linux-sg2042/arch/ia64/kernel/fsys.S

884 lines
25 KiB
ArmAsm
Raw Normal View History

/*
* This file contains the light-weight system call handlers (fsyscall-handlers).
*
* Copyright (C) 2003 Hewlett-Packard Co
* David Mosberger-Tang <davidm@hpl.hp.com>
*
* 25-Sep-03 davidm Implement fsys_rt_sigprocmask().
* 18-Feb-03 louisk Implement fsys_gettimeofday().
* 28-Feb-03 davidm Fixed several bugs in fsys_gettimeofday(). Tuned it some more,
* probably broke it along the way... ;-)
* 13-Jul-04 clameter Implement fsys_clock_gettime and revise fsys_gettimeofday to make
* it capable of using memory based clocks without falling back to C code.
* 08-Feb-07 Fenghua Yu Implement fsys_getcpu.
*
*/
#include <asm/asmmacro.h>
#include <asm/errno.h>
#include <asm/asm-offsets.h>
#include <asm/percpu.h>
#include <asm/thread_info.h>
#include <asm/sal.h>
#include <asm/signal.h>
#include <asm/unistd.h>
#include "entry.h"
#include "paravirt_inst.h"
/*
* See Documentation/ia64/fsys.txt for details on fsyscalls.
*
* On entry to an fsyscall handler:
* r10 = 0 (i.e., defaults to "successful syscall return")
* r11 = saved ar.pfs (a user-level value)
* r15 = system call number
* r16 = "current" task pointer (in normal kernel-mode, this is in r13)
* r32-r39 = system call arguments
* b6 = return address (a user-level value)
* ar.pfs = previous frame-state (a user-level value)
* PSR.be = cleared to zero (i.e., little-endian byte order is in effect)
* all other registers may contain values passed in from user-mode
*
* On return from an fsyscall handler:
* r11 = saved ar.pfs (as passed into the fsyscall handler)
* r15 = system call number (as passed into the fsyscall handler)
* r32-r39 = system call arguments (as passed into the fsyscall handler)
* b6 = return address (as passed into the fsyscall handler)
* ar.pfs = previous frame-state (as passed into the fsyscall handler)
*/
ENTRY(fsys_ni_syscall)
.prologue
.altrp b6
.body
mov r8=ENOSYS
mov r10=-1
FSYS_RETURN
END(fsys_ni_syscall)
ENTRY(fsys_getpid)
.prologue
.altrp b6
.body
[IA64] fix getpid and set_tid_address fast system calls for pid namespaces The sys_getpid() and sys_set_tid_address() behavior changed from return current->tgid to struct pid *pid; pid = current->pids[PIDTYPE_PID].pid; return pid->numbers[pid->level].nr; But the fast system calls on ia64 still operate the old way. Patch them appropriately to let ia64 work with pid namespaces. Besides, this is one more step in deprecating of pid and tgid on task_struct. The fsys_getppid() is to be patched as well, but its logic is much more complex now, so I will make it later. One thing I'm not 100% sure is the trick with the IA64_UPID_SHIFT. On order to access the pid->level's element of an array I have to perform the following calculations pid + sizeof(struct upid) * pid->level The problem is that ia64 can only multiply float point registers, while all the offsets I have in code are in rXX ones. Fortunately, the sizeof(struct upid) is 32 bytes on ia64 (and is very unlikely to ever change), so the calculations get simpler: pid + pid->level << 5 So, I introduce the IA64_UPID_SHIFT and use the shl instruction. I also looked at how gcc compiles the similar place and found that it makes it with shift as well. Is this OK to do so? Tested with ski emulator with 2.6.24 kernel, but fits 2.6.25-rc4 and 2.6.25-rc4-mm1 as well. Signed-off-by: Pavel Emelyanov <xemul@openvz.org> Cc: David Mosberger-Tang <davidm@hpl.hp.com> Cc: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Amy Griffis <amy.griffis@hp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Tony Luck <tony.luck@intel.com>
2008-03-29 05:27:00 +08:00
add r17=IA64_TASK_GROUP_LEADER_OFFSET,r16
;;
ld8 r17=[r17] // r17 = current->group_leader
add r9=TI_FLAGS+IA64_TASK_SIZE,r16
;;
ld4 r9=[r9]
[IA64] fix getpid and set_tid_address fast system calls for pid namespaces The sys_getpid() and sys_set_tid_address() behavior changed from return current->tgid to struct pid *pid; pid = current->pids[PIDTYPE_PID].pid; return pid->numbers[pid->level].nr; But the fast system calls on ia64 still operate the old way. Patch them appropriately to let ia64 work with pid namespaces. Besides, this is one more step in deprecating of pid and tgid on task_struct. The fsys_getppid() is to be patched as well, but its logic is much more complex now, so I will make it later. One thing I'm not 100% sure is the trick with the IA64_UPID_SHIFT. On order to access the pid->level's element of an array I have to perform the following calculations pid + sizeof(struct upid) * pid->level The problem is that ia64 can only multiply float point registers, while all the offsets I have in code are in rXX ones. Fortunately, the sizeof(struct upid) is 32 bytes on ia64 (and is very unlikely to ever change), so the calculations get simpler: pid + pid->level << 5 So, I introduce the IA64_UPID_SHIFT and use the shl instruction. I also looked at how gcc compiles the similar place and found that it makes it with shift as well. Is this OK to do so? Tested with ski emulator with 2.6.24 kernel, but fits 2.6.25-rc4 and 2.6.25-rc4-mm1 as well. Signed-off-by: Pavel Emelyanov <xemul@openvz.org> Cc: David Mosberger-Tang <davidm@hpl.hp.com> Cc: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Amy Griffis <amy.griffis@hp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Tony Luck <tony.luck@intel.com>
2008-03-29 05:27:00 +08:00
add r17=IA64_TASK_TGIDLINK_OFFSET,r17
;;
and r9=TIF_ALLWORK_MASK,r9
[IA64] fix getpid and set_tid_address fast system calls for pid namespaces The sys_getpid() and sys_set_tid_address() behavior changed from return current->tgid to struct pid *pid; pid = current->pids[PIDTYPE_PID].pid; return pid->numbers[pid->level].nr; But the fast system calls on ia64 still operate the old way. Patch them appropriately to let ia64 work with pid namespaces. Besides, this is one more step in deprecating of pid and tgid on task_struct. The fsys_getppid() is to be patched as well, but its logic is much more complex now, so I will make it later. One thing I'm not 100% sure is the trick with the IA64_UPID_SHIFT. On order to access the pid->level's element of an array I have to perform the following calculations pid + sizeof(struct upid) * pid->level The problem is that ia64 can only multiply float point registers, while all the offsets I have in code are in rXX ones. Fortunately, the sizeof(struct upid) is 32 bytes on ia64 (and is very unlikely to ever change), so the calculations get simpler: pid + pid->level << 5 So, I introduce the IA64_UPID_SHIFT and use the shl instruction. I also looked at how gcc compiles the similar place and found that it makes it with shift as well. Is this OK to do so? Tested with ski emulator with 2.6.24 kernel, but fits 2.6.25-rc4 and 2.6.25-rc4-mm1 as well. Signed-off-by: Pavel Emelyanov <xemul@openvz.org> Cc: David Mosberger-Tang <davidm@hpl.hp.com> Cc: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Amy Griffis <amy.griffis@hp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Tony Luck <tony.luck@intel.com>
2008-03-29 05:27:00 +08:00
ld8 r17=[r17] // r17 = current->group_leader->pids[PIDTYPE_PID].pid
;;
add r8=IA64_PID_LEVEL_OFFSET,r17
;;
ld4 r8=[r8] // r8 = pid->level
add r17=IA64_PID_UPID_OFFSET,r17 // r17 = &pid->numbers[0]
;;
shl r8=r8,IA64_UPID_SHIFT
;;
add r17=r17,r8 // r17 = &pid->numbers[pid->level]
;;
ld4 r8=[r17] // r8 = pid->numbers[pid->level].nr
;;
mov r17=0
;;
cmp.ne p8,p0=0,r9
(p8) br.spnt.many fsys_fallback_syscall
FSYS_RETURN
END(fsys_getpid)
ENTRY(fsys_getppid)
.prologue
.altrp b6
.body
add r17=IA64_TASK_GROUP_LEADER_OFFSET,r16
;;
ld8 r17=[r17] // r17 = current->group_leader
add r9=TI_FLAGS+IA64_TASK_SIZE,r16
;;
ld4 r9=[r9]
add r17=IA64_TASK_REAL_PARENT_OFFSET,r17 // r17 = &current->group_leader->real_parent
;;
and r9=TIF_ALLWORK_MASK,r9
1: ld8 r18=[r17] // r18 = current->group_leader->real_parent
;;
cmp.ne p8,p0=0,r9
add r8=IA64_TASK_TGID_OFFSET,r18 // r8 = &current->group_leader->real_parent->tgid
;;
/*
* The .acq is needed to ensure that the read of tgid has returned its data before
* we re-check "real_parent".
