linux-sg2042/arch/powerpc/kernel/align.c

933 lines
24 KiB
C
Raw Normal View History

/* align.c - handle alignment exceptions for the Power PC.
*
* Copyright (c) 1996 Paul Mackerras <paulus@cs.anu.edu.au>
* Copyright (c) 1998-1999 TiVo, Inc.
* PowerPC 403GCX modifications.
* Copyright (c) 1999 Grant Erickson <grant@lcse.umn.edu>
* PowerPC 403GCX/405GP modifications.
* Copyright (c) 2001-2002 PPC64 team, IBM Corp
* 64-bit and Power4 support
* Copyright (c) 2005 Benjamin Herrenschmidt, IBM Corp
* <benh@kernel.crashing.org>
* Merge ppc32 and ppc64 implementations
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <linux/kernel.h>
#include <linux/mm.h>
#include <asm/processor.h>
#include <asm/uaccess.h>
#include <asm/system.h>
#include <asm/cache.h>
#include <asm/cputable.h>
struct aligninfo {
unsigned char len;
unsigned char flags;
};
#define IS_XFORM(inst) (((inst) >> 26) == 31)
#define IS_DSFORM(inst) (((inst) >> 26) >= 56)
#define INVALID { 0, 0 }
/* Bits in the flags field */
#define LD 0 /* load */
#define ST 1 /* store */
#define SE 2 /* sign-extend value, or FP ld/st as word */
#define F 4 /* to/from fp regs */
#define U 8 /* update index register */
#define M 0x10 /* multiple load/store */
#define SW 0x20 /* byte swap */
#define S 0x40 /* single-precision fp or... */
#define SX 0x40 /* ... byte count in XER */
#define HARD 0x80 /* string, stwcx. */
[POWERPC] Handle alignment faults on SPE load/store instructions This adds code to handle alignment traps generated by the following SPE (signal processing engine) load/store instructions, by emulating the instruction in the kernel (as is done for other instructions that generate alignment traps): evldd[x] Vector Load Double Word into Double Word [Indexed] evldw[x] Vector Load Double into Two Words [Indexed] evldh[x] Vector Load Double into Four Half Words [Indexed] evlhhesplat[x] Vector Load Half Word into Half Words Even and Splat [Indexed] evlhhousplat[x] Vector Load Half Word into Half Word Odd Unsigned and Splat [Indexed] evlhhossplat[x] Vector Load Half Word into Half Word Odd Signed and Splat [Indexed] evlwhe[x] Vector Load Word into Two Half Words Even [Indexed] evlwhou[x] Vector Load Word into Two Half Words Odd Unsigned (zero-extended) [Indexed] evlwhos[x] Vector Load Word into Two Half Words Odd Signed (with sign extension) [Indexed] evlwwsplat[x] Vector Load Word into Word and Splat [Indexed] evlwhsplat[x] Vector Load Word into Two Half Words and Splat [Indexed] evstdd[x] Vector Store Double of Double [Indexed] evstdw[x] Vector Store Double of Two Words [Indexed] evstdh[x] Vector Store Double of Four Half Words [Indexed] evstwhe[x] Vector Store Word of Two Half Words from Even [Indexed] evstwho[x] Vector Store Word of Two Half Words from Odd [Indexed] evstwwe[x] Vector Store Word of Word from Even [Indexed] evstwwo[x] Vector Store Word of Word from Odd [Indexed] Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
2007-08-25 05:42:53 +08:00
#define E4 0x40 /* SPE endianness is word */
#define E8 0x80 /* SPE endianness is double word */
#define SPLT 0x80 /* VSX SPLAT load */
/* DSISR bits reported for a DCBZ instruction: */
#define DCBZ 0x5f /* 8xx/82xx dcbz faults when cache not enabled */
#define SWAP(a, b) (t = (a), (a) = (b), (b) = t)
/*
* The PowerPC stores certain bits of the instruction that caused the
* alignment exception in the DSISR register. This array maps those
* bits to information about the operand length and what the
* instruction would do.
