
struct cfi_private *cfi = map->fldrv_priv;
if ((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0x003f) {
cfi->cfiq->EraseRegionInfo[0] |= 0x0040;
pr_warn("%s: Bad S29GL064N CFI data; adjust from 64 to 128 sectors\n",
mtd->name);
}
}
static void fixup_s29gl032n_sectors(struct mtd_info *mtd)
{
struct map_info *map = mtd->priv;
struct cfi_private *cfi = map->fldrv_priv;
if ((cfi->cfiq->EraseRegionInfo[1] & 0xffff) == 0x007e) {
cfi->cfiq->EraseRegionInfo[1] &= ~0x0040;
pr_warn("%s: Bad S29GL032N CFI data; adjust from 127 to 63 sectors\n",
mtd->name);
}
}
static void fixup_s29ns512p_sectors(struct mtd_info *mtd)
{
struct map_info *map = mtd->priv;
struct cfi_private *cfi = map->fldrv_priv;
/*
* S29NS512P flash uses more than 8bits to report number of sectors,
* which is not permitted by CFI.
*/
cfi->cfiq->EraseRegionInfo[0] = 0x020001ff;
pr_warn("%s: Bad S29NS512P CFI data; adjust to 512 sectors\n",
mtd->name);
}
/* Used to fix CFI-Tables of chips without Extended Query Tables */
static struct cfi_fixup cfi_nopri_fixup_table[] = {
{ CFI_MFR_SST, 0x234a, fixup_sst39vf }, /* SST39VF1602 */
{ CFI_MFR_SST, 0x234b, fixup_sst39vf }, /* SST39VF1601 */
{ CFI_MFR_SST, 0x235a, fixup_sst39vf }, /* SST39VF3202 */
{ CFI_MFR_SST, 0x235b, fixup_sst39vf }, /* SST39VF3201 */
{ CFI_MFR_SST, 0x235c, fixup_sst39vf_rev_b }, /* SST39VF3202B */
{ CFI_MFR_SST, 0x235d, fixup_sst39vf_rev_b }, /* SST39VF3201B */
{ CFI_MFR_SST, 0x236c, fixup_sst39vf_rev_b }, /* SST39VF6402B */
{ CFI_MFR_SST, 0x236d, fixup_sst39vf_rev_b }, /* SST39VF6401B */
{ 0, 0, NULL }
};
static struct cfi_fixup cfi_fixup_table[] = {
{ CFI_MFR_ATMEL, CFI_ID_ANY, fixup_convert_atmel_pri },
#ifdef AMD_BOOTLOC_BUG
{ CFI_MFR_AMD, CFI_ID_ANY, fixup_amd_bootblock },
{ CFI_MFR_AMIC, CFI_ID_ANY, fixup_amd_bootblock },
{ CFI_MFR_MACRONIX, CFI_ID_ANY, fixup_amd_bootblock },
#endif
{ CFI_MFR_AMD, 0x0050, fixup_use_secsi },
{ CFI_MFR_AMD, 0x0053, fixup_use_secsi },
{ CFI_MFR_AMD, 0x0055, fixup_use_secsi },
{ CFI_MFR_AMD, 0x0056, fixup_use_secsi },
{ CFI_MFR_AMD, 0x005C, fixup_use_secsi },
{ CFI_MFR_AMD, 0x005F, fixup_use_secsi },
{ CFI_MFR_AMD, 0x0c01, fixup_s29gl064n_sectors },
{ CFI_MFR_AMD, 0x1301, fixup_s29gl064n_sectors },
{ CFI_MFR_AMD, 0x1a00, fixup_s29gl032n_sectors },
{ CFI_MFR_AMD, 0x1a01, fixup_s29gl032n_sectors },
{ CFI_MFR_AMD, 0x3f00, fixup_s29ns512p_sectors },
{ CFI_MFR_SST, 0x536a, fixup_sst38vf640x_sectorsize }, /* SST38VF6402 */
{ CFI_MFR_SST, 0x536b, fixup_sst38vf640x_sectorsize }, /* SST38VF6401 */
{ CFI_MFR_SST, 0x536c, fixup_sst38vf640x_sectorsize }, /* SST38VF6404 */
{ CFI_MFR_SST, 0x536d, fixup_sst38vf640x_sectorsize }, /* SST38VF6403 */
#if !FORCE_WORD_WRITE
{ CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers },
#endif
{ 0, 0, NULL }
};
static struct cfi_fixup jedec_fixup_table[] = {
{ CFI_MFR_SST, SST49LF004B, fixup_use_fwh_lock },
{ CFI_MFR_SST, SST49LF040B, fixup_use_fwh_lock },
{ CFI_MFR_SST, SST49LF008A, fixup_use_fwh_lock },
{ 0, 0, NULL }
};
static struct cfi_fixup fixup_table[] = {
/* The CFI vendor ids and the JEDEC vendor IDs appear
* to be common. It is like the devices id's are as
* well. This table is to pick all cases where
* we know that is the case.
*/
{ CFI_MFR_ANY, CFI_ID_ANY, fixup_use_erase_chip },
{ CFI_MFR_ATMEL, AT49BV6416, fixup_use_atmel_lock },
{ 0, 0, NULL }
};
static void cfi_fixup_major_minor(struct cfi_private *cfi,
struct cfi_pri_amdstd *extp)
{
if (cfi->mfr == CFI_MFR_SAMSUNG) {
if ((extp->MajorVersion == '0' && extp->MinorVersion == '0') ||
(extp->MajorVersion == '3' && extp->MinorVersion == '3')) {
/*
* Samsung K8P2815UQB and K8D6x16UxM chips
* report major=0 / minor=0.
* K8D3x16UxC chips report major=3 / minor=3.
*/
printk(KERN_NOTICE " Fixing Samsung's Amd/Fujitsu"
" Extended Query version to 1.%c\n",
extp->MinorVersion);
extp->MajorVersion = '1';
}
}
/*
* SST 38VF640x chips report major=0xFF / minor=0xFF.
*/
if (cfi->mfr == CFI_MFR_SST && (cfi->id >> 4) == 0x0536) {
extp->MajorVersion = '1';
extp->MinorVersion = '0';
}
}
static int is_m29ew(struct cfi_private *cfi)
{
if (cfi->mfr == CFI_MFR_INTEL &&
((cfi->device_type == CFI_DEVICETYPE_X8 && (cfi->id & 0xff) == 0x7e) ||
(cfi->device_type == CFI_DEVICETYPE_X16 && cfi->id == 0x227e)))
return 1;
return 0;
}
/*
* From TN-13-07: Patching the Linux Kernel and U-Boot for M29 Flash, page 20:
* Some revisions of the M29EW suffer from erase suspend hang ups. In
* particular, it can occur when the sequence
* Erase Confirm -> Suspend -> Program -> Resume
* causes a lockup due to internal timing issues. The consequence is that the
* erase cannot be resumed without inserting a dummy command after programming
* and prior to resuming. [...] The work-around is to issue a dummy write cycle
* that writes an F0 command code before the RESUME command.
*/
static void cfi_fixup_m29ew_erase_suspend(struct map_info *map,
unsigned long adr)
{
struct cfi_private *cfi = map->fldrv_priv;
/* before resume, insert a dummy 0xF0 cycle for Micron M29EW devices */
if (is_m29ew(cfi))
map_write(map, CMD(0xF0), adr);
}
/*
* From TN-13-07: Patching the Linux Kernel and U-Boot for M29 Flash, page 22:
*
* Some revisions of the M29EW (for example, A1 and A2 step revisions)
* are affected by a problem that could cause a hang up when an ERASE SUSPEND
* command is issued after an ERASE RESUME operation without waiting for a
* minimum delay. The result is that once the ERASE seems to be completed
* (no bits are toggling), the contents of the Flash memory block on which
* the erase was ongoing could be inconsistent with the expected values
* (typically, the array value is stuck to the 0xC0, 0xC4, 0x80, or 0x84
* values), causing a consequent failure of the ERASE operation.
* The occurrence of this issue could be high, especially when file system
* operations on the Flash are intensive. As a result, it is recommended
* that a patch be applied. Intensive file system operations can cause many
* calls to the garbage routine to free Flash space (also by erasing physical
* Flash blocks) and as a result, many consecutive SUSPEND and RESUME
* commands can occur. The problem disappears when a delay is inserted after
* the RESUME command by using the udelay() function available in Linux.
* The DELAY value must be tuned based on the customer's platform.
* The maximum value that fixes the problem in all cases is 500us.
* But, in our experience, a delay of 30 µs to 50 µs is sufficient
* in most cases.
* We have chosen 500µs because this latency is acceptable.
*/
static void cfi_fixup_m29ew_delay_after_resume(struct cfi_private *cfi)
{
/*
* Resolving the Delay After Resume Issue see Micron TN-13-07
* Worst case delay must be 500µs but 30-50µs should be ok as well
*/
if (is_m29ew(cfi))
cfi_udelay(500);
}
struct mtd_info *cfi_cmdset_0002(struct map_info *map, int primary)
{
struct cfi_private *cfi = map->fldrv_priv;
mtd: cfi_cmdset_0002: Support Persistent Protection Bits (PPB) locking Currently cfi_cmdset_0002.c does not support PPB locking of sectors. This patch adds support for this locking/unlocking mechanism. It is needed on some platforms, since newer U-Boot versions do support this PPB locking and protect for example their environment sector(s) this way. This PPB locking/unlocking will be enabled for all devices supported by cfi_cmdset_0002 reporting 8 in the CFI word 0x49 (Sector Protect/Unprotect scheme). Please note that PPB locking does support sector-by-sector locking. But the whole chip can only be unlocked together. So unlocking one sector will automatically unlock all sectors of this device. Because of this chip limitation, the PPB unlocking function saves the current locking status of all sectors before unlocking the whole device. After unlocking the saved locking status is re-configured. This way only the addressed sectors will be unlocked. To selectively enable this advanced sector protection mechanism, the device-tree property "use-advanced-sector-protection" has been created. To enable support for this locking this property needs to be present in the flash DT node. E.g.: nor_flash@0,0 { compatible = "amd,s29gl256n", "cfi-flash"; bank-width = <2>; use-advanced-sector-protection; ... Tested with Spansion S29GL512S10THI and Micron JS28F512M29EWx flash devices. Signed-off-by: Stefan Roese <sr@denx.de> Tested-by: Holger Brunck <holger.brunck@keymile.com> Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
2013-01-18 20:10:05 +08:00
struct device_node __maybe_unused *np = map->device_node;
struct mtd_info *mtd;
int i;
mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
if (!mtd)
return NULL;
mtd->priv = map;
mtd->type = MTD_NORFLASH;
/* Fill in the default mtd operations */
mtd->_erase = cfi_amdstd_erase_varsize;
mtd->_write = cfi_amdstd_write_words;
mtd->_read = cfi_amdstd_read;
mtd->_sync = cfi_amdstd_sync;
mtd->_suspend = cfi_amdstd_suspend;
mtd->_resume = cfi_amdstd_resume;
mtd->_read_user_prot_reg = cfi_amdstd_read_user_prot_reg;
mtd->_read_fact_prot_reg = cfi_amdstd_read_fact_prot_reg;
mtd->_get_fact_prot_info = cfi_amdstd_get_fact_prot_info;
mtd->_get_user_prot_info = cfi_amdstd_get_user_prot_info;
mtd->_write_user_prot_reg = cfi_amdstd_write_user_prot_reg;
mtd->_lock_user_prot_reg = cfi_amdstd_lock_user_prot_reg;
mtd->flags = MTD_CAP_NORFLASH;
mtd->name = map->name;
mtd->writesize = 1;
mtd->writebufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
pr_debug("MTD %s(): write buffer size %d\n", __func__,
mtd->writebufsize);
mtd->_panic_write = cfi_amdstd_panic_write;
mtd->reboot_notifier.notifier_call = cfi_amdstd_reboot;
if (cfi->cfi_mode==CFI_MODE_CFI){
unsigned char bootloc;
__u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR;
struct cfi_pri_amdstd *extp;
extp = (struct cfi_pri_amdstd*)cfi_read_pri(map, adr, sizeof(*extp), "Amd/Fujitsu");
if (extp) {
/*
* It's a real CFI chip, not one for which the probe
* routine faked a CFI structure.
