linux-sg2042/drivers/spi/spi-loopback-test.c

1007 lines
24 KiB
C
Raw Normal View History

/*
* linux/drivers/spi/spi-loopback-test.c
*
* (c) Martin Sperl <kernel@martin.sperl.org>
*
* Loopback test driver to test several typical spi_message conditions
* that a spi_master driver may encounter
* this can also get used for regression testing
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/delay.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/list_sort.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/printk.h>
#include <linux/spi/spi.h>
#include "spi-test.h"
/* flag to only simulate transfers */
int simulate_only;
module_param(simulate_only, int, 0);
MODULE_PARM_DESC(simulate_only, "if not 0 do not execute the spi message");
/* dump spi messages */
int dump_messages;
module_param(dump_messages, int, 0);
MODULE_PARM_DESC(dump_messages,
"=1 dump the basic spi_message_structure, " \
"=2 dump the spi_message_structure including data, " \
"=3 dump the spi_message structure before and after execution");
/* the device is jumpered for loopback - enabling some rx_buf tests */
int loopback;
module_param(loopback, int, 0);
MODULE_PARM_DESC(loopback,
"if set enable loopback mode, where the rx_buf " \
"is checked to match tx_buf after the spi_message " \
"is executed");
/* run only a specific test */
int run_only_test = -1;
module_param(run_only_test, int, 0);
MODULE_PARM_DESC(run_only_test,
"only run the test with this number (0-based !)");
/* the actual tests to execute */
static struct spi_test spi_tests[] = {
{
.description = "tx/rx-transfer - start of page",
.fill_option = FILL_COUNT_8,
.iterate_len = { ITERATE_MAX_LEN },
.iterate_tx_align = ITERATE_ALIGN,
.iterate_rx_align = ITERATE_ALIGN,
.transfers = {
{
.len = 1,
.tx_buf = TX(0),
.rx_buf = RX(0),
},
},
},
{
.description = "tx/rx-transfer - crossing PAGE_SIZE",
.fill_option = FILL_COUNT_8,
.iterate_len = { ITERATE_MAX_LEN },
.iterate_tx_align = ITERATE_ALIGN,
.iterate_rx_align = ITERATE_ALIGN,
.transfers = {
{
.len = 1,
.tx_buf = TX(PAGE_SIZE - 4),
.rx_buf = RX(PAGE_SIZE - 4),
},
},
},
{
.description = "tx-transfer - only",
.fill_option = FILL_COUNT_8,
.iterate_len = { ITERATE_MAX_LEN },
.iterate_tx_align = ITERATE_ALIGN,
.transfers = {
{
.len = 1,
.tx_buf = TX(0),
},
},
},
{
.description = "rx-transfer - only",
.fill_option = FILL_COUNT_8,
.iterate_len = { ITERATE_MAX_LEN },
.iterate_rx_align = ITERATE_ALIGN,
.transfers = {
{
.len = 1,
.rx_buf = RX(0),
},
},
},
{
.description = "two tx-transfers - alter both",
.fill_option = FILL_COUNT_8,
.iterate_len = { ITERATE_LEN },
.iterate_tx_align = ITERATE_ALIGN,
.iterate_transfer_mask = BIT(0) | BIT(1),
.transfers = {
{
.len = 1,
.tx_buf = TX(0),
},
{
.len = 1,
/* this is why we cant use ITERATE_MAX_LEN */
.tx_buf = TX(SPI_TEST_MAX_SIZE_HALF),
},
},
},
{
.description = "two tx-transfers - alter first",
.fill_option = FILL_COUNT_8,
.iterate_len = { ITERATE_MAX_LEN },
.iterate_tx_align = ITERATE_ALIGN,
.iterate_transfer_mask = BIT(1),
.transfers = {
{
.len = 1,
.tx_buf = TX(64),
},
{
.len = 1,
.tx_buf = TX(0),
},
},
},
{
.description = "two tx-transfers - alter second",
.fill_option = FILL_COUNT_8,
.iterate_len = { ITERATE_MAX_LEN },
.iterate_tx_align = ITERATE_ALIGN,
.iterate_transfer_mask = BIT(0),