*/
static struct aligninfo aligninfo[128] = {
{ 4, LD }, /* 00 0 0000: lwz / lwarx */
INVALID, /* 00 0 0001 */
{ 4, ST }, /* 00 0 0010: stw */
INVALID, /* 00 0 0011 */
{ 2, LD }, /* 00 0 0100: lhz */
{ 2, LD+SE }, /* 00 0 0101: lha */
{ 2, ST }, /* 00 0 0110: sth */
{ 4, LD+M }, /* 00 0 0111: lmw */
{ 4, LD+F+S }, /* 00 0 1000: lfs */
{ 8, LD+F }, /* 00 0 1001: lfd */
{ 4, ST+F+S }, /* 00 0 1010: stfs */
{ 8, ST+F }, /* 00 0 1011: stfd */
INVALID, /* 00 0 1100 */
{ 8, LD }, /* 00 0 1101: ld/ldu/lwa */
INVALID, /* 00 0 1110 */
{ 8, ST }, /* 00 0 1111: std/stdu */
{ 4, LD+U }, /* 00 1 0000: lwzu */
INVALID, /* 00 1 0001 */
{ 4, ST+U }, /* 00 1 0010: stwu */
INVALID, /* 00 1 0011 */
{ 2, LD+U }, /* 00 1 0100: lhzu */
{ 2, LD+SE+U }, /* 00 1 0101: lhau */
{ 2, ST+U }, /* 00 1 0110: sthu */
{ 4, ST+M }, /* 00 1 0111: stmw */
{ 4, LD+F+S+U }, /* 00 1 1000: lfsu */
{ 8, LD+F+U }, /* 00 1 1001: lfdu */
{ 4, ST+F+S+U }, /* 00 1 1010: stfsu */
{ 8, ST+F+U }, /* 00 1 1011: stfdu */
{ 16, LD+F }, /* 00 1 1100: lfdp */
INVALID, /* 00 1 1101 */
{ 16, ST+F }, /* 00 1 1110: stfdp */
INVALID, /* 00 1 1111 */
{ 8, LD }, /* 01 0 0000: ldx */
INVALID, /* 01 0 0001 */
{ 8, ST }, /* 01 0 0010: stdx */
INVALID, /* 01 0 0011 */
INVALID, /* 01 0 0100 */
{ 4, LD+SE }, /* 01 0 0101: lwax */
INVALID, /* 01 0 0110 */
INVALID, /* 01 0 0111 */
{ 4, LD+M+HARD+SX }, /* 01 0 1000: lswx */
{ 4, LD+M+HARD }, /* 01 0 1001: lswi */
{ 4, ST+M+HARD+SX }, /* 01 0 1010: stswx */
{ 4, ST+M+HARD }, /* 01 0 1011: stswi */
INVALID, /* 01 0 1100 */
{ 8, LD+U }, /* 01 0 1101: ldu */
INVALID, /* 01 0 1110 */
{ 8, ST+U }, /* 01 0 1111: stdu */
{ 8, LD+U }, /* 01 1 0000: ldux */
INVALID, /* 01 1 0001 */
{ 8, ST+U }, /* 01 1 0010: stdux */
INVALID, /* 01 1 0011 */
INVALID, /* 01 1 0100 */
{ 4, LD+SE+U }, /* 01 1 0101: lwaux */
INVALID, /* 01 1 0110 */
INVALID, /* 01 1 0111 */
INVALID, /* 01 1 1000 */
INVALID, /* 01 1 1001 */
INVALID, /* 01 1 1010 */
INVALID, /* 01 1 1011 */
INVALID, /* 01 1 1100 */
INVALID, /* 01 1 1101 */
INVALID, /* 01 1 1110 */
INVALID, /* 01 1 1111 */
INVALID, /* 10 0 0000 */
INVALID, /* 10 0 0001 */
INVALID, /* 10 0 0010: stwcx. */
INVALID, /* 10 0 0011 */
INVALID, /* 10 0 0100 */
INVALID, /* 10 0 0101 */
INVALID, /* 10 0 0110 */
INVALID, /* 10 0 0111 */
{ 4, LD+SW }, /* 10 0 1000: lwbrx */
INVALID, /* 10 0 1001 */
{ 4, ST+SW }, /* 10 0 1010: stwbrx */
INVALID, /* 10 0 1011 */
{ 2, LD+SW }, /* 10 0 1100: lhbrx */
{ 4, LD+SE }, /* 10 0 1101 lwa */
{ 2, ST+SW }, /* 10 0 1110: sthbrx */
INVALID, /* 10 0 1111 */
INVALID, /* 10 1 0000 */
INVALID, /* 10 1 0001 */
INVALID, /* 10 1 0010 */
INVALID, /* 10 1 0011 */
INVALID, /* 10 1 0100 */
INVALID, /* 10 1 0101 */
INVALID, /* 10 1 0110 */
INVALID, /* 10 1 0111 */