*/
ld4.acq r8=[r8] // r8 = current->group_leader->real_parent->tgid
#ifdef CONFIG_SMP
/*
* Re-read current->group_leader->real_parent.
*/
ld8 r19=[r17] // r19 = current->group_leader->real_parent
(p8) br.spnt.many fsys_fallback_syscall
;;
cmp.ne p6,p0=r18,r19 // did real_parent change?
mov r19=0 // i must not leak kernel bits...
(p6) br.cond.spnt.few 1b // yes -> redo the read of tgid and the check
;;
mov r17=0 // i must not leak kernel bits...
mov r18=0 // i must not leak kernel bits...
#else
mov r17=0 // i must not leak kernel bits...
mov r18=0 // i must not leak kernel bits...
mov r19=0 // i must not leak kernel bits...
#endif
FSYS_RETURN
END(fsys_getppid)
ENTRY(fsys_set_tid_address)
.prologue
.altrp b6
.body
add r9=TI_FLAGS+IA64_TASK_SIZE,r16
[IA64] fix getpid and set_tid_address fast system calls for pid namespaces The sys_getpid() and sys_set_tid_address() behavior changed from return current->tgid to struct pid *pid; pid = current->pids[PIDTYPE_PID].pid; return pid->numbers[pid->level].nr; But the fast system calls on ia64 still operate the old way. Patch them appropriately to let ia64 work with pid namespaces. Besides, this is one more step in deprecating of pid and tgid on task_struct. The fsys_getppid() is to be patched as well, but its logic is much more complex now, so I will make it later. One thing I'm not 100% sure is the trick with the IA64_UPID_SHIFT. On order to access the pid->level's element of an array I have to perform the following calculations pid + sizeof(struct upid) * pid->level The problem is that ia64 can only multiply float point registers, while all the offsets I have in code are in rXX ones. Fortunately, the sizeof(struct upid) is 32 bytes on ia64 (and is very unlikely to ever change), so the calculations get simpler: pid + pid->level << 5 So, I introduce the IA64_UPID_SHIFT and use the shl instruction. I also looked at how gcc compiles the similar place and found that it makes it with shift as well. Is this OK to do so? Tested with ski emulator with 2.6.24 kernel, but fits 2.6.25-rc4 and 2.6.25-rc4-mm1 as well. Signed-off-by: Pavel Emelyanov <xemul@openvz.org> Cc: David Mosberger-Tang <davidm@hpl.hp.com> Cc: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Amy Griffis <amy.griffis@hp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Tony Luck <tony.luck@intel.com>
2008-03-29 05:27:00 +08:00
add r17=IA64_TASK_TGIDLINK_OFFSET,r16
;;
ld4 r9=[r9]
tnat.z p6,p7=r32 // check argument register for being NaT
[IA64] fix getpid and set_tid_address fast system calls for pid namespaces The sys_getpid() and sys_set_tid_address() behavior changed from return current->tgid to struct pid *pid; pid = current->pids[PIDTYPE_PID].pid; return pid->numbers[pid->level].nr; But the fast system calls on ia64 still operate the old way. Patch them appropriately to let ia64 work with pid namespaces. Besides, this is one more step in deprecating of pid and tgid on task_struct. The fsys_getppid() is to be patched as well, but its logic is much more complex now, so I will make it later. One thing I'm not 100% sure is the trick with the IA64_UPID_SHIFT. On order to access the pid->level's element of an array I have to perform the following calculations pid + sizeof(struct upid) * pid->level The problem is that ia64 can only multiply float point registers, while all the offsets I have in code are in rXX ones. Fortunately, the sizeof(struct upid) is 32 bytes on ia64 (and is very unlikely to ever change), so the calculations get simpler: pid + pid->level << 5 So, I introduce the IA64_UPID_SHIFT and use the shl instruction. I also looked at how gcc compiles the similar place and found that it makes it with shift as well. Is this OK to do so? Tested with ski emulator with 2.6.24 kernel, but fits 2.6.25-rc4 and 2.6.25-rc4-mm1 as well. Signed-off-by: Pavel Emelyanov <xemul@openvz.org> Cc: David Mosberger-Tang <davidm@hpl.hp.com> Cc: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Amy Griffis <amy.griffis@hp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Tony Luck <tony.luck@intel.com>
2008-03-29 05:27:00 +08:00
ld8 r17=[r17] // r17 = current->pids[PIDTYPE_PID].pid
;;
and r9=TIF_ALLWORK_MASK,r9
[IA64] fix getpid and set_tid_address fast system calls for pid namespaces The sys_getpid() and sys_set_tid_address() behavior changed from return current->tgid to struct pid *pid; pid = current->pids[PIDTYPE_PID].pid; return pid->numbers[pid->level].nr; But the fast system calls on ia64 still operate the old way. Patch them appropriately to let ia64 work with pid namespaces. Besides, this is one more step in deprecating of pid and tgid on task_struct. The fsys_getppid() is to be patched as well, but its logic is much more complex now, so I will make it later. One thing I'm not 100% sure is the trick with the IA64_UPID_SHIFT. On order to access the pid->level's element of an array I have to perform the following calculations pid + sizeof(struct upid) * pid->level The problem is that ia64 can only multiply float point registers, while all the offsets I have in code are in rXX ones. Fortunately, the sizeof(struct upid) is 32 bytes on ia64 (and is very unlikely to ever change), so the calculations get simpler: pid + pid->level << 5 So, I introduce the IA64_UPID_SHIFT and use the shl instruction. I also looked at how gcc compiles the similar place and found that it makes it with shift as well. Is this OK to do so? Tested with ski emulator with 2.6.24 kernel, but fits 2.6.25-rc4 and 2.6.25-rc4-mm1 as well. Signed-off-by: Pavel Emelyanov <xemul@openvz.org> Cc: David Mosberger-Tang <davidm@hpl.hp.com> Cc: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Amy Griffis <amy.griffis@hp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Tony Luck <tony.luck@intel.com>
2008-03-29 05:27:00 +08:00
add r8=IA64_PID_LEVEL_OFFSET,r17
add r18=IA64_TASK_CLEAR_CHILD_TID_OFFSET,r16
;;
[IA64] fix getpid and set_tid_address fast system calls for pid namespaces The sys_getpid() and sys_set_tid_address() behavior changed from return current->tgid to struct pid *pid; pid = current->pids[PIDTYPE_PID].pid; return pid->numbers[pid->level].nr; But the fast system calls on ia64 still operate the old way. Patch them appropriately to let ia64 work with pid namespaces. Besides, this is one more step in deprecating of pid and tgid on task_struct. The fsys_getppid() is to be patched as well, but its logic is much more complex now, so I will make it later. One thing I'm not 100% sure is the trick with the IA64_UPID_SHIFT. On order to access the pid->level's element of an array I have to perform the following calculations pid + sizeof(struct upid) * pid->level The problem is that ia64 can only multiply float point registers, while all the offsets I have in code are in rXX ones. Fortunately, the sizeof(struct upid) is 32 bytes on ia64 (and is very unlikely to ever change), so the calculations get simpler: pid + pid->level << 5 So, I introduce the IA64_UPID_SHIFT and use the shl instruction. I also looked at how gcc compiles the similar place and found that it makes it with shift as well. Is this OK to do so? Tested with ski emulator with 2.6.24 kernel, but fits 2.6.25-rc4 and 2.6.25-rc4-mm1 as well. Signed-off-by: Pavel Emelyanov <xemul@openvz.org> Cc: David Mosberger-Tang <davidm@hpl.hp.com> Cc: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Amy Griffis <amy.griffis@hp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Tony Luck <tony.luck@intel.com>
2008-03-29 05:27:00 +08:00
ld4 r8=[r8] // r8 = pid->level
add r17=IA64_PID_UPID_OFFSET,r17 // r17 = &pid->numbers[0]
;;
shl r8=r8,IA64_UPID_SHIFT
;;
add r17=r17,r8 // r17 = &pid->numbers[pid->level]
;;
ld4 r8=[r17] // r8 = pid->numbers[pid->level].nr
;;
cmp.ne p8,p0=0,r9
mov r17=-1
;;
(p6) st8 [r18]=r32
(p7) st8 [r18]=r17
(p8) br.spnt.many fsys_fallback_syscall
;;
mov r17=0 // i must not leak kernel bits...