.transfers = {
{
.len = 16,
.tx_buf = TX(0),
},
{
.len = 1,
.tx_buf = TX(64),
},
},
},
{
.description = "two transfers tx then rx - alter both",
.fill_option = FILL_COUNT_8,
.iterate_len = { ITERATE_MAX_LEN },
.iterate_tx_align = ITERATE_ALIGN,
.iterate_transfer_mask = BIT(0) | BIT(1),
.transfers = {
{
.len = 1,
.tx_buf = TX(0),
},
{
.len = 1,
.rx_buf = RX(0),
},
},
},
{
.description = "two transfers tx then rx - alter tx",
.fill_option = FILL_COUNT_8,
.iterate_len = { ITERATE_MAX_LEN },
.iterate_tx_align = ITERATE_ALIGN,
.iterate_transfer_mask = BIT(0),
.transfers = {
{
.len = 1,
.tx_buf = TX(0),
},
{
.len = 1,
.rx_buf = RX(0),
},
},
},
{
.description = "two transfers tx then rx - alter rx",
.fill_option = FILL_COUNT_8,
.iterate_len = { ITERATE_MAX_LEN },
.iterate_tx_align = ITERATE_ALIGN,
.iterate_transfer_mask = BIT(1),
.transfers = {
{
.len = 1,
.tx_buf = TX(0),
},
{
.len = 1,
.rx_buf = RX(0),
},
},
},
{
.description = "two tx+rx transfers - alter both",
.fill_option = FILL_COUNT_8,
.iterate_len = { ITERATE_LEN },
.iterate_tx_align = ITERATE_ALIGN,
.iterate_transfer_mask = BIT(0) | BIT(1),
.transfers = {
{
.len = 1,
.tx_buf = TX(0),
.rx_buf = RX(0),
},
{
.len = 1,
/* making sure we align without overwrite
* the reason we can not use ITERATE_MAX_LEN
*/
.tx_buf = TX(SPI_TEST_MAX_SIZE_HALF),
.rx_buf = RX(SPI_TEST_MAX_SIZE_HALF),
},
},
},
{
.description = "two tx+rx transfers - alter first",
.fill_option = FILL_COUNT_8,
.iterate_len = { ITERATE_MAX_LEN },
.iterate_tx_align = ITERATE_ALIGN,
.iterate_transfer_mask = BIT(0),
.transfers = {
{
.len = 1,
/* making sure we align without overwrite */
.tx_buf = TX(1024),
.rx_buf = RX(1024),
},
{
.len = 1,
/* making sure we align without overwrite */
.tx_buf = TX(0),
.rx_buf = RX(0),
},
},
},
{
.description = "two tx+rx transfers - alter second",
.fill_option = FILL_COUNT_8,
.iterate_len = { ITERATE_MAX_LEN },
.iterate_tx_align = ITERATE_ALIGN,
.iterate_transfer_mask = BIT(1),
.transfers = {
{
.len = 1,
.tx_buf = TX(0),
.rx_buf = RX(0),
},
{
.len = 1,
/* making sure we align without overwrite */
.tx_buf = TX(1024),
.rx_buf = RX(1024),
},
},
},
{ /* end of tests sequence */ }
};
static int spi_loopback_test_probe(struct spi_device *spi)
{
int ret;
dev_info(&spi->dev, "Executing spi-loopback-tests\n");
ret = spi_test_run_tests(spi, spi_tests);
dev_info(&spi->dev, "Finished spi-loopback-tests with return: %i\n",
ret);
return ret;
}
/* non const match table to permit to change via a module parameter */
static struct of_device_id spi_loopback_test_of_match[] = {
{ .compatible = "linux,spi-loopback-test", },
{ }
};
/* allow to override the compatible string via a module_parameter */
module_param_string(compatible, spi_loopback_test_of_match[0].compatible,
sizeof(spi_loopback_test_of_match[0].compatible),
0000);
MODULE_DEVICE_TABLE(of, spi_loopback_test_of_match);
static struct spi_driver spi_loopback_test_driver = {
.driver = {
.name = "spi-loopback-test",
.owner = THIS_MODULE,
.of_match_table = spi_loopback_test_of_match,
},
.probe = spi_loopback_test_probe,
};
module_spi_driver(spi_loopback_test_driver);
MODULE_AUTHOR("Martin Sperl <kernel@martin.sperl.org>");
MODULE_DESCRIPTION("test spi_driver to check core functionality");
MODULE_LICENSE("GPL");