*/
cfi_fixup_major_minor(cfi, extp);
/*
* Valid primary extension versions are: 1.0, 1.1, 1.2, 1.3, 1.4, 1.5
* see: http://cs.ozerki.net/zap/pub/axim-x5/docs/cfi_r20.pdf, page 19
* http://www.spansion.com/Support/AppNotes/cfi_100_20011201.pdf
* http://www.spansion.com/Support/Datasheets/s29ws-p_00_a12_e.pdf
* http://www.spansion.com/Support/Datasheets/S29GL_128S_01GS_00_02_e.pdf
*/
if (extp->MajorVersion != '1' ||
(extp->MajorVersion == '1' && (extp->MinorVersion < '0' || extp->MinorVersion > '5'))) {
printk(KERN_ERR " Unknown Amd/Fujitsu Extended Query "
"version %c.%c (%#02x/%#02x).\n",
extp->MajorVersion, extp->MinorVersion,
extp->MajorVersion, extp->MinorVersion);
kfree(extp);
kfree(mtd);
return NULL;
}
printk(KERN_INFO " Amd/Fujitsu Extended Query version %c.%c.\n",
extp->MajorVersion, extp->MinorVersion);
/* Install our own private info structure */
cfi->cmdset_priv = extp;
/* Apply cfi device specific fixups */
cfi_fixup(mtd, cfi_fixup_table);
#ifdef DEBUG_CFI_FEATURES
/* Tell the user about it in lots of lovely detail */
cfi_tell_features(extp);
#endif
mtd: cfi_cmdset_0002: Support Persistent Protection Bits (PPB) locking Currently cfi_cmdset_0002.c does not support PPB locking of sectors. This patch adds support for this locking/unlocking mechanism. It is needed on some platforms, since newer U-Boot versions do support this PPB locking and protect for example their environment sector(s) this way. This PPB locking/unlocking will be enabled for all devices supported by cfi_cmdset_0002 reporting 8 in the CFI word 0x49 (Sector Protect/Unprotect scheme). Please note that PPB locking does support sector-by-sector locking. But the whole chip can only be unlocked together. So unlocking one sector will automatically unlock all sectors of this device. Because of this chip limitation, the PPB unlocking function saves the current locking status of all sectors before unlocking the whole device. After unlocking the saved locking status is re-configured. This way only the addressed sectors will be unlocked. To selectively enable this advanced sector protection mechanism, the device-tree property "use-advanced-sector-protection" has been created. To enable support for this locking this property needs to be present in the flash DT node. E.g.: nor_flash@0,0 { compatible = "amd,s29gl256n", "cfi-flash"; bank-width = <2>; use-advanced-sector-protection; ... Tested with Spansion S29GL512S10THI and Micron JS28F512M29EWx flash devices. Signed-off-by: Stefan Roese <sr@denx.de> Tested-by: Holger Brunck <holger.brunck@keymile.com> Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
2013-01-18 20:10:05 +08:00
#ifdef CONFIG_OF
if (np && of_property_read_bool(
np, "use-advanced-sector-protection")
&& extp->BlkProtUnprot == 8) {
printk(KERN_INFO " Advanced Sector Protection (PPB Locking) supported\n");
mtd->_lock = cfi_ppb_lock;
mtd->_unlock = cfi_ppb_unlock;
mtd->_is_locked = cfi_ppb_is_locked;
}
#endif
bootloc = extp->TopBottom;
if ((bootloc < 2) || (bootloc > 5)) {
printk(KERN_WARNING "%s: CFI contains unrecognised boot "
"bank location (%d). Assuming bottom.\n",
map->name, bootloc);
bootloc = 2;
}
if (bootloc == 3 && cfi->cfiq->NumEraseRegions > 1) {
printk(KERN_WARNING "%s: Swapping erase regions for top-boot CFI table.\n", map->name);
for (i=0; i<cfi->cfiq->NumEraseRegions / 2; i++) {
int j = (cfi->cfiq->NumEraseRegions-1)-i;
swap(cfi->cfiq->EraseRegionInfo[i],
cfi->cfiq->EraseRegionInfo[j]);
}
}
/* Set the default CFI lock/unlock addresses */
cfi->addr_unlock1 = 0x555;
cfi->addr_unlock2 = 0x2aa;
}
cfi_fixup(mtd, cfi_nopri_fixup_table);
if (!cfi->addr_unlock1 || !cfi->addr_unlock2) {
kfree(mtd);
return NULL;
}
} /* CFI mode */
else if (cfi->cfi_mode == CFI_MODE_JEDEC) {
/* Apply jedec specific fixups */
cfi_fixup(mtd, jedec_fixup_table);
}
/* Apply generic fixups */
cfi_fixup(mtd, fixup_table);
for (i=0; i< cfi->numchips; i++) {
cfi->chips[i].word_write_time = 1<<cfi->cfiq->WordWriteTimeoutTyp;
cfi->chips[i].buffer_write_time = 1<<cfi->cfiq->BufWriteTimeoutTyp;
cfi->chips[i].erase_time = 1<<cfi->cfiq->BlockEraseTimeoutTyp;
/*
* First calculate the timeout max according to timeout field
* of struct cfi_ident that probed from chip's CFI aera, if
* available. Specify a minimum of 2000us, in case the CFI data
* is wrong.
*/
if (cfi->cfiq->BufWriteTimeoutTyp &&
cfi->cfiq->BufWriteTimeoutMax)
cfi->chips[i].buffer_write_time_max =
1 << (cfi->cfiq->BufWriteTimeoutTyp +
cfi->cfiq->BufWriteTimeoutMax);
else
cfi->chips[i].buffer_write_time_max = 0;
cfi->chips[i].buffer_write_time_max =
max(cfi->chips[i].buffer_write_time_max, 2000);
cfi->chips[i].ref_point_counter = 0;
init_waitqueue_head(&(cfi->chips[i].wq));
}
map->fldrv = &cfi_amdstd_chipdrv;
return cfi_amdstd_setup(mtd);
}
struct mtd_info *cfi_cmdset_0006(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0002")));
struct mtd_info *cfi_cmdset_0701(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0002")));
EXPORT_SYMBOL_GPL(cfi_cmdset_0002);
EXPORT_SYMBOL_GPL(cfi_cmdset_0006);
EXPORT_SYMBOL_GPL(cfi_cmdset_0701);
static struct mtd_info *cfi_amdstd_setup(struct mtd_info *mtd)
{
struct map_info *map = mtd->priv;
struct cfi_private *cfi = map->fldrv_priv;
unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave;
unsigned long offset = 0;
int i,j;
printk(KERN_NOTICE "number of %s chips: %d\n",
(cfi->cfi_mode == CFI_MODE_CFI)?"CFI":"JEDEC",cfi->numchips);
/* Select the correct geometry setup */
mtd->size = devsize * cfi->numchips;
mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips;
treewide: kmalloc() -> kmalloc_array() The kmalloc() function has a 2-factor argument form, kmalloc_array(). This patch replaces cases of: kmalloc(a * b, gfp) with: kmalloc_array(a * b, gfp) as well as handling cases of: kmalloc(a * b * c, gfp) with: kmalloc(array3_size(a, b, c), gfp) as it's slightly less ugly than: kmalloc_array(array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: kmalloc(4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The tools/ directory was manually excluded, since it has its own implementation of kmalloc(). The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( kmalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | kmalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( kmalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(char) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(u8) * COUNT + COUNT , ...) | kmalloc( - sizeof(__u8) * COUNT + COUNT , ...) | kmalloc( - sizeof(char) * COUNT + COUNT , ...) | kmalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - kmalloc + kmalloc_array ( - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ - kmalloc + kmalloc_array ( - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( kmalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kmalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kmalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kmalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( kmalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kmalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kmalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kmalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kmalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | kmalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( kmalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( kmalloc(C1 * C2 * C3, ...) | kmalloc( - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | kmalloc( - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | kmalloc( - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | kmalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( kmalloc(sizeof(THING) * C2, ...) | kmalloc(sizeof(TYPE) * C2, ...) | kmalloc(C1 * C2 * C3, ...) | kmalloc(C1 * C2, ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - (E1) * E2 + E1, E2 , ...) | - kmalloc + kmalloc_array ( - (E1) * (E2) + E1, E2 , ...) | - kmalloc + kmalloc_array ( - E1 * E2 + E1, E2 , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-13 04:55:00 +08:00
mtd->eraseregions = kmalloc_array(mtd->numeraseregions,
sizeof(struct mtd_erase_region_info),
GFP_KERNEL);
if (!mtd->eraseregions)
goto setup_err;
for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
unsigned long ernum, ersize;
ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave;
ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1;
if (mtd->erasesize < ersize) {
mtd->erasesize = ersize;
}
for (j=0; j<cfi->numchips; j++) {
mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset;
mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize;
mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum;
}
offset += (ersize * ernum);
}
if (offset != devsize) {
/* Argh */
printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize);
goto setup_err;
}
__module_get(THIS_MODULE);
register_reboot_notifier(&mtd->reboot_notifier);
return mtd;
setup_err:
kfree(mtd->eraseregions);
kfree(mtd);
kfree(cfi->cmdset_priv);
kfree(cfi->cfiq);
return NULL;
}
/*
* Return true if the chip is ready.
*
* Ready is one of: read mode, query mode, erase-suspend-read mode (in any
* non-suspended sector) and is indicated by no toggle bits toggling.
*
* Note that anything more complicated than checking if no bits are toggling
* (including checking DQ5 for an error status) is tricky to get working
* correctly and is therefore not done (particularly with interleaved chips
* as each chip must be checked independently of the others).
*/
static int __xipram chip_ready(struct map_info *map, unsigned long addr)
{
map_word d, t;
d = map_read(map, addr);
t = map_read(map, addr);
return map_word_equal(map, d, t);
}
/*
* Return true if the chip is ready and has the correct value.
*
* Ready is one of: read mode, query mode, erase-suspend-read mode (in any
* non-suspended sector) and it is indicated by no bits toggling.
*
* Error are indicated by toggling bits or bits held with the wrong value,
* or with bits toggling.
*
* Note that anything more complicated than checking if no bits are toggling
* (including checking DQ5 for an error status) is tricky to get working
* correctly and is therefore not done (particularly with interleaved chips
* as each chip must be checked independently of the others).
*
*/
static int __xipram chip_good(struct map_info *map, unsigned long addr, map_word expected)
{
map_word oldd, curd;
oldd = map_read(map, addr);
curd = map_read(map, addr);
return map_word_equal(map, oldd, curd) &&
map_word_equal(map, curd, expected);
}
static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
{
DECLARE_WAITQUEUE(wait, current);
struct cfi_private *cfi = map->fldrv_priv;
unsigned long timeo;
struct cfi_pri_amdstd *cfip = (struct cfi_pri_amdstd *)cfi->cmdset_priv;
resettime:
timeo = jiffies + HZ;
retry:
switch (chip->state) {
case FL_STATUS:
for (;;) {
if (chip_ready(map, adr))
break;
if (time_after(jiffies, timeo)) {
printk(KERN_ERR "Waiting for chip to be ready timed out.\n");
return -EIO;
}
mutex_unlock(&chip->mutex);
cfi_udelay(1);
mutex_lock(&chip->mutex);
/* Someone else might have been playing with it. */
goto retry;
}
case FL_READY:
case FL_CFI_QUERY:
case FL_JEDEC_QUERY:
return 0;
case FL_ERASING:
if (!cfip || !(cfip->EraseSuspend & (0x1|0x2)) ||
!(mode == FL_READY || mode == FL_POINT ||
(mode == FL_WRITING && (cfip->EraseSuspend & 0x2))))
goto sleep;
/* Do not allow suspend iff read/write to EB address */
if ((adr & chip->in_progress_block_mask) ==
chip->in_progress_block_addr)
goto sleep;
/* Erase suspend */
/* It's harmless to issue the Erase-Suspend and Erase-Resume
* commands when the erase algorithm isn't in progress. */
map_write(map, CMD(0xB0), chip->in_progress_block_addr);
chip->oldstate = FL_ERASING;
chip->state = FL_ERASE_SUSPENDING;
chip->erase_suspended = 1;
for (;;) {
if (chip_ready(map, adr))
break;
if (time_after(jiffies, timeo)) {
/* Should have suspended the erase by now.
