linux-sg2042/fs/fat/file.c

522 lines
13 KiB
C
Raw Normal View History

/*
* linux/fs/fat/file.c
*
* Written 1992,1993 by Werner Almesberger
*
* regular file handling primitives for fat-based filesystems
*/
#include <linux/capability.h>
#include <linux/module.h>
#include <linux/compat.h>
#include <linux/mount.h>
#include <linux/blkdev.h>
#include <linux/backing-dev.h>
#include <linux/fsnotify.h>
#include <linux/security.h>
fat: add fat_fallocate operation Implement preallocation via the fallocate syscall on VFAT partitions. This patch is based on an earlier patch of the same name which had some issues detailed below and did not get accepted. Refer https://lkml.org/lkml/2007/12/22/130. a) The preallocated space was not persistent when the FALLOC_FL_KEEP_SIZE flag was set. It will deallocate cluster at evict time. b) There was no need to zero out the clusters when the flag was set Instead of doing an expanding truncate, just allocate clusters and add them to the fat chain. This reduces preallocation time. Compatibility with windows: There are no issues when FALLOC_FL_KEEP_SIZE is not set because it just does an expanding truncate. Thus reading from the preallocated area on windows returns null until data is written to it. When a file with preallocated area using the FALLOC_FL_KEEP_SIZE was written to on windows, the windows driver freed-up the preallocated clusters and allocated new clusters for the new data. The freed up clusters gets reflected in the free space available for the partition which can be seen from the Volume properties. The windows chkdsk tool also does not report any errors on a disk containing files with preallocated space. And there is also no issue using linux fat fsck. because discard preallocated clusters at repair time. Signed-off-by: Namjae Jeon <namjae.jeon@samsung.com> Signed-off-by: Amit Sahrawat <a.sahrawat@samsung.com> Cc: OGAWA Hirofumi <hirofumi@mail.parknet.co.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-21 06:59:41 +08:00
#include <linux/falloc.h>
#include "fat.h"
fat: add fat_fallocate operation Implement preallocation via the fallocate syscall on VFAT partitions. This patch is based on an earlier patch of the same name which had some issues detailed below and did not get accepted. Refer https://lkml.org/lkml/2007/12/22/130. a) The preallocated space was not persistent when the FALLOC_FL_KEEP_SIZE flag was set. It will deallocate cluster at evict time. b) There was no need to zero out the clusters when the flag was set Instead of doing an expanding truncate, just allocate clusters and add them to the fat chain. This reduces preallocation time. Compatibility with windows: There are no issues when FALLOC_FL_KEEP_SIZE is not set because it just does an expanding truncate. Thus reading from the preallocated area on windows returns null until data is written to it. When a file with preallocated area using the FALLOC_FL_KEEP_SIZE was written to on windows, the windows driver freed-up the preallocated clusters and allocated new clusters for the new data. The freed up clusters gets reflected in the free space available for the partition which can be seen from the Volume properties. The windows chkdsk tool also does not report any errors on a disk containing files with preallocated space. And there is also no issue using linux fat fsck. because discard preallocated clusters at repair time. Signed-off-by: Namjae Jeon <namjae.jeon@samsung.com> Signed-off-by: Amit Sahrawat <a.sahrawat@samsung.com> Cc: OGAWA Hirofumi <hirofumi@mail.parknet.co.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-21 06:59:41 +08:00
static long fat_fallocate(struct file *file, int mode,
loff_t offset, loff_t len);
static int fat_ioctl_get_attributes(struct inode *inode, u32 __user *user_attr)
{
u32 attr;
inode_lock(inode);
attr = fat_make_attrs(inode);
inode_unlock(inode);
return put_user(attr, user_attr);
}
static int fat_ioctl_set_attributes(struct file *file, u32 __user *user_attr)
{
struct inode *inode = file_inode(file);
struct msdos_sb_info *sbi = MSDOS_SB(inode->i_sb);
int is_dir = S_ISDIR(inode->i_mode);
u32 attr, oldattr;
struct iattr ia;
int err;
err = get_user(attr, user_attr);
if (err)
goto out;
err = mnt_want_write_file(file);
if (err)
goto out;
inode_lock(inode);
/*
* ATTR_VOLUME and ATTR_DIR cannot be changed; this also
* prevents the user from turning us into a VFAT
* longname entry. Also, we obviously can't set
* any of the NTFS attributes in the high 24 bits.