/*-------------------------------------------------------------------------*/
/* spi_test implementation */
#define RANGE_CHECK(ptr, plen, start, slen) \
((ptr >= start) && (ptr + plen <= start + slen))
/* we allocate one page more, to allow for offsets */
#define SPI_TEST_MAX_SIZE_PLUS (SPI_TEST_MAX_SIZE + PAGE_SIZE)
static void spi_test_print_hex_dump(char *pre, const void *ptr, size_t len)
{
/* limit the hex_dump */
if (len < 1024) {
print_hex_dump(KERN_INFO, pre,
DUMP_PREFIX_OFFSET, 16, 1,
ptr, len, 0);
return;
}
/* print head */
print_hex_dump(KERN_INFO, pre,
DUMP_PREFIX_OFFSET, 16, 1,
ptr, 512, 0);
/* print tail */
pr_info("%s truncated - continuing at offset %04zx\n",
pre, len - 512);
print_hex_dump(KERN_INFO, pre,
DUMP_PREFIX_OFFSET, 16, 1,
ptr + (len - 512), 512, 0);
}
static void spi_test_dump_message(struct spi_device *spi,
struct spi_message *msg,
bool dump_data)
{
struct spi_transfer *xfer;
int i;
u8 b;
dev_info(&spi->dev, " spi_msg@%pK\n", msg);
if (msg->status)
dev_info(&spi->dev, " status: %i\n",
msg->status);
dev_info(&spi->dev, " frame_length: %i\n",
msg->frame_length);
dev_info(&spi->dev, " actual_length: %i\n",
msg->actual_length);
list_for_each_entry(xfer, &msg->transfers, transfer_list) {
dev_info(&spi->dev, " spi_transfer@%pK\n", xfer);
dev_info(&spi->dev, " len: %i\n", xfer->len);
dev_info(&spi->dev, " tx_buf: %pK\n", xfer->tx_buf);
if (dump_data && xfer->tx_buf)
spi_test_print_hex_dump(" TX: ",
xfer->tx_buf,
xfer->len);
dev_info(&spi->dev, " rx_buf: %pK\n", xfer->rx_buf);
if (dump_data && xfer->rx_buf)
spi_test_print_hex_dump(" RX: ",
xfer->rx_buf,
xfer->len);
/* check for unwritten test pattern on rx_buf */
if (xfer->rx_buf) {
for (i = 0 ; i < xfer->len ; i++) {
b = ((u8 *)xfer->rx_buf)[xfer->len - 1 - i];
if (b != SPI_TEST_PATTERN_UNWRITTEN)
break;
}
if (i)
dev_info(&spi->dev,
" rx_buf filled with %02x starts at offset: %i\n",
SPI_TEST_PATTERN_UNWRITTEN,
xfer->len - i);
}
}
}
struct rx_ranges {
struct list_head list;
u8 *start;
u8 *end;
};
int rx_ranges_cmp(void *priv, struct list_head *a, struct list_head *b)
{
struct rx_ranges *rx_a = list_entry(a, struct rx_ranges, list);
struct rx_ranges *rx_b = list_entry(b, struct rx_ranges, list);
if (rx_a->start > rx_b->start)
return 1;
if (rx_a->start < rx_b->start)
return -1;
return 0;
}
static int spi_check_rx_ranges(struct spi_device *spi,
struct spi_message *msg,
void *rx)
{
struct spi_transfer *xfer;
struct rx_ranges ranges[SPI_TEST_MAX_TRANSFERS], *r;
int i = 0;
LIST_HEAD(ranges_list);
u8 *addr;
int ret = 0;
/* loop over all transfers to fill in the rx_ranges */
list_for_each_entry(xfer, &msg->transfers, transfer_list) {
/* if there is no rx, then no check is needed */
if (!xfer->rx_buf)
continue;
/* fill in the rx_range */
if (RANGE_CHECK(xfer->rx_buf, xfer->len,
rx, SPI_TEST_MAX_SIZE_PLUS)) {
ranges[i].start = xfer->rx_buf;
ranges[i].end = xfer->rx_buf + xfer->len;
list_add(&ranges[i].list, &ranges_list);
i++;
}
}
/* if no ranges, then we can return and avoid the checks...*/
if (!i)
return 0;
/* sort the list */
list_sort(NULL, &ranges_list, rx_ranges_cmp);
/* and iterate over all the rx addresses */
for (addr = rx; addr < (u8 *)rx + SPI_TEST_MAX_SIZE_PLUS; addr++) {
/* if we are the DO not write pattern,
* then continue with the loop...