* Send an Erase-Resume command as either
* there was an error (so leave the erase
* routine to recover from it) or we trying to
* use the erase-in-progress sector. */
put_chip(map, chip, adr);
printk(KERN_ERR "MTD %s(): chip not ready after erase suspend\n", __func__);
return -EIO;
}
mutex_unlock(&chip->mutex);
cfi_udelay(1);
mutex_lock(&chip->mutex);
/* Nobody will touch it while it's in state FL_ERASE_SUSPENDING.
So we can just loop here. */
}
chip->state = FL_READY;
return 0;
case FL_XIP_WHILE_ERASING:
if (mode != FL_READY && mode != FL_POINT &&
(!cfip || !(cfip->EraseSuspend&2)))
goto sleep;
chip->oldstate = chip->state;
chip->state = FL_READY;
return 0;
case FL_SHUTDOWN:
/* The machine is rebooting */
return -EIO;
case FL_POINT:
/* Only if there's no operation suspended... */
if (mode == FL_READY && chip->oldstate == FL_READY)
return 0;
default:
sleep:
set_current_state(TASK_UNINTERRUPTIBLE);
add_wait_queue(&chip->wq, &wait);
mutex_unlock(&chip->mutex);
schedule();
remove_wait_queue(&chip->wq, &wait);
mutex_lock(&chip->mutex);
goto resettime;
}
}
static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr)
{
struct cfi_private *cfi = map->fldrv_priv;
switch(chip->oldstate) {
case FL_ERASING:
cfi_fixup_m29ew_erase_suspend(map,
chip->in_progress_block_addr);
map_write(map, cfi->sector_erase_cmd, chip->in_progress_block_addr);
cfi_fixup_m29ew_delay_after_resume(cfi);
chip->oldstate = FL_READY;
chip->state = FL_ERASING;
break;
case FL_XIP_WHILE_ERASING:
chip->state = chip->oldstate;
chip->oldstate = FL_READY;
break;
case FL_READY:
case FL_STATUS:
break;
default:
printk(KERN_ERR "MTD: put_chip() called with oldstate %d!!\n", chip->oldstate);
}
wake_up(&chip->wq);
}
#ifdef CONFIG_MTD_XIP
/*
* No interrupt what so ever can be serviced while the flash isn't in array
* mode. This is ensured by the xip_disable() and xip_enable() functions
* enclosing any code path where the flash is known not to be in array mode.
* And within a XIP disabled code path, only functions marked with __xipram
* may be called and nothing else (it's a good thing to inspect generated
* assembly to make sure inline functions were actually inlined and that gcc
* didn't emit calls to its own support functions). Also configuring MTD CFI
* support to a single buswidth and a single interleave is also recommended.
*/
static void xip_disable(struct map_info *map, struct flchip *chip,
unsigned long adr)
{
/* TODO: chips with no XIP use should ignore and return */
(void) map_read(map, adr); /* ensure mmu mapping is up to date */
local_irq_disable();
}
static void __xipram xip_enable(struct map_info *map, struct flchip *chip,
unsigned long adr)
{
struct cfi_private *cfi = map->fldrv_priv;
if (chip->state != FL_POINT && chip->state != FL_READY) {
map_write(map, CMD(0xf0), adr);
chip->state = FL_READY;
}
(void) map_read(map, adr);
xip_iprefetch();
local_irq_enable();
}
/*
* When a delay is required for the flash operation to complete, the
* xip_udelay() function is polling for both the given timeout and pending
* (but still masked) hardware interrupts. Whenever there is an interrupt
* pending then the flash erase operation is suspended, array mode restored
* and interrupts unmasked. Task scheduling might also happen at that
* point. The CPU eventually returns from the interrupt or the call to
* schedule() and the suspended flash operation is resumed for the remaining
* of the delay period.
*
* Warning: this function _will_ fool interrupt latency tracing tools.
*/
static void __xipram xip_udelay(struct map_info *map, struct flchip *chip,
unsigned long adr, int usec)
{
struct cfi_private *cfi = map->fldrv_priv;
struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
map_word status, OK = CMD(0x80);
unsigned long suspended, start = xip_currtime();
flstate_t oldstate;
do {
cpu_relax();
if (xip_irqpending() && extp &&
((chip->state == FL_ERASING && (extp->EraseSuspend & 2))) &&
(cfi_interleave_is_1(cfi) || chip->oldstate == FL_READY)) {
/*
* Let's suspend the erase operation when supported.
* Note that we currently don't try to suspend
* interleaved chips if there is already another
* operation suspended (imagine what happens
* when one chip was already done with the current
* operation while another chip suspended it, then
* we resume the whole thing at once). Yes, it
* can happen!
*/
map_write(map, CMD(0xb0), adr);
usec -= xip_elapsed_since(start);
suspended = xip_currtime();
do {
if (xip_elapsed_since(suspended) > 100000) {
/*
* The chip doesn't want to suspend
* after waiting for 100 msecs.
* This is a critical error but there
* is not much we can do here.
*/
return;
}
status = map_read(map, adr);
} while (!map_word_andequal(map, status, OK, OK));
/* Suspend succeeded */
oldstate = chip->state;
if (!map_word_bitsset(map, status, CMD(0x40)))
break;
chip->state = FL_XIP_WHILE_ERASING;
chip->erase_suspended = 1;
map_write(map, CMD(0xf0), adr);
(void) map_read(map, adr);
xip_iprefetch();
local_irq_enable();
mutex_unlock(&chip->mutex);
xip_iprefetch();
cond_resched();
/*
* We're back. However someone else might have
* decided to go write to the chip if we are in
* a suspended erase state. If so let's wait
* until it's done.
*/
mutex_lock(&chip->mutex);
while (chip->state != FL_XIP_WHILE_ERASING) {
DECLARE_WAITQUEUE(wait, current);
set_current_state(TASK_UNINTERRUPTIBLE);
add_wait_queue(&chip->wq, &wait);
mutex_unlock(&chip->mutex);
schedule();
remove_wait_queue(&chip->wq, &wait);
mutex_lock(&chip->mutex);
}
/* Disallow XIP again */
local_irq_disable();
/* Correct Erase Suspend Hangups for M29EW */
cfi_fixup_m29ew_erase_suspend(map, adr);
/* Resume the write or erase operation */
map_write(map, cfi->sector_erase_cmd, adr);
chip->state = oldstate;
start = xip_currtime();
} else if (usec >= 1000000/HZ) {
/*
* Try to save on CPU power when waiting delay
* is at least a system timer tick period.
* No need to be extremely accurate here.
*/
xip_cpu_idle();
}
status = map_read(map, adr);
} while (!map_word_andequal(map, status, OK, OK)
&& xip_elapsed_since(start) < usec);
}
#define UDELAY(map, chip, adr, usec) xip_udelay(map, chip, adr, usec)
/*
* The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while
* the flash is actively programming or erasing since we have to poll for
* the operation to complete anyway. We can't do that in a generic way with
* a XIP setup so do it before the actual flash operation in this case
* and stub it out from INVALIDATE_CACHE_UDELAY.
*/
#define XIP_INVAL_CACHED_RANGE(map, from, size) \
INVALIDATE_CACHED_RANGE(map, from, size)
#define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec) \
UDELAY(map, chip, adr, usec)
/*
* Extra notes:
*
* Activating this XIP support changes the way the code works a bit. For
* example the code to suspend the current process when concurrent access
* happens is never executed because xip_udelay() will always return with the
* same chip state as it was entered with. This is why there is no care for
* the presence of add_wait_queue() or schedule() calls from within a couple
* xip_disable()'d areas of code, like in do_erase_oneblock for example.
* The queueing and scheduling are always happening within xip_udelay().
*
* Similarly, get_chip() and put_chip() just happen to always be executed
* with chip->state set to FL_READY (or FL_XIP_WHILE_*) where flash state
* is in array mode, therefore never executing many cases therein and not
* causing any problem with XIP.
*/
#else
#define xip_disable(map, chip, adr)
#define xip_enable(map, chip, adr)
#define XIP_INVAL_CACHED_RANGE(x...)
#define UDELAY(map, chip, adr, usec) \
do { \
mutex_unlock(&chip->mutex); \
cfi_udelay(usec); \
mutex_lock(&chip->mutex); \
} while (0)
#define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec) \
do { \
mutex_unlock(&chip->mutex); \
INVALIDATE_CACHED_RANGE(map, adr, len); \
cfi_udelay(usec); \
mutex_lock(&chip->mutex); \
} while (0)
#endif
static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
{
unsigned long cmd_addr;
struct cfi_private *cfi = map->fldrv_priv;
int ret;
adr += chip->start;
/* Ensure cmd read/writes are aligned. */
cmd_addr = adr & ~(map_bankwidth(map)-1);
mutex_lock(&chip->mutex);
ret = get_chip(map, chip, cmd_addr, FL_READY);
if (ret) {
mutex_unlock(&chip->mutex);
return ret;
}
if (chip->state != FL_POINT && chip->state != FL_READY) {
map_write(map, CMD(0xf0), cmd_addr);
chip->state = FL_READY;
}
map_copy_from(map, buf, adr, len);
put_chip(map, chip, cmd_addr);
mutex_unlock(&chip->mutex);
return 0;
}
static int cfi_amdstd_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
{
struct map_info *map = mtd->priv;
struct cfi_private *cfi = map->fldrv_priv;
unsigned long ofs;
int chipnum;
int ret = 0;
/* ofs: offset within the first chip that the first read should start */
chipnum = (from >> cfi->chipshift);
ofs = from - (chipnum << cfi->chipshift);
while (len) {
unsigned long thislen;
if (chipnum >= cfi->numchips)
break;
if ((len + ofs -1) >> cfi->chipshift)
thislen = (1<<cfi->chipshift) - ofs;
else
thislen = len;
ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
if (ret)
break;
*retlen += thislen;
len -= thislen;
buf += thislen;
ofs = 0;
chipnum++;
}
return ret;
}
typedef int (*otp_op_t)(struct map_info *map, struct flchip *chip,
loff_t adr, size_t len, u_char *buf, size_t grouplen);
static inline void otp_enter(struct map_info *map, struct flchip *chip,
loff_t adr, size_t len)
{
struct cfi_private *cfi = map->fldrv_priv;
cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
cfi->device_type, NULL);
cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
cfi->device_type, NULL);
cfi_send_gen_cmd(0x88, cfi->addr_unlock1, chip->start, map, cfi,
cfi->device_type, NULL);
INVALIDATE_CACHED_RANGE(map, chip->start + adr, len);
}
static inline void otp_exit(struct map_info *map, struct flchip *chip,
loff_t adr, size_t len)
{
struct cfi_private *cfi = map->fldrv_priv;
cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
cfi->device_type, NULL);
cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
cfi->device_type, NULL);
cfi_send_gen_cmd(0x90, cfi->addr_unlock1, chip->start, map, cfi,
cfi->device_type, NULL);
cfi_send_gen_cmd(0x00, cfi->addr_unlock1, chip->start, map, cfi,
cfi->device_type, NULL);
INVALIDATE_CACHED_RANGE(map, chip->start + adr, len);
}
static inline int do_read_secsi_onechip(struct map_info *map,
struct flchip *chip, loff_t adr,
size_t len, u_char *buf,
size_t grouplen)
{
DECLARE_WAITQUEUE(wait, current);
retry:
mutex_lock(&chip->mutex);
if (chip->state != FL_READY){
set_current_state(TASK_UNINTERRUPTIBLE);
add_wait_queue(&chip->wq, &wait);
mutex_unlock(&chip->mutex);
schedule();
remove_wait_queue(&chip->wq, &wait);
goto retry;
}
adr += chip->start;
chip->state = FL_READY;
otp_enter(map, chip, adr, len);
map_copy_from(map, buf, adr, len);
otp_exit(map, chip, adr, len);
wake_up(&chip->wq);
mutex_unlock(&chip->mutex);
return 0;
}
static int cfi_amdstd_secsi_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
{
struct map_info *map = mtd->priv;
struct cfi_private *cfi = map->fldrv_priv;
unsigned long ofs;
int chipnum;
int ret = 0;
/* ofs: offset within the first chip that the first read should start */
/* 8 secsi bytes per chip */
chipnum=from>>3;
ofs=from & 7;
while (len) {
unsigned long thislen;
if (chipnum >= cfi->numchips)
break;
if ((len + ofs -1) >> 3)
thislen = (1<<3) - ofs;
else
thislen = len;
ret = do_read_secsi_onechip(map, &cfi->chips[chipnum], ofs,
thislen, buf, 0);
if (ret)
break;
*retlen += thislen;
len -= thislen;
buf += thislen;
ofs = 0;
chipnum++;
}
return ret;
}
static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip,