INVALID, /* 10 1 1000 */
INVALID, /* 10 1 1001 */
INVALID, /* 10 1 1010 */
INVALID, /* 10 1 1011 */
INVALID, /* 10 1 1100 */
INVALID, /* 10 1 1101 */
INVALID, /* 10 1 1110 */
{ 0, ST+HARD }, /* 10 1 1111: dcbz */
{ 4, LD }, /* 11 0 0000: lwzx */
INVALID, /* 11 0 0001 */
{ 4, ST }, /* 11 0 0010: stwx */
INVALID, /* 11 0 0011 */
{ 2, LD }, /* 11 0 0100: lhzx */
{ 2, LD+SE }, /* 11 0 0101: lhax */
{ 2, ST }, /* 11 0 0110: sthx */
INVALID, /* 11 0 0111 */
{ 4, LD+F+S }, /* 11 0 1000: lfsx */
{ 8, LD+F }, /* 11 0 1001: lfdx */
{ 4, ST+F+S }, /* 11 0 1010: stfsx */
{ 8, ST+F }, /* 11 0 1011: stfdx */
{ 16, LD+F }, /* 11 0 1100: lfdpx */
{ 4, LD+F+SE }, /* 11 0 1101: lfiwax */
{ 16, ST+F }, /* 11 0 1110: stfdpx */
{ 4, ST+F }, /* 11 0 1111: stfiwx */
{ 4, LD+U }, /* 11 1 0000: lwzux */
INVALID, /* 11 1 0001 */
{ 4, ST+U }, /* 11 1 0010: stwux */
INVALID, /* 11 1 0011 */
{ 2, LD+U }, /* 11 1 0100: lhzux */
{ 2, LD+SE+U }, /* 11 1 0101: lhaux */
{ 2, ST+U }, /* 11 1 0110: sthux */
INVALID, /* 11 1 0111 */
{ 4, LD+F+S+U }, /* 11 1 1000: lfsux */
{ 8, LD+F+U }, /* 11 1 1001: lfdux */
{ 4, ST+F+S+U }, /* 11 1 1010: stfsux */
{ 8, ST+F+U }, /* 11 1 1011: stfdux */
INVALID, /* 11 1 1100 */
{ 4, LD+F }, /* 11 1 1101: lfiwzx */
INVALID, /* 11 1 1110 */
INVALID, /* 11 1 1111 */
};
/*
* Create a DSISR value from the instruction
*/
static inline unsigned make_dsisr(unsigned instr)
{
unsigned dsisr;
/* bits 6:15 --> 22:31 */
dsisr = (instr & 0x03ff0000) >> 16;
if (IS_XFORM(instr)) {
/* bits 29:30 --> 15:16 */
dsisr |= (instr & 0x00000006) << 14;
/* bit 25 --> 17 */
dsisr |= (instr & 0x00000040) << 8;
/* bits 21:24 --> 18:21 */
dsisr |= (instr & 0x00000780) << 3;
} else {
/* bit 5 --> 17 */
dsisr |= (instr & 0x04000000) >> 12;
/* bits 1: 4 --> 18:21 */
dsisr |= (instr & 0x78000000) >> 17;
/* bits 30:31 --> 12:13 */
if (IS_DSFORM(instr))
dsisr |= (instr & 0x00000003) << 18;
}
return dsisr;
}
/*
* The dcbz (data cache block zero) instruction
* gives an alignment fault if used on non-cacheable
* memory. We handle the fault mainly for the
* case when we are running with the cache disabled
* for debugging.
*/
static int emulate_dcbz(struct pt_regs *regs, unsigned char __user *addr)
{
long __user *p;
int i, size;
#ifdef __powerpc64__
size = ppc64_caches.dline_size;
#else
size = L1_CACHE_BYTES;
#endif
p = (long __user *) (regs->dar & -size);
if (user_mode(regs) && !access_ok(VERIFY_WRITE, p, size))
return -EFAULT;
for (i = 0; i < size / sizeof(long); ++i)
if (__put_user_inatomic(0, p+i))
return -EFAULT;
return 1;
}
/*
* Emulate load & store multiple instructions
* On 64-bit machines, these instructions only affect/use the
* bottom 4 bytes of each register, and the loads clear the
* top 4 bytes of the affected register.
