License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 22:07:57 +08:00
|
|
|
/* SPDX-License-Identifier: GPL-2.0 */
|
2005-04-17 06:20:36 +08:00
|
|
|
#ifndef _LINUX_BITOPS_H
|
|
|
|
#define _LINUX_BITOPS_H
|
|
|
|
#include <asm/types.h>
|
2018-06-19 20:53:08 +08:00
|
|
|
#include <linux/bits.h>
|
2005-04-17 06:20:36 +08:00
|
|
|
|
2018-08-22 12:57:03 +08:00
|
|
|
#define BITS_PER_TYPE(type) (sizeof(type) * BITS_PER_BYTE)
|
|
|
|
#define BITS_TO_LONGS(nr) DIV_ROUND_UP(nr, BITS_PER_TYPE(long))
|
2013-10-19 05:29:07 +08:00
|
|
|
|
2010-05-03 20:57:11 +08:00
|
|
|
extern unsigned int __sw_hweight8(unsigned int w);
|
|
|
|
extern unsigned int __sw_hweight16(unsigned int w);
|
|
|
|
extern unsigned int __sw_hweight32(unsigned int w);
|
|
|
|
extern unsigned long __sw_hweight64(__u64 w);
|
|
|
|
|
2005-04-17 06:20:36 +08:00
|
|
|
/*
|
|
|
|
* Include this here because some architectures need generic_ffs/fls in
|
|
|
|
* scope
|
|
|
|
*/
|
|
|
|
#include <asm/bitops.h>
|
|
|
|
|
2010-03-06 05:41:37 +08:00
|
|
|
#define for_each_set_bit(bit, addr, size) \
|
2011-11-18 19:35:21 +08:00
|
|
|
for ((bit) = find_first_bit((addr), (size)); \
|
|
|
|
(bit) < (size); \
|
|
|
|
(bit) = find_next_bit((addr), (size), (bit) + 1))
|
|
|
|
|
|
|
|
/* same as for_each_set_bit() but use bit as value to start with */
|
2012-03-24 06:02:03 +08:00
|
|
|
#define for_each_set_bit_from(bit, addr, size) \
|
2011-11-18 19:35:21 +08:00
|
|
|
for ((bit) = find_next_bit((addr), (size), (bit)); \
|
|
|
|
(bit) < (size); \
|
2007-10-16 16:27:40 +08:00
|
|
|
(bit) = find_next_bit((addr), (size), (bit) + 1))
|
|
|
|
|
2012-03-24 06:02:04 +08:00
|
|
|
#define for_each_clear_bit(bit, addr, size) \
|
|
|
|
for ((bit) = find_first_zero_bit((addr), (size)); \
|
|
|
|
(bit) < (size); \
|
|
|
|
(bit) = find_next_zero_bit((addr), (size), (bit) + 1))
|
|
|
|
|
|
|
|
/* same as for_each_clear_bit() but use bit as value to start with */
|
|
|
|
#define for_each_clear_bit_from(bit, addr, size) \
|
|
|
|
for ((bit) = find_next_zero_bit((addr), (size), (bit)); \
|
|
|
|
(bit) < (size); \
|
|
|
|
(bit) = find_next_zero_bit((addr), (size), (bit) + 1))
|
|
|
|
|
2015-08-04 22:15:14 +08:00
|
|
|
static inline int get_bitmask_order(unsigned int count)
|
2005-04-17 06:20:36 +08:00
|
|
|
{
|
|
|
|
int order;
|
2010-01-22 22:59:29 +08:00
|
|
|
|
2005-04-17 06:20:36 +08:00
|
|
|
order = fls(count);
|
|
|
|
return order; /* We could be slightly more clever with -1 here... */
|
|
|
|
}
|
|
|
|
|
2015-08-04 22:15:14 +08:00
|
|
|
static __always_inline unsigned long hweight_long(unsigned long w)
|
2005-04-17 06:20:36 +08:00
|
|
|
{
|
2006-03-26 17:39:55 +08:00
|
|
|
return sizeof(w) == 4 ? hweight32(w) : hweight64(w);
|
2005-04-17 06:20:36 +08:00
|
|
|
}
|
|
|
|
|
2012-01-15 02:44:49 +08:00
|
|
|
/**
|
|
|
|