unsigned long adr, map_word datum,
int mode);
static int do_otp_write(struct map_info *map, struct flchip *chip, loff_t adr,
size_t len, u_char *buf, size_t grouplen)
{
int ret;
while (len) {
unsigned long bus_ofs = adr & ~(map_bankwidth(map)-1);
int gap = adr - bus_ofs;
int n = min_t(int, len, map_bankwidth(map) - gap);
map_word datum = map_word_ff(map);
if (n != map_bankwidth(map)) {
/* partial write of a word, load old contents */
otp_enter(map, chip, bus_ofs, map_bankwidth(map));
datum = map_read(map, bus_ofs);
otp_exit(map, chip, bus_ofs, map_bankwidth(map));
}
datum = map_word_load_partial(map, datum, buf, gap, n);
ret = do_write_oneword(map, chip, bus_ofs, datum, FL_OTP_WRITE);
if (ret)
return ret;
adr += n;
buf += n;
len -= n;
}
return 0;
}
static int do_otp_lock(struct map_info *map, struct flchip *chip, loff_t adr,
size_t len, u_char *buf, size_t grouplen)
{
struct cfi_private *cfi = map->fldrv_priv;
uint8_t lockreg;
unsigned long timeo;
int ret;
/* make sure area matches group boundaries */
if ((adr != 0) || (len != grouplen))
return -EINVAL;
mutex_lock(&chip->mutex);
ret = get_chip(map, chip, chip->start, FL_LOCKING);
if (ret) {
mutex_unlock(&chip->mutex);
return ret;
}
chip->state = FL_LOCKING;
/* Enter lock register command */
cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
cfi->device_type, NULL);
cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
cfi->device_type, NULL);
cfi_send_gen_cmd(0x40, cfi->addr_unlock1, chip->start, map, cfi,
cfi->device_type, NULL);
/* read lock register */
lockreg = cfi_read_query(map, 0);
/* set bit 0 to protect extended memory block */
lockreg &= ~0x01;
/* set bit 0 to protect extended memory block */
/* write lock register */
map_write(map, CMD(0xA0), chip->start);
map_write(map, CMD(lockreg), chip->start);
/* wait for chip to become ready */
timeo = jiffies + msecs_to_jiffies(2);
for (;;) {
if (chip_ready(map, adr))
break;
if (time_after(jiffies, timeo)) {
pr_err("Waiting for chip to be ready timed out.\n");
ret = -EIO;
break;
}
UDELAY(map, chip, 0, 1);
}
/* exit protection commands */
map_write(map, CMD(0x90), chip->start);
map_write(map, CMD(0x00), chip->start);
chip->state = FL_READY;
put_chip(map, chip, chip->start);
mutex_unlock(&chip->mutex);
return ret;
}
static int cfi_amdstd_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
size_t *retlen, u_char *buf,
otp_op_t action, int user_regs)
{
struct map_info *map = mtd->priv;
struct cfi_private *cfi = map->fldrv_priv;
int ofs_factor = cfi->interleave * cfi->device_type;
unsigned long base;
int chipnum;
struct flchip *chip;
uint8_t otp, lockreg;
int ret;
size_t user_size, factory_size, otpsize;
loff_t user_offset, factory_offset, otpoffset;
int user_locked = 0, otplocked;
*retlen = 0;
for (chipnum = 0; chipnum < cfi->numchips; chipnum++) {
chip = &cfi->chips[chipnum];
factory_size = 0;
user_size = 0;
/* Micron M29EW family */
if (is_m29ew(cfi)) {
base = chip->start;
/* check whether secsi area is factory locked
or user lockable */
mutex_lock(&chip->mutex);
ret = get_chip(map, chip, base, FL_CFI_QUERY);
if (ret) {
mutex_unlock(&chip->mutex);
return ret;
}
cfi_qry_mode_on(base, map, cfi);
otp = cfi_read_query(map, base + 0x3 * ofs_factor);
cfi_qry_mode_off(base, map, cfi);
put_chip(map, chip, base);
mutex_unlock(&chip->mutex);
if (otp & 0x80) {
/* factory locked */
factory_offset = 0;
factory_size = 0x100;
} else {
/* customer lockable */
user_offset = 0;
user_size = 0x100;
mutex_lock(&chip->mutex);
ret = get_chip(map, chip, base, FL_LOCKING);
if (ret) {
mutex_unlock(&chip->mutex);
return ret;
}
/* Enter lock register command */
cfi_send_gen_cmd(0xAA, cfi->addr_unlock1,
chip->start, map, cfi,
cfi->device_type, NULL);
cfi_send_gen_cmd(0x55, cfi->addr_unlock2,
chip->start, map, cfi,
cfi->device_type, NULL);
cfi_send_gen_cmd(0x40, cfi->addr_unlock1,
chip->start, map, cfi,
cfi->device_type, NULL);
/* read lock register */
lockreg = cfi_read_query(map, 0);
/* exit protection commands */
map_write(map, CMD(0x90), chip->start);
map_write(map, CMD(0x00), chip->start);
put_chip(map, chip, chip->start);
mutex_unlock(&chip->mutex);
user_locked = ((lockreg & 0x01) == 0x00);
}
}
otpsize = user_regs ? user_size : factory_size;
if (!otpsize)
continue;
otpoffset = user_regs ? user_offset : factory_offset;
otplocked = user_regs ? user_locked : 1;
if (!action) {
/* return otpinfo */
struct otp_info *otpinfo;
len -= sizeof(*otpinfo);
if (len <= 0)
return -ENOSPC;
otpinfo = (struct otp_info *)buf;
otpinfo->start = from;
otpinfo->length = otpsize;
otpinfo->locked = otplocked;
buf += sizeof(*otpinfo);
*retlen += sizeof(*otpinfo);
from += otpsize;
} else if ((from < otpsize) && (len > 0)) {
size_t size;
size = (len < otpsize - from) ? len : otpsize - from;
ret = action(map, chip, otpoffset + from, size, buf,
otpsize);
if (ret < 0)
return ret;
buf += size;
len -= size;
*retlen += size;
from = 0;
} else {
from -= otpsize;
}
}
return 0;
}
static int cfi_amdstd_get_fact_prot_info(struct mtd_info *mtd, size_t len,
size_t *retlen, struct otp_info *buf)
{
return cfi_amdstd_otp_walk(mtd, 0, len, retlen, (u_char *)buf,
NULL, 0);
}
static int cfi_amdstd_get_user_prot_info(struct mtd_info *mtd, size_t len,
size_t *retlen, struct otp_info *buf)
{
return cfi_amdstd_otp_walk(mtd, 0, len, retlen, (u_char *)buf,
NULL, 1);
}
static int cfi_amdstd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
size_t len, size_t *retlen,
u_char *buf)
{
return cfi_amdstd_otp_walk(mtd, from, len, retlen,
buf, do_read_secsi_onechip, 0);
}
static int cfi_amdstd_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
size_t len, size_t *retlen,
u_char *buf)
{
return cfi_amdstd_otp_walk(mtd, from, len, retlen,
buf, do_read_secsi_onechip, 1);
}
static int cfi_amdstd_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
size_t len, size_t *retlen,
u_char *buf)
{
return cfi_amdstd_otp_walk(mtd, from, len, retlen, buf,
do_otp_write, 1);
}
static int cfi_amdstd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
size_t len)
{
size_t retlen;
return cfi_amdstd_otp_walk(mtd, from, len, &retlen, NULL,
do_otp_lock, 1);
}
static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip,
unsigned long adr, map_word datum,
int mode)
{
struct cfi_private *cfi = map->fldrv_priv;
unsigned long timeo = jiffies + HZ;
/*
* We use a 1ms + 1 jiffies generic timeout for writes (most devices
* have a max write time of a few hundreds usec). However, we should
* use the maximum timeout value given by the chip at probe time
* instead. Unfortunately, struct flchip does have a field for
* maximum timeout, only for typical which can be far too short
* depending of the conditions. The ' + 1' is to avoid having a
* timeout of 0 jiffies if HZ is smaller than 1000.
*/
unsigned long uWriteTimeout = (HZ / 1000) + 1;
int ret = 0;
map_word oldd;
int retry_cnt = 0;
adr += chip->start;
mutex_lock(&chip->mutex);
ret = get_chip(map, chip, adr, mode);
if (ret) {
mutex_unlock(&chip->mutex);
return ret;
}
pr_debug("MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
__func__, adr, datum.x[0]);
if (mode == FL_OTP_WRITE)
otp_enter(map, chip, adr, map_bankwidth(map));
/*
* Check for a NOP for the case when the datum to write is already
* present - it saves time and works around buggy chips that corrupt
* data at other locations when 0xff is written to a location that
* already contains 0xff.
*/
oldd = map_read(map, adr);
if (map_word_equal(map, oldd, datum)) {
pr_debug("MTD %s(): NOP\n",
__func__);
goto op_done;
}
XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map));
ENABLE_VPP(map);
xip_disable(map, chip, adr);
retry:
cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
map_write(map, datum, adr);
chip->state = mode;
INVALIDATE_CACHE_UDELAY(map, chip,
adr, map_bankwidth(map),
chip->word_write_time);
/* See comment above for timeout value. */
timeo = jiffies + uWriteTimeout;
for (;;) {
if (chip->state != mode) {
/* Someone's suspended the write. Sleep */
DECLARE_WAITQUEUE(wait, current);
set_current_state(TASK_UNINTERRUPTIBLE);
add_wait_queue(&chip->wq, &wait);
mutex_unlock(&chip->mutex);
schedule();
remove_wait_queue(&chip->wq, &wait);
timeo = jiffies + (HZ / 2); /* FIXME */
mutex_lock(&chip->mutex);
continue;
}
if (time_after(jiffies, timeo) && !chip_ready(map, adr)){
xip_enable(map, chip, adr);
printk(KERN_WARNING "MTD %s(): software timeout\n", __func__);
xip_disable(map, chip, adr);
break;
}
if (chip_ready(map, adr))
break;
/* Latency issues. Drop the lock, wait a while and retry */
UDELAY(map, chip, adr, 1);
}
/* Did we succeed? */
if (!chip_good(map, adr, datum)) {
/* reset on all failures. */
map_write(map, CMD(0xF0), chip->start);
/* FIXME - should have reset delay before continuing */
if (++retry_cnt <= MAX_RETRIES)
goto retry;
ret = -EIO;
}
xip_enable(map, chip, adr);
op_done:
if (mode == FL_OTP_WRITE)
otp_exit(map, chip, adr, map_bankwidth(map));
chip->state = FL_READY;
DISABLE_VPP(map);
put_chip(map, chip, adr);
mutex_unlock(&chip->mutex);
return ret;
}
static int cfi_amdstd_write_words(struct mtd_info *mtd, loff_t to, size_t len,
size_t *retlen, const u_char *buf)
{
struct map_info *map = mtd->priv;
struct cfi_private *cfi = map->fldrv_priv;
int ret = 0;
int chipnum;
unsigned long ofs, chipstart;
DECLARE_WAITQUEUE(wait, current);
chipnum = to >> cfi->chipshift;
ofs = to - (chipnum << cfi->chipshift);
chipstart = cfi->chips[chipnum].start;
/* If it's not bus-aligned, do the first byte write */
if (ofs & (map_bankwidth(map)-1)) {
unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1);
int i = ofs - bus_ofs;
int n = 0;
map_word tmp_buf;
retry:
mutex_lock(&cfi->chips[chipnum].mutex);
if (cfi->chips[chipnum].state != FL_READY) {
set_current_state(TASK_UNINTERRUPTIBLE);
add_wait_queue(&cfi->chips[chipnum].wq, &wait);
mutex_unlock(&cfi->chips[chipnum].mutex);
schedule();
remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
goto retry;
}
/* Load 'tmp_buf' with old contents of flash */
tmp_buf = map_read(map, bus_ofs+chipstart);
mutex_unlock(&cfi->chips[chipnum].mutex);
/* Number of bytes to copy from buffer */
n = min_t(int, len, map_bankwidth(map)-i);
tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n);
ret = do_write_oneword(map, &cfi->chips[chipnum],
bus_ofs, tmp_buf, FL_WRITING);
if (ret)
return ret;
ofs += n;
buf += n;
(*retlen) += n;
len -= n;
if (ofs >> cfi->chipshift) {
chipnum ++;
ofs = 0;
if (chipnum == cfi->numchips)
return 0;
}
}
/* We are now aligned, write as much as possible */
while(len >= map_bankwidth(map)) {
map_word datum;
datum = map_word_load(map, buf);
ret = do_write_oneword(map, &cfi->chips[chipnum],
ofs, datum, FL_WRITING);
if (ret)
return ret;
ofs += map_bankwidth(map);
buf += map_bankwidth(map);
(*retlen) += map_bankwidth(map);
len -= map_bankwidth(map);
if (ofs >> cfi->chipshift) {
chipnum ++;
ofs = 0;
if (chipnum == cfi->numchips)
return 0;
chipstart = cfi->chips[chipnum].start;
}
}
/* Write the trailing bytes if any */
if (len & (map_bankwidth(map)-1)) {
map_word tmp_buf;
retry1:
mutex_lock(&cfi->chips[chipnum].mutex);
if (cfi->chips[chipnum].state != FL_READY) {
set_current_state(TASK_UNINTERRUPTIBLE);
add_wait_queue(&cfi->chips[chipnum].wq, &wait);
mutex_unlock(&cfi->chips[chipnum].mutex);
schedule();
remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
goto retry1;
}
tmp_buf = map_read(map, ofs + chipstart);
mutex_unlock(&cfi->chips[chipnum].mutex);
tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len);
ret = do_write_oneword(map, &cfi->chips[chipnum],
ofs, tmp_buf, FL_WRITING);
if (ret)
return ret;
(*retlen) += len;
}
return 0;
}
/*
* FIXME: interleaved mode not tested, and probably not supported!