*/
#ifdef CONFIG_PPC64
#define REG_BYTE(rp, i) *((u8 *)((rp) + ((i) >> 2)) + ((i) & 3) + 4)
#else
#define REG_BYTE(rp, i) *((u8 *)(rp) + (i))
#endif
#define SWIZ_PTR(p) ((unsigned char __user *)((p) ^ swiz))
static int emulate_multiple(struct pt_regs *regs, unsigned char __user *addr,
unsigned int reg, unsigned int nb,
unsigned int flags, unsigned int instr,
unsigned long swiz)
{
unsigned long *rptr;
unsigned int nb0, i, bswiz;
unsigned long p;
/*
* We do not try to emulate 8 bytes multiple as they aren't really
* available in our operating environments and we don't try to
* emulate multiples operations in kernel land as they should never
* be used/generated there at least not on unaligned boundaries
*/
if (unlikely((nb > 4) || !user_mode(regs)))
return 0;
/* lmw, stmw, lswi/x, stswi/x */
nb0 = 0;
if (flags & HARD) {
if (flags & SX) {
nb = regs->xer & 127;
if (nb == 0)
return 1;
} else {
unsigned long pc = regs->nip ^ (swiz & 4);
if (__get_user_inatomic(instr,
(unsigned int __user *)pc))
return -EFAULT;
if (swiz == 0 && (flags & SW))
instr = cpu_to_le32(instr);
nb = (instr >> 11) & 0x1f;
if (nb == 0)
nb = 32;
}
if (nb + reg * 4 > 128) {
nb0 = nb + reg * 4 - 128;
nb = 128 - reg * 4;
}
} else {
/* lwm, stmw */
nb = (32 - reg) * 4;
}
if (!access_ok((flags & ST ? VERIFY_WRITE: VERIFY_READ), addr, nb+nb0))
return -EFAULT; /* bad address */
rptr = &regs->gpr[reg];
p = (unsigned long) addr;
bswiz = (flags & SW)? 3: 0;
if (!(flags & ST)) {
/*
* This zeroes the top 4 bytes of the affected registers
* in 64-bit mode, and also zeroes out any remaining
* bytes of the last register for lsw*.
*/
memset(rptr, 0, ((nb + 3) / 4) * sizeof(unsigned long));
if (nb0 > 0)
memset(&regs->gpr[0], 0,
((nb0 + 3) / 4) * sizeof(unsigned long));
for (i = 0; i < nb; ++i, ++p)
if (__get_user_inatomic(REG_BYTE(rptr, i ^ bswiz),
SWIZ_PTR(p)))
return -EFAULT;
if (nb0 > 0) {
rptr = &regs->gpr[0];
addr += nb;
for (i = 0; i < nb0; ++i, ++p)
if (__get_user_inatomic(REG_BYTE(rptr,
i ^ bswiz),
SWIZ_PTR(p)))
return -EFAULT;
}
} else {
for (i = 0; i < nb; ++i, ++p)
if (__put_user_inatomic(REG_BYTE(rptr, i ^ bswiz),
SWIZ_PTR(p)))
return -EFAULT;
if (nb0 > 0) {
rptr = &regs->gpr[0];
addr += nb;
for (i = 0; i < nb0; ++i, ++p)
if (__put_user_inatomic(REG_BYTE(rptr,
i ^ bswiz),
SWIZ_PTR(p)))
return -EFAULT;
}
}
return 1;
}
/*
* Emulate floating-point pair loads and stores.
* Only POWER6 has these instructions, and it does true little-endian,
* so we don't need the address swizzling.
*/
static int emulate_fp_pair(unsigned char __user *addr, unsigned int reg,
unsigned int flags)
{
char *ptr0 = (char *) &current->thread.TS_FPR(reg);
char *ptr1 = (char *) &current->thread.TS_FPR(reg+1);
int i, ret, sw = 0;
if (!(flags & F))
return 0;
if (reg & 1)
return 0; /* invalid form: FRS/FRT must be even */
if (flags & SW)
sw = 7;
ret = 0;
for (i = 0; i < 8; ++i) {
if (!(flags & ST)) {
ret |= __get_user(ptr0[i^sw], addr + i);
ret |= __get_user(ptr1[i^sw], addr + i + 8);
} else {
ret |= __put_user(ptr0[i^sw], addr + i);
ret |= __put_user(ptr1[i^sw], addr + i + 8);
}
}
if (ret)
return -EFAULT;
return 1; /* exception handled and fixed up */
}
