linux-sg2042/sound/oss/au1000.c

2217 lines
57 KiB
C
Raw Normal View History

/*
* au1000.c -- Sound driver for Alchemy Au1000 MIPS Internet Edge
* Processor.
*
* Copyright 2001 MontaVista Software Inc.
* Author: MontaVista Software, Inc.
* stevel@mvista.com or source@mvista.com
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
* NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 675 Mass Ave, Cambridge, MA 02139, USA.
*
*
* Module command line parameters:
*
* Supported devices:
* /dev/dsp standard OSS /dev/dsp device
* /dev/mixer standard OSS /dev/mixer device
*
* Notes:
*
* 1. Much of the OSS buffer allocation, ioctl's, and mmap'ing are
* taken, slightly modified or not at all, from the ES1371 driver,
* so refer to the credits in es1371.c for those. The rest of the
* code (probe, open, read, write, the ISR, etc.) is new.
*
* Revision history
* 06.27.2001 Initial version
* 03.20.2002 Added mutex locks around read/write methods, to prevent
* simultaneous access on SMP or preemptible kernels. Also
* removed the counter/pointer fragment aligning at the end
* of read/write methods [stevel].
* 03.21.2002 Add support for coherent DMA on the audio read/write DMA
* channels [stevel].
*
*/
#include <linux/module.h>
#include <linux/string.h>
#include <linux/ioport.h>
#include <linux/sched.h>
#include <linux/delay.h>
#include <linux/sound.h>
#include <linux/slab.h>
#include <linux/soundcard.h>
#include <linux/init.h>
#include <linux/page-flags.h>
#include <linux/poll.h>
#include <linux/pci.h>
#include <linux/bitops.h>
#include <linux/proc_fs.h>
#include <linux/spinlock.h>
#include <linux/smp_lock.h>
#include <linux/ac97_codec.h>
#include <linux/interrupt.h>
#include <linux/mutex.h>
#include <asm/io.h>
#include <asm/uaccess.h>
#include <asm/mach-au1x00/au1000.h>
#include <asm/mach-au1x00/au1000_dma.h>
/* --------------------------------------------------------------------- */
#undef OSS_DOCUMENTED_MIXER_SEMANTICS
#undef AU1000_DEBUG
#undef AU1000_VERBOSE_DEBUG
#define AU1000_MODULE_NAME "Au1000 audio"
#define PFX AU1000_MODULE_NAME
#ifdef AU1000_DEBUG
#define dbg(format, arg...) printk(KERN_DEBUG PFX ": " format "\n" , ## arg)
#else
#define dbg(format, arg...) do {} while (0)
#endif
#define err(format, arg...) printk(KERN_ERR PFX ": " format "\n" , ## arg)
#define info(format, arg...) printk(KERN_INFO PFX ": " format "\n" , ## arg)
#define warn(format, arg...) printk(KERN_WARNING PFX ": " format "\n" , ## arg)
/* misc stuff */
#define POLL_COUNT 0x5000
#define AC97_EXT_DACS (AC97_EXTID_SDAC | AC97_EXTID_CDAC | AC97_EXTID_LDAC)
/* Boot options */
static int vra = 0; // 0 = no VRA, 1 = use VRA if codec supports it
module_param(vra, bool, 0);
MODULE_PARM_DESC(vra, "if 1 use VRA if codec supports it");
/* --------------------------------------------------------------------- */
struct au1000_state {
/* soundcore stuff */
int dev_audio;
#ifdef AU1000_DEBUG
/* debug /proc entry */
struct proc_dir_entry *ps;
struct proc_dir_entry *ac97_ps;
#endif /* AU1000_DEBUG */
struct ac97_codec codec;
unsigned codec_base_caps;// AC'97 reg 00h, "Reset Register"
unsigned codec_ext_caps; // AC'97 reg 28h, "Extended Audio ID"
int no_vra; // do not use VRA
spinlock_t lock;
struct mutex open_mutex;
struct mutex sem;
mode_t open_mode;
wait_queue_head_t open_wait;
struct dmabuf {
unsigned int dmanr; // DMA Channel number
unsigned sample_rate; // Hz
unsigned src_factor; // SRC interp/decimation (no vra)
unsigned sample_size; // 8 or 16
int num_channels; // 1 = mono, 2 = stereo, 4, 6
int dma_bytes_per_sample;// DMA bytes per audio sample frame
int user_bytes_per_sample;// User bytes per audio sample frame
int cnt_factor; // user-to-DMA bytes per audio
// sample frame
void *rawbuf;
dma_addr_t dmaaddr;
unsigned buforder;
unsigned numfrag; // # of DMA fragments in DMA buffer
unsigned fragshift;
void *nextIn; // ptr to next-in to DMA buffer
void *nextOut;// ptr to next-out from DMA buffer
int count; // current byte count in DMA buffer
unsigned total_bytes; // total bytes written or read
unsigned error; // over/underrun
wait_queue_head_t wait;
/* redundant, but makes calculations easier */
unsigned fragsize; // user perception of fragment size
unsigned dma_fragsize; // DMA (real) fragment size
unsigned dmasize; // Total DMA buffer size
// (mult. of DMA fragsize)
/* OSS stuff */
unsigned mapped:1;
unsigned ready:1;
unsigned stopped:1;
unsigned ossfragshift;
int ossmaxfrags;
unsigned subdivision;
} dma_dac , dma_adc;
} au1000_state;
/* --------------------------------------------------------------------- */
static inline unsigned ld2(unsigned int x)
{
unsigned r = 0;
if (x >= 0x10000) {
x >>= 16;
r += 16;
}
if (x >= 0x100) {
x >>= 8;
r += 8;
}
if (x >= 0x10) {
x >>= 4;
r += 4;
}
if (x >= 4) {
x >>= 2;
r += 2;
}
if (x >= 2)
r++;
return r;
}
/* --------------------------------------------------------------------- */
static void au1000_delay(int msec)
{
unsigned long tmo;
signed long tmo2;
if (in_interrupt())
return;
tmo = jiffies + (msec * HZ) / 1000;
for (;;) {
tmo2 = tmo - jiffies;
if (tmo2 <= 0)
break;
schedule_timeout(tmo2);
}
}
/* --------------------------------------------------------------------- */
static u16 rdcodec(struct ac97_codec *codec, u8 addr)
{
struct au1000_state *s = (struct au1000_state *)codec->private_data;
unsigned long flags;
u32 cmd;
u16 data;
int i;
spin_lock_irqsave(&s->lock, flags);
for (i = 0; i < POLL_COUNT; i++)
if (!(au_readl(AC97C_STATUS) & AC97C_CP))
break;
if (i == POLL_COUNT)
err("rdcodec: codec cmd pending expired!");
cmd = (u32) addr & AC97C_INDEX_MASK;
cmd |= AC97C_READ; // read command
au_writel(cmd, AC97C_CMD);
/* now wait for the data */
for (i = 0; i < POLL_COUNT; i++)
if (!(au_readl(AC97C_STATUS) & AC97C_CP))
break;
if (i == POLL_COUNT) {
err("rdcodec: read poll expired!");
return 0;
}
data = au_readl(AC97C_CMD) & 0xffff;
spin_unlock_irqrestore(&s->lock, flags);
return data;
}
static void wrcodec(struct ac97_codec *codec, u8 addr, u16 data)
{
struct au1000_state *s = (struct au1000_state *)codec->private_data;
unsigned long flags;
u32 cmd;
int i;
spin_lock_irqsave(&s->lock, flags);
for (i = 0; i < POLL_COUNT; i++)
if (!(au_readl(AC97C_STATUS) & AC97C_CP))
break;
if (i == POLL_COUNT)
err("wrcodec: codec cmd pending expired!");
cmd = (u32) addr & AC97C_INDEX_MASK;
cmd &= ~AC97C_READ; // write command
cmd |= ((u32) data << AC97C_WD_BIT); // OR in the data word
au_writel(cmd, AC97C_CMD);
spin_unlock_irqrestore(&s->lock, flags);
}
static void waitcodec(struct ac97_codec *codec)
{
u16 temp;
int i;
/* codec_wait is used to wait for a ready state after
an AC97C_RESET. */
au1000_delay(10);
// first poll the CODEC_READY tag bit
for (i = 0; i < POLL_COUNT; i++)
if (au_readl(AC97C_STATUS) & AC97C_READY)
break;
if (i == POLL_COUNT) {
err("waitcodec: CODEC_READY poll expired!");
return;
}
// get AC'97 powerdown control/status register
temp = rdcodec(codec, AC97_POWER_CONTROL);
// If anything is powered down, power'em up
if (temp & 0x7f00) {
// Power on
wrcodec(codec, AC97_POWER_CONTROL, 0);
au1000_delay(100);
// Reread
temp = rdcodec(codec, AC97_POWER_CONTROL);
}
// Check if Codec REF,ANL,DAC,ADC ready
if ((temp & 0x7f0f) != 0x000f)
err("codec reg 26 status (0x%x) not ready!!", temp);
}
/* --------------------------------------------------------------------- */
/* stop the ADC before calling */
static void set_adc_rate(struct au1000_state *s, unsigned rate)
{
struct dmabuf *adc = &s->dma_adc;
struct dmabuf *dac = &s->dma_dac;
unsigned adc_rate, dac_rate;
u16 ac97_extstat;
if (s->no_vra) {
// calc SRC factor
adc->src_factor = ((96000 / rate) + 1) >> 1;
adc->sample_rate = 48000 / adc->src_factor;
return;
}
adc->src_factor = 1;
ac97_extstat = rdcodec(&s->codec, AC97_EXTENDED_STATUS);
rate = rate > 48000 ? 48000 : rate;
// enable VRA
wrcodec(&s->codec, AC97_EXTENDED_STATUS,
ac97_extstat | AC97_EXTSTAT_VRA);
// now write the sample rate
wrcodec(&s->codec, AC97_PCM_LR_ADC_RATE, (u16) rate);
// read it back for actual supported rate
adc_rate = rdcodec(&s->codec, AC97_PCM_LR_ADC_RATE);
#ifdef AU1000_VERBOSE_DEBUG
dbg("%s: set to %d Hz", __FUNCTION__, adc_rate);
#endif
// some codec's don't allow unequal DAC and ADC rates, in which case
// writing one rate reg actually changes both.
