linux-sg2042/arch/ppc/platforms/hdpu.c

1016 lines
25 KiB
C
Raw Normal View History

/*
* Board setup routines for the Sky Computers HDPU Compute Blade.
*
* Written by Brian Waite <waite@skycomputers.com>
*
* Based on code done by - Mark A. Greer <mgreer@mvista.com>
* Rabeeh Khoury - rabeeh@galileo.co.il
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*/
#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/irq.h>
#include <linux/seq_file.h>
#include <linux/platform_device.h>
#include <linux/initrd.h>
#include <linux/root_dev.h>
#include <linux/smp.h>
#include <asm/time.h>
#include <asm/machdep.h>
#include <asm/todc.h>
#include <asm/mv64x60.h>
#include <asm/ppcboot.h>
#include <platforms/hdpu.h>
#include <linux/mv643xx.h>
#include <linux/hdpu_features.h>
#include <linux/device.h>
#include <linux/mtd/physmap.h>
#define BOARD_VENDOR "Sky Computers"
#define BOARD_MACHINE "HDPU-CB-A"
bd_t ppcboot_bd;
int ppcboot_bd_valid = 0;
static mv64x60_handle_t bh;
extern char cmd_line[];
unsigned long hdpu_find_end_of_memory(void);
void hdpu_mpsc_progress(char *s, unsigned short hex);
void hdpu_heartbeat(void);
static void parse_bootinfo(unsigned long r3,
unsigned long r4, unsigned long r5,
unsigned long r6, unsigned long r7);
static void hdpu_set_l1pe(void);
static void hdpu_cpustate_set(unsigned char new_state);
#ifdef CONFIG_SMP
static DEFINE_SPINLOCK(timebase_lock);
static unsigned int timebase_upper = 0, timebase_lower = 0;
extern int smp_tb_synchronized;
void __devinit hdpu_tben_give(void);
void __devinit hdpu_tben_take(void);
#endif
static int __init
hdpu_map_irq(struct pci_dev *dev, unsigned char idsel, unsigned char pin)
{
struct pci_controller *hose = pci_bus_to_hose(dev->bus->number);
if (hose->index == 0) {
static char pci_irq_table[][4] = {
{HDPU_PCI_0_IRQ, 0, 0, 0},
{HDPU_PCI_0_IRQ, 0, 0, 0},
};
const long min_idsel = 1, max_idsel = 2, irqs_per_slot = 4;
return PCI_IRQ_TABLE_LOOKUP;
} else {
static char pci_irq_table[][4] = {
{HDPU_PCI_1_IRQ, 0, 0, 0},
};
const long min_idsel = 1, max_idsel = 1, irqs_per_slot = 4;
return PCI_IRQ_TABLE_LOOKUP;
}
}
static void __init hdpu_intr_setup(void)
{
mv64x60_write(&bh, MV64x60_GPP_IO_CNTL,
(1 | (1 << 2) | (1 << 3) | (1 << 4) | (1 << 5) |
(1 << 6) | (1 << 7) | (1 << 12) | (1 << 16) |
(1 << 18) | (1 << 19) | (1 << 20) | (1 << 21) |
(1 << 22) | (1 << 23) | (1 << 24) | (1 << 25) |
(1 << 26) | (1 << 27) | (1 << 28) | (1 << 29)));
/* XXXX Erranum FEr PCI-#8 */
mv64x60_clr_bits(&bh, MV64x60_PCI0_CMD, (1 << 5) | (1 << 9));
mv64x60_clr_bits(&bh, MV64x60_PCI1_CMD, (1 << 5) | (1 << 9));
/*
* Dismiss and then enable interrupt on GPP interrupt cause
* for CPU #0
*/
mv64x60_write(&bh, MV64x60_GPP_INTR_CAUSE, ~((1 << 8) | (1 << 13)));