[POWERPC] Handle alignment faults on SPE load/store instructions This adds code to handle alignment traps generated by the following SPE (signal processing engine) load/store instructions, by emulating the instruction in the kernel (as is done for other instructions that generate alignment traps): evldd[x] Vector Load Double Word into Double Word [Indexed] evldw[x] Vector Load Double into Two Words [Indexed] evldh[x] Vector Load Double into Four Half Words [Indexed] evlhhesplat[x] Vector Load Half Word into Half Words Even and Splat [Indexed] evlhhousplat[x] Vector Load Half Word into Half Word Odd Unsigned and Splat [Indexed] evlhhossplat[x] Vector Load Half Word into Half Word Odd Signed and Splat [Indexed] evlwhe[x] Vector Load Word into Two Half Words Even [Indexed] evlwhou[x] Vector Load Word into Two Half Words Odd Unsigned (zero-extended) [Indexed] evlwhos[x] Vector Load Word into Two Half Words Odd Signed (with sign extension) [Indexed] evlwwsplat[x] Vector Load Word into Word and Splat [Indexed] evlwhsplat[x] Vector Load Word into Two Half Words and Splat [Indexed] evstdd[x] Vector Store Double of Double [Indexed] evstdw[x] Vector Store Double of Two Words [Indexed] evstdh[x] Vector Store Double of Four Half Words [Indexed] evstwhe[x] Vector Store Word of Two Half Words from Even [Indexed] evstwho[x] Vector Store Word of Two Half Words from Odd [Indexed] evstwwe[x] Vector Store Word of Word from Even [Indexed] evstwwo[x] Vector Store Word of Word from Odd [Indexed] Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
2007-08-25 05:42:53 +08:00
#ifdef CONFIG_SPE
static struct aligninfo spe_aligninfo[32] = {
{ 8, LD+E8 }, /* 0 00 00: evldd[x] */
{ 8, LD+E4 }, /* 0 00 01: evldw[x] */
{ 8, LD }, /* 0 00 10: evldh[x] */
INVALID, /* 0 00 11 */
{ 2, LD }, /* 0 01 00: evlhhesplat[x] */
INVALID, /* 0 01 01 */
{ 2, LD }, /* 0 01 10: evlhhousplat[x] */
{ 2, LD+SE }, /* 0 01 11: evlhhossplat[x] */
{ 4, LD }, /* 0 10 00: evlwhe[x] */
INVALID, /* 0 10 01 */
{ 4, LD }, /* 0 10 10: evlwhou[x] */
{ 4, LD+SE }, /* 0 10 11: evlwhos[x] */
{ 4, LD+E4 }, /* 0 11 00: evlwwsplat[x] */
INVALID, /* 0 11 01 */
{ 4, LD }, /* 0 11 10: evlwhsplat[x] */
INVALID, /* 0 11 11 */
{ 8, ST+E8 }, /* 1 00 00: evstdd[x] */
{ 8, ST+E4 }, /* 1 00 01: evstdw[x] */
{ 8, ST }, /* 1 00 10: evstdh[x] */
INVALID, /* 1 00 11 */
INVALID, /* 1 01 00 */
INVALID, /* 1 01 01 */
INVALID, /* 1 01 10 */
INVALID, /* 1 01 11 */
{ 4, ST }, /* 1 10 00: evstwhe[x] */
INVALID, /* 1 10 01 */
{ 4, ST }, /* 1 10 10: evstwho[x] */
INVALID, /* 1 10 11 */
{ 4, ST+E4 }, /* 1 11 00: evstwwe[x] */
INVALID, /* 1 11 01 */
{ 4, ST+E4 }, /* 1 11 10: evstwwo[x] */
INVALID, /* 1 11 11 */
};
#define EVLDD 0x00
#define EVLDW 0x01
#define EVLDH 0x02
#define EVLHHESPLAT 0x04
#define EVLHHOUSPLAT 0x06
#define EVLHHOSSPLAT 0x07
#define EVLWHE 0x08
#define EVLWHOU 0x0A
#define EVLWHOS 0x0B
#define EVLWWSPLAT 0x0C
#define EVLWHSPLAT 0x0E
#define EVSTDD 0x10
#define EVSTDW 0x11
#define EVSTDH 0x12
#define EVSTWHE 0x18
#define EVSTWHO 0x1A
#define EVSTWWE 0x1C
#define EVSTWWO 0x1E
/*
* Emulate SPE loads and stores.
* Only Book-E has these instructions, and it does true little-endian,
* so we don't need the address swizzling.