dac_rate = rdcodec(&s->codec, AC97_PCM_FRONT_DAC_RATE);
if (dac->num_channels > 2)
wrcodec(&s->codec, AC97_PCM_SURR_DAC_RATE, dac_rate);
if (dac->num_channels > 4)
wrcodec(&s->codec, AC97_PCM_LFE_DAC_RATE, dac_rate);
adc->sample_rate = adc_rate;
dac->sample_rate = dac_rate;
}
/* stop the DAC before calling */
static void set_dac_rate(struct au1000_state *s, unsigned rate)
{
struct dmabuf *dac = &s->dma_dac;
struct dmabuf *adc = &s->dma_adc;
unsigned adc_rate, dac_rate;
u16 ac97_extstat;
if (s->no_vra) {
// calc SRC factor
dac->src_factor = ((96000 / rate) + 1) >> 1;
dac->sample_rate = 48000 / dac->src_factor;
return;
}
dac->src_factor = 1;
ac97_extstat = rdcodec(&s->codec, AC97_EXTENDED_STATUS);
rate = rate > 48000 ? 48000 : rate;
// enable VRA
wrcodec(&s->codec, AC97_EXTENDED_STATUS,
ac97_extstat | AC97_EXTSTAT_VRA);
// now write the sample rate
wrcodec(&s->codec, AC97_PCM_FRONT_DAC_RATE, (u16) rate);
// I don't support different sample rates for multichannel,
// so make these channels the same.
if (dac->num_channels > 2)
wrcodec(&s->codec, AC97_PCM_SURR_DAC_RATE, (u16) rate);
if (dac->num_channels > 4)
wrcodec(&s->codec, AC97_PCM_LFE_DAC_RATE, (u16) rate);
// read it back for actual supported rate
dac_rate = rdcodec(&s->codec, AC97_PCM_FRONT_DAC_RATE);
#ifdef AU1000_VERBOSE_DEBUG
dbg("%s: set to %d Hz", __FUNCTION__, dac_rate);
#endif
// some codec's don't allow unequal DAC and ADC rates, in which case
// writing one rate reg actually changes both.
adc_rate = rdcodec(&s->codec, AC97_PCM_LR_ADC_RATE);
dac->sample_rate = dac_rate;
adc->sample_rate = adc_rate;
}
static void stop_dac(struct au1000_state *s)
{
struct dmabuf *db = &s->dma_dac;
unsigned long flags;
if (db->stopped)
return;
spin_lock_irqsave(&s->lock, flags);
disable_dma(db->dmanr);
db->stopped = 1;
spin_unlock_irqrestore(&s->lock, flags);
}
static void stop_adc(struct au1000_state *s)
{
struct dmabuf *db = &s->dma_adc;
unsigned long flags;
if (db->stopped)
return;
spin_lock_irqsave(&s->lock, flags);
disable_dma(db->dmanr);
db->stopped = 1;
spin_unlock_irqrestore(&s->lock, flags);
}
static void set_xmit_slots(int num_channels)
{
u32 ac97_config = au_readl(AC97C_CONFIG) & ~AC97C_XMIT_SLOTS_MASK;
switch (num_channels) {
case 1: // mono
case 2: // stereo, slots 3,4
ac97_config |= (0x3 << AC97C_XMIT_SLOTS_BIT);
break;
case 4: // stereo with surround, slots 3,4,7,8
ac97_config |= (0x33 << AC97C_XMIT_SLOTS_BIT);
break;
case 6: // stereo with surround and center/LFE, slots 3,4,6,7,8,9
ac97_config |= (0x7b << AC97C_XMIT_SLOTS_BIT);
break;
}
au_writel(ac97_config, AC97C_CONFIG);
}
static void set_recv_slots(int num_channels)
{
u32 ac97_config = au_readl(AC97C_CONFIG) & ~AC97C_RECV_SLOTS_MASK;
/*
* Always enable slots 3 and 4 (stereo). Slot 6 is
* optional Mic ADC, which I don't support yet.
*/
ac97_config |= (0x3 << AC97C_RECV_SLOTS_BIT);
au_writel(ac97_config, AC97C_CONFIG);
}
static void start_dac(struct au1000_state *s)
{
struct dmabuf *db = &s->dma_dac;
unsigned long flags;
unsigned long buf1, buf2;
if (!db->stopped)
return;
spin_lock_irqsave(&s->lock, flags);
au_readl(AC97C_STATUS); // read status to clear sticky bits
// reset Buffer 1 and 2 pointers to nextOut and nextOut+dma_fragsize
buf1 = virt_to_phys(db->nextOut);
buf2 = buf1 + db->dma_fragsize;
if (buf2 >= db->dmaaddr + db->dmasize)
buf2 -= db->dmasize;
set_xmit_slots(db->num_channels);
init_dma(db->dmanr);
if (get_dma_active_buffer(db->dmanr) == 0) {
clear_dma_done0(db->dmanr); // clear DMA done bit
set_dma_addr0(db->dmanr, buf1);
set_dma_addr1(db->dmanr, buf2);
} else {
clear_dma_done1(db->dmanr); // clear DMA done bit
set_dma_addr1(db->dmanr, buf1);
set_dma_addr0(db->dmanr, buf2);
}
set_dma_count(db->dmanr, db->dma_fragsize>>1);
enable_dma_buffers(db->dmanr);
start_dma(db->dmanr);
#ifdef AU1000_VERBOSE_DEBUG
dump_au1000_dma_channel(db->dmanr);
#endif
db->stopped = 0;
spin_unlock_irqrestore(&s->lock, flags);
}
static void start_adc(struct au1000_state *s)
{
struct dmabuf *db = &s->dma_adc;
unsigned long flags;
unsigned long buf1, buf2;
if (!db->stopped)
return;
spin_lock_irqsave(&s->lock, flags);
au_readl(AC97C_STATUS); // read status to clear sticky bits
// reset Buffer 1 and 2 pointers to nextIn and nextIn+dma_fragsize
buf1 = virt_to_phys(db->nextIn);
buf2 = buf1 + db->dma_fragsize;
if (buf2 >= db->dmaaddr + db->dmasize)
buf2 -= db->dmasize;
set_recv_slots(db->num_channels);
init_dma(db->dmanr);
if (get_dma_active_buffer(db->dmanr) == 0) {
clear_dma_done0(db->dmanr); // clear DMA done bit
set_dma_addr0(db->dmanr, buf1);
set_dma_addr1(db->dmanr, buf2);
} else {
clear_dma_done1(db->dmanr); // clear DMA done bit
set_dma_addr1(db->dmanr, buf1);
set_dma_addr0(db->dmanr, buf2);
}
set_dma_count(db->dmanr, db->dma_fragsize>>1);
enable_dma_buffers(db->dmanr);
start_dma(db->dmanr);
#ifdef AU1000_VERBOSE_DEBUG
dump_au1000_dma_channel(db->dmanr);
#endif
db->stopped = 0;
spin_unlock_irqrestore(&s->lock, flags);
}
/* --------------------------------------------------------------------- */
#define DMABUF_DEFAULTORDER (17-PAGE_SHIFT)
#define DMABUF_MINORDER 1
static inline void dealloc_dmabuf(struct au1000_state *s, struct dmabuf *db)
{
struct page *page, *pend;
if (db->rawbuf) {
/* undo marking the pages as reserved */
pend = virt_to_page(db->rawbuf +
(PAGE_SIZE << db->buforder) - 1);
for (page = virt_to_page(db->rawbuf); page <= pend; page++)
ClearPageReserved(page);
dma_free_noncoherent(NULL,
PAGE_SIZE << db->buforder,
db->rawbuf,
db->dmaaddr);
}
db->rawbuf = db->nextIn = db->nextOut = NULL;
db->mapped = db->ready = 0;
}
static int prog_dmabuf(struct au1000_state *s, struct dmabuf *db)
{
int order;
unsigned user_bytes_per_sec;
unsigned bufs;
struct page *page, *pend;
unsigned rate = db->sample_rate;
if (!db->rawbuf) {
db->ready = db->mapped = 0;
for (order = DMABUF_DEFAULTORDER;
order >= DMABUF_MINORDER; order--)
if ((db->rawbuf = dma_alloc_noncoherent(NULL,
PAGE_SIZE << order,
&db->dmaaddr,
0)))
break;
if (!db->rawbuf)
return -ENOMEM;
db->buforder = order;
/* now mark the pages as reserved;
otherwise remap_pfn_range doesn't do what we want */
pend = virt_to_page(db->rawbuf +
(PAGE_SIZE << db->buforder) - 1);
for (page = virt_to_page(db->rawbuf); page <= pend; page++)
SetPageReserved(page);
}
db->cnt_factor = 1;
if (db->sample_size == 8)
db->cnt_factor *= 2;
if (db->num_channels == 1)
db->cnt_factor *= 2;
db->cnt_factor *= db->src_factor;
db->count = 0;
db->nextIn = db->nextOut = db->rawbuf;
db->user_bytes_per_sample = (db->sample_size>>3) * db->num_channels;
db->dma_bytes_per_sample = 2 * ((db->num_channels == 1) ?