mov r18=0 // i must not leak kernel bits...
FSYS_RETURN
END(fsys_set_tid_address)
#if IA64_GTOD_SEQ_OFFSET !=0
#error fsys_gettimeofday incompatible with changes to struct fsyscall_gtod_data_t
#endif
#if IA64_ITC_JITTER_OFFSET !=0
#error fsys_gettimeofday incompatible with changes to struct itc_jitter_data_t
#endif
#define CLOCK_REALTIME 0
#define CLOCK_MONOTONIC 1
#define CLOCK_DIVIDE_BY_1000 0x4000
#define CLOCK_ADD_MONOTONIC 0x8000
ENTRY(fsys_gettimeofday)
.prologue
.altrp b6
.body
mov r31 = r32
tnat.nz p6,p0 = r33 // guard against NaT argument
(p6) br.cond.spnt.few .fail_einval
mov r30 = CLOCK_DIVIDE_BY_1000
;;
.gettime:
// Register map
// Incoming r31 = pointer to address where to place result
// r30 = flags determining how time is processed
// r2,r3 = temp r4-r7 preserved
// r8 = result nanoseconds
// r9 = result seconds
// r10 = temporary storage for clock difference
// r11 = preserved: saved ar.pfs
// r12 = preserved: memory stack
// r13 = preserved: thread pointer
// r14 = address of mask / mask value
// r15 = preserved: system call number
// r16 = preserved: current task pointer
// r17 = (not used)
// r18 = (not used)
// r19 = address of itc_lastcycle
// r20 = struct fsyscall_gtod_data (= address of gtod_lock.sequence)
// r21 = address of mmio_ptr
// r22 = address of wall_time or monotonic_time
// r23 = address of shift / value
// r24 = address mult factor / cycle_last value
// r25 = itc_lastcycle value
// r26 = address clocksource cycle_last
// r27 = (not used)
// r28 = sequence number at the beginning of critcal section
// r29 = address of itc_jitter
// r30 = time processing flags / memory address
// r31 = pointer to result
// Predicates
// p6,p7 short term use
// p8 = timesource ar.itc
// p9 = timesource mmio64
// p10 = timesource mmio32 - not used
// p11 = timesource not to be handled by asm code
// p12 = memory time source ( = p9 | p10) - not used
// p13 = do cmpxchg with itc_lastcycle
// p14 = Divide by 1000
// p15 = Add monotonic
//
// Note that instructions are optimized for McKinley. McKinley can
// process two bundles simultaneously and therefore we continuously
// try to feed the CPU two bundles and then a stop.
add r2 = TI_FLAGS+IA64_TASK_SIZE,r16
tnat.nz p6,p0 = r31 // guard against Nat argument
(p6) br.cond.spnt.few .fail_einval
movl r20 = fsyscall_gtod_data // load fsyscall gettimeofday data address
;;
ld4 r2 = [r2] // process work pending flags
movl r29 = itc_jitter_data // itc_jitter
add r22 = IA64_GTOD_WALL_TIME_OFFSET,r20 // wall_time
add r21 = IA64_CLKSRC_MMIO_OFFSET,r20
mov pr = r30,0xc000 // Set predicates according to function
;;
and r2 = TIF_ALLWORK_MASK,r2
add r19 = IA64_ITC_LASTCYCLE_OFFSET,r29
(p15) add r22 = IA64_GTOD_MONO_TIME_OFFSET,r20 // monotonic_time
;;
add r26 = IA64_CLKSRC_CYCLE_LAST_OFFSET,r20 // clksrc_cycle_last
cmp.ne p6, p0 = 0, r2 // Fallback if work is scheduled
(p6) br.cond.spnt.many fsys_fallback_syscall
;;
// Begin critical section
.time_redo:
ld4.acq r28 = [r20] // gtod_lock.sequence, Must take first
;;
and r28 = ~1,r28 // And make sequence even to force retry if odd
;;
ld8 r30 = [r21] // clocksource->mmio_ptr
add r24 = IA64_CLKSRC_MULT_OFFSET,r20
ld4 r2 = [r29] // itc_jitter value
add r23 = IA64_CLKSRC_SHIFT_OFFSET,r20
add r14 = IA64_CLKSRC_MASK_OFFSET,r20
;;
ld4 r3 = [r24] // clocksource mult value
ld8 r14 = [r14] // clocksource mask value
cmp.eq p8,p9 = 0,r30 // use cpu timer if no mmio_ptr
;;
setf.sig f7 = r3 // Setup for mult scaling of counter
(p8) cmp.ne p13,p0 = r2,r0 // need itc_jitter compensation, set p13
ld4 r23 = [r23] // clocksource shift value
ld8 r24 = [r26] // get clksrc_cycle_last value
(p9) cmp.eq p13,p0 = 0,r30 // if mmio_ptr, clear p13 jitter control
;;
.pred.rel.mutex p8,p9
MOV_FROM_ITC(p8, p6, r2, r10) // CPU_TIMER. 36 clocks latency!!!
(p9) ld8 r2 = [r30] // MMIO_TIMER. Could also have latency issues..
(p13) ld8 r25 = [r19] // get itc_lastcycle value
ld8 r9 = [r22],IA64_TIMESPEC_TV_NSEC_OFFSET // tv_sec
;;
ld8 r8 = [r22],-IA64_TIMESPEC_TV_NSEC_OFFSET // tv_nsec
(p13) sub r3 = r25,r2 // Diff needed before comparison (thanks davidm)
;;
(p13) cmp.gt.unc p6,p7 = r3,r0 // check if it is less than last. p6,p7 cleared
sub r10 = r2,r24 // current_cycle - last_cycle
;;
(p6) sub r10 = r25,r24 // time we got was less than last_cycle
(p7) mov ar.ccv = r25 // more than last_cycle. Prep for cmpxchg
;;
(p7) cmpxchg8.rel r3 = [r19],r2,ar.ccv
;;
(p7) cmp.ne p7,p0 = r25,r3 // if cmpxchg not successful
;;
(p7) sub r10 = r3,r24 // then use new last_cycle instead
;;
and r10 = r10,r14 // Apply mask
;;
setf.sig f8 = r10
nop.i 123
;;
// fault check takes 5 cycles and we have spare time
EX(.fail_efault, probe.w.fault r31, 3)
xmpy.l f8 = f8,f7 // nsec_per_cyc*(counter-last_counter)
;;
getf.sig r2 = f8
mf
;;
ld4 r10 = [r20] // gtod_lock.sequence
shr.u r2 = r2,r23 // shift by factor
;;
add r8 = r8,r2 // Add xtime.nsecs
cmp4.ne p7,p0 = r28,r10
(p7) br.cond.dpnt.few .time_redo // sequence number changed, redo
// End critical section.