mv64x60_set_bits(&bh, MV64x60_GPP_INTR_MASK, (1 << 8) | (1 << 13));
/*
* Dismiss and then enable interrupt on CPU #0 high cause reg
* BIT25 summarizes GPP interrupts 8-15
*/
mv64x60_set_bits(&bh, MV64360_IC_CPU0_INTR_MASK_HI, (1 << 25));
}
static void __init hdpu_setup_peripherals(void)
{
unsigned int val;
mv64x60_set_32bit_window(&bh, MV64x60_CPU2BOOT_WIN,
HDPU_EMB_FLASH_BASE, HDPU_EMB_FLASH_SIZE, 0);
bh.ci->enable_window_32bit(&bh, MV64x60_CPU2BOOT_WIN);
mv64x60_set_32bit_window(&bh, MV64x60_CPU2DEV_0_WIN,
HDPU_TBEN_BASE, HDPU_TBEN_SIZE, 0);
bh.ci->enable_window_32bit(&bh, MV64x60_CPU2DEV_0_WIN);
mv64x60_set_32bit_window(&bh, MV64x60_CPU2DEV_1_WIN,
HDPU_NEXUS_ID_BASE, HDPU_NEXUS_ID_SIZE, 0);
bh.ci->enable_window_32bit(&bh, MV64x60_CPU2DEV_1_WIN);
mv64x60_set_32bit_window(&bh, MV64x60_CPU2SRAM_WIN,
HDPU_INTERNAL_SRAM_BASE,
HDPU_INTERNAL_SRAM_SIZE, 0);
bh.ci->enable_window_32bit(&bh, MV64x60_CPU2SRAM_WIN);
bh.ci->disable_window_32bit(&bh, MV64x60_ENET2MEM_4_WIN);
mv64x60_set_32bit_window(&bh, MV64x60_ENET2MEM_4_WIN, 0, 0, 0);
mv64x60_clr_bits(&bh, MV64x60_PCI0_PCI_DECODE_CNTL, (1 << 3));
mv64x60_clr_bits(&bh, MV64x60_PCI1_PCI_DECODE_CNTL, (1 << 3));
mv64x60_clr_bits(&bh, MV64x60_TIMR_CNTR_0_3_CNTL,
((1 << 0) | (1 << 8) | (1 << 16) | (1 << 24)));
/* Enable pipelining */
mv64x60_set_bits(&bh, MV64x60_CPU_CONFIG, (1 << 13));
/* Enable Snoop Pipelining */
mv64x60_set_bits(&bh, MV64360_D_UNIT_CONTROL_HIGH, (1 << 24));
/*
* Change DRAM read buffer assignment.
* Assign read buffer 0 dedicated only for CPU,
* and the rest read buffer 1.
*/
val = mv64x60_read(&bh, MV64360_SDRAM_CONFIG);
val = val & 0x03ffffff;
val = val | 0xf8000000;
mv64x60_write(&bh, MV64360_SDRAM_CONFIG, val);
/*
* Configure internal SRAM -
* Cache coherent write back, if CONFIG_MV64360_SRAM_CACHE_COHERENT set
* Parity enabled.
* Parity error propagation
* Arbitration not parked for CPU only
* Other bits are reserved.
*/
#ifdef CONFIG_MV64360_SRAM_CACHE_COHERENT
mv64x60_write(&bh, MV64360_SRAM_CONFIG, 0x001600b2);
#else
mv64x60_write(&bh, MV64360_SRAM_CONFIG, 0x001600b0);
#endif
hdpu_intr_setup();
}
static void __init hdpu_setup_bridge(void)
{
struct mv64x60_setup_info si;
int i;
memset(&si, 0, sizeof(si));
si.phys_reg_base = HDPU_BRIDGE_REG_BASE;
si.pci_0.enable_bus = 1;
si.pci_0.pci_io.cpu_base = HDPU_PCI0_IO_START_PROC_ADDR;
si.pci_0.pci_io.pci_base_hi = 0;
si.pci_0.pci_io.pci_base_lo = HDPU_PCI0_IO_START_PCI_ADDR;
si.pci_0.pci_io.size = HDPU_PCI0_IO_SIZE;
si.pci_0.pci_io.swap = MV64x60_CPU2PCI_SWAP_NONE;
si.pci_0.pci_mem[0].cpu_base = HDPU_PCI0_MEM_START_PROC_ADDR;
si.pci_0.pci_mem[0].pci_base_hi = HDPU_PCI0_MEM_START_PCI_HI_ADDR;
si.pci_0.pci_mem[0].pci_base_lo = HDPU_PCI0_MEM_START_PCI_LO_ADDR;
si.pci_0.pci_mem[0].size = HDPU_PCI0_MEM_SIZE;