2 : db->num_channels);
user_bytes_per_sec = rate * db->user_bytes_per_sample;
bufs = PAGE_SIZE << db->buforder;
if (db->ossfragshift) {
if ((1000 << db->ossfragshift) < user_bytes_per_sec)
db->fragshift = ld2(user_bytes_per_sec/1000);
else
db->fragshift = db->ossfragshift;
} else {
db->fragshift = ld2(user_bytes_per_sec / 100 /
(db->subdivision ? db->subdivision : 1));
if (db->fragshift < 3)
db->fragshift = 3;
}
db->fragsize = 1 << db->fragshift;
db->dma_fragsize = db->fragsize * db->cnt_factor;
db->numfrag = bufs / db->dma_fragsize;
while (db->numfrag < 4 && db->fragshift > 3) {
db->fragshift--;
db->fragsize = 1 << db->fragshift;
db->dma_fragsize = db->fragsize * db->cnt_factor;
db->numfrag = bufs / db->dma_fragsize;
}
if (db->ossmaxfrags >= 4 && db->ossmaxfrags < db->numfrag)
db->numfrag = db->ossmaxfrags;
db->dmasize = db->dma_fragsize * db->numfrag;
memset(db->rawbuf, 0, bufs);
#ifdef AU1000_VERBOSE_DEBUG
dbg("rate=%d, samplesize=%d, channels=%d",
rate, db->sample_size, db->num_channels);
dbg("fragsize=%d, cnt_factor=%d, dma_fragsize=%d",
db->fragsize, db->cnt_factor, db->dma_fragsize);
dbg("numfrag=%d, dmasize=%d", db->numfrag, db->dmasize);
#endif
db->ready = 1;
return 0;
}
static inline int prog_dmabuf_adc(struct au1000_state *s)
{
stop_adc(s);
return prog_dmabuf(s, &s->dma_adc);
}
static inline int prog_dmabuf_dac(struct au1000_state *s)
{
stop_dac(s);
return prog_dmabuf(s, &s->dma_dac);
}
/* hold spinlock for the following */
static irqreturn_t dac_dma_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
struct au1000_state *s = (struct au1000_state *) dev_id;
struct dmabuf *dac = &s->dma_dac;
unsigned long newptr;
u32 ac97c_stat, buff_done;
ac97c_stat = au_readl(AC97C_STATUS);
#ifdef AU1000_VERBOSE_DEBUG
if (ac97c_stat & (AC97C_XU | AC97C_XO | AC97C_TE))
dbg("AC97C status = 0x%08x", ac97c_stat);
#endif
if ((buff_done = get_dma_buffer_done(dac->dmanr)) == 0) {
/* fastpath out, to ease interrupt sharing */
return IRQ_HANDLED;
}
spin_lock(&s->lock);
if (buff_done != (DMA_D0 | DMA_D1)) {
dac->nextOut += dac->dma_fragsize;
if (dac->nextOut >= dac->rawbuf + dac->dmasize)
dac->nextOut -= dac->dmasize;
/* update playback pointers */
newptr = virt_to_phys(dac->nextOut) + dac->dma_fragsize;
if (newptr >= dac->dmaaddr + dac->dmasize)
newptr -= dac->dmasize;
dac->count -= dac->dma_fragsize;
dac->total_bytes += dac->dma_fragsize;
if (dac->count <= 0) {
#ifdef AU1000_VERBOSE_DEBUG
dbg("dac underrun");
#endif
spin_unlock(&s->lock);
stop_dac(s);
spin_lock(&s->lock);
dac->count = 0;
dac->nextIn = dac->nextOut;
} else if (buff_done == DMA_D0) {
clear_dma_done0(dac->dmanr); // clear DMA done bit
set_dma_count0(dac->dmanr, dac->dma_fragsize>>1);
set_dma_addr0(dac->dmanr, newptr);
enable_dma_buffer0(dac->dmanr); // reenable
} else {
clear_dma_done1(dac->dmanr); // clear DMA done bit
set_dma_count1(dac->dmanr, dac->dma_fragsize>>1);
set_dma_addr1(dac->dmanr, newptr);
enable_dma_buffer1(dac->dmanr); // reenable
}
} else {
// both done bits set, we missed an interrupt
spin_unlock(&s->lock);
stop_dac(s);
spin_lock(&s->lock);
dac->nextOut += 2*dac->dma_fragsize;
if (dac->nextOut >= dac->rawbuf + dac->dmasize)
dac->nextOut -= dac->dmasize;
dac->count -= 2*dac->dma_fragsize;
dac->total_bytes += 2*dac->dma_fragsize;
if (dac->count > 0) {
spin_unlock(&s->lock);
start_dac(s);
spin_lock(&s->lock);
}
}
/* wake up anybody listening */
if (waitqueue_active(&dac->wait))
wake_up(&dac->wait);
spin_unlock(&s->lock);
return IRQ_HANDLED;
}
static irqreturn_t adc_dma_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
struct au1000_state *s = (struct au1000_state *) dev_id;
struct dmabuf *adc = &s->dma_adc;
unsigned long newptr;
u32 ac97c_stat, buff_done;
ac97c_stat = au_readl(AC97C_STATUS);
#ifdef AU1000_VERBOSE_DEBUG
if (ac97c_stat & (AC97C_RU | AC97C_RO))
dbg("AC97C status = 0x%08x", ac97c_stat);
#endif
if ((buff_done = get_dma_buffer_done(adc->dmanr)) == 0) {
/* fastpath out, to ease interrupt sharing */
return IRQ_HANDLED;
}
spin_lock(&s->lock);
if (buff_done != (DMA_D0 | DMA_D1)) {
if (adc->count + adc->dma_fragsize > adc->dmasize) {
// Overrun. Stop ADC and log the error
spin_unlock(&s->lock);
stop_adc(s);
adc->error++;
err("adc overrun");
return IRQ_NONE;
}
adc->nextIn += adc->dma_fragsize;
if (adc->nextIn >= adc->rawbuf + adc->dmasize)
adc->nextIn -= adc->dmasize;
/* update capture pointers */
newptr = virt_to_phys(adc->nextIn) + adc->dma_fragsize;
if (newptr >= adc->dmaaddr + adc->dmasize)
newptr -= adc->dmasize;
adc->count += adc->dma_fragsize;
adc->total_bytes += adc->dma_fragsize;
if (buff_done == DMA_D0) {
clear_dma_done0(adc->dmanr); // clear DMA done bit
set_dma_count0(adc->dmanr, adc->dma_fragsize>>1);
set_dma_addr0(adc->dmanr, newptr);
enable_dma_buffer0(adc->dmanr); // reenable
} else {
clear_dma_done1(adc->dmanr); // clear DMA done bit
set_dma_count1(adc->dmanr, adc->dma_fragsize>>1);
set_dma_addr1(adc->dmanr, newptr);
enable_dma_buffer1(adc->dmanr); // reenable
}
} else {
// both done bits set, we missed an interrupt
spin_unlock(&s->lock);
stop_adc(s);
spin_lock(&s->lock);
if (adc->count + 2*adc->dma_fragsize > adc->dmasize) {
// Overrun. Log the error
adc->error++;
err("adc overrun");
spin_unlock(&s->lock);
return IRQ_NONE;
}
adc->nextIn += 2*adc->dma_fragsize;
if (adc->nextIn >= adc->rawbuf + adc->dmasize)
adc->nextIn -= adc->dmasize;
adc->count += 2*adc->dma_fragsize;
adc->total_bytes += 2*adc->dma_fragsize;
spin_unlock(&s->lock);
start_adc(s);
spin_lock(&s->lock);
}
/* wake up anybody listening */
if (waitqueue_active(&adc->wait))
wake_up(&adc->wait);
spin_unlock(&s->lock);
return IRQ_HANDLED;
}
/* --------------------------------------------------------------------- */
static loff_t au1000_llseek(struct file *file, loff_t offset, int origin)
{
return -ESPIPE;
}
static int au1000_open_mixdev(struct inode *inode, struct file *file)
{
file->private_data = &au1000_state;
return nonseekable_open(inode, file);
}
static int au1000_release_mixdev(struct inode *inode, struct file *file)
{
return 0;
}
static int mixdev_ioctl(struct ac97_codec *codec, unsigned int cmd,
unsigned long arg)
{
return codec->mixer_ioctl(codec, cmd, arg);
}
static int au1000_ioctl_mixdev(struct inode *inode, struct file *file,
unsigned int cmd, unsigned long arg)
{
struct au1000_state *s = (struct au1000_state *)file->private_data;
struct ac97_codec *codec = &s->codec;
return mixdev_ioctl(codec, cmd, arg);
}
static /*const */ struct file_operations au1000_mixer_fops = {
.owner = THIS_MODULE,
.llseek = au1000_llseek,
.ioctl = au1000_ioctl_mixdev,
.open = au1000_open_mixdev,
.release = au1000_release_mixdev,
};
/* --------------------------------------------------------------------- */
static int drain_dac(struct au1000_state *s, int nonblock)
{
unsigned long flags;
int count, tmo;
if (s->dma_dac.mapped || !s->dma_dac.ready || s->dma_dac.stopped)
return 0;
for (;;) {
spin_lock_irqsave(&s->lock, flags);
count = s->dma_dac.count;
spin_unlock_irqrestore(&s->lock, flags);
if (count <= 0)
break;
if (signal_pending(current))
break;
if (nonblock)
return -EBUSY;
tmo = 1000 * count / (s->no_vra ?