*/
static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip,
unsigned long adr, const u_char *buf,
int len)
{
struct cfi_private *cfi = map->fldrv_priv;
unsigned long timeo = jiffies + HZ;
/*
* Timeout is calculated according to CFI data, if available.
* See more comments in cfi_cmdset_0002().
*/
unsigned long uWriteTimeout =
usecs_to_jiffies(chip->buffer_write_time_max);
int ret = -EIO;
unsigned long cmd_adr;
int z, words;
map_word datum;
adr += chip->start;
cmd_adr = adr;
mutex_lock(&chip->mutex);
ret = get_chip(map, chip, adr, FL_WRITING);
if (ret) {
mutex_unlock(&chip->mutex);
return ret;
}
datum = map_word_load(map, buf);
pr_debug("MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
__func__, adr, datum.x[0]);
XIP_INVAL_CACHED_RANGE(map, adr, len);
ENABLE_VPP(map);
xip_disable(map, chip, cmd_adr);
cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
/* Write Buffer Load */
map_write(map, CMD(0x25), cmd_adr);
chip->state = FL_WRITING_TO_BUFFER;
/* Write length of data to come */
words = len / map_bankwidth(map);
map_write(map, CMD(words - 1), cmd_adr);
/* Write data */
z = 0;
while(z < words * map_bankwidth(map)) {
datum = map_word_load(map, buf);
map_write(map, datum, adr + z);
z += map_bankwidth(map);
buf += map_bankwidth(map);
}
z -= map_bankwidth(map);
adr += z;
/* Write Buffer Program Confirm: GO GO GO */
map_write(map, CMD(0x29), cmd_adr);
chip->state = FL_WRITING;
INVALIDATE_CACHE_UDELAY(map, chip,
adr, map_bankwidth(map),
chip->word_write_time);
timeo = jiffies + uWriteTimeout;
for (;;) {
if (chip->state != FL_WRITING) {
/* Someone's suspended the write. Sleep */
DECLARE_WAITQUEUE(wait, current);
set_current_state(TASK_UNINTERRUPTIBLE);
add_wait_queue(&chip->wq, &wait);
mutex_unlock(&chip->mutex);
schedule();
remove_wait_queue(&chip->wq, &wait);
timeo = jiffies + (HZ / 2); /* FIXME */
mutex_lock(&chip->mutex);
continue;
}
/*
* We check "time_after" and "!chip_good" before checking "chip_good" to avoid
* the failure due to scheduling.
*/
if (time_after(jiffies, timeo) && !chip_good(map, adr, datum))
break;
if (chip_good(map, adr, datum)) {
xip_enable(map, chip, adr);
goto op_done;
}
/* Latency issues. Drop the lock, wait a while and retry */
UDELAY(map, chip, adr, 1);
}
/*
* Recovery from write-buffer programming failures requires
* the write-to-buffer-reset sequence. Since the last part
* of the sequence also works as a normal reset, we can run
* the same commands regardless of why we are here.
* See e.g.
* http://www.spansion.com/Support/Application%20Notes/MirrorBit_Write_Buffer_Prog_Page_Buffer_Read_AN.pdf
*/
cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
cfi->device_type, NULL);
cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
cfi->device_type, NULL);
cfi_send_gen_cmd(0xF0, cfi->addr_unlock1, chip->start, map, cfi,
cfi->device_type, NULL);
xip_enable(map, chip, adr);
/* FIXME - should have reset delay before continuing */
printk(KERN_WARNING "MTD %s(): software timeout, address:0x%.8lx.\n",
__func__, adr);
ret = -EIO;
op_done:
chip->state = FL_READY;
DISABLE_VPP(map);
put_chip(map, chip, adr);
mutex_unlock(&chip->mutex);
return ret;
}
static int cfi_amdstd_write_buffers(struct mtd_info *mtd, loff_t to, size_t len,
size_t *retlen, const u_char *buf)
{
struct map_info *map = mtd->priv;
struct cfi_private *cfi = map->fldrv_priv;
int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
int ret = 0;
int chipnum;
unsigned long ofs;
chipnum = to >> cfi->chipshift;
ofs = to - (chipnum << cfi->chipshift);
/* If it's not bus-aligned, do the first word write */
if (ofs & (map_bankwidth(map)-1)) {
size_t local_len = (-ofs)&(map_bankwidth(map)-1);
if (local_len > len)
local_len = len;
ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
local_len, retlen, buf);
if (ret)
return ret;
ofs += local_len;
buf += local_len;
len -= local_len;
if (ofs >> cfi->chipshift) {
chipnum ++;
ofs = 0;
if (chipnum == cfi->numchips)
return 0;
}
}
/* Write buffer is worth it only if more than one word to write... */
while (len >= map_bankwidth(map) * 2) {
/* We must not cross write block boundaries */
int size = wbufsize - (ofs & (wbufsize-1));
if (size > len)
size = len;
if (size % map_bankwidth(map))
size -= size % map_bankwidth(map);
ret = do_write_buffer(map, &cfi->chips[chipnum],
ofs, buf, size);
if (ret)
return ret;
ofs += size;
buf += size;
(*retlen) += size;
len -= size;
if (ofs >> cfi->chipshift) {
chipnum ++;
ofs = 0;
if (chipnum == cfi->numchips)
return 0;
}
}
if (len) {
size_t retlen_dregs = 0;
ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
len, &retlen_dregs, buf);
*retlen += retlen_dregs;
return ret;
}
return 0;
}
/*
* Wait for the flash chip to become ready to write data
*
* This is only called during the panic_write() path. When panic_write()
* is called, the kernel is in the process of a panic, and will soon be
* dead. Therefore we don't take any locks, and attempt to get access
* to the chip as soon as possible.
*/
static int cfi_amdstd_panic_wait(struct map_info *map, struct flchip *chip,
unsigned long adr)
{
struct cfi_private *cfi = map->fldrv_priv;
int retries = 10;
int i;
/*
* If the driver thinks the chip is idle, and no toggle bits
* are changing, then the chip is actually idle for sure.
*/
if (chip->state == FL_READY && chip_ready(map, adr))
return 0;
/*
* Try several times to reset the chip and then wait for it
* to become idle. The upper limit of a few milliseconds of
* delay isn't a big problem: the kernel is dying anyway. It
* is more important to save the messages.
*/
while (retries > 0) {
const unsigned long timeo = (HZ / 1000) + 1;
/* send the reset command */
map_write(map, CMD(0xF0), chip->start);
/* wait for the chip to become ready */
for (i = 0; i < jiffies_to_usecs(timeo); i++) {
if (chip_ready(map, adr))
return 0;
udelay(1);
}
retries--;
}
/* the chip never became ready */
return -EBUSY;
}
/*
* Write out one word of data to a single flash chip during a kernel panic
*
* This is only called during the panic_write() path. When panic_write()
* is called, the kernel is in the process of a panic, and will soon be
* dead. Therefore we don't take any locks, and attempt to get access
* to the chip as soon as possible.
*
* The implementation of this routine is intentionally similar to
* do_write_oneword(), in order to ease code maintenance.
*/
static int do_panic_write_oneword(struct map_info *map, struct flchip *chip,
unsigned long adr, map_word datum)
{
const unsigned long uWriteTimeout = (HZ / 1000) + 1;
struct cfi_private *cfi = map->fldrv_priv;
int retry_cnt = 0;
map_word oldd;
int ret = 0;
int i;
adr += chip->start;
ret = cfi_amdstd_panic_wait(map, chip, adr);
if (ret)
return ret;
pr_debug("MTD %s(): PANIC WRITE 0x%.8lx(0x%.8lx)\n",
__func__, adr, datum.x[0]);
/*
* Check for a NOP for the case when the datum to write is already
* present - it saves time and works around buggy chips that corrupt
* data at other locations when 0xff is written to a location that
* already contains 0xff.
*/
oldd = map_read(map, adr);
if (map_word_equal(map, oldd, datum)) {
pr_debug("MTD %s(): NOP\n", __func__);
goto op_done;
}
ENABLE_VPP(map);
retry:
cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
map_write(map, datum, adr);
for (i = 0; i < jiffies_to_usecs(uWriteTimeout); i++) {
if (chip_ready(map, adr))
break;
udelay(1);
}
if (!chip_good(map, adr, datum)) {
/* reset on all failures. */
map_write(map, CMD(0xF0), chip->start);
/* FIXME - should have reset delay before continuing */
if (++retry_cnt <= MAX_RETRIES)
goto retry;
ret = -EIO;
}
op_done:
DISABLE_VPP(map);
return ret;
}
/*
* Write out some data during a kernel panic
*
* This is used by the mtdoops driver to save the dying messages from a
* kernel which has panic'd.
*
* This routine ignores all of the locking used throughout the rest of the
* driver, in order to ensure that the data gets written out no matter what
* state this driver (and the flash chip itself) was in when the kernel crashed.
*
* The implementation of this routine is intentionally similar to
* cfi_amdstd_write_words(), in order to ease code maintenance.