// Now r8=tv->tv_nsec and r9=tv->tv_sec
mov r10 = r0
movl r2 = 1000000000
add r23 = IA64_TIMESPEC_TV_NSEC_OFFSET, r31
(p14) movl r3 = 2361183241434822607 // Prep for / 1000 hack
;;
.time_normalize:
mov r21 = r8
cmp.ge p6,p0 = r8,r2
(p14) shr.u r20 = r8, 3 // We can repeat this if necessary just wasting time
;;
(p14) setf.sig f8 = r20
(p6) sub r8 = r8,r2
(p6) add r9 = 1,r9 // two nops before the branch.
(p14) setf.sig f7 = r3 // Chances for repeats are 1 in 10000 for gettod
(p6) br.cond.dpnt.few .time_normalize
;;
// Divided by 8 though shift. Now divide by 125
// The compiler was able to do that with a multiply
// and a shift and we do the same
EX(.fail_efault, probe.w.fault r23, 3) // This also costs 5 cycles
(p14) xmpy.hu f8 = f8, f7 // xmpy has 5 cycles latency so use it
;;
(p14) getf.sig r2 = f8
;;
mov r8 = r0
(p14) shr.u r21 = r2, 4
;;
EX(.fail_efault, st8 [r31] = r9)
EX(.fail_efault, st8 [r23] = r21)
FSYS_RETURN
.fail_einval:
mov r8 = EINVAL
mov r10 = -1
FSYS_RETURN
.fail_efault:
mov r8 = EFAULT
mov r10 = -1
FSYS_RETURN
END(fsys_gettimeofday)
ENTRY(fsys_clock_gettime)
.prologue
.altrp b6
.body
cmp4.ltu p6, p0 = CLOCK_MONOTONIC, r32
// Fallback if this is not CLOCK_REALTIME or CLOCK_MONOTONIC
(p6) br.spnt.few fsys_fallback_syscall
mov r31 = r33
shl r30 = r32,15
br.many .gettime
END(fsys_clock_gettime)
/*
* fsys_getcpu doesn't use the third parameter in this implementation. It reads
* current_thread_info()->cpu and corresponding node in cpu_to_node_map.
*/
ENTRY(fsys_getcpu)
.prologue
.altrp b6
.body
;;
add r2=TI_FLAGS+IA64_TASK_SIZE,r16
tnat.nz p6,p0 = r32 // guard against NaT argument
add r3=TI_CPU+IA64_TASK_SIZE,r16
;;
ld4 r3=[r3] // M r3 = thread_info->cpu
ld4 r2=[r2] // M r2 = thread_info->flags
(p6) br.cond.spnt.few .fail_einval // B
;;
tnat.nz p7,p0 = r33 // I guard against NaT argument
(p7) br.cond.spnt.few .fail_einval // B
;;
cmp.ne p6,p0=r32,r0
cmp.ne p7,p0=r33,r0
;;
#ifdef CONFIG_NUMA
movl r17=cpu_to_node_map
;;
EX(.fail_efault, (p6) probe.w.fault r32, 3) // M This takes 5 cycles
EX(.fail_efault, (p7) probe.w.fault r33, 3) // M This takes 5 cycles
shladd r18=r3,1,r17
;;
ld2 r20=[r18] // r20 = cpu_to_node_map[cpu]
and r2 = TIF_ALLWORK_MASK,r2
;;
cmp.ne p8,p0=0,r2
(p8) br.spnt.many fsys_fallback_syscall
;;
;;
EX(.fail_efault, (p6) st4 [r32] = r3)
EX(.fail_efault, (p7) st2 [r33] = r20)
mov r8=0
;;
#else
EX(.fail_efault, (p6) probe.w.fault r32, 3) // M This takes 5 cycles
EX(.fail_efault, (p7) probe.w.fault r33, 3) // M This takes 5 cycles
and r2 = TIF_ALLWORK_MASK,r2
;;
cmp.ne p8,p0=0,r2
(p8) br.spnt.many fsys_fallback_syscall
;;
EX(.fail_efault, (p6) st4 [r32] = r3)
EX(.fail_efault, (p7) st2 [r33] = r0)
mov r8=0
;;
#endif
FSYS_RETURN
END(fsys_getcpu)
ENTRY(fsys_fallback_syscall)
.prologue
.altrp b6
.body
/*
* We only get here from light-weight syscall handlers. Thus, we already
* know that r15 contains a valid syscall number. No need to re-check.
*/
adds r17=-1024,r15
movl r14=sys_call_table
;;
RSM_PSR_I(p0, r26, r27)
shladd r18=r17,3,r14
;;
ld8 r18=[r18] // load normal (heavy-weight) syscall entry-point
MOV_FROM_PSR(p0, r29, r26) // read psr (12 cyc load latency)
mov r27=ar.rsc
mov r21=ar.fpsr
mov r26=ar.pfs
END(fsys_fallback_syscall)
/* FALL THROUGH */
GLOBAL_ENTRY(paravirt_fsys_bubble_down)
.prologue
.altrp b6
.body
/*
* We get here for syscalls that don't have a lightweight
* handler. For those, we need to bubble down into the kernel
* and that requires setting up a minimal pt_regs structure,
* and initializing the CPU state more or less as if an
* interruption had occurred. To make syscall-restarts work,
* we setup pt_regs such that cr_iip points to the second
* instruction in syscall_via_break. Decrementing the IP
* hence will restart the syscall via break and not
* decrementing IP will return us to the caller, as usual.
* Note that we preserve the value of psr.pp rather than
* initializing it from dcr.pp. This makes it possible to
* distinguish fsyscall execution from other privileged
* execution.
*
* On entry:
* - normal fsyscall handler register usage, except
* that we also have:
* - r18: address of syscall entry point
* - r21: ar.fpsr
* - r26: ar.pfs
* - r27: ar.rsc
* - r29: psr
*
* We used to clear some PSR bits here but that requires slow
* serialization. Fortuntely, that isn't really necessary.
* The rationale is as follows: we used to clear bits
* ~PSR_PRESERVED_BITS in PSR.L. Since
* PSR_PRESERVED_BITS==PSR.{UP,MFL,MFH,PK,DT,PP,SP,RT,IC}, we
* ended up clearing PSR.{BE,AC,I,DFL,DFH,DI,DB,SI,TB}.
* However,
*
* PSR.BE : already is turned off in __kernel_syscall_via_epc()
* PSR.AC : don't care (kernel normally turns PSR.AC on)
* PSR.I : already turned off by the time paravirt_fsys_bubble_down gets
* invoked
* PSR.DFL: always 0 (kernel never turns it on)
* PSR.DFH: don't care --- kernel never touches f32-f127 on its own
* initiative
* PSR.DI : always 0 (kernel never turns it on)
* PSR.SI : always 0 (kernel never turns it on)
* PSR.DB : don't care --- kernel never enables kernel-level
* breakpoints
* PSR.TB : must be 0 already; if it wasn't zero on entry to
* __kernel_syscall_via_epc, the branch to paravirt_fsys_bubble_down
* will trigger a taken branch; the taken-trap-handler then
* converts the syscall into a break-based system-call.
*/
/*
* Reading psr.l gives us only bits 0-31, psr.it, and psr.mc.
* The rest we have to synthesize.