48000 : s->dma_dac.sample_rate);
tmo /= s->dma_dac.dma_bytes_per_sample;
au1000_delay(tmo);
}
if (signal_pending(current))
return -ERESTARTSYS;
return 0;
}
/* --------------------------------------------------------------------- */
static inline u8 S16_TO_U8(s16 ch)
{
return (u8) (ch >> 8) + 0x80;
}
static inline s16 U8_TO_S16(u8 ch)
{
return (s16) (ch - 0x80) << 8;
}
/*
* Translates user samples to dma buffer suitable for AC'97 DAC data:
* If mono, copy left channel to right channel in dma buffer.
* If 8 bit samples, cvt to 16-bit before writing to dma buffer.
* If interpolating (no VRA), duplicate every audio frame src_factor times.
*/
static int translate_from_user(struct dmabuf *db,
char* dmabuf,
char* userbuf,
int dmacount)
{
int sample, i;
int interp_bytes_per_sample;
int num_samples;
int mono = (db->num_channels == 1);
char usersample[12];
s16 ch, dmasample[6];
if (db->sample_size == 16 && !mono && db->src_factor == 1) {
// no translation necessary, just copy
if (copy_from_user(dmabuf, userbuf, dmacount))
return -EFAULT;
return dmacount;
}
interp_bytes_per_sample = db->dma_bytes_per_sample * db->src_factor;
num_samples = dmacount / interp_bytes_per_sample;
for (sample = 0; sample < num_samples; sample++) {
if (copy_from_user(usersample, userbuf,
db->user_bytes_per_sample)) {
dbg("%s: fault", __FUNCTION__);
return -EFAULT;
}
for (i = 0; i < db->num_channels; i++) {
if (db->sample_size == 8)
ch = U8_TO_S16(usersample[i]);
else
ch = *((s16 *) (&usersample[i * 2]));
dmasample[i] = ch;
if (mono)
dmasample[i + 1] = ch; // right channel
}
// duplicate every audio frame src_factor times
for (i = 0; i < db->src_factor; i++)
memcpy(dmabuf, dmasample, db->dma_bytes_per_sample);
userbuf += db->user_bytes_per_sample;
dmabuf += interp_bytes_per_sample;
}
return num_samples * interp_bytes_per_sample;
}
/*
* Translates AC'97 ADC samples to user buffer:
* If mono, send only left channel to user buffer.
* If 8 bit samples, cvt from 16 to 8 bit before writing to user buffer.
* If decimating (no VRA), skip over src_factor audio frames.
*/
static int translate_to_user(struct dmabuf *db,
char* userbuf,
char* dmabuf,
int dmacount)
{
int sample, i;
int interp_bytes_per_sample;
int num_samples;
int mono = (db->num_channels == 1);
char usersample[12];
if (db->sample_size == 16 && !mono && db->src_factor == 1) {
// no translation necessary, just copy
if (copy_to_user(userbuf, dmabuf, dmacount))
return -EFAULT;
return dmacount;
}
interp_bytes_per_sample = db->dma_bytes_per_sample * db->src_factor;
num_samples = dmacount / interp_bytes_per_sample;
for (sample = 0; sample < num_samples; sample++) {
for (i = 0; i < db->num_channels; i++) {
if (db->sample_size == 8)
usersample[i] =
S16_TO_U8(*((s16 *) (&dmabuf[i * 2])));
else
*((s16 *) (&usersample[i * 2])) =
*((s16 *) (&dmabuf[i * 2]));
}
if (copy_to_user(userbuf, usersample,
db->user_bytes_per_sample)) {
dbg("%s: fault", __FUNCTION__);
return -EFAULT;
}
userbuf += db->user_bytes_per_sample;
dmabuf += interp_bytes_per_sample;
}
return num_samples * interp_bytes_per_sample;
}
/*
* Copy audio data to/from user buffer from/to dma buffer, taking care
* that we wrap when reading/writing the dma buffer. Returns actual byte
* count written to or read from the dma buffer.
*/
static int copy_dmabuf_user(struct dmabuf *db, char* userbuf,
int count, int to_user)
{
char *bufptr = to_user ? db->nextOut : db->nextIn;
char *bufend = db->rawbuf + db->dmasize;
int cnt, ret;
if (bufptr + count > bufend) {
int partial = (int) (bufend - bufptr);
if (to_user) {
if ((cnt = translate_to_user(db, userbuf,
bufptr, partial)) < 0)
return cnt;
ret = cnt;
if ((cnt = translate_to_user(db, userbuf + partial,
db->rawbuf,
count - partial)) < 0)
return cnt;
ret += cnt;
} else {
if ((cnt = translate_from_user(db, bufptr, userbuf,
partial)) < 0)
return cnt;
ret = cnt;
if ((cnt = translate_from_user(db, db->rawbuf,
userbuf + partial,
count - partial)) < 0)
return cnt;
ret += cnt;
}
} else {
if (to_user)
ret = translate_to_user(db, userbuf, bufptr, count);
else
ret = translate_from_user(db, bufptr, userbuf, count);
}
return ret;
}
static ssize_t au1000_read(struct file *file, char *buffer,
size_t count, loff_t *ppos)
{
struct au1000_state *s = (struct au1000_state *)file->private_data;
struct dmabuf *db = &s->dma_adc;
DECLARE_WAITQUEUE(wait, current);
ssize_t ret;
unsigned long flags;
int cnt, usercnt, avail;
if (db->mapped)
return -ENXIO;
if (!access_ok(VERIFY_WRITE, buffer, count))
return -EFAULT;
ret = 0;
count *= db->cnt_factor;
mutex_lock(&s->sem);
add_wait_queue(&db->wait, &wait);
while (count > 0) {
// wait for samples in ADC dma buffer
do {
if (db->stopped)
start_adc(s);
spin_lock_irqsave(&s->lock, flags);
avail = db->count;
if (avail <= 0)
__set_current_state(TASK_INTERRUPTIBLE);
spin_unlock_irqrestore(&s->lock, flags);
if (avail <= 0) {
if (file->f_flags & O_NONBLOCK) {
if (!ret)
ret = -EAGAIN;
goto out;
}
mutex_unlock(&s->sem);
schedule();
if (signal_pending(current)) {
if (!ret)
ret = -ERESTARTSYS;
goto out2;
}
mutex_lock(&s->sem);
}
} while (avail <= 0);
// copy from nextOut to user
if ((cnt = copy_dmabuf_user(db, buffer,
count > avail ?
avail : count, 1)) < 0) {
if (!ret)
ret = -EFAULT;
goto out;
}
spin_lock_irqsave(&s->lock, flags);
db->count -= cnt;
db->nextOut += cnt;
if (db->nextOut >= db->rawbuf + db->dmasize)
db->nextOut -= db->dmasize;
spin_unlock_irqrestore(&s->lock, flags);
count -= cnt;
usercnt = cnt / db->cnt_factor;
buffer += usercnt;
ret += usercnt;
} // while (count > 0)
out:
mutex_unlock(&s->sem);
out2:
remove_wait_queue(&db->wait, &wait);
set_current_state(TASK_RUNNING);
return ret;
}
static ssize_t au1000_write(struct file *file, const char *buffer,
size_t count, loff_t * ppos)
{
struct au1000_state *s = (struct au1000_state *)file->private_data;
struct dmabuf *db = &s->dma_dac;
DECLARE_WAITQUEUE(wait, current);
ssize_t ret = 0;
unsigned long flags;
int cnt, usercnt, avail;
#ifdef AU1000_VERBOSE_DEBUG
dbg("write: count=%d", count);
#endif
if (db->mapped)
return -ENXIO;
if (!access_ok(VERIFY_READ, buffer, count))
return -EFAULT;
count *= db->cnt_factor;
mutex_lock(&s->sem);
add_wait_queue(&db->wait, &wait);
while (count > 0) {
// wait for space in playback buffer
do {
spin_lock_irqsave(&s->lock, flags);
avail = (int) db->dmasize - db->count;
if (avail <= 0)
__set_current_state(TASK_INTERRUPTIBLE);
spin_unlock_irqrestore(&s->lock, flags);
if (avail <= 0) {
if (file->f_flags & O_NONBLOCK) {
if (!ret)
ret = -EAGAIN;
goto out;
}
mutex_unlock(&s->sem);
schedule();
if (signal_pending(current)) {
if (!ret)
ret = -ERESTARTSYS;
goto out2;
}
mutex_lock(&s->sem);
}
} while (avail <= 0);
// copy from user to nextIn
if ((cnt = copy_dmabuf_user(db, (char *) buffer,
count > avail ?