*/
attr &= 0xff & ~(ATTR_VOLUME | ATTR_DIR);
/* Merge in ATTR_VOLUME and ATTR_DIR */
attr |= (MSDOS_I(inode)->i_attrs & ATTR_VOLUME) |
(is_dir ? ATTR_DIR : 0);
oldattr = fat_make_attrs(inode);
/* Equivalent to a chmod() */
ia.ia_valid = ATTR_MODE | ATTR_CTIME;
ia.ia_ctime = current_fs_time(inode->i_sb);
if (is_dir)
ia.ia_mode = fat_make_mode(sbi, attr, S_IRWXUGO);
else {
ia.ia_mode = fat_make_mode(sbi, attr,
S_IRUGO | S_IWUGO | (inode->i_mode & S_IXUGO));
}
/* The root directory has no attributes */
if (inode->i_ino == MSDOS_ROOT_INO && attr != ATTR_DIR) {
err = -EINVAL;
goto out_unlock_inode;
}
if (sbi->options.sys_immutable &&
((attr | oldattr) & ATTR_SYS) &&
!capable(CAP_LINUX_IMMUTABLE)) {
err = -EPERM;
goto out_unlock_inode;
}
/*
* The security check is questionable... We single
* out the RO attribute for checking by the security
* module, just because it maps to a file mode.
*/
err = security_inode_setattr(file->f_path.dentry, &ia);
if (err)
goto out_unlock_inode;
/* This MUST be done before doing anything irreversible... */
err = fat_setattr(file->f_path.dentry, &ia);
if (err)
goto out_unlock_inode;
fsnotify_change(file->f_path.dentry, ia.ia_valid);
if (sbi->options.sys_immutable) {
if (attr & ATTR_SYS)
inode->i_flags |= S_IMMUTABLE;
else
inode->i_flags &= ~S_IMMUTABLE;
}
fat_save_attrs(inode, attr);
mark_inode_dirty(inode);
out_unlock_inode:
inode_unlock(inode);
mnt_drop_write_file(file);
out:
return err;
}
static int fat_ioctl_get_volume_id(struct inode *inode, u32 __user *user_attr)
{
struct msdos_sb_info *sbi = MSDOS_SB(inode->i_sb);
return put_user(sbi->vol_id, user_attr);
}
long fat_generic_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
{
struct inode *inode = file_inode(filp);
u32 __user *user_attr = (u32 __user *)arg;
switch (cmd) {
case FAT_IOCTL_GET_ATTRIBUTES:
return fat_ioctl_get_attributes(inode, user_attr);
case FAT_IOCTL_SET_ATTRIBUTES:
return fat_ioctl_set_attributes(filp, user_attr);
case FAT_IOCTL_GET_VOLUME_ID:
return fat_ioctl_get_volume_id(inode, user_attr);
default:
return -ENOTTY; /* Inappropriate ioctl for device */
}
}
#ifdef CONFIG_COMPAT
static long fat_generic_compat_ioctl(struct file *filp, unsigned int cmd,
unsigned long arg)
{
return fat_generic_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
}
#endif
static int fat_file_release(struct inode *inode, struct file *filp)
{
if ((filp->f_mode & FMODE_WRITE) &&
MSDOS_SB(inode->i_sb)->options.flush) {
fat_flush_inodes(inode->i_sb, inode, NULL);
congestion_wait(BLK_RW_ASYNC, HZ/10);
}
return 0;
}
int fat_file_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
{
struct inode *inode = filp->f_mapping->host;
int res, err;
res = generic_file_fsync(filp, start, end, datasync);
err = sync_mapping_buffers(MSDOS_SB(inode->i_sb)->fat_inode->i_mapping);
return res ? res : err;
}
const struct file_operations fat_file_operations = {
.llseek = generic_file_llseek,
.read_iter = generic_file_read_iter,
.write_iter = generic_file_write_iter,
.mmap = generic_file_mmap,
.release = fat_file_release,
.unlocked_ioctl = fat_generic_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = fat_generic_compat_ioctl,
#endif
.fsync = fat_file_fsync,
.splice_read = generic_file_splice_read,