si.pci_0.pci_mem[0].swap = MV64x60_CPU2PCI_SWAP_NONE;
si.pci_0.pci_cmd_bits = 0;
si.pci_0.latency_timer = 0x80;
si.pci_1.enable_bus = 1;
si.pci_1.pci_io.cpu_base = HDPU_PCI1_IO_START_PROC_ADDR;
si.pci_1.pci_io.pci_base_hi = 0;
si.pci_1.pci_io.pci_base_lo = HDPU_PCI1_IO_START_PCI_ADDR;
si.pci_1.pci_io.size = HDPU_PCI1_IO_SIZE;
si.pci_1.pci_io.swap = MV64x60_CPU2PCI_SWAP_NONE;
si.pci_1.pci_mem[0].cpu_base = HDPU_PCI1_MEM_START_PROC_ADDR;
si.pci_1.pci_mem[0].pci_base_hi = HDPU_PCI1_MEM_START_PCI_HI_ADDR;
si.pci_1.pci_mem[0].pci_base_lo = HDPU_PCI1_MEM_START_PCI_LO_ADDR;
si.pci_1.pci_mem[0].size = HDPU_PCI1_MEM_SIZE;
si.pci_1.pci_mem[0].swap = MV64x60_CPU2PCI_SWAP_NONE;
si.pci_1.pci_cmd_bits = 0;
si.pci_1.latency_timer = 0x80;
for (i = 0; i < MV64x60_CPU2MEM_WINDOWS; i++) {
#if defined(CONFIG_NOT_COHERENT_CACHE)
si.cpu_prot_options[i] = 0;
si.enet_options[i] = MV64360_ENET2MEM_SNOOP_NONE;
si.mpsc_options[i] = MV64360_MPSC2MEM_SNOOP_NONE;
si.idma_options[i] = MV64360_IDMA2MEM_SNOOP_NONE;
si.pci_1.acc_cntl_options[i] =
MV64360_PCI_ACC_CNTL_SNOOP_NONE |
MV64360_PCI_ACC_CNTL_SWAP_NONE |
MV64360_PCI_ACC_CNTL_MBURST_128_BYTES |
MV64360_PCI_ACC_CNTL_RDSIZE_256_BYTES;
si.pci_0.acc_cntl_options[i] =
MV64360_PCI_ACC_CNTL_SNOOP_NONE |
MV64360_PCI_ACC_CNTL_SWAP_NONE |
MV64360_PCI_ACC_CNTL_MBURST_128_BYTES |
MV64360_PCI_ACC_CNTL_RDSIZE_256_BYTES;
#else
si.cpu_prot_options[i] = 0;
si.enet_options[i] = MV64360_ENET2MEM_SNOOP_WB; /* errata */
si.mpsc_options[i] = MV64360_MPSC2MEM_SNOOP_WB; /* errata */
si.idma_options[i] = MV64360_IDMA2MEM_SNOOP_WB; /* errata */
si.pci_0.acc_cntl_options[i] =
MV64360_PCI_ACC_CNTL_SNOOP_WB |
MV64360_PCI_ACC_CNTL_SWAP_NONE |
MV64360_PCI_ACC_CNTL_MBURST_32_BYTES |
MV64360_PCI_ACC_CNTL_RDSIZE_256_BYTES;
si.pci_1.acc_cntl_options[i] =
MV64360_PCI_ACC_CNTL_SNOOP_WB |
MV64360_PCI_ACC_CNTL_SWAP_NONE |
MV64360_PCI_ACC_CNTL_MBURST_32_BYTES |
MV64360_PCI_ACC_CNTL_RDSIZE_256_BYTES;
#endif
}
hdpu_cpustate_set(CPUSTATE_KERNEL_MAJOR | CPUSTATE_KERNEL_INIT_PCI);
/* Lookup PCI host bridges */
mv64x60_init(&bh, &si);
pci_dram_offset = 0; /* System mem at same addr on PCI & cpu bus */
ppc_md.pci_swizzle = common_swizzle;
ppc_md.pci_map_irq = hdpu_map_irq;
mv64x60_set_bus(&bh, 0, 0);
bh.hose_a->first_busno = 0;
bh.hose_a->last_busno = 0xff;
bh.hose_a->last_busno = pciauto_bus_scan(bh.hose_a, 0);
bh.hose_b->first_busno = bh.hose_a->last_busno + 1;
mv64x60_set_bus(&bh, 1, bh.hose_b->first_busno);
bh.hose_b->last_busno = 0xff;
bh.hose_b->last_busno = pciauto_bus_scan(bh.hose_b,
bh.hose_b->first_busno);
ppc_md.pci_exclude_device = mv64x60_pci_exclude_device;
hdpu_cpustate_set(CPUSTATE_KERNEL_MAJOR | CPUSTATE_KERNEL_INIT_REG);
/*
* Enabling of PCI internal-vs-external arbitration
* is a platform- and errata-dependent decision.