*/
static int emulate_spe(struct pt_regs *regs, unsigned int reg,
unsigned int instr)
{
int t, ret;
union {
u64 ll;
u32 w[2];
u16 h[4];
u8 v[8];
} data, temp;
unsigned char __user *p, *addr;
unsigned long *evr = &current->thread.evr[reg];
unsigned int nb, flags;
instr = (instr >> 1) & 0x1f;
/* DAR has the operand effective address */
addr = (unsigned char __user *)regs->dar;
nb = spe_aligninfo[instr].len;
flags = spe_aligninfo[instr].flags;
/* Verify the address of the operand */
if (unlikely(user_mode(regs) &&
!access_ok((flags & ST ? VERIFY_WRITE : VERIFY_READ),
addr, nb)))
return -EFAULT;
/* userland only */
if (unlikely(!user_mode(regs)))
return 0;
flush_spe_to_thread(current);
/* If we are loading, get the data from user space, else
* get it from register values
*/
if (flags & ST) {
data.ll = 0;
switch (instr) {
case EVSTDD:
case EVSTDW:
case EVSTDH:
data.w[0] = *evr;
data.w[1] = regs->gpr[reg];
break;
case EVSTWHE:
data.h[2] = *evr >> 16;
data.h[3] = regs->gpr[reg] >> 16;
break;
case EVSTWHO:
data.h[2] = *evr & 0xffff;
data.h[3] = regs->gpr[reg] & 0xffff;
break;
case EVSTWWE:
data.w[1] = *evr;
break;
case EVSTWWO:
data.w[1] = regs->gpr[reg];
break;
default:
return -EINVAL;
}
} else {
temp.ll = data.ll = 0;
ret = 0;
p = addr;
switch (nb) {
case 8:
ret |= __get_user_inatomic(temp.v[0], p++);
ret |= __get_user_inatomic(temp.v[1], p++);
ret |= __get_user_inatomic(temp.v[2], p++);
ret |= __get_user_inatomic(temp.v[3], p++);
case 4:
ret |= __get_user_inatomic(temp.v[4], p++);
ret |= __get_user_inatomic(temp.v[5], p++);
case 2:
ret |= __get_user_inatomic(temp.v[6], p++);
ret |= __get_user_inatomic(temp.v[7], p++);
if (unlikely(ret))
return -EFAULT;
}
switch (instr) {
case EVLDD:
case EVLDW:
case EVLDH:
data.ll = temp.ll;
break;
case EVLHHESPLAT:
data.h[0] = temp.h[3];
data.h[2] = temp.h[3];
break;
case EVLHHOUSPLAT:
case EVLHHOSSPLAT:
data.h[1] = temp.h[3];
data.h[3] = temp.h[3];
break;
case EVLWHE:
data.h[0] = temp.h[2];
data.h[2] = temp.h[3];
break;
case EVLWHOU:
case EVLWHOS:
data.h[1] = temp.h[2];
data.h[3] = temp.h[3];
break;
case EVLWWSPLAT:
data.w[0] = temp.w[1];
data.w[1] = temp.w[1];
break;
case EVLWHSPLAT:
data.h[0] = temp.h[2];
data.h[1] = temp.h[2];
data.h[2] = temp.h[3];
data.h[3] = temp.h[3];
break;
default:
return -EINVAL;
}
}
if (flags & SW) {
switch (flags & 0xf0) {
case E8:
SWAP(data.v[0], data.v[7]);
SWAP(data.v[1], data.v[6]);
SWAP(data.v[2], data.v[5]);
SWAP(data.v[3], data.v[4]);
break;
case E4:
SWAP(data.v[0], data.v[3]);
SWAP(data.v[1], data.v[2]);
SWAP(data.v[4], data.v[7]);
SWAP(data.v[5], data.v[6]);
break;
/* Its half word endian */
default:
SWAP(data.v[0], data.v[1]);
SWAP(data.v[2], data.v[3]);
SWAP(data.v[4], data.v[5]);
SWAP(data.v[6], data.v[7]);
break;
}
}
if (flags & SE) {
data.w[0] = (s16)data.h[1];
data.w[1] = (s16)data.h[3];
}
/* Store result to memory or update registers */
if (flags & ST) {
ret = 0;
p = addr;
switch (nb) {
case 8:
ret |= __put_user_inatomic(data.v[0], p++);
ret |= __put_user_inatomic(data.v[1], p++);
ret |= __put_user_inatomic(data.v[2], p++);
ret |= __put_user_inatomic(data.v[3], p++);
case 4:
ret |= __put_user_inatomic(data.v[4], p++);
ret |= __put_user_inatomic(data.v[5], p++);
case 2:
ret |= __put_user_inatomic(data.v[6], p++);
ret |= __put_user_inatomic(data.v[7], p++);
}
if (unlikely(ret))
return -EFAULT;
} else {
*evr = data.w[0];
regs->gpr[reg] = data.w[1];
}
return 1;
}
#endif /* CONFIG_SPE */
#ifdef CONFIG_VSX
/*
* Emulate VSX instructions...