fat: add fat_fallocate operation Implement preallocation via the fallocate syscall on VFAT partitions. This patch is based on an earlier patch of the same name which had some issues detailed below and did not get accepted. Refer https://lkml.org/lkml/2007/12/22/130. a) The preallocated space was not persistent when the FALLOC_FL_KEEP_SIZE flag was set. It will deallocate cluster at evict time. b) There was no need to zero out the clusters when the flag was set Instead of doing an expanding truncate, just allocate clusters and add them to the fat chain. This reduces preallocation time. Compatibility with windows: There are no issues when FALLOC_FL_KEEP_SIZE is not set because it just does an expanding truncate. Thus reading from the preallocated area on windows returns null until data is written to it. When a file with preallocated area using the FALLOC_FL_KEEP_SIZE was written to on windows, the windows driver freed-up the preallocated clusters and allocated new clusters for the new data. The freed up clusters gets reflected in the free space available for the partition which can be seen from the Volume properties. The windows chkdsk tool also does not report any errors on a disk containing files with preallocated space. And there is also no issue using linux fat fsck. because discard preallocated clusters at repair time. Signed-off-by: Namjae Jeon <namjae.jeon@samsung.com> Signed-off-by: Amit Sahrawat <a.sahrawat@samsung.com> Cc: OGAWA Hirofumi <hirofumi@mail.parknet.co.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-21 06:59:41 +08:00
.fallocate = fat_fallocate,
};
static int fat_cont_expand(struct inode *inode, loff_t size)
{
struct address_space *mapping = inode->i_mapping;
loff_t start = inode->i_size, count = size - inode->i_size;
int err;
err = generic_cont_expand_simple(inode, size);
if (err)
goto out;
inode->i_ctime = inode->i_mtime = CURRENT_TIME_SEC;
mark_inode_dirty(inode);
if (IS_SYNC(inode)) {
int err2;
/*
* Opencode syncing since we don't have a file open to use
* standard fsync path.
*/
err = filemap_fdatawrite_range(mapping, start,
start + count - 1);
err2 = sync_mapping_buffers(mapping);
if (!err)
err = err2;
err2 = write_inode_now(inode, 1);
if (!err)
err = err2;
if (!err) {
err = filemap_fdatawait_range(mapping, start,
start + count - 1);
}
}
out:
return err;
}
fat: add fat_fallocate operation Implement preallocation via the fallocate syscall on VFAT partitions. This patch is based on an earlier patch of the same name which had some issues detailed below and did not get accepted. Refer https://lkml.org/lkml/2007/12/22/130. a) The preallocated space was not persistent when the FALLOC_FL_KEEP_SIZE flag was set. It will deallocate cluster at evict time. b) There was no need to zero out the clusters when the flag was set Instead of doing an expanding truncate, just allocate clusters and add them to the fat chain. This reduces preallocation time. Compatibility with windows: There are no issues when FALLOC_FL_KEEP_SIZE is not set because it just does an expanding truncate. Thus reading from the preallocated area on windows returns null until data is written to it. When a file with preallocated area using the FALLOC_FL_KEEP_SIZE was written to on windows, the windows driver freed-up the preallocated clusters and allocated new clusters for the new data. The freed up clusters gets reflected in the free space available for the partition which can be seen from the Volume properties. The windows chkdsk tool also does not report any errors on a disk containing files with preallocated space. And there is also no issue using linux fat fsck. because discard preallocated clusters at repair time. Signed-off-by: Namjae Jeon <namjae.jeon@samsung.com> Signed-off-by: Amit Sahrawat <a.sahrawat@samsung.com> Cc: OGAWA Hirofumi <hirofumi@mail.parknet.co.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-21 06:59:41 +08:00
/*
* Preallocate space for a file. This implements fat's fallocate file
* operation, which gets called from sys_fallocate system call. User
* space requests len bytes at offset. If FALLOC_FL_KEEP_SIZE is set
* we just allocate clusters without zeroing them out. Otherwise we
* allocate and zero out clusters via an expanding truncate.