* rol64 - rotate a 64-bit value left
|
|
|
|
* @word: value to rotate
|
|
|
|
* @shift: bits to roll
|
|
|
|
*/
|
|
|
|
static inline __u64 rol64(__u64 word, unsigned int shift)
|
|
|
|
{
|
|
|
|
return (word << shift) | (word >> (64 - shift));
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* ror64 - rotate a 64-bit value right
|
|
|
|
* @word: value to rotate
|
|
|
|
* @shift: bits to roll
|
|
|
|
*/
|
|
|
|
static inline __u64 ror64(__u64 word, unsigned int shift)
|
|
|
|
{
|
|
|
|
return (word >> shift) | (word << (64 - shift));
|
|
|
|
}
|
|
|
|
|
2007-01-26 16:57:09 +08:00
|
|
|
/**
|
2005-04-17 06:20:36 +08:00
|
|
|
* rol32 - rotate a 32-bit value left
|
|
|
|
* @word: value to rotate
|
|
|
|
* @shift: bits to roll
|
|
|
|
*/
|
|
|
|
static inline __u32 rol32(__u32 word, unsigned int shift)
|
|
|
|
{
|
2015-12-04 11:04:01 +08:00
|
|
|
return (word << shift) | (word >> ((-shift) & 31));
|
2005-04-17 06:20:36 +08:00
|
|
|
}
|
|
|
|
|
2007-01-26 16:57:09 +08:00
|
|
|
/**
|
2005-04-17 06:20:36 +08:00
|
|
|
* ror32 - rotate a 32-bit value right
|
|
|
|
* @word: value to rotate
|
|
|
|
* @shift: bits to roll
|
|
|
|
*/
|
|
|
|
static inline __u32 ror32(__u32 word, unsigned int shift)
|
|
|
|
{
|
|
|
|
return (word >> shift) | (word << (32 - shift));
|
|
|
|
}
|
|
|
|
|
2008-03-29 05:16:01 +08:00
|
|
|
/**
|
|
|
|
* rol16 - rotate a 16-bit value left
|
|
|
|
* @word: value to rotate
|
|
|
|
* @shift: bits to roll
|
|
|
|
*/
|
|
|
|
static inline __u16 rol16(__u16 word, unsigned int shift)
|
|
|
|
{
|
|
|
|
return (word << shift) | (word >> (16 - shift));
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* ror16 - rotate a 16-bit value right
|
|
|
|
* @word: value to rotate
|
|
|
|
* @shift: bits to roll
|
|
|
|
*/
|
|
|
|
static inline __u16 ror16(__u16 word, unsigned int shift)
|
|
|
|
{
|
|
|
|
return (word >> shift) | (word << (16 - shift));
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* rol8 - rotate an 8-bit value left
|
|
|
|
* @word: value to rotate
|
|
|
|
* @shift: bits to roll
|
|
|
|
*/
|
|
|
|
static inline __u8 rol8(__u8 word, unsigned int shift)
|
|
|
|
{
|
|
|
|
return (word << shift) | (word >> (8 - shift));
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* ror8 - rotate an 8-bit value right
|
|
|
|
* @word: value to rotate
|
|
|
|
* @shift: bits to roll
|
|
|
|
*/
|
|
|
|
static inline __u8 ror8(__u8 word, unsigned int shift)
|
|
|
|
{
|
|
|
|
return (word >> shift) | (word << (8 - shift));
|
|
|
|
}
|
2010-08-31 03:04:01 +08:00
|
|
|
|
|
|
|
/**
|
|
|
|
* sign_extend32 - sign extend a 32-bit value using specified bit as sign-bit
|
|
|
|
* @value: value to sign extend
|
|
|
|
* @index: 0 based bit index (0<=index<32) to sign bit
|
2015-11-07 08:30:58 +08:00
|
|
|
*
|
|
|
|
* This is safe to use for 16- and 8-bit types as well.