*/
# define PSR_ONE_BITS ((3 << IA64_PSR_CPL0_BIT) \
| (0x1 << IA64_PSR_RI_BIT) \
| IA64_PSR_BN | IA64_PSR_I)
invala // M0|1
movl r14=ia64_ret_from_syscall // X
[IA64] Reschedule fsys_bubble_down(). Improvements come from eliminating srlz.i, not scheduling AR/CR-reads too early (while there are others still pending), scheduling the backing-store switch as well as possible, splitting the BBB bundle into a MIB/MBB pair. Why is it safe to eliminate the srlz.i? Observe that we used to clear bits ~PSR_PRESERVED_BITS in PSR.L. Since PSR_PRESERVED_BITS==PSR.{UP,MFL,MFH,PK,DT,PP,SP,RT,IC}, we ended up clearing PSR.{BE,AC,I,DFL,DFH,DI,DB,SI,TB}. However, PSR.BE : already is turned off in __kernel_syscall_via_epc() PSR.AC : don't care (kernel normally turns PSR.AC on) PSR.I : already turned off by the time fsys_bubble_down gets invoked PSR.DFL: always 0 (kernel never turns it on) PSR.DFH: don't care --- kernel never touches f32-f127 on its own initiative PSR.DI : always 0 (kernel never turns it on) PSR.SI : always 0 (kernel never turns it on) PSR.DB : don't care --- kernel never enables kernel-level breakpoints PSR.TB : must be 0 already; if it wasn't zero on entry to __kernel_syscall_via_epc, the branch to fsys_bubble_down will trigger a taken branch; the taken-trap-handler then converts the syscall into a break-based system-call. In other words: all the bits we're clearying are either 0 already or are don't cares! Thus, we don't have to write PSR.L at all and we don't have to do a srlz.i either. Good for another ~20 cycle improvement for EPC-based heavy-weight syscalls. Signed-off-by: David Mosberger-Tang <davidm@hpl.hp.com> Signed-off-by: Tony Luck <tony.luck@intel.com>
2005-04-28 12:20:51 +08:00
nop.m 0
movl r28=__kernel_syscall_via_break // X create cr.iip
;;
[IA64] Reschedule fsys_bubble_down(). Improvements come from eliminating srlz.i, not scheduling AR/CR-reads too early (while there are others still pending), scheduling the backing-store switch as well as possible, splitting the BBB bundle into a MIB/MBB pair. Why is it safe to eliminate the srlz.i? Observe that we used to clear bits ~PSR_PRESERVED_BITS in PSR.L. Since PSR_PRESERVED_BITS==PSR.{UP,MFL,MFH,PK,DT,PP,SP,RT,IC}, we ended up clearing PSR.{BE,AC,I,DFL,DFH,DI,DB,SI,TB}. However, PSR.BE : already is turned off in __kernel_syscall_via_epc() PSR.AC : don't care (kernel normally turns PSR.AC on) PSR.I : already turned off by the time fsys_bubble_down gets invoked PSR.DFL: always 0 (kernel never turns it on) PSR.DFH: don't care --- kernel never touches f32-f127 on its own initiative PSR.DI : always 0 (kernel never turns it on) PSR.SI : always 0 (kernel never turns it on) PSR.DB : don't care --- kernel never enables kernel-level breakpoints PSR.TB : must be 0 already; if it wasn't zero on entry to __kernel_syscall_via_epc, the branch to fsys_bubble_down will trigger a taken branch; the taken-trap-handler then converts the syscall into a break-based system-call. In other words: all the bits we're clearying are either 0 already or are don't cares! Thus, we don't have to write PSR.L at all and we don't have to do a srlz.i either. Good for another ~20 cycle improvement for EPC-based heavy-weight syscalls. Signed-off-by: David Mosberger-Tang <davidm@hpl.hp.com> Signed-off-by: Tony Luck <tony.luck@intel.com>
2005-04-28 12:20:51 +08:00
mov r2=r16 // A get task addr to addl-addressable register
adds r16=IA64_TASK_THREAD_ON_USTACK_OFFSET,r16 // A
mov r31=pr // I0 save pr (2 cyc)
;;
st1 [r16]=r0 // M2|3 clear current->thread.on_ustack flag
addl r22=IA64_RBS_OFFSET,r2 // A compute base of RBS
add r3=TI_FLAGS+IA64_TASK_SIZE,r2 // A
;;
ld4 r3=[r3] // M0|1 r3 = current_thread_info()->flags
lfetch.fault.excl.nt1 [r22] // M0|1 prefetch register backing-store
[IA64] Reschedule fsys_bubble_down(). Improvements come from eliminating srlz.i, not scheduling AR/CR-reads too early (while there are others still pending), scheduling the backing-store switch as well as possible, splitting the BBB bundle into a MIB/MBB pair. Why is it safe to eliminate the srlz.i? Observe that we used to clear bits ~PSR_PRESERVED_BITS in PSR.L. Since PSR_PRESERVED_BITS==PSR.{UP,MFL,MFH,PK,DT,PP,SP,RT,IC}, we ended up clearing PSR.{BE,AC,I,DFL,DFH,DI,DB,SI,TB}. However, PSR.BE : already is turned off in __kernel_syscall_via_epc() PSR.AC : don't care (kernel normally turns PSR.AC on) PSR.I : already turned off by the time fsys_bubble_down gets invoked PSR.DFL: always 0 (kernel never turns it on) PSR.DFH: don't care --- kernel never touches f32-f127 on its own initiative PSR.DI : always 0 (kernel never turns it on) PSR.SI : always 0 (kernel never turns it on) PSR.DB : don't care --- kernel never enables kernel-level breakpoints PSR.TB : must be 0 already; if it wasn't zero on entry to __kernel_syscall_via_epc, the branch to fsys_bubble_down will trigger a taken branch; the taken-trap-handler then converts the syscall into a break-based system-call. In other words: all the bits we're clearying are either 0 already or are don't cares! Thus, we don't have to write PSR.L at all and we don't have to do a srlz.i either. Good for another ~20 cycle improvement for EPC-based heavy-weight syscalls. Signed-off-by: David Mosberger-Tang <davidm@hpl.hp.com> Signed-off-by: Tony Luck <tony.luck@intel.com>
2005-04-28 12:20:51 +08:00
nop.i 0
;;
mov ar.rsc=0 // M2 set enforced lazy mode, pl 0, LE, loadrs=0
cputime: Generic on-demand virtual cputime accounting If we want to stop the tick further idle, we need to be able to account the cputime without using the tick. Virtual based cputime accounting solves that problem by hooking into kernel/user boundaries. However implementing CONFIG_VIRT_CPU_ACCOUNTING require low level hooks and involves more overhead. But we already have a generic context tracking subsystem that is required for RCU needs by archs which plan to shut down the tick outside idle. This patch implements a generic virtual based cputime accounting that relies on these generic kernel/user hooks. There are some upsides of doing this: - This requires no arch code to implement CONFIG_VIRT_CPU_ACCOUNTING if context tracking is already built (already necessary for RCU in full tickless mode). - We can rely on the generic context tracking subsystem to dynamically (de)activate the hooks, so that we can switch anytime between virtual and tick based accounting. This way we don't have the overhead of the virtual accounting when the tick is running periodically. And one downside: - There is probably more overhead than a native virtual based cputime accounting. But this relies on hooks that are already set anyway. Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Li Zhong <zhong@linux.vnet.ibm.com> Cc: Namhyung Kim <namhyung.kim@lge.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de>
2012-07-25 13:56:04 +08:00
#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