*/
static int emulate_vsx(unsigned char __user *addr, unsigned int reg,
unsigned int areg, struct pt_regs *regs,
unsigned int flags, unsigned int length)
{
char *ptr;
int ret = 0;
flush_vsx_to_thread(current);
if (reg < 32)
ptr = (char *) &current->thread.TS_FPR(reg);
else
ptr = (char *) &current->thread.vr[reg - 32];
if (flags & ST)
ret = __copy_to_user(addr, ptr, length);
else {
if (flags & SPLT){
ret = __copy_from_user(ptr, addr, length);
ptr += length;
}
ret |= __copy_from_user(ptr, addr, length);
}
if (flags & U)
regs->gpr[areg] = regs->dar;
if (ret)
return -EFAULT;
return 1;
}
#endif
/*
* Called on alignment exception. Attempts to fixup
*
* Return 1 on success
* Return 0 if unable to handle the interrupt
* Return -EFAULT if data address is bad
*/
int fix_alignment(struct pt_regs *regs)
{
unsigned int instr, nb, flags, instruction = 0;
unsigned int reg, areg;
unsigned int dsisr;
unsigned char __user *addr;
unsigned long p, swiz;
int ret, t;
union {
u64 ll;
double dd;
unsigned char v[8];
struct {
unsigned hi32;
int low32;
} x32;
struct {
unsigned char hi48[6];
short low16;
} x16;
} data;
/*
* We require a complete register set, if not, then our assembly
* is broken
*/
CHECK_FULL_REGS(regs);
dsisr = regs->dsisr;
/* Some processors don't provide us with a DSISR we can use here,
* let's make one up from the instruction
*/
if (cpu_has_feature(CPU_FTR_NODSISRALIGN)) {
unsigned long pc = regs->nip;
if (cpu_has_feature(CPU_FTR_PPC_LE) && (regs->msr & MSR_LE))
pc ^= 4;
if (unlikely(__get_user_inatomic(instr,
(unsigned int __user *)pc)))
return -EFAULT;
if (cpu_has_feature(CPU_FTR_REAL_LE) && (regs->msr & MSR_LE))
instr = cpu_to_le32(instr);
dsisr = make_dsisr(instr);
instruction = instr;
}
/* extract the operation and registers from the dsisr */
reg = (dsisr >> 5) & 0x1f; /* source/dest register */
areg = dsisr & 0x1f; /* register to update */
[POWERPC] Handle alignment faults on SPE load/store instructions This adds code to handle alignment traps generated by the following SPE (signal processing engine) load/store instructions, by emulating the instruction in the kernel (as is done for other instructions that generate alignment traps): evldd[x] Vector Load Double Word into Double Word [Indexed] evldw[x] Vector Load Double into Two Words [Indexed] evldh[x] Vector Load Double into Four Half Words [Indexed] evlhhesplat[x] Vector Load Half Word into Half Words Even and Splat [Indexed] evlhhousplat[x] Vector Load Half Word into Half Word Odd Unsigned and Splat [Indexed] evlhhossplat[x] Vector Load Half Word into Half Word Odd Signed and Splat [Indexed] evlwhe[x] Vector Load Word into Two Half Words Even [Indexed] evlwhou[x] Vector Load Word into Two Half Words Odd Unsigned (zero-extended) [Indexed] evlwhos[x] Vector Load Word into Two Half Words Odd Signed (with sign extension) [Indexed] evlwwsplat[x] Vector Load Word into Word and Splat [Indexed] evlwhsplat[x] Vector Load Word into Two Half Words and Splat [Indexed] evstdd[x] Vector Store Double of Double [Indexed] evstdw[x] Vector Store Double of Two Words [Indexed] evstdh[x] Vector Store Double of Four Half Words [Indexed] evstwhe[x] Vector Store Word of Two Half Words from Even [Indexed] evstwho[x] Vector Store Word of Two Half Words from Odd [Indexed] evstwwe[x] Vector Store Word of Word from Even [Indexed] evstwwo[x] Vector Store Word of Word from Odd [Indexed] Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
2007-08-25 05:42:53 +08:00
#ifdef CONFIG_SPE
if ((instr >> 26) == 0x4)
return emulate_spe(regs, reg, instr);
#endif
instr = (dsisr >> 10) & 0x7f;
instr |= (dsisr >> 13) & 0x60;
/* Lookup the operation in our table */
nb = aligninfo[instr].len;
flags = aligninfo[instr].flags;
/* Byteswap little endian loads and stores */
swiz = 0;
if (regs->msr & MSR_LE) {
flags ^= SW;
/*
* So-called "PowerPC little endian" mode works by
* swizzling addresses rather than by actually doing
* any byte-swapping. To emulate this, we XOR each
* byte address with 7. We also byte-swap, because
* the processor's address swizzling depends on the
* operand size (it xors the address with 7 for bytes,
* 6 for halfwords, 4 for words, 0 for doublewords) but
* we will xor with 7 and load/store each byte separately.