*/
if (*addr == SPI_TEST_PATTERN_DO_NOT_WRITE)
continue;
/* check if we are inside a range */
list_for_each_entry(r, &ranges_list, list) {
/* if so then set to end... */
if ((addr >= r->start) && (addr < r->end))
addr = r->end;
}
/* second test after a (hopefull) translation */
if (*addr == SPI_TEST_PATTERN_DO_NOT_WRITE)
continue;
/* if still not found then something has modified too much */
/* we could list the "closest" transfer here... */
dev_err(&spi->dev,
"loopback strangeness - rx changed outside of allowed range at: %pK\n",
addr);
/* do not return, only set ret,
* so that we list all addresses
*/
ret = -ERANGE;
}
return ret;
}
static int spi_test_check_loopback_result(struct spi_device *spi,
struct spi_message *msg,
void *tx, void *rx)
{
struct spi_transfer *xfer;
u8 rxb, txb;
size_t i;
int ret;
/* checks rx_buffer pattern are valid with loopback or without */
ret = spi_check_rx_ranges(spi, msg, rx);
if (ret)
return ret;
/* if we run without loopback, then return now */
if (!loopback)
return 0;
/* if applicable to transfer check that rx_buf is equal to tx_buf */
list_for_each_entry(xfer, &msg->transfers, transfer_list) {
/* if there is no rx, then no check is needed */
if (!xfer->rx_buf)
continue;
/* so depending on tx_buf we need to handle things */
if (xfer->tx_buf) {
for (i = 1; i < xfer->len; i++) {
txb = ((u8 *)xfer->tx_buf)[i];
rxb = ((u8 *)xfer->rx_buf)[i];
if (txb != rxb)
goto mismatch_error;
}
} else {
/* first byte received */
txb = ((u8 *)xfer->rx_buf)[0];
/* first byte may be 0 or xff */
if (!((txb == 0) || (txb == 0xff))) {
dev_err(&spi->dev,
"loopback strangeness - we expect 0x00 or 0xff, but not 0x%02x\n",
txb);
return -EINVAL;
}
/* check that all bytes are identical */
for (i = 1; i < xfer->len; i++) {
rxb = ((u8 *)xfer->rx_buf)[i];
if (rxb != txb)
goto mismatch_error;
}
}
}
return 0;
mismatch_error:
dev_err(&spi->dev,
"loopback strangeness - transfer missmatch on byte %04zx - expected 0x%02x, but got 0x%02x\n",
i, txb, rxb);
return -EINVAL;
}
static int spi_test_translate(struct spi_device *spi,
void **ptr, size_t len,
void *tx, void *rx)
{
size_t off;
/* return on null */
if (!*ptr)
return 0;
/* in the MAX_SIZE_HALF case modify the pointer */
if (((size_t)*ptr) & SPI_TEST_MAX_SIZE_HALF)
/* move the pointer to the correct range */
*ptr += (SPI_TEST_MAX_SIZE_PLUS / 2) -
SPI_TEST_MAX_SIZE_HALF;
/* RX range
* - we check against MAX_SIZE_PLUS to allow for automated alignment
*/
if (RANGE_CHECK(*ptr, len, RX(0), SPI_TEST_MAX_SIZE_PLUS)) {
off = *ptr - RX(0);
*ptr = rx + off;
return 0;
}
/* TX range */
if (RANGE_CHECK(*ptr, len, TX(0), SPI_TEST_MAX_SIZE_PLUS)) {
off = *ptr - TX(0);
*ptr = tx + off;
return 0;
}
dev_err(&spi->dev,
"PointerRange [%pK:%pK[ not in range [%pK:%pK[ or [%pK:%pK[\n",
*ptr, *ptr + len,
RX(0), RX(SPI_TEST_MAX_SIZE),
TX(0), TX(SPI_TEST_MAX_SIZE));
return -EINVAL;
}
static int spi_test_fill_pattern(struct spi_device *spi,
struct spi_test *test)
{
struct spi_transfer *xfers = test->transfers;
u8 *tx_buf;
size_t count = 0;
int i, j;
#ifdef __BIG_ENDIAN
#define GET_VALUE_BYTE(value, index, bytes) \