MOV_FROM_ITC(p0, p6, r30, r23) // M get cycle for accounting
#else
[IA64] Reschedule fsys_bubble_down(). Improvements come from eliminating srlz.i, not scheduling AR/CR-reads too early (while there are others still pending), scheduling the backing-store switch as well as possible, splitting the BBB bundle into a MIB/MBB pair. Why is it safe to eliminate the srlz.i? Observe that we used to clear bits ~PSR_PRESERVED_BITS in PSR.L. Since PSR_PRESERVED_BITS==PSR.{UP,MFL,MFH,PK,DT,PP,SP,RT,IC}, we ended up clearing PSR.{BE,AC,I,DFL,DFH,DI,DB,SI,TB}. However, PSR.BE : already is turned off in __kernel_syscall_via_epc() PSR.AC : don't care (kernel normally turns PSR.AC on) PSR.I : already turned off by the time fsys_bubble_down gets invoked PSR.DFL: always 0 (kernel never turns it on) PSR.DFH: don't care --- kernel never touches f32-f127 on its own initiative PSR.DI : always 0 (kernel never turns it on) PSR.SI : always 0 (kernel never turns it on) PSR.DB : don't care --- kernel never enables kernel-level breakpoints PSR.TB : must be 0 already; if it wasn't zero on entry to __kernel_syscall_via_epc, the branch to fsys_bubble_down will trigger a taken branch; the taken-trap-handler then converts the syscall into a break-based system-call. In other words: all the bits we're clearying are either 0 already or are don't cares! Thus, we don't have to write PSR.L at all and we don't have to do a srlz.i either. Good for another ~20 cycle improvement for EPC-based heavy-weight syscalls. Signed-off-by: David Mosberger-Tang <davidm@hpl.hp.com> Signed-off-by: Tony Luck <tony.luck@intel.com>
2005-04-28 12:20:51 +08:00
nop.m 0
#endif
[IA64] Reschedule fsys_bubble_down(). Improvements come from eliminating srlz.i, not scheduling AR/CR-reads too early (while there are others still pending), scheduling the backing-store switch as well as possible, splitting the BBB bundle into a MIB/MBB pair. Why is it safe to eliminate the srlz.i? Observe that we used to clear bits ~PSR_PRESERVED_BITS in PSR.L. Since PSR_PRESERVED_BITS==PSR.{UP,MFL,MFH,PK,DT,PP,SP,RT,IC}, we ended up clearing PSR.{BE,AC,I,DFL,DFH,DI,DB,SI,TB}. However, PSR.BE : already is turned off in __kernel_syscall_via_epc() PSR.AC : don't care (kernel normally turns PSR.AC on) PSR.I : already turned off by the time fsys_bubble_down gets invoked PSR.DFL: always 0 (kernel never turns it on) PSR.DFH: don't care --- kernel never touches f32-f127 on its own initiative PSR.DI : always 0 (kernel never turns it on) PSR.SI : always 0 (kernel never turns it on) PSR.DB : don't care --- kernel never enables kernel-level breakpoints PSR.TB : must be 0 already; if it wasn't zero on entry to __kernel_syscall_via_epc, the branch to fsys_bubble_down will trigger a taken branch; the taken-trap-handler then converts the syscall into a break-based system-call. In other words: all the bits we're clearying are either 0 already or are don't cares! Thus, we don't have to write PSR.L at all and we don't have to do a srlz.i either. Good for another ~20 cycle improvement for EPC-based heavy-weight syscalls. Signed-off-by: David Mosberger-Tang <davidm@hpl.hp.com> Signed-off-by: Tony Luck <tony.luck@intel.com>
2005-04-28 12:20:51 +08:00
nop.i 0
;;
mov r23=ar.bspstore // M2 (12 cyc) save ar.bspstore
mov.m r24=ar.rnat // M2 (5 cyc) read ar.rnat (dual-issues!)
[IA64] Reschedule fsys_bubble_down(). Improvements come from eliminating srlz.i, not scheduling AR/CR-reads too early (while there are others still pending), scheduling the backing-store switch as well as possible, splitting the BBB bundle into a MIB/MBB pair. Why is it safe to eliminate the srlz.i? Observe that we used to clear bits ~PSR_PRESERVED_BITS in PSR.L. Since PSR_PRESERVED_BITS==PSR.{UP,MFL,MFH,PK,DT,PP,SP,RT,IC}, we ended up clearing PSR.{BE,AC,I,DFL,DFH,DI,DB,SI,TB}. However, PSR.BE : already is turned off in __kernel_syscall_via_epc() PSR.AC : don't care (kernel normally turns PSR.AC on) PSR.I : already turned off by the time fsys_bubble_down gets invoked PSR.DFL: always 0 (kernel never turns it on) PSR.DFH: don't care --- kernel never touches f32-f127 on its own initiative PSR.DI : always 0 (kernel never turns it on) PSR.SI : always 0 (kernel never turns it on) PSR.DB : don't care --- kernel never enables kernel-level breakpoints PSR.TB : must be 0 already; if it wasn't zero on entry to __kernel_syscall_via_epc, the branch to fsys_bubble_down will trigger a taken branch; the taken-trap-handler then converts the syscall into a break-based system-call. In other words: all the bits we're clearying are either 0 already or are don't cares! Thus, we don't have to write PSR.L at all and we don't have to do a srlz.i either. Good for another ~20 cycle improvement for EPC-based heavy-weight syscalls. Signed-off-by: David Mosberger-Tang <davidm@hpl.hp.com> Signed-off-by: Tony Luck <tony.luck@intel.com>
2005-04-28 12:20:51 +08:00
nop.i 0
;;
mov ar.bspstore=r22 // M2 (6 cyc) switch to kernel RBS
[IA64] Reschedule fsys_bubble_down(). Improvements come from eliminating srlz.i, not scheduling AR/CR-reads too early (while there are others still pending), scheduling the backing-store switch as well as possible, splitting the BBB bundle into a MIB/MBB pair. Why is it safe to eliminate the srlz.i? Observe that we used to clear bits ~PSR_PRESERVED_BITS in PSR.L. Since PSR_PRESERVED_BITS==PSR.{UP,MFL,MFH,PK,DT,PP,SP,RT,IC}, we ended up clearing PSR.{BE,AC,I,DFL,DFH,DI,DB,SI,TB}. However, PSR.BE : already is turned off in __kernel_syscall_via_epc() PSR.AC : don't care (kernel normally turns PSR.AC on) PSR.I : already turned off by the time fsys_bubble_down gets invoked PSR.DFL: always 0 (kernel never turns it on) PSR.DFH: don't care --- kernel never touches f32-f127 on its own initiative PSR.DI : always 0 (kernel never turns it on) PSR.SI : always 0 (kernel never turns it on) PSR.DB : don't care --- kernel never enables kernel-level breakpoints PSR.TB : must be 0 already; if it wasn't zero on entry to __kernel_syscall_via_epc, the branch to fsys_bubble_down will trigger a taken branch; the taken-trap-handler then converts the syscall into a break-based system-call. In other words: all the bits we're clearying are either 0 already or are don't cares! Thus, we don't have to write PSR.L at all and we don't have to do a srlz.i either. Good for another ~20 cycle improvement for EPC-based heavy-weight syscalls. Signed-off-by: David Mosberger-Tang <davidm@hpl.hp.com> Signed-off-by: Tony Luck <tony.luck@intel.com>
2005-04-28 12:20:51 +08:00
movl r8=PSR_ONE_BITS // X
;;
mov r25=ar.unat // M2 (5 cyc) save ar.unat
mov r19=b6 // I0 save b6 (2 cyc)
mov r20=r1 // A save caller's gp in r20