*/
if (cpu_has_feature(CPU_FTR_PPC_LE))
swiz = 7;
}
/* DAR has the operand effective address */
addr = (unsigned char __user *)regs->dar;
#ifdef CONFIG_VSX
if ((instruction & 0xfc00003e) == 0x7c000018) {
/* Additional register addressing bit (64 VSX vs 32 FPR/GPR */
reg |= (instruction & 0x1) << 5;
/* Simple inline decoder instead of a table */
if (instruction & 0x200)
nb = 16;
else if (instruction & 0x080)
nb = 8;
else
nb = 4;
flags = 0;
if (instruction & 0x100)
flags |= ST;
if (instruction & 0x040)
flags |= U;
/* splat load needs a special decoder */
if ((instruction & 0x400) == 0){
flags |= SPLT;
nb = 8;
}
return emulate_vsx(addr, reg, areg, regs, flags, nb);
}
#endif
/* A size of 0 indicates an instruction we don't support, with
* the exception of DCBZ which is handled as a special case here
*/
if (instr == DCBZ)
return emulate_dcbz(regs, addr);
if (unlikely(nb == 0))
return 0;
/* Load/Store Multiple instructions are handled in their own
* function
*/
if (flags & M)
return emulate_multiple(regs, addr, reg, nb,
flags, instr, swiz);
/* Verify the address of the operand */
if (unlikely(user_mode(regs) &&
!access_ok((flags & ST ? VERIFY_WRITE : VERIFY_READ),
addr, nb)))
return -EFAULT;
/* Force the fprs into the save area so we can reference them */
if (flags & F) {
/* userland only */
if (unlikely(!user_mode(regs)))
return 0;
flush_fp_to_thread(current);
}
/* Special case for 16-byte FP loads and stores */
if (nb == 16)
return emulate_fp_pair(addr, reg, flags);
/* If we are loading, get the data from user space, else
* get it from register values
*/
if (!(flags & ST)) {
data.ll = 0;
ret = 0;
p = (unsigned long) addr;
switch (nb) {
case 8:
ret |= __get_user_inatomic(data.v[0], SWIZ_PTR(p++));
ret |= __get_user_inatomic(data.v[1], SWIZ_PTR(p++));
ret |= __get_user_inatomic(data.v[2], SWIZ_PTR(p++));
ret |= __get_user_inatomic(data.v[3], SWIZ_PTR(p++));
case 4:
ret |= __get_user_inatomic(data.v[4], SWIZ_PTR(p++));
ret |= __get_user_inatomic(data.v[5], SWIZ_PTR(p++));
case 2:
ret |= __get_user_inatomic(data.v[6], SWIZ_PTR(p++));
ret |= __get_user_inatomic(data.v[7], SWIZ_PTR(p++));
if (unlikely(ret))
return -EFAULT;
}
} else if (flags & F) {
data.dd = current->thread.TS_FPR(reg);
if (flags & S) {
/* Single-precision FP store requires conversion... */
#ifdef CONFIG_PPC_FPU
preempt_disable();
enable_kernel_fp();
cvt_df(&data.dd, (float *)&data.v[4], &current->thread);
preempt_enable();
#else
return 0;
#endif
}
} else
data.ll = regs->gpr[reg];
if (flags & SW) {
switch (nb) {
case 8:
SWAP(data.v[0], data.v[7]);
SWAP(data.v[1], data.v[6]);
SWAP(data.v[2], data.v[5]);
SWAP(data.v[3], data.v[4]);
break;
case 4:
SWAP(data.v[4], data.v[7]);
SWAP(data.v[5], data.v[6]);
break;
case 2:
SWAP(data.v[6], data.v[7]);
break;
}
}
/* Perform other misc operations like sign extension
* or floating point single precision conversion
*/
switch (flags & ~(U|SW)) {
case LD+SE: /* sign extending integer loads */
case LD+F+SE: /* sign extend for lfiwax */
if ( nb == 2 )
data.ll = data.x16.low16;
else /* nb must be 4 */
data.ll = data.x32.low32;
break;
/* Single-precision FP load requires conversion... */
case LD+F+S:
#ifdef CONFIG_PPC_FPU
preempt_disable();
enable_kernel_fp();
cvt_fd((float *)&data.v[4], &data.dd, &current->thread);
preempt_enable();
#else
return 0;
#endif
break;
}
/* Store result to memory or update registers */
if (flags & ST) {
ret = 0;
p = (unsigned long) addr;
switch (nb) {
case 8:
ret |= __put_user_inatomic(data.v[0], SWIZ_PTR(p++));
ret |= __put_user_inatomic(data.v[1], SWIZ_PTR(p++));
ret |= __put_user_inatomic(data.v[2], SWIZ_PTR(p++));
ret |= __put_user_inatomic(data.v[3], SWIZ_PTR(p++));
case 4:
ret |= __put_user_inatomic(data.v[4], SWIZ_PTR(p++));
ret |= __put_user_inatomic(data.v[5], SWIZ_PTR(p++));
case 2:
ret |= __put_user_inatomic(data.v[6], SWIZ_PTR(p++));
ret |= __put_user_inatomic(data.v[7], SWIZ_PTR(p++));
}
if (unlikely(ret))
return -EFAULT;
} else if (flags & F)
current->thread.TS_FPR(reg) = data.dd;
else
regs->gpr[reg] = data.ll;
/* Update RA as needed */
if (flags & U)
regs->gpr[areg] = regs->dar;
return 1;
}