(value >> (8 * (bytes - 1 - count % bytes)))
#else
#define GET_VALUE_BYTE(value, index, bytes) \
(value >> (8 * (count % bytes)))
#endif
/* fill all transfers with the pattern requested */
for (i = 0; i < test->transfer_count; i++) {
/* fill rx_buf with SPI_TEST_PATTERN_UNWRITTEN */
if (xfers[i].rx_buf)
memset(xfers[i].rx_buf, SPI_TEST_PATTERN_UNWRITTEN,
xfers[i].len);
/* if tx_buf is NULL then skip */
tx_buf = (u8 *)xfers[i].tx_buf;
if (!tx_buf)
continue;
/* modify all the transfers */
for (j = 0; j < xfers[i].len; j++, tx_buf++, count++) {
/* fill tx */
switch (test->fill_option) {
case FILL_MEMSET_8:
*tx_buf = test->fill_pattern;
break;
case FILL_MEMSET_16:
*tx_buf = GET_VALUE_BYTE(test->fill_pattern,
count, 2);
break;
case FILL_MEMSET_24:
*tx_buf = GET_VALUE_BYTE(test->fill_pattern,
count, 3);
break;
case FILL_MEMSET_32:
*tx_buf = GET_VALUE_BYTE(test->fill_pattern,
count, 4);
break;
case FILL_COUNT_8:
*tx_buf = count;
break;
case FILL_COUNT_16:
*tx_buf = GET_VALUE_BYTE(count, count, 2);
break;
case FILL_COUNT_24:
*tx_buf = GET_VALUE_BYTE(count, count, 3);
break;
case FILL_COUNT_32:
*tx_buf = GET_VALUE_BYTE(count, count, 4);
break;
case FILL_TRANSFER_BYTE_8:
*tx_buf = j;
break;
case FILL_TRANSFER_BYTE_16:
*tx_buf = GET_VALUE_BYTE(j, j, 2);
break;
case FILL_TRANSFER_BYTE_24:
*tx_buf = GET_VALUE_BYTE(j, j, 3);
break;
case FILL_TRANSFER_BYTE_32:
*tx_buf = GET_VALUE_BYTE(j, j, 4);
break;
case FILL_TRANSFER_NUM:
*tx_buf = i;
break;
default:
dev_err(&spi->dev,
"unsupported fill_option: %i\n",
test->fill_option);
return -EINVAL;
}
}
}
return 0;
}
static int _spi_test_run_iter(struct spi_device *spi,
struct spi_test *test,
void *tx, void *rx)
{
struct spi_message *msg = &test->msg;
struct spi_transfer *x;
int i, ret;
/* initialize message - zero-filled via static initialization */
spi_message_init_no_memset(msg);
/* fill rx with the DO_NOT_WRITE pattern */
memset(rx, SPI_TEST_PATTERN_DO_NOT_WRITE, SPI_TEST_MAX_SIZE_PLUS);
/* add the individual transfers */
for (i = 0; i < test->transfer_count; i++) {
x = &test->transfers[i];
/* patch the values of tx_buf */
ret = spi_test_translate(spi, (void **)&x->tx_buf, x->len,
(void *)tx, rx);
if (ret)
return ret;
/* patch the values of rx_buf */
ret = spi_test_translate(spi, &x->rx_buf, x->len,
(void *)tx, rx);
if (ret)
return ret;
/* and add it to the list */
spi_message_add_tail(x, msg);
}
/* fill in the transfer buffers with pattern */
ret = spi_test_fill_pattern(spi, test);
if (ret)
return ret;
/* and execute */
if (test->execute_msg)
ret = test->execute_msg(spi, test, tx, rx);
else
ret = spi_test_execute_msg(spi, test, tx, rx);
/* handle result */
if (ret == test->expected_return)
return 0;
dev_err(&spi->dev,
"test failed - test returned %i, but we expect %i\n",
ret, test->expected_return);
if (ret)
return ret;
/* if it is 0, as we expected something else,
* then return something special
*/
return -EFAULT;
}
static int spi_test_run_iter(struct spi_device *spi,
const struct spi_test *testtemplate,
void *tx, void *rx,
size_t len,
size_t tx_off,
size_t rx_off
)
{
struct spi_test test;