*/
static long fat_fallocate(struct file *file, int mode,
loff_t offset, loff_t len)
{
int nr_cluster; /* Number of clusters to be allocated */
loff_t mm_bytes; /* Number of bytes to be allocated for file */
loff_t ondisksize; /* block aligned on-disk size in bytes*/
struct inode *inode = file->f_mapping->host;
struct super_block *sb = inode->i_sb;
struct msdos_sb_info *sbi = MSDOS_SB(sb);
int err = 0;
/* No support for hole punch or other fallocate flags. */
if (mode & ~FALLOC_FL_KEEP_SIZE)
return -EOPNOTSUPP;
/* No support for dir */
if (!S_ISREG(inode->i_mode))
return -EOPNOTSUPP;
inode_lock(inode);
fat: add fat_fallocate operation Implement preallocation via the fallocate syscall on VFAT partitions. This patch is based on an earlier patch of the same name which had some issues detailed below and did not get accepted. Refer https://lkml.org/lkml/2007/12/22/130. a) The preallocated space was not persistent when the FALLOC_FL_KEEP_SIZE flag was set. It will deallocate cluster at evict time. b) There was no need to zero out the clusters when the flag was set Instead of doing an expanding truncate, just allocate clusters and add them to the fat chain. This reduces preallocation time. Compatibility with windows: There are no issues when FALLOC_FL_KEEP_SIZE is not set because it just does an expanding truncate. Thus reading from the preallocated area on windows returns null until data is written to it. When a file with preallocated area using the FALLOC_FL_KEEP_SIZE was written to on windows, the windows driver freed-up the preallocated clusters and allocated new clusters for the new data. The freed up clusters gets reflected in the free space available for the partition which can be seen from the Volume properties. The windows chkdsk tool also does not report any errors on a disk containing files with preallocated space. And there is also no issue using linux fat fsck. because discard preallocated clusters at repair time. Signed-off-by: Namjae Jeon <namjae.jeon@samsung.com> Signed-off-by: Amit Sahrawat <a.sahrawat@samsung.com> Cc: OGAWA Hirofumi <hirofumi@mail.parknet.co.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-21 06:59:41 +08:00
if (mode & FALLOC_FL_KEEP_SIZE) {
ondisksize = inode->i_blocks << 9;
if ((offset + len) <= ondisksize)
goto error;
/* First compute the number of clusters to be allocated */
mm_bytes = offset + len - ondisksize;
nr_cluster = (mm_bytes + (sbi->cluster_size - 1)) >>
sbi->cluster_bits;
/* Start the allocation.We are not zeroing out the clusters */
while (nr_cluster-- > 0) {
err = fat_add_cluster(inode);
if (err)
goto error;
}
} else {
if ((offset + len) <= i_size_read(inode))
goto error;
/* This is just an expanding truncate */
err = fat_cont_expand(inode, (offset + len));
}
error:
inode_unlock(inode);
fat: add fat_fallocate operation Implement preallocation via the fallocate syscall on VFAT partitions. This patch is based on an earlier patch of the same name which had some issues detailed below and did not get accepted. Refer https://lkml.org/lkml/2007/12/22/130. a) The preallocated space was not persistent when the FALLOC_FL_KEEP_SIZE flag was set. It will deallocate cluster at evict time. b) There was no need to zero out the clusters when the flag was set Instead of doing an expanding truncate, just allocate clusters and add them to the fat chain. This reduces preallocation time. Compatibility with windows: There are no issues when FALLOC_FL_KEEP_SIZE is not set because it just does an expanding truncate. Thus reading from the preallocated area on windows returns null until data is written to it. When a file with preallocated area using the FALLOC_FL_KEEP_SIZE was written to on