avail : count, 0)) < 0) {
if (!ret)
ret = -EFAULT;
goto out;
}
spin_lock_irqsave(&s->lock, flags);
db->count += cnt;
db->nextIn += cnt;
if (db->nextIn >= db->rawbuf + db->dmasize)
db->nextIn -= db->dmasize;
spin_unlock_irqrestore(&s->lock, flags);
if (db->stopped)
start_dac(s);
count -= cnt;
usercnt = cnt / db->cnt_factor;
buffer += usercnt;
ret += usercnt;
} // while (count > 0)
out:
mutex_unlock(&s->sem);
out2:
remove_wait_queue(&db->wait, &wait);
set_current_state(TASK_RUNNING);
return ret;
}
/* No kernel lock - we have our own spinlock */
static unsigned int au1000_poll(struct file *file,
struct poll_table_struct *wait)
{
struct au1000_state *s = (struct au1000_state *)file->private_data;
unsigned long flags;
unsigned int mask = 0;
if (file->f_mode & FMODE_WRITE) {
if (!s->dma_dac.ready)
return 0;
poll_wait(file, &s->dma_dac.wait, wait);
}
if (file->f_mode & FMODE_READ) {
if (!s->dma_adc.ready)
return 0;
poll_wait(file, &s->dma_adc.wait, wait);
}
spin_lock_irqsave(&s->lock, flags);
if (file->f_mode & FMODE_READ) {
if (s->dma_adc.count >= (signed)s->dma_adc.dma_fragsize)
mask |= POLLIN | POLLRDNORM;
}
if (file->f_mode & FMODE_WRITE) {
if (s->dma_dac.mapped) {
if (s->dma_dac.count >=
(signed)s->dma_dac.dma_fragsize)
mask |= POLLOUT | POLLWRNORM;
} else {
if ((signed) s->dma_dac.dmasize >=
s->dma_dac.count + (signed)s->dma_dac.dma_fragsize)
mask |= POLLOUT | POLLWRNORM;
}
}
spin_unlock_irqrestore(&s->lock, flags);
return mask;
}
static int au1000_mmap(struct file *file, struct vm_area_struct *vma)
{
struct au1000_state *s = (struct au1000_state *)file->private_data;
struct dmabuf *db;
unsigned long size;
int ret = 0;
dbg("%s", __FUNCTION__);
lock_kernel();
mutex_lock(&s->sem);
if (vma->vm_flags & VM_WRITE)
db = &s->dma_dac;
else if (vma->vm_flags & VM_READ)
db = &s->dma_adc;
else {
ret = -EINVAL;
goto out;
}
if (vma->vm_pgoff != 0) {
ret = -EINVAL;
goto out;
}
size = vma->vm_end - vma->vm_start;
if (size > (PAGE_SIZE << db->buforder)) {
ret = -EINVAL;
goto out;
}
if (remap_pfn_range(vma, vma->vm_start, virt_to_phys(db->rawbuf),
size, vma->vm_page_prot)) {
ret = -EAGAIN;
goto out;
}
vma->vm_flags &= ~VM_IO;
db->mapped = 1;
out:
mutex_unlock(&s->sem);
unlock_kernel();
return ret;
}
#ifdef AU1000_VERBOSE_DEBUG
static struct ioctl_str_t {
unsigned int cmd;
const char *str;
} ioctl_str[] = {
{SNDCTL_DSP_RESET, "SNDCTL_DSP_RESET"},
{SNDCTL_DSP_SYNC, "SNDCTL_DSP_SYNC"},
{SNDCTL_DSP_SPEED, "SNDCTL_DSP_SPEED"},
{SNDCTL_DSP_STEREO, "SNDCTL_DSP_STEREO"},
{SNDCTL_DSP_GETBLKSIZE, "SNDCTL_DSP_GETBLKSIZE"},
{SNDCTL_DSP_SAMPLESIZE, "SNDCTL_DSP_SAMPLESIZE"},
{SNDCTL_DSP_CHANNELS, "SNDCTL_DSP_CHANNELS"},
{SOUND_PCM_WRITE_CHANNELS, "SOUND_PCM_WRITE_CHANNELS"},
{SOUND_PCM_WRITE_FILTER, "SOUND_PCM_WRITE_FILTER"},
{SNDCTL_DSP_POST, "SNDCTL_DSP_POST"},
{SNDCTL_DSP_SUBDIVIDE, "SNDCTL_DSP_SUBDIVIDE"},
{SNDCTL_DSP_SETFRAGMENT, "SNDCTL_DSP_SETFRAGMENT"},
{SNDCTL_DSP_GETFMTS, "SNDCTL_DSP_GETFMTS"},
{SNDCTL_DSP_SETFMT, "SNDCTL_DSP_SETFMT"},
{SNDCTL_DSP_GETOSPACE, "SNDCTL_DSP_GETOSPACE"},
{SNDCTL_DSP_GETISPACE, "SNDCTL_DSP_GETISPACE"},
{SNDCTL_DSP_NONBLOCK, "SNDCTL_DSP_NONBLOCK"},
{SNDCTL_DSP_GETCAPS, "SNDCTL_DSP_GETCAPS"},
{SNDCTL_DSP_GETTRIGGER, "SNDCTL_DSP_GETTRIGGER"},
{SNDCTL_DSP_SETTRIGGER, "SNDCTL_DSP_SETTRIGGER"},
{SNDCTL_DSP_GETIPTR, "SNDCTL_DSP_GETIPTR"},
{SNDCTL_DSP_GETOPTR, "SNDCTL_DSP_GETOPTR"},
{SNDCTL_DSP_MAPINBUF, "SNDCTL_DSP_MAPINBUF"},
{SNDCTL_DSP_MAPOUTBUF, "SNDCTL_DSP_MAPOUTBUF"},
{SNDCTL_DSP_SETSYNCRO, "SNDCTL_DSP_SETSYNCRO"},
{SNDCTL_DSP_SETDUPLEX, "SNDCTL_DSP_SETDUPLEX"},
{SNDCTL_DSP_GETODELAY, "SNDCTL_DSP_GETODELAY"},
{SNDCTL_DSP_GETCHANNELMASK, "SNDCTL_DSP_GETCHANNELMASK"},
{SNDCTL_DSP_BIND_CHANNEL, "SNDCTL_DSP_BIND_CHANNEL"},
{OSS_GETVERSION, "OSS_GETVERSION"},
{SOUND_PCM_READ_RATE, "SOUND_PCM_READ_RATE"},
{SOUND_PCM_READ_CHANNELS, "SOUND_PCM_READ_CHANNELS"},
{SOUND_PCM_READ_BITS, "SOUND_PCM_READ_BITS"},
{SOUND_PCM_READ_FILTER, "SOUND_PCM_READ_FILTER"}
};
#endif
// Need to hold a spin-lock before calling this!
static int dma_count_done(struct dmabuf *db)
{
if (db->stopped)
return 0;
return db->dma_fragsize - get_dma_residue(db->dmanr);
}
static int au1000_ioctl(struct inode *inode, struct file *file,
unsigned int cmd, unsigned long arg)
{
struct au1000_state *s = (struct au1000_state *)file->private_data;
unsigned long flags;
audio_buf_info abinfo;
count_info cinfo;
int count;
int val, mapped, ret, diff;
mapped = ((file->f_mode & FMODE_WRITE) && s->dma_dac.mapped) ||
((file->f_mode & FMODE_READ) && s->dma_adc.mapped);
#ifdef AU1000_VERBOSE_DEBUG
for (count=0; count<sizeof(ioctl_str)/sizeof(ioctl_str[0]); count++) {
if (ioctl_str[count].cmd == cmd)
break;
}
if (count < sizeof(ioctl_str) / sizeof(ioctl_str[0]))
dbg("ioctl %s, arg=0x%lx", ioctl_str[count].str, arg);
else
dbg("ioctl 0x%x unknown, arg=0x%lx", cmd, arg);
#endif
switch (cmd) {
case OSS_GETVERSION:
return put_user(SOUND_VERSION, (int *) arg);
case SNDCTL_DSP_SYNC:
if (file->f_mode & FMODE_WRITE)
return drain_dac(s, file->f_flags & O_NONBLOCK);
return 0;
case SNDCTL_DSP_SETDUPLEX:
return 0;
case SNDCTL_DSP_GETCAPS:
return put_user(DSP_CAP_DUPLEX | DSP_CAP_REALTIME |
DSP_CAP_TRIGGER | DSP_CAP_MMAP, (int *)arg);
case SNDCTL_DSP_RESET:
if (file->f_mode & FMODE_WRITE) {
stop_dac(s);
synchronize_irq();
s->dma_dac.count = s->dma_dac.total_bytes = 0;
s->dma_dac.nextIn = s->dma_dac.nextOut =
s->dma_dac.rawbuf;
}
if (file->f_mode & FMODE_READ) {
stop_adc(s);
synchronize_irq();
s->dma_adc.count = s->dma_adc.total_bytes = 0;
s->dma_adc.nextIn = s->dma_adc.nextOut =
s->dma_adc.rawbuf;
}
return 0;
case SNDCTL_DSP_SPEED:
if (get_user(val, (int *) arg))
return -EFAULT;
if (val >= 0) {
if (file->f_mode & FMODE_READ) {
stop_adc(s);
set_adc_rate(s, val);
}
if (file->f_mode & FMODE_WRITE) {
stop_dac(s);
set_dac_rate(s, val);
}
if (s->open_mode & FMODE_READ)
if ((ret = prog_dmabuf_adc(s)))
return ret;
if (s->open_mode & FMODE_WRITE)
if ((ret = prog_dmabuf_dac(s)))
return ret;
}
return put_user((file->f_mode & FMODE_READ) ?