[IA64] Reschedule fsys_bubble_down(). Improvements come from eliminating srlz.i, not scheduling AR/CR-reads too early (while there are others still pending), scheduling the backing-store switch as well as possible, splitting the BBB bundle into a MIB/MBB pair. Why is it safe to eliminate the srlz.i? Observe that we used to clear bits ~PSR_PRESERVED_BITS in PSR.L. Since PSR_PRESERVED_BITS==PSR.{UP,MFL,MFH,PK,DT,PP,SP,RT,IC}, we ended up clearing PSR.{BE,AC,I,DFL,DFH,DI,DB,SI,TB}. However, PSR.BE : already is turned off in __kernel_syscall_via_epc() PSR.AC : don't care (kernel normally turns PSR.AC on) PSR.I : already turned off by the time fsys_bubble_down gets invoked PSR.DFL: always 0 (kernel never turns it on) PSR.DFH: don't care --- kernel never touches f32-f127 on its own initiative PSR.DI : always 0 (kernel never turns it on) PSR.SI : always 0 (kernel never turns it on) PSR.DB : don't care --- kernel never enables kernel-level breakpoints PSR.TB : must be 0 already; if it wasn't zero on entry to __kernel_syscall_via_epc, the branch to fsys_bubble_down will trigger a taken branch; the taken-trap-handler then converts the syscall into a break-based system-call. In other words: all the bits we're clearying are either 0 already or are don't cares! Thus, we don't have to write PSR.L at all and we don't have to do a srlz.i either. Good for another ~20 cycle improvement for EPC-based heavy-weight syscalls. Signed-off-by: David Mosberger-Tang <davidm@hpl.hp.com> Signed-off-by: Tony Luck <tony.luck@intel.com>
2005-04-28 12:20:51 +08:00
;;
or r29=r8,r29 // A construct cr.ipsr value to save
mov b6=r18 // I0 copy syscall entry-point to b6 (7 cyc)
addl r1=IA64_STK_OFFSET-IA64_PT_REGS_SIZE,r2 // A compute base of memory stack
[IA64] Reschedule fsys_bubble_down(). Improvements come from eliminating srlz.i, not scheduling AR/CR-reads too early (while there are others still pending), scheduling the backing-store switch as well as possible, splitting the BBB bundle into a MIB/MBB pair. Why is it safe to eliminate the srlz.i? Observe that we used to clear bits ~PSR_PRESERVED_BITS in PSR.L. Since PSR_PRESERVED_BITS==PSR.{UP,MFL,MFH,PK,DT,PP,SP,RT,IC}, we ended up clearing PSR.{BE,AC,I,DFL,DFH,DI,DB,SI,TB}. However, PSR.BE : already is turned off in __kernel_syscall_via_epc() PSR.AC : don't care (kernel normally turns PSR.AC on) PSR.I : already turned off by the time fsys_bubble_down gets invoked PSR.DFL: always 0 (kernel never turns it on) PSR.DFH: don't care --- kernel never touches f32-f127 on its own initiative PSR.DI : always 0 (kernel never turns it on) PSR.SI : always 0 (kernel never turns it on) PSR.DB : don't care --- kernel never enables kernel-level breakpoints PSR.TB : must be 0 already; if it wasn't zero on entry to __kernel_syscall_via_epc, the branch to fsys_bubble_down will trigger a taken branch; the taken-trap-handler then converts the syscall into a break-based system-call. In other words: all the bits we're clearying are either 0 already or are don't cares! Thus, we don't have to write PSR.L at all and we don't have to do a srlz.i either. Good for another ~20 cycle improvement for EPC-based heavy-weight syscalls. Signed-off-by: David Mosberger-Tang <davidm@hpl.hp.com> Signed-off-by: Tony Luck <tony.luck@intel.com>
2005-04-28 12:20:51 +08:00
mov r18=ar.bsp // M2 save (kernel) ar.bsp (12 cyc)
cmp.ne pKStk,pUStk=r0,r0 // A set pKStk <- 0, pUStk <- 1
br.call.sptk.many b7=ia64_syscall_setup // B
;;
cputime: Generic on-demand virtual cputime accounting If we want to stop the tick further idle, we need to be able to account the cputime without using the tick. Virtual based cputime accounting solves that problem by hooking into kernel/user boundaries. However implementing CONFIG_VIRT_CPU_ACCOUNTING require low level hooks and involves more overhead. But we already have a generic context tracking subsystem that is required for RCU needs by archs which plan to shut down the tick outside idle. This patch implements a generic virtual based cputime accounting that relies on these generic kernel/user hooks. There are some upsides of doing this: - This requires no arch code to implement CONFIG_VIRT_CPU_ACCOUNTING if context tracking is already built (already necessary for RCU in full tickless mode). - We can rely on the generic context tracking subsystem to dynamically (de)activate the hooks, so that we can switch anytime between virtual and tick based accounting. This way we don't have the overhead of the virtual accounting when the tick is running periodically. And one downside: - There is probably more overhead than a native virtual based cputime accounting. But this relies on hooks that are already set anyway. Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Li Zhong <zhong@linux.vnet.ibm.com> Cc: Namhyung Kim <namhyung.kim@lge.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de>
2012-07-25 13:56:04 +08:00
#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
// mov.m r30=ar.itc is called in advance
add r16=TI_AC_STAMP+IA64_TASK_SIZE,r2
add r17=TI_AC_LEAVE+IA64_TASK_SIZE,r2
;;
ld8 r18=[r16],TI_AC_STIME-TI_AC_STAMP // time at last check in kernel
ld8 r19=[r17],TI_AC_UTIME-TI_AC_LEAVE // time at leave kernel
;;
ld8 r20=[r16],TI_AC_STAMP-TI_AC_STIME // cumulated stime
ld8 r21=[r17] // cumulated utime
sub r22=r19,r18 // stime before leave kernel
;;
st8 [r16]=r30,TI_AC_STIME-TI_AC_STAMP // update stamp
sub r18=r30,r19 // elapsed time in user mode
;;
add r20=r20,r22 // sum stime
add r21=r21,r18 // sum utime
;;
st8 [r16]=r20 // update stime
st8 [r17]=r21 // update utime
;;
#endif
mov ar.rsc=0x3 // M2 set eager mode, pl 0, LE, loadrs=0
mov rp=r14 // I0 set the real return addr
and r3=_TIF_SYSCALL_TRACEAUDIT,r3 // A
;;
SSM_PSR_I(p0, p6, r22) // M2 we're on kernel stacks now, reenable irqs
cmp.eq p8,p0=r3,r0 // A
(p10) br.cond.spnt.many ia64_ret_from_syscall // B return if bad call-frame or r15 is a NaT
[IA64] Reschedule fsys_bubble_down(). Improvements come from eliminating srlz.i, not scheduling AR/CR-reads too early (while there are others still pending), scheduling the backing-store switch as well as possible, splitting the BBB bundle into a MIB/MBB pair. Why is it safe to eliminate the srlz.i? Observe that we used to clear bits ~PSR_PRESERVED_BITS in PSR.L. Since PSR_PRESERVED_BITS==PSR.{UP,MFL,MFH,PK,DT,PP,SP,RT,IC}, we ended up clearing PSR.{BE,AC,I,DFL,DFH,DI,DB,SI,TB}. However, PSR.BE : already is turned off in __kernel_syscall_via_epc() PSR.AC : don't care (kernel normally turns PSR.AC on) PSR.I : already turned off by the time fsys_bubble_down gets invoked PSR.DFL: always 0 (kernel never turns it on) PSR.DFH: don't care --- kernel never touches f32-f127 on its own initiative PSR.DI : always 0 (kernel never turns it on) PSR.SI : always 0 (kernel never turns it on) PSR.DB : don't care --- kernel never enables kernel-level breakpoints PSR.TB : must be 0 already; if it wasn't zero on entry to __kernel_syscall_via_epc, the branch to fsys_bubble_down will trigger a taken branch; the taken-trap-handler then converts the syscall into a break-based system-call. In other words: all the bits we're clearying are either 0 already or are don't cares! Thus, we don't have to write PSR.L at all and we don't have to do a srlz.i either. Good for another ~20 cycle improvement for EPC-based heavy-weight syscalls. Signed-off-by: David Mosberger-Tang <davidm@hpl.hp.com> Signed-off-by: Tony Luck <tony.luck@intel.com>