|
2010-08-31 03:04:01 +08:00
|
|
|
*/
|
|
|
|
static inline __s32 sign_extend32(__u32 value, int index)
|
|
|
|
{
|
|
|
|
__u8 shift = 31 - index;
|
|
|
|
return (__s32)(value << shift) >> shift;
|
|
|
|
}
|
2008-03-29 05:16:01 +08:00
|
|
|
|
2015-11-07 08:31:02 +08:00
|
|
|
/**
|
|
|
|
* sign_extend64 - sign extend a 64-bit value using specified bit as sign-bit
|
|
|
|
* @value: value to sign extend
|
|
|
|
* @index: 0 based bit index (0<=index<64) to sign bit
|
|
|
|
*/
|
|
|
|
static inline __s64 sign_extend64(__u64 value, int index)
|
|
|
|
{
|
|
|
|
__u8 shift = 63 - index;
|
|
|
|
return (__s64)(value << shift) >> shift;
|
|
|
|
}
|
|
|
|
|
2006-03-25 19:08:01 +08:00
|
|
|
static inline unsigned fls_long(unsigned long l)
|
|
|
|
{
|
|
|
|
if (sizeof(l) == 4)
|
|
|
|
return fls(l);
|
|
|
|
return fls64(l);
|
|
|
|
}
|
|
|
|
|
2016-10-08 07:57:26 +08:00
|
|
|
static inline int get_count_order(unsigned int count)
|
|
|
|
{
|
|
|
|
int order;
|
|
|
|
|
|
|
|
order = fls(count) - 1;
|
|
|
|
if (count & (count - 1))
|
|
|
|
order++;
|
|
|
|
return order;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* get_count_order_long - get order after rounding @l up to power of 2
|
|
|
|
* @l: parameter
|
|
|
|
*
|
|
|
|
* it is same as get_count_order() but with long type parameter
|
|
|
|
*/
|
|
|
|
static inline int get_count_order_long(unsigned long l)
|
|
|
|
{
|
|
|
|
if (l == 0UL)
|
|
|
|
return -1;
|
|
|
|
else if (l & (l - 1UL))
|
|
|
|
return (int)fls_long(l);
|
|
|
|
else
|
|
|
|
return (int)fls_long(l) - 1;
|
|
|
|
}
|
|
|
|
|
2009-04-23 15:48:15 +08:00
|
|
|
/**
|
|
|
|
* __ffs64 - find first set bit in a 64 bit word
|
|
|
|
* @word: The 64 bit word
|
|
|
|
*
|
|
|
|
* On 64 bit arches this is a synomyn for __ffs
|
|
|
|
* The result is not defined if no bits are set, so check that @word
|
|
|
|
* is non-zero before calling this.
|
|
|
|
*/
|
|
|
|
static inline unsigned long __ffs64(u64 word)
|
|
|
|
{
|
|
|
|
#if BITS_PER_LONG == 32
|
|
|
|
if (((u32)word) == 0UL)
|
|
|
|
return __ffs((u32)(word >> 32)) + 32;
|
|
|
|
#elif BITS_PER_LONG != 64
|
|
|
|
#error BITS_PER_LONG not 32 or 64
|
|
|
|
#endif
|
|
|
|
return __ffs((unsigned long)word);
|
|
|
|
}
|
|
|
|
|
2017-10-12 18:40:10 +08:00
|
|
|
/**
|
|
|
|
* assign_bit - Assign value to a bit in memory
|
|
|
|
* @nr: the bit to set
|
|
|
|
* @addr: the address to start counting from
|
|
|
|
* @value: the value to assign
|
|
|
|
*/
|
|
|
|
static __always_inline void assign_bit(long nr, volatile unsigned long *addr,
|
|
|
|
bool value)