*/
return;
}
#if defined(CONFIG_SERIAL_MPSC_CONSOLE)
static void __init hdpu_early_serial_map(void)
{
#ifdef CONFIG_KGDB
static char first_time = 1;
#if defined(CONFIG_KGDB_TTYS0)
#define KGDB_PORT 0
#elif defined(CONFIG_KGDB_TTYS1)
#define KGDB_PORT 1
#else
#error "Invalid kgdb_tty port"
#endif
if (first_time) {
gt_early_mpsc_init(KGDB_PORT,
B9600 | CS8 | CREAD | HUPCL | CLOCAL);
first_time = 0;
}
return;
#endif
}
#endif
static void hdpu_init2(void)
{
return;
}
#if defined(CONFIG_MV643XX_ETH)
static void __init hdpu_fixup_eth_pdata(struct platform_device *pd)
{
struct mv643xx_eth_platform_data *eth_pd;
eth_pd = pd->dev.platform_data;
eth_pd->force_phy_addr = 1;
eth_pd->phy_addr = pd->id;
eth_pd->speed = SPEED_100;
eth_pd->duplex = DUPLEX_FULL;
eth_pd->tx_queue_size = 400;
eth_pd->rx_queue_size = 800;
}
#endif
static void __init hdpu_fixup_mpsc_pdata(struct platform_device *pd)
{
struct mpsc_pdata *pdata;
pdata = (struct mpsc_pdata *)pd->dev.platform_data;
pdata->max_idle = 40;
if (ppcboot_bd_valid)
pdata->default_baud = ppcboot_bd.bi_baudrate;
else
pdata->default_baud = HDPU_DEFAULT_BAUD;
pdata->brg_clk_src = HDPU_MPSC_CLK_SRC;
pdata->brg_clk_freq = HDPU_MPSC_CLK_FREQ;
}
#if defined(CONFIG_HDPU_FEATURES)
static void __init hdpu_fixup_cpustate_pdata(struct platform_device *pd)
{
struct platform_device *pds[1];
pds[0] = pd;
mv64x60_pd_fixup(&bh, pds, 1);
}
#endif
static int hdpu_platform_notify(struct device *dev)
{
static struct {
char *bus_id;
void ((*rtn) (struct platform_device * pdev));
} dev_map[] = {
{
MPSC_CTLR_NAME ".0", hdpu_fixup_mpsc_pdata},
#if defined(CONFIG_MV643XX_ETH)
{
MV643XX_ETH_NAME ".0", hdpu_fixup_eth_pdata},
#endif
#if defined(CONFIG_HDPU_FEATURES)
{
HDPU_CPUSTATE_NAME ".0", hdpu_fixup_cpustate_pdata},
#endif
};
struct platform_device *pdev;
int i;
if (dev && dev->bus_id)
for (i = 0; i < ARRAY_SIZE(dev_map); i++)
if (!strncmp(dev->bus_id, dev_map[i].bus_id,
BUS_ID_SIZE)) {
pdev = container_of(dev,
struct platform_device,
dev);
dev_map[i].rtn(pdev);
}
return 0;
}
static void __init hdpu_setup_arch(void)
{
if (ppc_md.progress)
ppc_md.progress("hdpu_setup_arch: enter", 0);
#ifdef CONFIG_BLK_DEV_INITRD
if (initrd_start)
ROOT_DEV = Root_RAM0;
else
#endif
#ifdef CONFIG_ROOT_NFS
ROOT_DEV = Root_NFS;
#else
ROOT_DEV = Root_SDA2;
#endif
ppc_md.heartbeat = hdpu_heartbeat;
ppc_md.heartbeat_reset = HZ;
ppc_md.heartbeat_count = 1;
if (ppc_md.progress)
ppc_md.progress("hdpu_setup_arch: Enabling L2 cache", 0);
/* Enable L1 Parity Bits */
hdpu_set_l1pe();
/* Enable L2 and L3 caches (if 745x) */
_set_L2CR(0x80080000);
if (ppc_md.progress)
ppc_md.progress("hdpu_setup_arch: enter", 0);
hdpu_setup_bridge();
hdpu_setup_peripherals();
#ifdef CONFIG_SERIAL_MPSC_CONSOLE
hdpu_early_serial_map();
#endif
printk("SKY HDPU Compute Blade \n");
if (ppc_md.progress)
ppc_md.progress("hdpu_setup_arch: exit", 0);
hdpu_cpustate_set(CPUSTATE_KERNEL_MAJOR | CPUSTATE_KERNEL_OK);
return;
}
static void __init hdpu_init_irq(void)
{
mv64360_init_irq();
}
static void __init hdpu_set_l1pe()
{
unsigned long ictrl;
asm volatile ("mfspr %0, 1011":"=r" (ictrl):);
ictrl |= ICTRL_EICE | ICTRL_EDC | ICTRL_EICP;
asm volatile ("mtspr 1011, %0"::"r" (ictrl));
}
/*
* Set BAT 1 to map 0xf1000000 to end of physical memory space.