int i, tx_count, rx_count;
/* copy the test template to test */
memcpy(&test, testtemplate, sizeof(test));
/* set up test->transfers to the correct count */
if (!test.transfer_count) {
for (i = 0;
(i < SPI_TEST_MAX_TRANSFERS) && test.transfers[i].len;
i++) {
test.transfer_count++;
}
}
/* if iterate_transfer_mask is not set,
* then set it to first transfer only
*/
if (!(test.iterate_transfer_mask & (BIT(test.transfer_count) - 1)))
test.iterate_transfer_mask = 1;
/* count number of transfers with tx/rx_buf != NULL */
rx_count = tx_count = 0;
for (i = 0; i < test.transfer_count; i++) {
if (test.transfers[i].tx_buf)
tx_count++;
if (test.transfers[i].rx_buf)
rx_count++;
}
/* in some iteration cases warn and exit early,
* as there is nothing to do, that has not been tested already...
*/
if (tx_off && (!tx_count)) {
dev_warn_once(&spi->dev,
"%s: iterate_tx_off configured with tx_buf==NULL - ignoring\n",
test.description);
return 0;
}
if (rx_off && (!rx_count)) {
dev_warn_once(&spi->dev,
"%s: iterate_rx_off configured with rx_buf==NULL - ignoring\n",
test.description);
return 0;
}
/* write out info */
if (!(len || tx_off || rx_off)) {
dev_info(&spi->dev, "Running test %s\n", test.description);
} else {
dev_info(&spi->dev,
" with iteration values: len = %zu, tx_off = %zu, rx_off = %zu\n",
len, tx_off, rx_off);
}
/* update in the values from iteration values */
for (i = 0; i < test.transfer_count; i++) {
/* only when bit in transfer mask is set */
if (!(test.iterate_transfer_mask & BIT(i)))
continue;
if (len)
test.transfers[i].len = len;
if (test.transfers[i].tx_buf)
test.transfers[i].tx_buf += tx_off;
if (test.transfers[i].tx_buf)
test.transfers[i].rx_buf += rx_off;
}
/* and execute */
return _spi_test_run_iter(spi, &test, tx, rx);
}
/**
* spi_test_execute_msg - default implementation to run a test
*
* spi: @spi_device on which to run the @spi_message
* test: the test to execute, which already contains @msg
* tx: the tx buffer allocated for the test sequence
* rx: the rx buffer allocated for the test sequence
*
* Returns: error code of spi_sync as well as basic error checking
*/
int spi_test_execute_msg(struct spi_device *spi, struct spi_test *test,
void *tx, void *rx)
{
struct spi_message *msg = &test->msg;
int ret = 0;
int i;
/* only if we do not simulate */
if (!simulate_only) {
/* dump the complete message before and after the transfer */
if (dump_messages == 3)
spi_test_dump_message(spi, msg, true);
/* run spi message */
ret = spi_sync(spi, msg);
if (ret == -ETIMEDOUT) {
dev_info(&spi->dev,
"spi-message timed out - reruning...\n");
/* rerun after a few explicit schedules */
for (i = 0; i < 16; i++)
schedule();
ret = spi_sync(spi, msg);
}
if (ret) {
dev_err(&spi->dev,
"Failed to execute spi_message: %i\n",
ret);
goto exit;
}
/* do some extra error checks */
if (msg->frame_length != msg->actual_length) {
dev_err(&spi->dev,
"actual length differs from expected\n");
ret = -EIO;
goto exit;
}
/* run rx-buffer tests */
ret = spi_test_check_loopback_result(spi, msg, tx, rx);
}
/* if requested or on error dump message (including data) */