|
|
|
|
{
|
|
|
|
if (value)
|
|
|
|
set_bit(nr, addr);
|
|
|
|
else
|
|
|
|
clear_bit(nr, addr);
|
|
|
|
}
|
|
|
|
|
|
|
|
static __always_inline void __assign_bit(long nr, volatile unsigned long *addr,
|
|
|
|
bool value)
|
|
|
|
{
|
|
|
|
if (value)
|
|
|
|
__set_bit(nr, addr);
|
|
|
|
else
|
|
|
|
__clear_bit(nr, addr);
|
|
|
|
}
|
|
|
|
|
2008-03-11 23:17:19 +08:00
|
|
|
#ifdef __KERNEL__
|
2008-04-01 17:46:19 +08:00
|
|
|
|
2014-03-30 22:20:01 +08:00
|
|
|
#ifndef set_mask_bits
|
2018-10-15 21:43:06 +08:00
|
|
|
#define set_mask_bits(ptr, mask, bits) \
|
2014-03-30 22:20:01 +08:00
|
|
|
({ \
|
2018-10-15 21:43:06 +08:00
|
|
|
const typeof(*(ptr)) mask__ = (mask), bits__ = (bits); \
|
|
|
|
typeof(*(ptr)) old__, new__; \
|
2014-03-30 22:20:01 +08:00
|
|
|
\
|
|
|
|
do { \
|
2018-10-15 21:43:06 +08:00
|
|
|
old__ = READ_ONCE(*(ptr)); \
|
|
|
|
new__ = (old__ & ~mask__) | bits__; \
|
|
|
|
} while (cmpxchg(ptr, old__, new__) != old__); \
|
2014-03-30 22:20:01 +08:00
|
|
|
\
|
2018-10-15 21:43:06 +08:00
|
|
|
new__; \
|
2014-03-30 22:20:01 +08:00
|
|
|
})
|
|
|
|
#endif
|
|
|
|
|
2016-05-04 10:22:13 +08:00
|
|
|
#ifndef bit_clear_unless
|
2018-10-15 21:43:06 +08:00
|
|
|
#define bit_clear_unless(ptr, clear, test) \
|
2016-05-04 10:22:13 +08:00
|
|
|
({ \
|
2018-10-15 21:43:06 +08:00
|
|
|
const typeof(*(ptr)) clear__ = (clear), test__ = (test);\
|
|
|
|
typeof(*(ptr)) old__, new__; \
|
2016-05-04 10:22:13 +08:00
|
|
|
\
|
|
|
|
do { \
|
2018-10-15 21:43:06 +08:00
|
|
|
old__ = READ_ONCE(*(ptr)); \
|
|
|
|
new__ = old__ & ~clear__; \
|
|
|
|
} while (!(old__ & test__) && \
|
|
|
|
cmpxchg(ptr, old__, new__) != old__); \
|
2016-05-04 10:22:13 +08:00
|
|
|
\
|
2018-10-15 21:43:06 +08:00
|
|
|
!(old__ & test__); \
|
2016-05-04 10:22:13 +08:00
|
|
|
})
|
|
|
|
#endif
|
|
|
|
|
2011-05-27 07:26:09 +08:00
|
|
|
#ifndef find_last_bit
|
2009-01-01 07:42:19 +08:00
|
|
|
/**
|
|
|
|
* find_last_bit - find the last set bit in a memory region
|
|
|
|
* @addr: The address to start the search at
|
2015-04-17 03:43:13 +08:00
|
|
|
* @size: The number of bits to search
|
2009-01-01 07:42:19 +08:00
|
|
|
*
|
2015-04-17 03:43:13 +08:00
|
|
|
* Returns the bit number of the last set bit, or size.
|
2009-01-01 07:42:19 +08:00
|
|
|
*/
|
|
|
|
extern unsigned long find_last_bit(const unsigned long *addr,
|
|
|
|
unsigned long size);
|
2011-05-27 07:26:09 +08:00
|
|
|
#endif
|
2009-01-01 07:42:19 +08:00
|
|
|
|
2008-03-11 23:17:19 +08:00
|
|
|
#endif /* __KERNEL__ */
|
2005-04-17 06:20:36 +08:00
|
|
|
#endif
|