s->dma_adc.sample_rate :
s->dma_dac.sample_rate,
(int *)arg);
case SNDCTL_DSP_STEREO:
if (get_user(val, (int *) arg))
return -EFAULT;
if (file->f_mode & FMODE_READ) {
stop_adc(s);
s->dma_adc.num_channels = val ? 2 : 1;
if ((ret = prog_dmabuf_adc(s)))
return ret;
}
if (file->f_mode & FMODE_WRITE) {
stop_dac(s);
s->dma_dac.num_channels = val ? 2 : 1;
if (s->codec_ext_caps & AC97_EXT_DACS) {
// disable surround and center/lfe in AC'97
u16 ext_stat = rdcodec(&s->codec,
AC97_EXTENDED_STATUS);
wrcodec(&s->codec, AC97_EXTENDED_STATUS,
ext_stat | (AC97_EXTSTAT_PRI |
AC97_EXTSTAT_PRJ |
AC97_EXTSTAT_PRK));
}
if ((ret = prog_dmabuf_dac(s)))
return ret;
}
return 0;
case SNDCTL_DSP_CHANNELS:
if (get_user(val, (int *) arg))
return -EFAULT;
if (val != 0) {
if (file->f_mode & FMODE_READ) {
if (val < 0 || val > 2)
return -EINVAL;
stop_adc(s);
s->dma_adc.num_channels = val;
if ((ret = prog_dmabuf_adc(s)))
return ret;
}
if (file->f_mode & FMODE_WRITE) {
switch (val) {
case 1:
case 2:
break;
case 3:
case 5:
return -EINVAL;
case 4:
if (!(s->codec_ext_caps &
AC97_EXTID_SDAC))
return -EINVAL;
break;
case 6:
if ((s->codec_ext_caps &
AC97_EXT_DACS) != AC97_EXT_DACS)
return -EINVAL;
break;
default:
return -EINVAL;
}
stop_dac(s);
if (val <= 2 &&
(s->codec_ext_caps & AC97_EXT_DACS)) {
// disable surround and center/lfe
// channels in AC'97
u16 ext_stat =
rdcodec(&s->codec,
AC97_EXTENDED_STATUS);
wrcodec(&s->codec,
AC97_EXTENDED_STATUS,
ext_stat | (AC97_EXTSTAT_PRI |
AC97_EXTSTAT_PRJ |
AC97_EXTSTAT_PRK));
} else if (val >= 4) {
// enable surround, center/lfe
// channels in AC'97
u16 ext_stat =
rdcodec(&s->codec,
AC97_EXTENDED_STATUS);
ext_stat &= ~AC97_EXTSTAT_PRJ;
if (val == 6)
ext_stat &=
~(AC97_EXTSTAT_PRI |
AC97_EXTSTAT_PRK);
wrcodec(&s->codec,
AC97_EXTENDED_STATUS,
ext_stat);
}
s->dma_dac.num_channels = val;
if ((ret = prog_dmabuf_dac(s)))
return ret;
}
}
return put_user(val, (int *) arg);
case SNDCTL_DSP_GETFMTS: /* Returns a mask */
return put_user(AFMT_S16_LE | AFMT_U8, (int *) arg);
case SNDCTL_DSP_SETFMT: /* Selects ONE fmt */
if (get_user(val, (int *) arg))
return -EFAULT;
if (val != AFMT_QUERY) {
if (file->f_mode & FMODE_READ) {
stop_adc(s);
if (val == AFMT_S16_LE)
s->dma_adc.sample_size = 16;
else {
val = AFMT_U8;
s->dma_adc.sample_size = 8;
}
if ((ret = prog_dmabuf_adc(s)))
return ret;
}
if (file->f_mode & FMODE_WRITE) {
stop_dac(s);
if (val == AFMT_S16_LE)
s->dma_dac.sample_size = 16;
else {
val = AFMT_U8;
s->dma_dac.sample_size = 8;
}
if ((ret = prog_dmabuf_dac(s)))
return ret;
}
} else {
if (file->f_mode & FMODE_READ)
val = (s->dma_adc.sample_size == 16) ?
AFMT_S16_LE : AFMT_U8;
else
val = (s->dma_dac.sample_size == 16) ?
AFMT_S16_LE : AFMT_U8;
}
return put_user(val, (int *) arg);
case SNDCTL_DSP_POST:
return 0;
case SNDCTL_DSP_GETTRIGGER:
val = 0;
spin_lock_irqsave(&s->lock, flags);
if (file->f_mode & FMODE_READ && !s->dma_adc.stopped)
val |= PCM_ENABLE_INPUT;
if (file->f_mode & FMODE_WRITE && !s->dma_dac.stopped)
val |= PCM_ENABLE_OUTPUT;
spin_unlock_irqrestore(&s->lock, flags);
return put_user(val, (int *) arg);
case SNDCTL_DSP_SETTRIGGER:
if (get_user(val, (int *) arg))
return -EFAULT;
if (file->f_mode & FMODE_READ) {
if (val & PCM_ENABLE_INPUT)
start_adc(s);
else
stop_adc(s);
}
if (file->f_mode & FMODE_WRITE) {
if (val & PCM_ENABLE_OUTPUT)
start_dac(s);
else
stop_dac(s);
}
return 0;
case SNDCTL_DSP_GETOSPACE:
if (!(file->f_mode & FMODE_WRITE))
return -EINVAL;
abinfo.fragsize = s->dma_dac.fragsize;
spin_lock_irqsave(&s->lock, flags);
count = s->dma_dac.count;
count -= dma_count_done(&s->dma_dac);
spin_unlock_irqrestore(&s->lock, flags);
if (count < 0)
count = 0;
abinfo.bytes = (s->dma_dac.dmasize - count) /
s->dma_dac.cnt_factor;
abinfo.fragstotal = s->dma_dac.numfrag;
abinfo.fragments = abinfo.bytes >> s->dma_dac.fragshift;
#ifdef AU1000_VERBOSE_DEBUG
dbg("bytes=%d, fragments=%d", abinfo.bytes, abinfo.fragments);
#endif
return copy_to_user((void *) arg, &abinfo,
sizeof(abinfo)) ? -EFAULT : 0;
case SNDCTL_DSP_GETISPACE:
if (!(file->f_mode & FMODE_READ))
return -EINVAL;
abinfo.fragsize = s->dma_adc.fragsize;
spin_lock_irqsave(&s->lock, flags);
count = s->dma_adc.count;
count += dma_count_done(&s->dma_adc);
spin_unlock_irqrestore(&s->lock, flags);
if (count < 0)
count = 0;
abinfo.bytes = count / s->dma_adc.cnt_factor;
abinfo.fragstotal = s->dma_adc.numfrag;
abinfo.fragments = abinfo.bytes >> s->dma_adc.fragshift;
return copy_to_user((void *) arg, &abinfo,
sizeof(abinfo)) ? -EFAULT : 0;
case SNDCTL_DSP_NONBLOCK:
file->f_flags |= O_NONBLOCK;
return 0;
case SNDCTL_DSP_GETODELAY:
if (!(file->f_mode & FMODE_WRITE))
return -EINVAL;
spin_lock_irqsave(&s->lock, flags);
count = s->dma_dac.count;
count -= dma_count_done(&s->dma_dac);
spin_unlock_irqrestore(&s->lock, flags);
if (count < 0)
count = 0;
count /= s->dma_dac.cnt_factor;
return put_user(count, (int *) arg);
case SNDCTL_DSP_GETIPTR:
if (!(file->f_mode & FMODE_READ))
return -EINVAL;
spin_lock_irqsave(&s->lock, flags);
cinfo.bytes = s->dma_adc.total_bytes;
count = s->dma_adc.count;
if (!s->dma_adc.stopped) {
diff = dma_count_done(&s->dma_adc);
count += diff;
cinfo.bytes += diff;
cinfo.ptr = virt_to_phys(s->dma_adc.nextIn) + diff -
s->dma_adc.dmaaddr;
} else
cinfo.ptr = virt_to_phys(s->dma_adc.nextIn) -
s->dma_adc.dmaaddr;
if (s->dma_adc.mapped)
s->dma_adc.count &= (s->dma_adc.dma_fragsize-1);
spin_unlock_irqrestore(&s->lock, flags);
if (count < 0)
count = 0;
cinfo.blocks = count >> s->dma_adc.fragshift;
return copy_to_user((void *) arg, &cinfo, sizeof(cinfo)) ? -EFAULT : 0;
case SNDCTL_DSP_GETOPTR:
if (!(file->f_mode & FMODE_READ))
return -EINVAL;
spin_lock_irqsave(&s->lock, flags);
cinfo.bytes = s->dma_dac.total_bytes;
count = s->dma_dac.count;
if (!s->dma_dac.stopped) {
diff = dma_count_done(&s->dma_dac);
count -= diff;
cinfo.bytes += diff;
cinfo.ptr = virt_to_phys(s->dma_dac.nextOut) + diff -
s->dma_dac.dmaaddr;
} else
cinfo.ptr = virt_to_phys(s->dma_dac.nextOut) -
s->dma_dac.dmaaddr;
if (s->dma_dac.mapped)
s->dma_dac.count &= (s->dma_dac.dma_fragsize-1);
spin_unlock_irqrestore(&s->lock, flags);