exit:
if (dump_messages || ret)
spi_test_dump_message(spi, msg,
(dump_messages >= 2) || (ret));
return ret;
}
EXPORT_SYMBOL_GPL(spi_test_execute_msg);
/**
* spi_test_run_test - run an individual spi_test
* including all the relevant iterations on:
* length and buffer alignment
*
* spi: the spi_device to send the messages to
* test: the test which we need to execute
* tx: the tx buffer allocated for the test sequence
* rx: the rx buffer allocated for the test sequence
*
* Returns: status code of spi_sync or other failures
*/
int spi_test_run_test(struct spi_device *spi, const struct spi_test *test,
void *tx, void *rx)
{
int idx_len;
size_t len;
size_t tx_align, rx_align;
int ret;
/* test for transfer limits */
if (test->transfer_count >= SPI_TEST_MAX_TRANSFERS) {
dev_err(&spi->dev,
"%s: Exceeded max number of transfers with %i\n",
test->description, test->transfer_count);
return -E2BIG;
}
/* setting up some values in spi_message
* based on some settings in spi_master
* some of this can also get done in the run() method
*/
/* iterate over all the iterable values using macros
* (to make it a bit more readable...
*/
#define FOR_EACH_ITERATE(var, defaultvalue) \
for (idx_##var = -1, var = defaultvalue; \
((idx_##var < 0) || \
( \
(idx_##var < SPI_TEST_MAX_ITERATE) && \
(var = test->iterate_##var[idx_##var]) \
) \
); \
idx_##var++)
#define FOR_EACH_ALIGNMENT(var) \
for (var = 0; \
var < (test->iterate_##var ? \
(spi->master->dma_alignment ? \
spi->master->dma_alignment : \
test->iterate_##var) : \
1); \
var++)
FOR_EACH_ITERATE(len, 0) {
FOR_EACH_ALIGNMENT(tx_align) {
FOR_EACH_ALIGNMENT(rx_align) {
/* and run the iteration */
ret = spi_test_run_iter(spi, test,
tx, rx,
len,
tx_align,
rx_align);
if (ret)
return ret;
}
}
}
return 0;
}
EXPORT_SYMBOL_GPL(spi_test_run_test);
/**
* spi_test_run_tests - run an array of spi_messages tests
* @spi: the spi device on which to run the tests
* @tests: NULL-terminated array of @spi_test
*
* Returns: status errors as per @spi_test_run_test()
*/
int spi_test_run_tests(struct spi_device *spi,
struct spi_test *tests)
{
char *rx = NULL, *tx = NULL;
int ret = 0, count = 0;
struct spi_test *test;
/* allocate rx/tx buffers of 128kB size without devm
* in the hope that is on a page boundary
*/
rx = kzalloc(SPI_TEST_MAX_SIZE_PLUS, GFP_KERNEL);
if (!rx) {
ret = -ENOMEM;
goto out;
}
tx = kzalloc(SPI_TEST_MAX_SIZE_PLUS, GFP_KERNEL);
if (!tx) {
ret = -ENOMEM;
goto out;
}
/* now run the individual tests in the table */
for (test = tests, count = 0; test->description[0];
test++, count++) {
/* only run test if requested */
if ((run_only_test > -1) && (count != run_only_test))
continue;
/* run custom implementation */
if (test->run_test)
ret = test->run_test(spi, test, tx, rx);
else
ret = spi_test_run_test(spi, test, tx, rx);
if (ret)
goto out;
/* add some delays so that we can easily
* detect the individual tests when using a logic analyzer
* we also add scheduling to avoid potential spi_timeouts...
*/
mdelay(100);
schedule();
}
out:
kfree(rx);
kfree(tx);
return ret;
}
EXPORT_SYMBOL_GPL(spi_test_run_tests);