2005-04-28 12:20:51 +08:00
nop.m 0
(p8) br.call.sptk.many b6=b6 // B (ignore return address)
br.cond.spnt ia64_trace_syscall // B
END(paravirt_fsys_bubble_down)
.rodata
.align 8
.globl paravirt_fsyscall_table
data8 paravirt_fsys_bubble_down
paravirt_fsyscall_table:
data8 fsys_ni_syscall
data8 0 // exit // 1025
data8 0 // read
data8 0 // write
data8 0 // open
data8 0 // close
data8 0 // creat // 1030
data8 0 // link
data8 0 // unlink
data8 0 // execve
data8 0 // chdir
data8 0 // fchdir // 1035
data8 0 // utimes
data8 0 // mknod
data8 0 // chmod
data8 0 // chown
data8 0 // lseek // 1040
data8 fsys_getpid // getpid
data8 fsys_getppid // getppid
data8 0 // mount
data8 0 // umount
data8 0 // setuid // 1045
data8 0 // getuid
data8 0 // geteuid
data8 0 // ptrace
data8 0 // access
data8 0 // sync // 1050
data8 0 // fsync
data8 0 // fdatasync
data8 0 // kill
data8 0 // rename
data8 0 // mkdir // 1055
data8 0 // rmdir
data8 0 // dup
data8 0 // pipe
data8 0 // times
data8 0 // brk // 1060
data8 0 // setgid
data8 0 // getgid
data8 0 // getegid
data8 0 // acct
data8 0 // ioctl // 1065
data8 0 // fcntl
data8 0 // umask
data8 0 // chroot
data8 0 // ustat
data8 0 // dup2 // 1070
data8 0 // setreuid
data8 0 // setregid
data8 0 // getresuid
data8 0 // setresuid
data8 0 // getresgid // 1075
data8 0 // setresgid
data8 0 // getgroups
data8 0 // setgroups
data8 0 // getpgid
data8 0 // setpgid // 1080
data8 0 // setsid
data8 0 // getsid
data8 0 // sethostname
data8 0 // setrlimit
data8 0 // getrlimit // 1085
data8 0 // getrusage
data8 fsys_gettimeofday // gettimeofday
data8 0 // settimeofday
data8 0 // select
data8 0 // poll // 1090
data8 0 // symlink
data8 0 // readlink
data8 0 // uselib
data8 0 // swapon
data8 0 // swapoff // 1095
data8 0 // reboot
data8 0 // truncate
data8 0 // ftruncate
data8 0 // fchmod
data8 0 // fchown // 1100
data8 0 // getpriority
data8 0 // setpriority
data8 0 // statfs
data8 0 // fstatfs
data8 0 // gettid // 1105
data8 0 // semget
data8 0 // semop
data8 0 // semctl
data8 0 // msgget
data8 0 // msgsnd // 1110
data8 0 // msgrcv
data8 0 // msgctl
data8 0 // shmget
data8 0 // shmat
data8 0 // shmdt // 1115
data8 0 // shmctl
data8 0 // syslog
data8 0 // setitimer
data8 0 // getitimer
data8 0 // 1120
data8 0
data8 0
data8 0 // vhangup
data8 0 // lchown
data8 0 // remap_file_pages // 1125
data8 0 // wait4
data8 0 // sysinfo
data8 0 // clone
data8 0 // setdomainname
data8 0 // newuname // 1130
data8 0 // adjtimex
data8 0
data8 0 // init_module
data8 0 // delete_module
data8 0 // 1135
data8 0
data8 0 // quotactl
data8 0 // bdflush
data8 0 // sysfs
data8 0 // personality // 1140
data8 0 // afs_syscall
data8 0 // setfsuid
data8 0 // setfsgid
data8 0 // getdents
data8 0 // flock // 1145
data8 0 // readv
data8 0 // writev
data8 0 // pread64
data8 0 // pwrite64
data8 0 // sysctl // 1150
data8 0 // mmap
data8 0 // munmap
data8 0 // mlock
data8 0 // mlockall
data8 0 // mprotect // 1155
data8 0 // mremap
data8 0 // msync
data8 0 // munlock
data8 0 // munlockall
data8 0 // sched_getparam // 1160
data8 0 // sched_setparam
data8 0 // sched_getscheduler
data8 0 // sched_setscheduler
data8 0 // sched_yield
data8 0 // sched_get_priority_max // 1165
data8 0 // sched_get_priority_min
data8 0 // sched_rr_get_interval
data8 0 // nanosleep
data8 0 // nfsservctl
data8 0 // prctl // 1170
data8 0 // getpagesize
data8 0 // mmap2
data8 0 // pciconfig_read
data8 0 // pciconfig_write
data8 0 // perfmonctl // 1175
data8 0 // sigaltstack
data8 0 // rt_sigaction
data8 0 // rt_sigpending
data8 0 // rt_sigprocmask
data8 0 // rt_sigqueueinfo // 1180
data8 0 // rt_sigreturn
data8 0 // rt_sigsuspend
data8 0 // rt_sigtimedwait
data8 0 // getcwd
data8 0 // capget // 1185
data8 0 // capset
data8 0 // sendfile
data8 0
data8 0
data8 0 // socket // 1190
data8 0 // bind
data8 0 // connect
data8 0 // listen
data8 0 // accept
data8 0 // getsockname // 1195
data8 0 // getpeername
data8 0 // socketpair
data8 0 // send
data8 0 // sendto
data8 0 // recv // 1200
data8 0 // recvfrom
data8 0 // shutdown
data8 0 // setsockopt
data8 0 // getsockopt
data8 0 // sendmsg // 1205
data8 0 // recvmsg
data8 0 // pivot_root
data8 0 // mincore
data8 0 // madvise
data8 0 // newstat // 1210
data8 0 // newlstat
data8 0 // newfstat
data8 0 // clone2
data8 0 // getdents64
data8 0 // getunwind // 1215
data8 0 // readahead
data8 0 // setxattr
data8 0 // lsetxattr
data8 0 // fsetxattr
data8 0 // getxattr // 1220
data8 0 // lgetxattr
data8 0 // fgetxattr
data8 0 // listxattr
data8 0 // llistxattr
data8 0 // flistxattr // 1225
data8 0 // removexattr
data8 0 // lremovexattr
data8 0 // fremovexattr
data8 0 // tkill
data8 0 // futex // 1230
data8 0 // sched_setaffinity
data8 0 // sched_getaffinity
data8 fsys_set_tid_address // set_tid_address
data8 0 // fadvise64_64
data8 0 // tgkill // 1235
data8 0 // exit_group
data8 0 // lookup_dcookie
data8 0 // io_setup
data8 0 // io_destroy
data8 0 // io_getevents // 1240
data8 0 // io_submit
data8 0 // io_cancel
data8 0 // epoll_create
data8 0 // epoll_ctl
data8 0 // epoll_wait // 1245
data8 0 // restart_syscall
data8 0 // semtimedop
data8 0 // timer_create
data8 0 // timer_settime
data8 0 // timer_gettime // 1250
data8 0 // timer_getoverrun
data8 0 // timer_delete
data8 0 // clock_settime
data8 fsys_clock_gettime // clock_gettime
data8 0 // clock_getres // 1255
data8 0 // clock_nanosleep
data8 0 // fstatfs64
data8 0 // statfs64
data8 0 // mbind
data8 0 // get_mempolicy // 1260
data8 0 // set_mempolicy
data8 0 // mq_open
data8 0 // mq_unlink
data8 0 // mq_timedsend
data8 0 // mq_timedreceive // 1265
data8 0 // mq_notify
data8 0 // mq_getsetattr
data8 0 // kexec_load
data8 0 // vserver
data8 0 // waitid // 1270
data8 0 // add_key
data8 0 // request_key
data8 0 // keyctl
data8 0 // ioprio_set
data8 0 // ioprio_get // 1275
data8 0 // move_pages
data8 0 // inotify_init
data8 0 // inotify_add_watch
data8 0 // inotify_rm_watch
data8 0 // migrate_pages // 1280
data8 0 // openat
data8 0 // mkdirat
data8 0 // mknodat
data8 0 // fchownat
data8 0 // futimesat // 1285
data8 0 // newfstatat
data8 0 // unlinkat
data8 0 // renameat
data8 0 // linkat
data8 0 // symlinkat // 1290
data8 0 // readlinkat
data8 0 // fchmodat
data8 0 // faccessat
data8 0
data8 0 // 1295
data8 0 // unshare
data8 0 // splice
data8 0 // set_robust_list
data8 0 // get_robust_list
data8 0 // sync_file_range // 1300
data8 0 // tee
data8 0 // vmsplice
data8 0
data8 fsys_getcpu // getcpu // 1304
// fill in zeros for the remaining entries
.zero:
.space paravirt_fsyscall_table + 8*NR_syscalls - .zero, 0