if (count < 0)
count = 0;
cinfo.blocks = count >> s->dma_dac.fragshift;
return copy_to_user((void *) arg, &cinfo, sizeof(cinfo)) ? -EFAULT : 0;
case SNDCTL_DSP_GETBLKSIZE:
if (file->f_mode & FMODE_WRITE)
return put_user(s->dma_dac.fragsize, (int *) arg);
else
return put_user(s->dma_adc.fragsize, (int *) arg);
case SNDCTL_DSP_SETFRAGMENT:
if (get_user(val, (int *) arg))
return -EFAULT;
if (file->f_mode & FMODE_READ) {
stop_adc(s);
s->dma_adc.ossfragshift = val & 0xffff;
s->dma_adc.ossmaxfrags = (val >> 16) & 0xffff;
if (s->dma_adc.ossfragshift < 4)
s->dma_adc.ossfragshift = 4;
if (s->dma_adc.ossfragshift > 15)
s->dma_adc.ossfragshift = 15;
if (s->dma_adc.ossmaxfrags < 4)
s->dma_adc.ossmaxfrags = 4;
if ((ret = prog_dmabuf_adc(s)))
return ret;
}
if (file->f_mode & FMODE_WRITE) {
stop_dac(s);
s->dma_dac.ossfragshift = val & 0xffff;
s->dma_dac.ossmaxfrags = (val >> 16) & 0xffff;
if (s->dma_dac.ossfragshift < 4)
s->dma_dac.ossfragshift = 4;
if (s->dma_dac.ossfragshift > 15)
s->dma_dac.ossfragshift = 15;
if (s->dma_dac.ossmaxfrags < 4)
s->dma_dac.ossmaxfrags = 4;
if ((ret = prog_dmabuf_dac(s)))
return ret;
}
return 0;
case SNDCTL_DSP_SUBDIVIDE:
if ((file->f_mode & FMODE_READ && s->dma_adc.subdivision) ||
(file->f_mode & FMODE_WRITE && s->dma_dac.subdivision))
return -EINVAL;
if (get_user(val, (int *) arg))
return -EFAULT;
if (val != 1 && val != 2 && val != 4)
return -EINVAL;
if (file->f_mode & FMODE_READ) {
stop_adc(s);
s->dma_adc.subdivision = val;
if ((ret = prog_dmabuf_adc(s)))
return ret;
}
if (file->f_mode & FMODE_WRITE) {
stop_dac(s);
s->dma_dac.subdivision = val;
if ((ret = prog_dmabuf_dac(s)))
return ret;
}
return 0;
case SOUND_PCM_READ_RATE:
return put_user((file->f_mode & FMODE_READ) ?
s->dma_adc.sample_rate :
s->dma_dac.sample_rate,
(int *)arg);
case SOUND_PCM_READ_CHANNELS:
if (file->f_mode & FMODE_READ)
return put_user(s->dma_adc.num_channels, (int *)arg);
else
return put_user(s->dma_dac.num_channels, (int *)arg);
case SOUND_PCM_READ_BITS:
if (file->f_mode & FMODE_READ)
return put_user(s->dma_adc.sample_size, (int *)arg);
else
return put_user(s->dma_dac.sample_size, (int *)arg);
case SOUND_PCM_WRITE_FILTER:
case SNDCTL_DSP_SETSYNCRO:
case SOUND_PCM_READ_FILTER:
return -EINVAL;
}
return mixdev_ioctl(&s->codec, cmd, arg);
}
static int au1000_open(struct inode *inode, struct file *file)
{
int minor = iminor(inode);
DECLARE_WAITQUEUE(wait, current);
struct au1000_state *s = &au1000_state;
int ret;
#ifdef AU1000_VERBOSE_DEBUG
if (file->f_flags & O_NONBLOCK)
dbg("%s: non-blocking", __FUNCTION__);
else
dbg("%s: blocking", __FUNCTION__);
#endif
file->private_data = s;
/* wait for device to become free */
mutex_lock(&s->open_mutex);
while (s->open_mode & file->f_mode) {
if (file->f_flags & O_NONBLOCK) {
mutex_unlock(&s->open_mutex);
return -EBUSY;
}
add_wait_queue(&s->open_wait, &wait);
__set_current_state(TASK_INTERRUPTIBLE);
mutex_unlock(&s->open_mutex);
schedule();
remove_wait_queue(&s->open_wait, &wait);
set_current_state(TASK_RUNNING);
if (signal_pending(current))
return -ERESTARTSYS;
mutex_lock(&s->open_mutex);
}
stop_dac(s);
stop_adc(s);
if (file->f_mode & FMODE_READ) {
s->dma_adc.ossfragshift = s->dma_adc.ossmaxfrags =
s->dma_adc.subdivision = s->dma_adc.total_bytes = 0;
s->dma_adc.num_channels = 1;
s->dma_adc.sample_size = 8;
set_adc_rate(s, 8000);
if ((minor & 0xf) == SND_DEV_DSP16)
s->dma_adc.sample_size = 16;
}
if (file->f_mode & FMODE_WRITE) {
s->dma_dac.ossfragshift = s->dma_dac.ossmaxfrags =
s->dma_dac.subdivision = s->dma_dac.total_bytes = 0;
s->dma_dac.num_channels = 1;
s->dma_dac.sample_size = 8;
set_dac_rate(s, 8000);
if ((minor & 0xf) == SND_DEV_DSP16)
s->dma_dac.sample_size = 16;
}
if (file->f_mode & FMODE_READ) {
if ((ret = prog_dmabuf_adc(s)))
return ret;
}
if (file->f_mode & FMODE_WRITE) {
if ((ret = prog_dmabuf_dac(s)))
return ret;
}
s->open_mode |= file->f_mode & (FMODE_READ | FMODE_WRITE);
mutex_unlock(&s->open_mutex);
mutex_init(&s->sem);
return nonseekable_open(inode, file);
}
static int au1000_release(struct inode *inode, struct file *file)
{
struct au1000_state *s = (struct au1000_state *)file->private_data;
lock_kernel();
if (file->f_mode & FMODE_WRITE) {
unlock_kernel();
drain_dac(s, file->f_flags & O_NONBLOCK);
lock_kernel();
}
mutex_lock(&s->open_mutex);
if (file->f_mode & FMODE_WRITE) {
stop_dac(s);
dealloc_dmabuf(s, &s->dma_dac);
}
if (file->f_mode & FMODE_READ) {
stop_adc(s);
dealloc_dmabuf(s, &s->dma_adc);
}
s->open_mode &= ((~file->f_mode) & (FMODE_READ|FMODE_WRITE));
mutex_unlock(&s->open_mutex);
wake_up(&s->open_wait);
unlock_kernel();
return 0;
}
static /*const */ struct file_operations au1000_audio_fops = {
.owner = THIS_MODULE,
.llseek = au1000_llseek,
.read = au1000_read,
.write = au1000_write,
.poll = au1000_poll,
.ioctl = au1000_ioctl,
.mmap = au1000_mmap,
.open = au1000_open,
.release = au1000_release,
};
/* --------------------------------------------------------------------- */
/* --------------------------------------------------------------------- */
/*
* for debugging purposes, we'll create a proc device that dumps the
* CODEC chipstate
*/
#ifdef AU1000_DEBUG
static int proc_au1000_dump(char *buf, char **start, off_t fpos,
int length, int *eof, void *data)
{
struct au1000_state *s = &au1000_state;
int cnt, len = 0;
/* print out header */
len += sprintf(buf + len, "\n\t\tAU1000 Audio Debug\n\n");
// print out digital controller state
len += sprintf(buf + len, "AU1000 Audio Controller registers\n");
len += sprintf(buf + len, "---------------------------------\n");
len += sprintf (buf + len, "AC97C_CONFIG = %08x\n",
au_readl(AC97C_CONFIG));
len += sprintf (buf + len, "AC97C_STATUS = %08x\n",
au_readl(AC97C_STATUS));
len += sprintf (buf + len, "AC97C_CNTRL = %08x\n",
au_readl(AC97C_CNTRL));
/* print out CODEC state */
len += sprintf(buf + len, "\nAC97 CODEC registers\n");
len += sprintf(buf + len, "----------------------\n");
for (cnt = 0; cnt <= 0x7e; cnt += 2)
len += sprintf(buf + len, "reg %02x = %04x\n",
cnt, rdcodec(&s->codec, cnt));
if (fpos >= len) {
*start = buf;
*eof = 1;