*/
static __inline__ void hdpu_set_bat(void)
{
mb();
mtspr(SPRN_DBAT1U, 0xf10001fe);
mtspr(SPRN_DBAT1L, 0xf100002a);
mb();
return;
}
unsigned long __init hdpu_find_end_of_memory(void)
{
return mv64x60_get_mem_size(CONFIG_MV64X60_NEW_BASE,
MV64x60_TYPE_MV64360);
}
static void hdpu_reset_board(void)
{
volatile int infinite = 1;
hdpu_cpustate_set(CPUSTATE_KERNEL_MAJOR | CPUSTATE_KERNEL_RESET);
local_irq_disable();
/* Clear all the LEDs */
mv64x60_write(&bh, MV64x60_GPP_VALUE_CLR, ((1 << 4) |
(1 << 5) | (1 << 6)));
/* disable and invalidate the L2 cache */
_set_L2CR(0);
_set_L2CR(0x200000);
/* flush and disable L1 I/D cache */
__asm__ __volatile__
("\n"
"mfspr 3,1008\n"
"ori 5,5,0xcc00\n"
"ori 4,3,0xc00\n"
"andc 5,3,5\n"
"sync\n"
"mtspr 1008,4\n"
"isync\n" "sync\n" "mtspr 1008,5\n" "isync\n" "sync\n");
/* Hit the reset bit */
mv64x60_write(&bh, MV64x60_GPP_VALUE_CLR, (1 << 3));
while (infinite)
infinite = infinite;
return;
}
static void hdpu_restart(char *cmd)
{
volatile ulong i = 10000000;
hdpu_reset_board();
while (i-- > 0) ;
panic("restart failed\n");
}
static void hdpu_halt(void)
{
local_irq_disable();
hdpu_cpustate_set(CPUSTATE_KERNEL_MAJOR | CPUSTATE_KERNEL_HALT);
/* Clear all the LEDs */
mv64x60_write(&bh, MV64x60_GPP_VALUE_CLR, ((1 << 4) | (1 << 5) |
(1 << 6)));
while (1) ;
/* NOTREACHED */
}
static void hdpu_power_off(void)
{
hdpu_halt();
/* NOTREACHED */
}
static int hdpu_show_cpuinfo(struct seq_file *m)
{
uint pvid;
pvid = mfspr(SPRN_PVR);
seq_printf(m, "vendor\t\t: Sky Computers\n");
seq_printf(m, "machine\t\t: HDPU Compute Blade\n");
seq_printf(m, "PVID\t\t: 0x%x, vendor: %s\n",
pvid, (pvid & (1 << 15) ? "IBM" : "Motorola"));
return 0;
}
static void __init hdpu_calibrate_decr(void)
{
ulong freq;
if (ppcboot_bd_valid)
freq = ppcboot_bd.bi_busfreq / 4;
else
freq = 133000000;
printk("time_init: decrementer frequency = %lu.%.6lu MHz\n",
freq / 1000000, freq % 1000000);
tb_ticks_per_jiffy = freq / HZ;
tb_to_us = mulhwu_scale_factor(freq, 1000000);
return;
}
static void parse_bootinfo(unsigned long r3,
unsigned long r4, unsigned long r5,
unsigned long r6, unsigned long r7)
{
bd_t *bd = NULL;
char *cmdline_start = NULL;
int cmdline_len = 0;
if (r3) {
if ((r3 & 0xf0000000) == 0)
r3 += KERNELBASE;
if ((r3 & 0xf0000000) == KERNELBASE) {
bd = (void *)r3;
memcpy(&ppcboot_bd, bd, sizeof(ppcboot_bd));
ppcboot_bd_valid = 1;
}
}
#ifdef CONFIG_BLK_DEV_INITRD
if (r4 && r5 && r5 > r4) {
if ((r4 & 0xf0000000) == 0)
r4 += KERNELBASE;
if ((r5 & 0xf0000000) == 0)
r5 += KERNELBASE;
if ((r4 & 0xf0000000) == KERNELBASE) {
initrd_start = r4;
initrd_end = r5;
initrd_below_start_ok = 1;
}
}
#endif /* CONFIG_BLK_DEV_INITRD */
if (r6 && r7 && r7 > r6) {
if ((r6 & 0xf0000000) == 0)
r6 += KERNELBASE;
if ((r7 & 0xf0000000) == 0)
r7 += KERNELBASE;
if ((r6 & 0xf0000000) == KERNELBASE) {
cmdline_start = (void *)r6;
cmdline_len = (r7 - r6);
strncpy(cmd_line, cmdline_start, cmdline_len);
}
}
}
void hdpu_heartbeat(void)
{
if (mv64x60_read(&bh, MV64x60_GPP_VALUE) & (1 << 5))
mv64x60_write(&bh, MV64x60_GPP_VALUE_CLR, (1 << 5));
else
mv64x60_write(&bh, MV64x60_GPP_VALUE_SET, (1 << 5));
ppc_md.heartbeat_count = ppc_md.heartbeat_reset;
}
static void __init hdpu_map_io(void)
{
io_block_mapping(0xf1000000, 0xf1000000, 0x20000, _PAGE_IO);
}
#ifdef CONFIG_SMP