windows, the windows driver freed-up the preallocated clusters and allocated new clusters for the new data. The freed up clusters gets reflected in the free space available for the partition which can be seen from the Volume properties. The windows chkdsk tool also does not report any errors on a disk containing files with preallocated space. And there is also no issue using linux fat fsck. because discard preallocated clusters at repair time. Signed-off-by: Namjae Jeon <namjae.jeon@samsung.com> Signed-off-by: Amit Sahrawat <a.sahrawat@samsung.com> Cc: OGAWA Hirofumi <hirofumi@mail.parknet.co.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-21 06:59:41 +08:00
return err;
}
/* Free all clusters after the skip'th cluster. */
static int fat_free(struct inode *inode, int skip)
{
struct super_block *sb = inode->i_sb;
int err, wait, free_start, i_start, i_logstart;
if (MSDOS_I(inode)->i_start == 0)
return 0;
fat_cache_inval_inode(inode);
wait = IS_DIRSYNC(inode);
i_start = free_start = MSDOS_I(inode)->i_start;
i_logstart = MSDOS_I(inode)->i_logstart;
/* First, we write the new file size. */
if (!skip) {
MSDOS_I(inode)->i_start = 0;
MSDOS_I(inode)->i_logstart = 0;
}
MSDOS_I(inode)->i_attrs |= ATTR_ARCH;
inode->i_ctime = inode->i_mtime = CURRENT_TIME_SEC;
if (wait) {
err = fat_sync_inode(inode);
if (err) {
MSDOS_I(inode)->i_start = i_start;
MSDOS_I(inode)->i_logstart = i_logstart;
return err;
}
} else
mark_inode_dirty(inode);
/* Write a new EOF, and get the remaining cluster chain for freeing. */
if (skip) {
struct fat_entry fatent;
int ret, fclus, dclus;
ret = fat_get_cluster(inode, skip - 1, &fclus, &dclus);
if (ret < 0)
return ret;
else if (ret == FAT_ENT_EOF)
return 0;
fatent_init(&fatent);
ret = fat_ent_read(inode, &fatent, dclus);
if (ret == FAT_ENT_EOF) {
fatent_brelse(&fatent);
return 0;
} else if (ret == FAT_ENT_FREE) {
fat_fs_error(sb,
"%s: invalid cluster chain (i_pos %lld)",
__func__, MSDOS_I(inode)->i_pos);
ret = -EIO;
} else if (ret > 0) {
err = fat_ent_write(inode, &fatent, FAT_ENT_EOF, wait);
if (err)
ret = err;
}
fatent_brelse(&fatent);
if (ret < 0)
return ret;
free_start = ret;
}
inode->i_blocks = skip << (MSDOS_SB(sb)->cluster_bits - 9);
/* Freeing the remained cluster chain */
return fat_free_clusters(inode, free_start);
}
void fat_truncate_blocks(struct inode *inode, loff_t offset)
{
struct msdos_sb_info *sbi = MSDOS_SB(inode->i_sb);
const unsigned int cluster_size = sbi->cluster_size;
int nr_clusters;
/*
* This protects against truncating a file bigger than it was then
* trying to write into the hole.
*/
if (MSDOS_I(inode)->mmu_private > offset)
MSDOS_I(inode)->mmu_private = offset;
nr_clusters = (offset + (cluster_size - 1)) >> sbi->cluster_bits;
fat_free(inode, nr_clusters);
fat_flush_inodes(inode->i_sb, inode, NULL);
}
int fat_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
{
struct inode *inode = d_inode(dentry);
generic_fillattr(inode, stat);
stat->blksize = MSDOS_SB(inode->i_sb)->cluster_size;
if (MSDOS_SB(inode->i_sb)->options.nfs == FAT_NFS_NOSTALE_RO) {
/* Use i_pos for ino. This is used as fileid of nfs. */
stat->ino = fat_i_pos_read(MSDOS_SB(inode->i_sb), inode);
}
return 0;
}
EXPORT_SYMBOL_GPL(fat_getattr);
static int fat_sanitize_mode(const struct msdos_sb_info *sbi,
struct inode *inode, umode_t *mode_ptr)
{
umode_t mask, perm;
/*
* Note, the basic check is already done by a caller of
* (attr->ia_mode & ~FAT_VALID_MODE)
*/
if (S_ISREG(inode->i_mode))
mask = sbi->options.fs_fmask;
else
mask = sbi->options.fs_dmask;
perm = *mode_ptr & ~(S_IFMT | mask);
/*
* Of the r and x bits, all (subject to umask) must be present. Of the
* w bits, either all (subject to umask) or none must be present.