return 0;
}
*start = buf + fpos;
if ((len -= fpos) > length)
return length;
*eof = 1;
return len;
}
#endif /* AU1000_DEBUG */
/* --------------------------------------------------------------------- */
MODULE_AUTHOR("Monta Vista Software, stevel@mvista.com");
MODULE_DESCRIPTION("Au1000 Audio Driver");
/* --------------------------------------------------------------------- */
static int __devinit au1000_probe(void)
{
struct au1000_state *s = &au1000_state;
int val;
#ifdef AU1000_DEBUG
char proc_str[80];
#endif
memset(s, 0, sizeof(struct au1000_state));
init_waitqueue_head(&s->dma_adc.wait);
init_waitqueue_head(&s->dma_dac.wait);
init_waitqueue_head(&s->open_wait);
mutex_init(&s->open_mutex);
spin_lock_init(&s->lock);
s->codec.private_data = s;
s->codec.id = 0;
s->codec.codec_read = rdcodec;
s->codec.codec_write = wrcodec;
s->codec.codec_wait = waitcodec;
if (!request_mem_region(CPHYSADDR(AC97C_CONFIG),
0x14, AU1000_MODULE_NAME)) {
err("AC'97 ports in use");
return -1;
}
// Allocate the DMA Channels
if ((s->dma_dac.dmanr = request_au1000_dma(DMA_ID_AC97C_TX,
"audio DAC",
dac_dma_interrupt,
IRQF_DISABLED, s)) < 0) {
err("Can't get DAC DMA");
goto err_dma1;
}
if ((s->dma_adc.dmanr = request_au1000_dma(DMA_ID_AC97C_RX,
"audio ADC",
adc_dma_interrupt,
IRQF_DISABLED, s)) < 0) {
err("Can't get ADC DMA");
goto err_dma2;
}
info("DAC: DMA%d/IRQ%d, ADC: DMA%d/IRQ%d",
s->dma_dac.dmanr, get_dma_done_irq(s->dma_dac.dmanr),
s->dma_adc.dmanr, get_dma_done_irq(s->dma_adc.dmanr));
// enable DMA coherency in read/write DMA channels
set_dma_mode(s->dma_dac.dmanr,
get_dma_mode(s->dma_dac.dmanr) & ~DMA_NC);
set_dma_mode(s->dma_adc.dmanr,
get_dma_mode(s->dma_adc.dmanr) & ~DMA_NC);
/* register devices */
if ((s->dev_audio = register_sound_dsp(&au1000_audio_fops, -1)) < 0)
goto err_dev1;
if ((s->codec.dev_mixer =
register_sound_mixer(&au1000_mixer_fops, -1)) < 0)
goto err_dev2;
#ifdef AU1000_DEBUG
/* intialize the debug proc device */
s->ps = create_proc_read_entry(AU1000_MODULE_NAME, 0, NULL,
proc_au1000_dump, NULL);
#endif /* AU1000_DEBUG */
// configure pins for AC'97
au_writel(au_readl(SYS_PINFUNC) & ~0x02, SYS_PINFUNC);
// Assert reset for 10msec to the AC'97 controller, and enable clock
au_writel(AC97C_RS | AC97C_CE, AC97C_CNTRL);
au1000_delay(10);
au_writel(AC97C_CE, AC97C_CNTRL);
au1000_delay(10); // wait for clock to stabilize
/* cold reset the AC'97 */
au_writel(AC97C_RESET, AC97C_CONFIG);
au1000_delay(10);
au_writel(0, AC97C_CONFIG);
/* need to delay around 500msec(bleech) to give
some CODECs enough time to wakeup */
au1000_delay(500);
/* warm reset the AC'97 to start the bitclk */
au_writel(AC97C_SG | AC97C_SYNC, AC97C_CONFIG);
udelay(100);
au_writel(0, AC97C_CONFIG);
/* codec init */
if (!ac97_probe_codec(&s->codec))
goto err_dev3;
s->codec_base_caps = rdcodec(&s->codec, AC97_RESET);
s->codec_ext_caps = rdcodec(&s->codec, AC97_EXTENDED_ID);
info("AC'97 Base/Extended ID = %04x/%04x",
s->codec_base_caps, s->codec_ext_caps);
/*
* On the Pb1000, audio playback is on the AUX_OUT
* channel (which defaults to LNLVL_OUT in AC'97
* rev 2.2) so make sure this channel is listed
* as supported (soundcard.h calls this channel
* ALTPCM). ac97_codec.c does not handle detection
* of this channel correctly.
*/
s->codec.supported_mixers |= SOUND_MASK_ALTPCM;
/*
* Now set AUX_OUT's default volume.
*/
val = 0x4343;
mixdev_ioctl(&s->codec, SOUND_MIXER_WRITE_ALTPCM,
(unsigned long) &val);
if (!(s->codec_ext_caps & AC97_EXTID_VRA)) {
// codec does not support VRA
s->no_vra = 1;
} else if (!vra) {
// Boot option says disable VRA
u16 ac97_extstat = rdcodec(&s->codec, AC97_EXTENDED_STATUS);
wrcodec(&s->codec, AC97_EXTENDED_STATUS,
ac97_extstat & ~AC97_EXTSTAT_VRA);
s->no_vra = 1;
}
if (s->no_vra)
info("no VRA, interpolating and decimating");
/* set mic to be the recording source */
val = SOUND_MASK_MIC;
mixdev_ioctl(&s->codec, SOUND_MIXER_WRITE_RECSRC,
(unsigned long) &val);
#ifdef AU1000_DEBUG
sprintf(proc_str, "driver/%s/%d/ac97", AU1000_MODULE_NAME,
s->codec.id);
s->ac97_ps = create_proc_read_entry (proc_str, 0, NULL,
ac97_read_proc, &s->codec);
#endif
#ifdef CONFIG_MIPS_XXS1500
/* deassert eapd */
wrcodec(&s->codec, AC97_POWER_CONTROL,
rdcodec(&s->codec, AC97_POWER_CONTROL) & ~0x8000);
/* mute a number of signals which seem to be causing problems
* if not muted.
*/
wrcodec(&s->codec, AC97_PCBEEP_VOL, 0x8000);
wrcodec(&s->codec, AC97_PHONE_VOL, 0x8008);
wrcodec(&s->codec, AC97_MIC_VOL, 0x8008);
wrcodec(&s->codec, AC97_LINEIN_VOL, 0x8808);
wrcodec(&s->codec, AC97_CD_VOL, 0x8808);
wrcodec(&s->codec, AC97_VIDEO_VOL, 0x8808);
wrcodec(&s->codec, AC97_AUX_VOL, 0x8808);
wrcodec(&s->codec, AC97_PCMOUT_VOL, 0x0808);
wrcodec(&s->codec, AC97_GENERAL_PURPOSE, 0x2000);
#endif
return 0;
err_dev3:
unregister_sound_mixer(s->codec.dev_mixer);
err_dev2:
unregister_sound_dsp(s->dev_audio);
err_dev1:
free_au1000_dma(s->dma_adc.dmanr);
err_dma2:
free_au1000_dma(s->dma_dac.dmanr);
err_dma1:
release_mem_region(CPHYSADDR(AC97C_CONFIG), 0x14);
return -1;
}
static void au1000_remove(void)
{
struct au1000_state *s = &au1000_state;
if (!s)
return;
#ifdef AU1000_DEBUG
if (s->ps)
remove_proc_entry(AU1000_MODULE_NAME, NULL);
#endif /* AU1000_DEBUG */
synchronize_irq();
free_au1000_dma(s->dma_adc.dmanr);
free_au1000_dma(s->dma_dac.dmanr);
release_mem_region(CPHYSADDR(AC97C_CONFIG), 0x14);
unregister_sound_dsp(s->dev_audio);
unregister_sound_mixer(s->codec.dev_mixer);
}
static int __init init_au1000(void)
{
info("stevel@mvista.com, built " __TIME__ " on " __DATE__);
return au1000_probe();
}
static void __exit cleanup_au1000(void)
{
info("unloading");
au1000_remove();
}
module_init(init_au1000);
module_exit(cleanup_au1000);
/* --------------------------------------------------------------------- */
#ifndef MODULE
static int __init au1000_setup(char *options)
{
char *this_opt;
if (!options || !*options)
return 0;
while ((this_opt = strsep(&options, ","))) {
if (!*this_opt)
continue;
if (!strncmp(this_opt, "vra", 3)) {
vra = 1;
}
}
return 1;
}
__setup("au1000_audio=", au1000_setup);
#endif /* MODULE */