char hdpu_smp0[] = "SMP Cpu #0";
char hdpu_smp1[] = "SMP Cpu #1";
static irqreturn_t hdpu_smp_cpu0_int_handler(int irq, void *dev_id)
{
volatile unsigned int doorbell;
doorbell = mv64x60_read(&bh, MV64360_CPU0_DOORBELL);
/* Ack the doorbell interrupts */
mv64x60_write(&bh, MV64360_CPU0_DOORBELL_CLR, doorbell);
if (doorbell & 1) {
smp_message_recv(0);
}
if (doorbell & 2) {
smp_message_recv(1);
}
if (doorbell & 4) {
smp_message_recv(2);
}
if (doorbell & 8) {
smp_message_recv(3);
}
return IRQ_HANDLED;
}
static irqreturn_t hdpu_smp_cpu1_int_handler(int irq, void *dev_id)
{
volatile unsigned int doorbell;
doorbell = mv64x60_read(&bh, MV64360_CPU1_DOORBELL);
/* Ack the doorbell interrupts */
mv64x60_write(&bh, MV64360_CPU1_DOORBELL_CLR, doorbell);
if (doorbell & 1) {
smp_message_recv(0);
}
if (doorbell & 2) {
smp_message_recv(1);
}
if (doorbell & 4) {
smp_message_recv(2);
}
if (doorbell & 8) {
smp_message_recv(3);
}
return IRQ_HANDLED;
}
static void smp_hdpu_CPU_two(void)
{
__asm__ __volatile__
("\n"
"lis 3,0x0000\n"
"ori 3,3,0x00c0\n"
"mtspr 26, 3\n" "li 4,0\n" "mtspr 27,4\n" "rfi");
}
static int smp_hdpu_probe(void)
{
int *cpu_count_reg;
int num_cpus = 0;
cpu_count_reg = ioremap(HDPU_NEXUS_ID_BASE, HDPU_NEXUS_ID_SIZE);
if (cpu_count_reg) {
num_cpus = (*cpu_count_reg >> 20) & 0x3;
iounmap(cpu_count_reg);
}
/* Validate the bits in the CPLD. If we could not map the reg, return 2.
* If the register reported 0 or 3, return 2.
* Older CPLD revisions set these bits to all ones (val = 3).
*/
if ((num_cpus < 1) || (num_cpus > 2)) {
printk
("Unable to determine the number of processors %d . deafulting to 2.\n",
num_cpus);
num_cpus = 2;
}
return num_cpus;
}
static void
smp_hdpu_message_pass(int target, int msg)
{
if (msg > 0x3) {
printk("SMP %d: smp_message_pass: unknown msg %d\n",
smp_processor_id(), msg);
return;
}
switch (target) {
case MSG_ALL:
mv64x60_write(&bh, MV64360_CPU0_DOORBELL, 1 << msg);
mv64x60_write(&bh, MV64360_CPU1_DOORBELL, 1 << msg);
break;
case MSG_ALL_BUT_SELF:
if (smp_processor_id())
mv64x60_write(&bh, MV64360_CPU0_DOORBELL, 1 << msg);
else
mv64x60_write(&bh, MV64360_CPU1_DOORBELL, 1 << msg);
break;
default:
if (target == 0)
mv64x60_write(&bh, MV64360_CPU0_DOORBELL, 1 << msg);
else
mv64x60_write(&bh, MV64360_CPU1_DOORBELL, 1 << msg);
break;
}
}
static void smp_hdpu_kick_cpu(int nr)
{
volatile unsigned int *bootaddr;
if (ppc_md.progress)
ppc_md.progress("smp_hdpu_kick_cpu", 0);
hdpu_cpustate_set(CPUSTATE_KERNEL_MAJOR | CPUSTATE_KERNEL_CPU1_KICK);
/* Disable BootCS. Must also reduce the windows size to zero. */
bh.ci->disable_window_32bit(&bh, MV64x60_CPU2BOOT_WIN);
mv64x60_set_32bit_window(&bh, MV64x60_CPU2BOOT_WIN, 0, 0, 0);
bootaddr = ioremap(HDPU_INTERNAL_SRAM_BASE, HDPU_INTERNAL_SRAM_SIZE);
if (!bootaddr) {
if (ppc_md.progress)
ppc_md.progress("smp_hdpu_kick_cpu: ioremap failed", 0);
return;
}
memcpy((void *)(bootaddr + 0x40), (void *)&smp_hdpu_CPU_two, 0x20);
/* map SRAM to 0xfff00000 */
bh.ci->disable_window_32bit(&bh, MV64x60_CPU2SRAM_WIN);
mv64x60_set_32bit_window(&bh, MV64x60_CPU2SRAM_WIN,
0xfff00000, HDPU_INTERNAL_SRAM_SIZE, 0);
bh.ci->enable_window_32bit(&bh, MV64x60_CPU2SRAM_WIN);
/* Enable CPU1 arbitration */
mv64x60_clr_bits(&bh, MV64x60_CPU_MASTER_CNTL, (1 << 9));
/*
* Wait 100mSecond until other CPU has reached __secondary_start.