*/
static int cfi_amdstd_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
size_t *retlen, const u_char *buf)
{
struct map_info *map = mtd->priv;
struct cfi_private *cfi = map->fldrv_priv;
unsigned long ofs, chipstart;
int ret = 0;
int chipnum;
chipnum = to >> cfi->chipshift;
ofs = to - (chipnum << cfi->chipshift);
chipstart = cfi->chips[chipnum].start;
/* If it's not bus aligned, do the first byte write */
if (ofs & (map_bankwidth(map) - 1)) {
unsigned long bus_ofs = ofs & ~(map_bankwidth(map) - 1);
int i = ofs - bus_ofs;
int n = 0;
map_word tmp_buf;
ret = cfi_amdstd_panic_wait(map, &cfi->chips[chipnum], bus_ofs);
if (ret)
return ret;
/* Load 'tmp_buf' with old contents of flash */
tmp_buf = map_read(map, bus_ofs + chipstart);
/* Number of bytes to copy from buffer */
n = min_t(int, len, map_bankwidth(map) - i);
tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n);
ret = do_panic_write_oneword(map, &cfi->chips[chipnum],
bus_ofs, tmp_buf);
if (ret)
return ret;
ofs += n;
buf += n;
(*retlen) += n;
len -= n;
if (ofs >> cfi->chipshift) {
chipnum++;
ofs = 0;
if (chipnum == cfi->numchips)
return 0;
}
}
/* We are now aligned, write as much as possible */
while (len >= map_bankwidth(map)) {
map_word datum;
datum = map_word_load(map, buf);
ret = do_panic_write_oneword(map, &cfi->chips[chipnum],
ofs, datum);
if (ret)
return ret;
ofs += map_bankwidth(map);
buf += map_bankwidth(map);
(*retlen) += map_bankwidth(map);
len -= map_bankwidth(map);
if (ofs >> cfi->chipshift) {
chipnum++;
ofs = 0;
if (chipnum == cfi->numchips)
return 0;
chipstart = cfi->chips[chipnum].start;
}
}
/* Write the trailing bytes if any */
if (len & (map_bankwidth(map) - 1)) {
map_word tmp_buf;
ret = cfi_amdstd_panic_wait(map, &cfi->chips[chipnum], ofs);
if (ret)
return ret;
tmp_buf = map_read(map, ofs + chipstart);
tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len);
ret = do_panic_write_oneword(map, &cfi->chips[chipnum],
ofs, tmp_buf);
if (ret)
return ret;
(*retlen) += len;
}
return 0;
}
/*
* Handle devices with one erase region, that only implement
* the chip erase command.
*/
static int __xipram do_erase_chip(struct map_info *map, struct flchip *chip)
{
struct cfi_private *cfi = map->fldrv_priv;
unsigned long timeo = jiffies + HZ;
unsigned long int adr;
DECLARE_WAITQUEUE(wait, current);
int ret = 0;
int retry_cnt = 0;
adr = cfi->addr_unlock1;
mutex_lock(&chip->mutex);
ret = get_chip(map, chip, adr, FL_WRITING);
if (ret) {
mutex_unlock(&chip->mutex);
return ret;
}
pr_debug("MTD %s(): ERASE 0x%.8lx\n",
__func__, chip->start);
XIP_INVAL_CACHED_RANGE(map, adr, map->size);
ENABLE_VPP(map);
xip_disable(map, chip, adr);
retry:
cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
cfi_send_gen_cmd(0x10, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
chip->state = FL_ERASING;
chip->erase_suspended = 0;
chip->in_progress_block_addr = adr;
chip->in_progress_block_mask = ~(map->size - 1);
INVALIDATE_CACHE_UDELAY(map, chip,
adr, map->size,
chip->erase_time*500);
timeo = jiffies + (HZ*20);
for (;;) {
if (chip->state != FL_ERASING) {
/* Someone's suspended the erase. Sleep */
set_current_state(TASK_UNINTERRUPTIBLE);
add_wait_queue(&chip->wq, &wait);
mutex_unlock(&chip->mutex);
schedule();
remove_wait_queue(&chip->wq, &wait);
mutex_lock(&chip->mutex);
continue;
}
if (chip->erase_suspended) {
/* This erase was suspended and resumed.
Adjust the timeout */
timeo = jiffies + (HZ*20); /* FIXME */
chip->erase_suspended = 0;
}
if (chip_good(map, adr, map_word_ff(map)))
break;
if (time_after(jiffies, timeo)) {
printk(KERN_WARNING "MTD %s(): software timeout\n",
__func__);
ret = -EIO;
break;
}
/* Latency issues. Drop the lock, wait a while and retry */
UDELAY(map, chip, adr, 1000000/HZ);
}
/* Did we succeed? */
if (ret) {
/* reset on all failures. */
map_write(map, CMD(0xF0), chip->start);
/* FIXME - should have reset delay before continuing */
if (++retry_cnt <= MAX_RETRIES) {
ret = 0;
goto retry;
}
}
chip->state = FL_READY;
xip_enable(map, chip, adr);
DISABLE_VPP(map);
put_chip(map, chip, adr);
mutex_unlock(&chip->mutex);
return ret;
}
static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr, int len, void *thunk)
{
struct cfi_private *cfi = map->fldrv_priv;
unsigned long timeo = jiffies + HZ;
DECLARE_WAITQUEUE(wait, current);
int ret = 0;
int retry_cnt = 0;
adr += chip->start;
mutex_lock(&chip->mutex);
ret = get_chip(map, chip, adr, FL_ERASING);
if (ret) {
mutex_unlock(&chip->mutex);
return ret;
}
pr_debug("MTD %s(): ERASE 0x%.8lx\n",
__func__, adr);
XIP_INVAL_CACHED_RANGE(map, adr, len);
ENABLE_VPP(map);
xip_disable(map, chip, adr);
retry:
cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
map_write(map, cfi->sector_erase_cmd, adr);
chip->state = FL_ERASING;
chip->erase_suspended = 0;
chip->in_progress_block_addr = adr;
chip->in_progress_block_mask = ~(len - 1);
INVALIDATE_CACHE_UDELAY(map, chip,
adr, len,
chip->erase_time*500);
timeo = jiffies + (HZ*20);
for (;;) {
if (chip->state != FL_ERASING) {
/* Someone's suspended the erase. Sleep */
set_current_state(TASK_UNINTERRUPTIBLE);
add_wait_queue(&chip->wq, &wait);
mutex_unlock(&chip->mutex);
schedule();
remove_wait_queue(&chip->wq, &wait);
mutex_lock(&chip->mutex);
continue;
}
if (chip->erase_suspended) {
/* This erase was suspended and resumed.
Adjust the timeout */
timeo = jiffies + (HZ*20); /* FIXME */
chip->erase_suspended = 0;
}
if (chip_good(map, adr, map_word_ff(map)))
break;
if (time_after(jiffies, timeo)) {
printk(KERN_WARNING "MTD %s(): software timeout\n",
__func__);
ret = -EIO;
break;
}
/* Latency issues. Drop the lock, wait a while and retry */
UDELAY(map, chip, adr, 1000000/HZ);
}
/* Did we succeed? */
if (ret) {
/* reset on all failures. */
map_write(map, CMD(0xF0), chip->start);
/* FIXME - should have reset delay before continuing */
if (++retry_cnt <= MAX_RETRIES) {
ret = 0;
goto retry;
}
}
chip->state = FL_READY;
xip_enable(map, chip, adr);
DISABLE_VPP(map);
put_chip(map, chip, adr);
mutex_unlock(&chip->mutex);
return ret;
}
static int cfi_amdstd_erase_varsize(struct mtd_info *mtd, struct erase_info *instr)
{
return cfi_varsize_frob(mtd, do_erase_oneblock, instr->addr,
instr->len, NULL);
}
static int cfi_amdstd_erase_chip(struct mtd_info *mtd, struct erase_info *instr)
{
struct map_info *map = mtd->priv;
struct cfi_private *cfi = map->fldrv_priv;
if (instr->addr != 0)
return -EINVAL;
if (instr->len != mtd->size)
return -EINVAL;
return do_erase_chip(map, &cfi->chips[0]);
}
static int do_atmel_lock(struct map_info *map, struct flchip *chip,
unsigned long adr, int len, void *thunk)
{
struct cfi_private *cfi = map->fldrv_priv;
int ret;
mutex_lock(&chip->mutex);
ret = get_chip(map, chip, adr + chip->start, FL_LOCKING);
if (ret)
goto out_unlock;
chip->state = FL_LOCKING;
pr_debug("MTD %s(): LOCK 0x%08lx len %d\n", __func__, adr, len);
cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
cfi->device_type, NULL);
cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
cfi->device_type, NULL);
cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi,
cfi->device_type, NULL);
cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
cfi->device_type, NULL);
cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
cfi->device_type, NULL);
map_write(map, CMD(0x40), chip->start + adr);
chip->state = FL_READY;
put_chip(map, chip, adr + chip->start);
ret = 0;
out_unlock:
mutex_unlock(&chip->mutex);
return ret;
}
static int do_atmel_unlock(struct map_info *map, struct flchip *chip,
unsigned long adr, int len, void *thunk)
{
struct cfi_private *cfi = map->fldrv_priv;
int ret;
mutex_lock(&chip->mutex);
ret = get_chip(map, chip, adr + chip->start, FL_UNLOCKING);
if (ret)
goto out_unlock;
chip->state = FL_UNLOCKING;
pr_debug("MTD %s(): LOCK 0x%08lx len %d\n", __func__, adr, len);
cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
cfi->device_type, NULL);
map_write(map, CMD(0x70), adr);
chip->state = FL_READY;
put_chip(map, chip, adr + chip->start);
ret = 0;
out_unlock:
mutex_unlock(&chip->mutex);
return ret;
}
static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
return cfi_varsize_frob(mtd, do_atmel_lock, ofs, len, NULL);
}
static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
return cfi_varsize_frob(mtd, do_atmel_unlock, ofs, len, NULL);
}
mtd: cfi_cmdset_0002: Support Persistent Protection Bits (PPB) locking Currently cfi_cmdset_0002.c does not support PPB locking of sectors. This patch adds support for this locking/unlocking mechanism. It is needed on some platforms, since newer U-Boot versions do support this PPB locking and protect for example their environment sector(s) this way. This PPB locking/unlocking will be enabled for all devices supported by cfi_cmdset_0002 reporting 8 in the CFI word 0x49 (Sector Protect/Unprotect scheme). Please note that PPB locking does support sector-by-sector locking. But the whole chip can only be unlocked together. So unlocking one sector will automatically unlock all sectors of this device. Because of this chip limitation, the PPB unlocking function saves the current locking status of all sectors before unlocking the whole device. After unlocking the saved locking status is re-configured. This way only the addressed sectors will be unlocked. To selectively enable this advanced sector protection mechanism, the device-tree property "use-advanced-sector-protection" has been created. To enable support for this locking this property needs to be present in the flash DT node. E.g.: nor_flash@0,0 { compatible = "amd,s29gl256n", "cfi-flash"; bank-width = <2>; use-advanced-sector-protection; ... Tested with Spansion S29GL512S10THI and Micron JS28F512M29EWx flash devices. Signed-off-by: Stefan Roese <sr@denx.de> Tested-by: Holger Brunck <holger.brunck@keymile.com> Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
2013-01-18 20:10:05 +08:00
/*
* Advanced Sector Protection - PPB (Persistent Protection Bit) locking
*/
struct ppb_lock {
struct flchip *chip;
unsigned long adr;
mtd: cfi_cmdset_0002: Support Persistent Protection Bits (PPB) locking Currently cfi_cmdset_0002.c does not support PPB locking of sectors. This patch adds support for this locking/unlocking mechanism. It is needed on some platforms, since newer U-Boot versions do support this PPB locking and protect for example their environment sector(s) this way. This PPB locking/unlocking will be enabled for all devices supported by cfi_cmdset_0002 reporting 8 in the CFI word 0x49 (Sector Protect/Unprotect scheme). Please note that PPB locking does support sector-by-sector locking. But the whole chip can only be unlocked together. So unlocking one sector will automatically unlock all sectors of this device. Because of this chip limitation, the PPB unlocking function saves the current locking status of all sectors before unlocking the whole device. After unlocking the saved locking status is re-configured. This way only the addressed sectors will be unlocked. To selectively enable this advanced sector protection mechanism, the device-tree property "use-advanced-sector-protection" has been created. To enable support for this locking this property needs to be present in the flash DT node. E.g.: nor_flash@0,0 { compatible = "amd,s29gl256n", "cfi-flash"; bank-width = <2>; use-advanced-sector-protection; ... Tested with Spansion S29GL512S10THI and Micron JS28F512M29EWx flash devices. Signed-off-by: Stefan Roese <sr@denx.de> Tested-by: Holger Brunck <holger.brunck@keymile.com> Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
2013-01-18 20:10:05 +08:00
int locked;
};
#define MAX_SECTORS 512
#define DO_XXLOCK_ONEBLOCK_LOCK ((void *)1)
#define DO_XXLOCK_ONEBLOCK_UNLOCK ((void *)2)
#define DO_XXLOCK_ONEBLOCK_GETLOCK ((void *)3)
static int __maybe_unused do_ppb_xxlock(struct map_info *map,
struct flchip *chip,
unsigned long adr, int len, void *thunk)
{
struct cfi_private *cfi = map->fldrv_priv;
unsigned long timeo;
int ret;
adr += chip->start;