*
* If fat_mode_can_hold_ro(inode) is false, can't change w bits.
*/
if ((perm & (S_IRUGO | S_IXUGO)) != (inode->i_mode & (S_IRUGO|S_IXUGO)))
return -EPERM;
if (fat_mode_can_hold_ro(inode)) {
if ((perm & S_IWUGO) && ((perm & S_IWUGO) != (S_IWUGO & ~mask)))
return -EPERM;
} else {
if ((perm & S_IWUGO) != (S_IWUGO & ~mask))
return -EPERM;
}
*mode_ptr &= S_IFMT | perm;
return 0;
}
static int fat_allow_set_time(struct msdos_sb_info *sbi, struct inode *inode)
{
umode_t allow_utime = sbi->options.allow_utime;
if (!uid_eq(current_fsuid(), inode->i_uid)) {
if (in_group_p(inode->i_gid))
allow_utime >>= 3;
if (allow_utime & MAY_WRITE)
return 1;
}
/* use a default check */
return 0;
}
#define TIMES_SET_FLAGS (ATTR_MTIME_SET | ATTR_ATIME_SET | ATTR_TIMES_SET)
/* valid file mode bits */
#define FAT_VALID_MODE (S_IFREG | S_IFDIR | S_IRWXUGO)
int fat_setattr(struct dentry *dentry, struct iattr *attr)
{
struct msdos_sb_info *sbi = MSDOS_SB(dentry->d_sb);
struct inode *inode = d_inode(dentry);
unsigned int ia_valid;
int error;
/* Check for setting the inode time. */
ia_valid = attr->ia_valid;
if (ia_valid & TIMES_SET_FLAGS) {
if (fat_allow_set_time(sbi, inode))
attr->ia_valid &= ~TIMES_SET_FLAGS;
}
error = inode_change_ok(inode, attr);
attr->ia_valid = ia_valid;
if (error) {
if (sbi->options.quiet)
error = 0;
goto out;
}
/*
* Expand the file. Since inode_setattr() updates ->i_size
* before calling the ->truncate(), but FAT needs to fill the
* hole before it. XXX: this is no longer true with new truncate
* sequence.
*/
if (attr->ia_valid & ATTR_SIZE) {
inode_dio_wait(inode);
if (attr->ia_size > inode->i_size) {
error = fat_cont_expand(inode, attr->ia_size);
if (error || attr->ia_valid == ATTR_SIZE)
goto out;
attr->ia_valid &= ~ATTR_SIZE;
}
}
if (((attr->ia_valid & ATTR_UID) &&
(!uid_eq(attr->ia_uid, sbi->options.fs_uid))) ||
((attr->ia_valid & ATTR_GID) &&
(!gid_eq(attr->ia_gid, sbi->options.fs_gid))) ||
((attr->ia_valid & ATTR_MODE) &&
(attr->ia_mode & ~FAT_VALID_MODE)))
error = -EPERM;
if (error) {
if (sbi->options.quiet)
error = 0;
goto out;
}
/*
* We don't return -EPERM here. Yes, strange, but this is too
* old behavior.
*/
if (attr->ia_valid & ATTR_MODE) {
if (fat_sanitize_mode(sbi, inode, &attr->ia_mode) < 0)
attr->ia_valid &= ~ATTR_MODE;
}
if (attr->ia_valid & ATTR_SIZE) {
error = fat_block_truncate_page(inode, attr->ia_size);
if (error)
goto out;
down_write(&MSDOS_I(inode)->truncate_lock);
truncate_setsize(inode, attr->ia_size);
fat_truncate_blocks(inode, attr->ia_size);
up_write(&MSDOS_I(inode)->truncate_lock);
}
setattr_copy(inode, attr);
mark_inode_dirty(inode);
out:
return error;
}
EXPORT_SYMBOL_GPL(fat_setattr);
const struct inode_operations fat_file_inode_operations = {
.setattr = fat_setattr,
.getattr = fat_getattr,
};