* When it reaches, it is permittable to rever the SRAM mapping etc...
*/
mdelay(100);
*(unsigned long *)KERNELBASE = nr;
asm volatile ("dcbf 0,%0"::"r" (KERNELBASE):"memory");
iounmap(bootaddr);
/* Set up window for internal sram (256KByte insize) */
bh.ci->disable_window_32bit(&bh, MV64x60_CPU2SRAM_WIN);
mv64x60_set_32bit_window(&bh, MV64x60_CPU2SRAM_WIN,
HDPU_INTERNAL_SRAM_BASE,
HDPU_INTERNAL_SRAM_SIZE, 0);
bh.ci->enable_window_32bit(&bh, MV64x60_CPU2SRAM_WIN);
/*
* Set up windows for embedded FLASH (using boot CS window).
*/
bh.ci->disable_window_32bit(&bh, MV64x60_CPU2BOOT_WIN);
mv64x60_set_32bit_window(&bh, MV64x60_CPU2BOOT_WIN,
HDPU_EMB_FLASH_BASE, HDPU_EMB_FLASH_SIZE, 0);
bh.ci->enable_window_32bit(&bh, MV64x60_CPU2BOOT_WIN);
}
static void smp_hdpu_setup_cpu(int cpu_nr)
{
if (cpu_nr == 0) {
if (ppc_md.progress)
ppc_md.progress("smp_hdpu_setup_cpu 0", 0);
mv64x60_write(&bh, MV64360_CPU0_DOORBELL_CLR, 0xff);
mv64x60_write(&bh, MV64360_CPU0_DOORBELL_MASK, 0xff);
request_irq(60, hdpu_smp_cpu0_int_handler,
IRQF_DISABLED, hdpu_smp0, 0);
}
if (cpu_nr == 1) {
if (ppc_md.progress)
ppc_md.progress("smp_hdpu_setup_cpu 1", 0);
hdpu_cpustate_set(CPUSTATE_KERNEL_MAJOR |
CPUSTATE_KERNEL_CPU1_OK);
/* Enable L1 Parity Bits */
hdpu_set_l1pe();
/* Enable L2 cache */
_set_L2CR(0);
_set_L2CR(0x80080000);
mv64x60_write(&bh, MV64360_CPU1_DOORBELL_CLR, 0x0);
mv64x60_write(&bh, MV64360_CPU1_DOORBELL_MASK, 0xff);
request_irq(28, hdpu_smp_cpu1_int_handler,
IRQF_DISABLED, hdpu_smp1, 0);
}
}
void __devinit hdpu_tben_give()
{
volatile unsigned long *val = 0;
/* By writing 0 to the TBEN_BASE, the timebases is frozen */
val = ioremap(HDPU_TBEN_BASE, 4);
*val = 0;
mb();
spin_lock(&timebase_lock);
timebase_upper = get_tbu();
timebase_lower = get_tbl();
spin_unlock(&timebase_lock);
while (timebase_upper || timebase_lower)
barrier();
/* By writing 1 to the TBEN_BASE, the timebases is thawed */
*val = 1;
mb();
iounmap(val);
}
void __devinit hdpu_tben_take()
{
while (!(timebase_upper || timebase_lower))
barrier();
spin_lock(&timebase_lock);
set_tb(timebase_upper, timebase_lower);
timebase_upper = 0;
timebase_lower = 0;
spin_unlock(&timebase_lock);
}
static struct smp_ops_t hdpu_smp_ops = {
.message_pass = smp_hdpu_message_pass,
.probe = smp_hdpu_probe,
.kick_cpu = smp_hdpu_kick_cpu,
.setup_cpu = smp_hdpu_setup_cpu,
.give_timebase = hdpu_tben_give,
.take_timebase = hdpu_tben_take,
};
#endif /* CONFIG_SMP */
void __init
platform_init(unsigned long r3, unsigned long r4, unsigned long r5,
unsigned long r6, unsigned long r7)
{
parse_bootinfo(r3, r4, r5, r6, r7);
isa_mem_base = 0;
ppc_md.setup_arch = hdpu_setup_arch;
ppc_md.init = hdpu_init2;
ppc_md.show_cpuinfo = hdpu_show_cpuinfo;
ppc_md.init_IRQ = hdpu_init_irq;
ppc_md.get_irq = mv64360_get_irq;
ppc_md.restart = hdpu_restart;