mtd: cfi_cmdset_0002: Support Persistent Protection Bits (PPB) locking Currently cfi_cmdset_0002.c does not support PPB locking of sectors. This patch adds support for this locking/unlocking mechanism. It is needed on some platforms, since newer U-Boot versions do support this PPB locking and protect for example their environment sector(s) this way. This PPB locking/unlocking will be enabled for all devices supported by cfi_cmdset_0002 reporting 8 in the CFI word 0x49 (Sector Protect/Unprotect scheme). Please note that PPB locking does support sector-by-sector locking. But the whole chip can only be unlocked together. So unlocking one sector will automatically unlock all sectors of this device. Because of this chip limitation, the PPB unlocking function saves the current locking status of all sectors before unlocking the whole device. After unlocking the saved locking status is re-configured. This way only the addressed sectors will be unlocked. To selectively enable this advanced sector protection mechanism, the device-tree property "use-advanced-sector-protection" has been created. To enable support for this locking this property needs to be present in the flash DT node. E.g.: nor_flash@0,0 { compatible = "amd,s29gl256n", "cfi-flash"; bank-width = <2>; use-advanced-sector-protection; ... Tested with Spansion S29GL512S10THI and Micron JS28F512M29EWx flash devices. Signed-off-by: Stefan Roese <sr@denx.de> Tested-by: Holger Brunck <holger.brunck@keymile.com> Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
2013-01-18 20:10:05 +08:00
mutex_lock(&chip->mutex);
ret = get_chip(map, chip, adr, FL_LOCKING);
mtd: cfi_cmdset_0002: Support Persistent Protection Bits (PPB) locking Currently cfi_cmdset_0002.c does not support PPB locking of sectors. This patch adds support for this locking/unlocking mechanism. It is needed on some platforms, since newer U-Boot versions do support this PPB locking and protect for example their environment sector(s) this way. This PPB locking/unlocking will be enabled for all devices supported by cfi_cmdset_0002 reporting 8 in the CFI word 0x49 (Sector Protect/Unprotect scheme). Please note that PPB locking does support sector-by-sector locking. But the whole chip can only be unlocked together. So unlocking one sector will automatically unlock all sectors of this device. Because of this chip limitation, the PPB unlocking function saves the current locking status of all sectors before unlocking the whole device. After unlocking the saved locking status is re-configured. This way only the addressed sectors will be unlocked. To selectively enable this advanced sector protection mechanism, the device-tree property "use-advanced-sector-protection" has been created. To enable support for this locking this property needs to be present in the flash DT node. E.g.: nor_flash@0,0 { compatible = "amd,s29gl256n", "cfi-flash"; bank-width = <2>; use-advanced-sector-protection; ... Tested with Spansion S29GL512S10THI and Micron JS28F512M29EWx flash devices. Signed-off-by: Stefan Roese <sr@denx.de> Tested-by: Holger Brunck <holger.brunck@keymile.com> Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
2013-01-18 20:10:05 +08:00
if (ret) {
mutex_unlock(&chip->mutex);
return ret;
}
pr_debug("MTD %s(): XXLOCK 0x%08lx len %d\n", __func__, adr, len);
cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
cfi->device_type, NULL);
cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
cfi->device_type, NULL);
/* PPB entry command */
cfi_send_gen_cmd(0xC0, cfi->addr_unlock1, chip->start, map, cfi,
cfi->device_type, NULL);
if (thunk == DO_XXLOCK_ONEBLOCK_LOCK) {
chip->state = FL_LOCKING;
map_write(map, CMD(0xA0), adr);
map_write(map, CMD(0x00), adr);
mtd: cfi_cmdset_0002: Support Persistent Protection Bits (PPB) locking Currently cfi_cmdset_0002.c does not support PPB locking of sectors. This patch adds support for this locking/unlocking mechanism. It is needed on some platforms, since newer U-Boot versions do support this PPB locking and protect for example their environment sector(s) this way. This PPB locking/unlocking will be enabled for all devices supported by cfi_cmdset_0002 reporting 8 in the CFI word 0x49 (Sector Protect/Unprotect scheme). Please note that PPB locking does support sector-by-sector locking. But the whole chip can only be unlocked together. So unlocking one sector will automatically unlock all sectors of this device. Because of this chip limitation, the PPB unlocking function saves the current locking status of all sectors before unlocking the whole device. After unlocking the saved locking status is re-configured. This way only the addressed sectors will be unlocked. To selectively enable this advanced sector protection mechanism, the device-tree property "use-advanced-sector-protection" has been created. To enable support for this locking this property needs to be present in the flash DT node. E.g.: nor_flash@0,0 { compatible = "amd,s29gl256n", "cfi-flash"; bank-width = <2>; use-advanced-sector-protection; ... Tested with Spansion S29GL512S10THI and Micron JS28F512M29EWx flash devices. Signed-off-by: Stefan Roese <sr@denx.de> Tested-by: Holger Brunck <holger.brunck@keymile.com> Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
2013-01-18 20:10:05 +08:00
} else if (thunk == DO_XXLOCK_ONEBLOCK_UNLOCK) {
/*
* Unlocking of one specific sector is not supported, so we
* have to unlock all sectors of this device instead
*/
chip->state = FL_UNLOCKING;
map_write(map, CMD(0x80), chip->start);
map_write(map, CMD(0x30), chip->start);
} else if (thunk == DO_XXLOCK_ONEBLOCK_GETLOCK) {
chip->state = FL_JEDEC_QUERY;
/* Return locked status: 0->locked, 1->unlocked */
ret = !cfi_read_query(map, adr);
} else
BUG();
/*
* Wait for some time as unlocking of all sectors takes quite long
*/
timeo = jiffies + msecs_to_jiffies(2000); /* 2s max (un)locking */
for (;;) {
if (chip_ready(map, adr))
break;
if (time_after(jiffies, timeo)) {
printk(KERN_ERR "Waiting for chip to be ready timed out.\n");
ret = -EIO;
break;
}
UDELAY(map, chip, adr, 1);
}
/* Exit BC commands */
map_write(map, CMD(0x90), chip->start);
map_write(map, CMD(0x00), chip->start);
chip->state = FL_READY;
put_chip(map, chip, adr);
mtd: cfi_cmdset_0002: Support Persistent Protection Bits (PPB) locking Currently cfi_cmdset_0002.c does not support PPB locking of sectors. This patch adds support for this locking/unlocking mechanism. It is needed on some platforms, since newer U-Boot versions do support this PPB locking and protect for example their environment sector(s) this way. This PPB locking/unlocking will be enabled for all devices supported by cfi_cmdset_0002 reporting 8 in the CFI word 0x49 (Sector Protect/Unprotect scheme). Please note that PPB locking does support sector-by-sector locking. But the whole chip can only be unlocked together. So unlocking one sector will automatically unlock all sectors of this device. Because of this chip limitation, the PPB unlocking function saves the current locking status of all sectors before unlocking the whole device. After unlocking the saved locking status is re-configured. This way only the addressed sectors will be unlocked. To selectively enable this advanced sector protection mechanism, the device-tree property "use-advanced-sector-protection" has been created. To enable support for this locking this property needs to be present in the flash DT node. E.g.: nor_flash@0,0 { compatible = "amd,s29gl256n", "cfi-flash"; bank-width = <2>; use-advanced-sector-protection; ... Tested with Spansion S29GL512S10THI and Micron JS28F512M29EWx flash devices. Signed-off-by: Stefan Roese <sr@denx.de> Tested-by: Holger Brunck <holger.brunck@keymile.com> Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
2013-01-18 20:10:05 +08:00
mutex_unlock(&chip->mutex);
return ret;
}
static int __maybe_unused cfi_ppb_lock(struct mtd_info *mtd, loff_t ofs,
uint64_t len)
{
return cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len,
DO_XXLOCK_ONEBLOCK_LOCK);
}
static int __maybe_unused cfi_ppb_unlock(struct mtd_info *mtd, loff_t ofs,
uint64_t len)
{
struct mtd_erase_region_info *regions = mtd->eraseregions;
struct map_info *map = mtd->priv;
struct cfi_private *cfi = map->fldrv_priv;
struct ppb_lock *sect;
unsigned long adr;
loff_t offset;
uint64_t length;
int chipnum;
int i;
int sectors;
int ret;
/*
* PPB unlocking always unlocks all sectors of the flash chip.
* We need to re-lock all previously locked sectors. So lets
* first check the locking status of all sectors and save
* it for future use.
*/
treewide: kzalloc() -> kcalloc() The kzalloc() function has a 2-factor argument form, kcalloc(). This patch replaces cases of: kzalloc(a * b, gfp) with: kcalloc(a * b, gfp) as well as handling cases of: kzalloc(a * b * c, gfp) with: kzalloc(array3_size(a, b, c), gfp) as it's slightly less ugly than: kzalloc_array(array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: kzalloc(4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( kzalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | kzalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( kzalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(__u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(char) * COUNT + COUNT , ...) | kzalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ - kzalloc + kcalloc ( - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( kzalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( kzalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( kzalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( kzalloc(C1 * C2 * C3, ...) | kzalloc( - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | kzalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( kzalloc(sizeof(THING) * C2, ...) | kzalloc(sizeof(TYPE) * C2, ...) | kzalloc(C1 * C2 * C3, ...) | kzalloc(C1 * C2, ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - (E1) * E2 + E1, E2 , ...) | - kzalloc + kcalloc ( - (E1) * (E2) + E1, E2 , ...) | - kzalloc + kcalloc ( - E1 * E2 + E1, E2 , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-13 05:03:40 +08:00
sect = kcalloc(MAX_SECTORS, sizeof(struct ppb_lock), GFP_KERNEL);
mtd: cfi_cmdset_0002: Support Persistent Protection Bits (PPB) locking Currently cfi_cmdset_0002.c does not support PPB locking of sectors. This patch adds support for this locking/unlocking mechanism. It is needed on some platforms, since newer U-Boot versions do support this PPB locking and protect for example their environment sector(s) this way. This PPB locking/unlocking will be enabled for all devices supported by cfi_cmdset_0002 reporting 8 in the CFI word 0x49 (Sector Protect/Unprotect scheme). Please note that PPB locking does support sector-by-sector locking. But the whole chip can only be unlocked together. So unlocking one sector will automatically unlock all sectors of this device. Because of this chip limitation, the PPB unlocking function saves the current locking status of all sectors before unlocking the whole device. After unlocking the saved locking status is re-configured. This way only the addressed sectors will be unlocked. To selectively enable this advanced sector protection mechanism, the device-tree property "use-advanced-sector-protection" has been created. To enable support for this locking this property needs to be present in the flash DT node. E.g.: nor_flash@0,0 { compatible = "amd,s29gl256n", "cfi-flash"; bank-width = <2>; use-advanced-sector-protection; ... Tested with Spansion S29GL512S10THI and Micron JS28F512M29EWx flash devices. Signed-off-by: Stefan Roese <sr@denx.de> Tested-by: Holger Brunck <holger.brunck@keymile.com> Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
2013-01-18 20:10:05 +08:00
if (!sect)
return -ENOMEM;
/*
* This code to walk all sectors is a slightly modified version
* of the cfi_varsize_frob() code.
*/
i = 0;
chipnum = 0;
adr = 0;
sectors = 0;
offset = 0;
length = mtd->size;
while (length) {
int size = regions[i].erasesize;
/*
* Only test sectors that shall not be unlocked. The other
* sectors shall be unlocked, so lets keep their locking
* status at "unlocked" (locked=0) for the final re-locking.