ppc_md.power_off = hdpu_power_off;
ppc_md.halt = hdpu_halt;
ppc_md.find_end_of_memory = hdpu_find_end_of_memory;
ppc_md.calibrate_decr = hdpu_calibrate_decr;
ppc_md.setup_io_mappings = hdpu_map_io;
bh.p_base = CONFIG_MV64X60_NEW_BASE;
bh.v_base = (unsigned long *)bh.p_base;
hdpu_set_bat();
#if defined(CONFIG_SERIAL_TEXT_DEBUG)
ppc_md.progress = hdpu_mpsc_progress; /* embedded UART */
mv64x60_progress_init(bh.p_base);
#endif /* CONFIG_SERIAL_TEXT_DEBUG */
#ifdef CONFIG_SMP
smp_ops = &hdpu_smp_ops;
#endif /* CONFIG_SMP */
#if defined(CONFIG_SERIAL_MPSC) || defined(CONFIG_MV643XX_ETH)
platform_notify = hdpu_platform_notify;
#endif
return;
}
#if defined(CONFIG_SERIAL_TEXT_DEBUG) && defined(CONFIG_SERIAL_MPSC_CONSOLE)
/* SMP safe version of the serial text debug routine. Uses Semaphore 0 */
void hdpu_mpsc_progress(char *s, unsigned short hex)
{
while (mv64x60_read(&bh, MV64360_WHO_AM_I) !=
mv64x60_read(&bh, MV64360_SEMAPHORE_0)) {
}
mv64x60_mpsc_progress(s, hex);
mv64x60_write(&bh, MV64360_SEMAPHORE_0, 0xff);
}
#endif
static void hdpu_cpustate_set(unsigned char new_state)
{
unsigned int state = (new_state << 21);
mv64x60_write(&bh, MV64x60_GPP_VALUE_CLR, (0xff << 21));
mv64x60_write(&bh, MV64x60_GPP_VALUE_CLR, state);
}
#ifdef CONFIG_MTD_PHYSMAP
static struct mtd_partition hdpu_partitions[] = {
{
.name = "Root FS",
.size = 0x03400000,
.offset = 0,
.mask_flags = 0,
},{
.name = "User FS",
.size = 0x00800000,
.offset = 0x03400000,
.mask_flags = 0,
},{
.name = "Kernel Image",
.size = 0x002C0000,
.offset = 0x03C00000,
.mask_flags = 0,
},{
.name = "bootEnv",
.size = 0x00040000,
.offset = 0x03EC0000,
.mask_flags = 0,
},{
.name = "bootROM",
.size = 0x00100000,
.offset = 0x03F00000,
.mask_flags = 0,
}
};
static int __init hdpu_setup_mtd(void)
{
physmap_set_partitions(hdpu_partitions, 5);
return 0;
}
arch_initcall(hdpu_setup_mtd);
#endif
#ifdef CONFIG_HDPU_FEATURES
static struct resource hdpu_cpustate_resources[] = {
[0] = {
.name = "addr base",
.start = MV64x60_GPP_VALUE_SET,
.end = MV64x60_GPP_VALUE_CLR + 1,
.flags = IORESOURCE_MEM,
},
};
static struct resource hdpu_nexus_resources[] = {
[0] = {
.name = "nexus register",
.start = HDPU_NEXUS_ID_BASE,
.end = HDPU_NEXUS_ID_BASE + HDPU_NEXUS_ID_SIZE,
.flags = IORESOURCE_MEM,
},
};
static struct platform_device hdpu_cpustate_device = {
.name = HDPU_CPUSTATE_NAME,
.id = 0,
.num_resources = ARRAY_SIZE(hdpu_cpustate_resources),
.resource = hdpu_cpustate_resources,
};
static struct platform_device hdpu_nexus_device = {
.name = HDPU_NEXUS_NAME,
.id = 0,
.num_resources = ARRAY_SIZE(hdpu_nexus_resources),
.resource = hdpu_nexus_resources,
};
static int __init hdpu_add_pds(void)
{
platform_device_register(&hdpu_cpustate_device);
platform_device_register(&hdpu_nexus_device);
return 0;
}
arch_initcall(hdpu_add_pds);
#endif