*/
if ((offset < ofs) || (offset >= (ofs + len))) {
mtd: cfi_cmdset_0002: Support Persistent Protection Bits (PPB) locking Currently cfi_cmdset_0002.c does not support PPB locking of sectors. This patch adds support for this locking/unlocking mechanism. It is needed on some platforms, since newer U-Boot versions do support this PPB locking and protect for example their environment sector(s) this way. This PPB locking/unlocking will be enabled for all devices supported by cfi_cmdset_0002 reporting 8 in the CFI word 0x49 (Sector Protect/Unprotect scheme). Please note that PPB locking does support sector-by-sector locking. But the whole chip can only be unlocked together. So unlocking one sector will automatically unlock all sectors of this device. Because of this chip limitation, the PPB unlocking function saves the current locking status of all sectors before unlocking the whole device. After unlocking the saved locking status is re-configured. This way only the addressed sectors will be unlocked. To selectively enable this advanced sector protection mechanism, the device-tree property "use-advanced-sector-protection" has been created. To enable support for this locking this property needs to be present in the flash DT node. E.g.: nor_flash@0,0 { compatible = "amd,s29gl256n", "cfi-flash"; bank-width = <2>; use-advanced-sector-protection; ... Tested with Spansion S29GL512S10THI and Micron JS28F512M29EWx flash devices. Signed-off-by: Stefan Roese <sr@denx.de> Tested-by: Holger Brunck <holger.brunck@keymile.com> Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
2013-01-18 20:10:05 +08:00
sect[sectors].chip = &cfi->chips[chipnum];
sect[sectors].adr = adr;
mtd: cfi_cmdset_0002: Support Persistent Protection Bits (PPB) locking Currently cfi_cmdset_0002.c does not support PPB locking of sectors. This patch adds support for this locking/unlocking mechanism. It is needed on some platforms, since newer U-Boot versions do support this PPB locking and protect for example their environment sector(s) this way. This PPB locking/unlocking will be enabled for all devices supported by cfi_cmdset_0002 reporting 8 in the CFI word 0x49 (Sector Protect/Unprotect scheme). Please note that PPB locking does support sector-by-sector locking. But the whole chip can only be unlocked together. So unlocking one sector will automatically unlock all sectors of this device. Because of this chip limitation, the PPB unlocking function saves the current locking status of all sectors before unlocking the whole device. After unlocking the saved locking status is re-configured. This way only the addressed sectors will be unlocked. To selectively enable this advanced sector protection mechanism, the device-tree property "use-advanced-sector-protection" has been created. To enable support for this locking this property needs to be present in the flash DT node. E.g.: nor_flash@0,0 { compatible = "amd,s29gl256n", "cfi-flash"; bank-width = <2>; use-advanced-sector-protection; ... Tested with Spansion S29GL512S10THI and Micron JS28F512M29EWx flash devices. Signed-off-by: Stefan Roese <sr@denx.de> Tested-by: Holger Brunck <holger.brunck@keymile.com> Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
2013-01-18 20:10:05 +08:00
sect[sectors].locked = do_ppb_xxlock(
map, &cfi->chips[chipnum], adr, 0,
DO_XXLOCK_ONEBLOCK_GETLOCK);
}
adr += size;
offset += size;
length -= size;
if (offset == regions[i].offset + size * regions[i].numblocks)
i++;
if (adr >> cfi->chipshift) {
if (offset >= (ofs + len))
break;
mtd: cfi_cmdset_0002: Support Persistent Protection Bits (PPB) locking Currently cfi_cmdset_0002.c does not support PPB locking of sectors. This patch adds support for this locking/unlocking mechanism. It is needed on some platforms, since newer U-Boot versions do support this PPB locking and protect for example their environment sector(s) this way. This PPB locking/unlocking will be enabled for all devices supported by cfi_cmdset_0002 reporting 8 in the CFI word 0x49 (Sector Protect/Unprotect scheme). Please note that PPB locking does support sector-by-sector locking. But the whole chip can only be unlocked together. So unlocking one sector will automatically unlock all sectors of this device. Because of this chip limitation, the PPB unlocking function saves the current locking status of all sectors before unlocking the whole device. After unlocking the saved locking status is re-configured. This way only the addressed sectors will be unlocked. To selectively enable this advanced sector protection mechanism, the device-tree property "use-advanced-sector-protection" has been created. To enable support for this locking this property needs to be present in the flash DT node. E.g.: nor_flash@0,0 { compatible = "amd,s29gl256n", "cfi-flash"; bank-width = <2>; use-advanced-sector-protection; ... Tested with Spansion S29GL512S10THI and Micron JS28F512M29EWx flash devices. Signed-off-by: Stefan Roese <sr@denx.de> Tested-by: Holger Brunck <holger.brunck@keymile.com> Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
2013-01-18 20:10:05 +08:00
adr = 0;
chipnum++;
if (chipnum >= cfi->numchips)
break;
}
sectors++;
if (sectors >= MAX_SECTORS) {
printk(KERN_ERR "Only %d sectors for PPB locking supported!\n",
MAX_SECTORS);
kfree(sect);
return -EINVAL;
}
}
/* Now unlock the whole chip */
ret = cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len,
DO_XXLOCK_ONEBLOCK_UNLOCK);
if (ret) {
kfree(sect);
return ret;
}
/*
* PPB unlocking always unlocks all sectors of the flash chip.
* We need to re-lock all previously locked sectors.
*/
for (i = 0; i < sectors; i++) {
if (sect[i].locked)
do_ppb_xxlock(map, sect[i].chip, sect[i].adr, 0,
mtd: cfi_cmdset_0002: Support Persistent Protection Bits (PPB) locking Currently cfi_cmdset_0002.c does not support PPB locking of sectors. This patch adds support for this locking/unlocking mechanism. It is needed on some platforms, since newer U-Boot versions do support this PPB locking and protect for example their environment sector(s) this way. This PPB locking/unlocking will be enabled for all devices supported by cfi_cmdset_0002 reporting 8 in the CFI word 0x49 (Sector Protect/Unprotect scheme). Please note that PPB locking does support sector-by-sector locking. But the whole chip can only be unlocked together. So unlocking one sector will automatically unlock all sectors of this device. Because of this chip limitation, the PPB unlocking function saves the current locking status of all sectors before unlocking the whole device. After unlocking the saved locking status is re-configured. This way only the addressed sectors will be unlocked. To selectively enable this advanced sector protection mechanism, the device-tree property "use-advanced-sector-protection" has been created. To enable support for this locking this property needs to be present in the flash DT node. E.g.: nor_flash@0,0 { compatible = "amd,s29gl256n", "cfi-flash"; bank-width = <2>; use-advanced-sector-protection; ... Tested with Spansion S29GL512S10THI and Micron JS28F512M29EWx flash devices. Signed-off-by: Stefan Roese <sr@denx.de> Tested-by: Holger Brunck <holger.brunck@keymile.com> Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
2013-01-18 20:10:05 +08:00
DO_XXLOCK_ONEBLOCK_LOCK);
}
kfree(sect);
return ret;
}
static int __maybe_unused cfi_ppb_is_locked(struct mtd_info *mtd, loff_t ofs,
uint64_t len)
{
return cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len,
DO_XXLOCK_ONEBLOCK_GETLOCK) ? 1 : 0;
}
static void cfi_amdstd_sync (struct mtd_info *mtd)
{
struct map_info *map = mtd->priv;
struct cfi_private *cfi = map->fldrv_priv;
int i;
struct flchip *chip;
int ret = 0;
DECLARE_WAITQUEUE(wait, current);
for (i=0; !ret && i<cfi->numchips; i++) {
chip = &cfi->chips[i];
retry:
mutex_lock(&chip->mutex);
switch(chip->state) {
case FL_READY:
case FL_STATUS:
case FL_CFI_QUERY:
case FL_JEDEC_QUERY:
chip->oldstate = chip->state;
chip->state = FL_SYNCING;
/* No need to wake_up() on this state change -
* as the whole point is that nobody can do anything
* with the chip now anyway.
*/
case FL_SYNCING:
mutex_unlock(&chip->mutex);
break;
default:
/* Not an idle state */
set_current_state(TASK_UNINTERRUPTIBLE);
add_wait_queue(&chip->wq, &wait);
mutex_unlock(&chip->mutex);
schedule();
remove_wait_queue(&chip->wq, &wait);
goto retry;
}
}
/* Unlock the chips again */
for (i--; i >=0; i--) {
chip = &cfi->chips[i];
mutex_lock(&chip->mutex);
if (chip->state == FL_SYNCING) {
chip->state = chip->oldstate;
wake_up(&chip->wq);
}
mutex_unlock(&chip->mutex);
}
}
static int cfi_amdstd_suspend(struct mtd_info *mtd)
{
struct map_info *map = mtd->priv;
struct cfi_private *cfi = map->fldrv_priv;
int i;
struct flchip *chip;
int ret = 0;
for (i=0; !ret && i<cfi->numchips; i++) {
chip = &cfi->chips[i];
mutex_lock(&chip->mutex);
switch(chip->state) {
case FL_READY:
case FL_STATUS:
case FL_CFI_QUERY:
case FL_JEDEC_QUERY:
chip->oldstate = chip->state;
chip->state = FL_PM_SUSPENDED;
/* No need to wake_up() on this state change -
* as the whole point is that nobody can do anything
* with the chip now anyway.
*/
case FL_PM_SUSPENDED:
break;
default:
ret = -EAGAIN;
break;
}
mutex_unlock(&chip->mutex);
}
/* Unlock the chips again */
if (ret) {
for (i--; i >=0; i--) {
chip = &cfi->chips[i];
mutex_lock(&chip->mutex);
if (chip->state == FL_PM_SUSPENDED) {
chip->state = chip->oldstate;
wake_up(&chip->wq);
}
mutex_unlock(&chip->mutex);
}
}
return ret;
}
static void cfi_amdstd_resume(struct mtd_info *mtd)
{
struct map_info *map = mtd->priv;
struct cfi_private *cfi = map->fldrv_priv;
int i;
struct flchip *chip;
for (i=0; i<cfi->numchips; i++) {
chip = &cfi->chips[i];
mutex_lock(&chip->mutex);
if (chip->state == FL_PM_SUSPENDED) {
chip->state = FL_READY;
map_write(map, CMD(0xF0), chip->start);
wake_up(&chip->wq);
}
else
printk(KERN_ERR "Argh. Chip not in PM_SUSPENDED state upon resume()\n");
mutex_unlock(&chip->mutex);
}
}
/*
* Ensure that the flash device is put back into read array mode before
* unloading the driver or rebooting. On some systems, rebooting while
* the flash is in query/program/erase mode will prevent the CPU from
* fetching the bootloader code, requiring a hard reset or power cycle.
*/
static int cfi_amdstd_reset(struct mtd_info *mtd)
{
struct map_info *map = mtd->priv;
struct cfi_private *cfi = map->fldrv_priv;
int i, ret;
struct flchip *chip;
for (i = 0; i < cfi->numchips; i++) {
chip = &cfi->chips[i];
mutex_lock(&chip->mutex);
ret = get_chip(map, chip, chip->start, FL_SHUTDOWN);
if (!ret) {
map_write(map, CMD(0xF0), chip->start);
chip->state = FL_SHUTDOWN;
put_chip(map, chip, chip->start);
}
mutex_unlock(&chip->mutex);
}
return 0;
}
static int cfi_amdstd_reboot(struct notifier_block *nb, unsigned long val,
void *v)
{
struct mtd_info *mtd;
mtd = container_of(nb, struct mtd_info, reboot_notifier);
cfi_amdstd_reset(mtd);
return NOTIFY_DONE;
}
static void cfi_amdstd_destroy(struct mtd_info *mtd)
{
struct map_info *map = mtd->priv;
struct cfi_private *cfi = map->fldrv_priv;
cfi_amdstd_reset(mtd);
unregister_reboot_notifier(&mtd->reboot_notifier);
kfree(cfi->cmdset_priv);
kfree(cfi->cfiq);
kfree(cfi);
kfree(mtd->eraseregions);
}
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Crossnet Co. <info@crossnet.co.jp> et al.");
MODULE_DESCRIPTION("MTD chip driver for AMD/Fujitsu flash chips");
MODULE_ALIAS("cfi_cmdset_0006");
MODULE_ALIAS("cfi_cmdset_0701");