linux-sg2042/arch/tile/kernel/pci-dma.c

360 lines
10 KiB
C
Raw Normal View History

/*
* Copyright 2010 Tilera Corporation. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, version 2.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
* NON INFRINGEMENT. See the GNU General Public License for
* more details.
*/
#include <linux/mm.h>
#include <linux/dma-mapping.h>
#include <linux/vmalloc.h>
#include <linux/export.h>
#include <asm/tlbflush.h>
#include <asm/homecache.h>
/* Generic DMA mapping functions: */
/*
* Allocate what Linux calls "coherent" memory. On TILEPro this is
* uncached memory; on TILE-Gx it is hash-for-home memory.
*/
#ifdef __tilepro__
#define PAGE_HOME_DMA PAGE_HOME_UNCACHED
#else
#define PAGE_HOME_DMA PAGE_HOME_HASH
#endif
void *dma_alloc_coherent(struct device *dev,
size_t size,
dma_addr_t *dma_handle,
gfp_t gfp)
{
u64 dma_mask = dev->coherent_dma_mask ?: DMA_BIT_MASK(32);
int node = dev_to_node(dev);
int order = get_order(size);
struct page *pg;
dma_addr_t addr;
gfp |= __GFP_ZERO;
/*
* If the mask specifies that the memory be in the first 4 GB, then
* we force the allocation to come from the DMA zone. We also
* force the node to 0 since that's the only node where the DMA
* zone isn't empty. If the mask size is smaller than 32 bits, we
* may still not be able to guarantee a suitable memory address, in
* which case we will return NULL. But such devices are uncommon.
*/
if (dma_mask <= DMA_BIT_MASK(32)) {
gfp |= GFP_DMA;
node = 0;
}
pg = homecache_alloc_pages_node(node, gfp, order, PAGE_HOME_DMA);
if (pg == NULL)
return NULL;
addr = page_to_phys(pg);
if (addr + size > dma_mask) {
__homecache_free_pages(pg, order);
return NULL;
}
*dma_handle = addr;
return page_address(pg);
}
EXPORT_SYMBOL(dma_alloc_coherent);
/*
* Free memory that was allocated with dma_alloc_coherent.
*/
void dma_free_coherent(struct device *dev, size_t size,
void *vaddr, dma_addr_t dma_handle)
{
homecache_free_pages((unsigned long)vaddr, get_order(size));
}
EXPORT_SYMBOL(dma_free_coherent);
/*
* The map routines "map" the specified address range for DMA
* accesses. The memory belongs to the device after this call is
* issued, until it is unmapped with dma_unmap_single.
*
* We don't need to do any mapping, we just flush the address range
* out of the cache and return a DMA address.
*
* The unmap routines do whatever is necessary before the processor
* accesses the memory again, and must be called before the driver
* touches the memory. We can get away with a cache invalidate if we
* can count on nothing having been touched.
*/
/* Set up a single page for DMA access. */
static void __dma_prep_page(struct page *page, unsigned long offset,
size_t size, enum dma_data_direction direction)
{
/*
* Flush the page from cache if necessary.
* On tilegx, data is delivered to hash-for-home L3; on tilepro,
* data is delivered direct to memory.
*
* NOTE: If we were just doing DMA_TO_DEVICE we could optimize
* this to be a "flush" not a "finv" and keep some of the
* state in cache across the DMA operation, but it doesn't seem
* worth creating the necessary flush_buffer_xxx() infrastructure.
*/
int home = page_home(page);
switch (home) {
case PAGE_HOME_HASH:
#ifdef __tilegx__
return;
#endif
break;
case PAGE_HOME_UNCACHED:
#ifdef __tilepro__
return;
#endif
break;
case PAGE_HOME_IMMUTABLE:
/* Should be going to the device only. */
BUG_ON(direction == DMA_FROM_DEVICE ||
direction == DMA_BIDIRECTIONAL);
return;
case PAGE_HOME_INCOHERENT:
/* Incoherent anyway, so no need to work hard here. */
return;
default:
BUG_ON(home < 0 || home >= NR_CPUS);
break;
}
homecache_finv_page(page);
#ifdef DEBUG_ALIGNMENT
/* Warn if the region isn't cacheline aligned. */
if (offset & (L2_CACHE_BYTES - 1) || (size & (L2_CACHE_BYTES - 1)))
pr_warn("Unaligned DMA to non-hfh memory: PA %#llx/%#lx\n",
PFN_PHYS(page_to_pfn(page)) + offset, size);
#endif
}
/* Make the page ready to be read by the core. */
static void __dma_complete_page(struct page *page, unsigned long offset,
size_t size, enum dma_data_direction direction)
{
#ifdef __tilegx__
switch (page_home(page)) {
case PAGE_HOME_HASH:
/* I/O device delivered data the way the cpu wanted it. */
break;
case PAGE_HOME_INCOHERENT:
/* Incoherent anyway, so no need to work hard here. */
break;
case PAGE_HOME_IMMUTABLE:
/* Extra read-only copies are not a problem. */
break;
default:
/* Flush the bogus hash-for-home I/O entries to memory. */
homecache_finv_map_page(page, PAGE_HOME_HASH);
break;
}
#endif
}
static void __dma_prep_pa_range(dma_addr_t dma_addr, size_t size,
enum dma_data_direction direction)
{
struct page *page = pfn_to_page(PFN_DOWN(dma_addr));
unsigned long offset = dma_addr & (PAGE_SIZE - 1);
size_t bytes = min(size, (size_t)(PAGE_SIZE - offset));
while (size != 0) {
__dma_prep_page(page, offset, bytes, direction);
size -= bytes;
++page;
offset = 0;
bytes = min((size_t)PAGE_SIZE, size);
}
}
static void __dma_complete_pa_range(dma_addr_t dma_addr, size_t size,
enum dma_data_direction direction)
{
struct page *page = pfn_to_page(PFN_DOWN(dma_addr));
unsigned long offset = dma_addr & (PAGE_SIZE - 1);
size_t bytes = min(size, (size_t)(PAGE_SIZE - offset));
while (size != 0) {
__dma_complete_page(page, offset, bytes, direction);
size -= bytes;
++page;
offset = 0;
bytes = min((size_t)PAGE_SIZE, size);
}
}
/*
* dma_map_single can be passed any memory address, and there appear
* to be no alignment constraints.
*
* There is a chance that the start of the buffer will share a cache
* line with some other data that has been touched in the meantime.
*/
dma_addr_t dma_map_single(struct device *dev, void *ptr, size_t size,
enum dma_data_direction direction)
{
dma_addr_t dma_addr = __pa(ptr);
BUG_ON(!valid_dma_direction(direction));
WARN_ON(size == 0);
__dma_prep_pa_range(dma_addr, size, direction);
return dma_addr;
}
EXPORT_SYMBOL(dma_map_single);
void dma_unmap_single(struct device *dev, dma_addr_t dma_addr, size_t size,
enum dma_data_direction direction)
{
BUG_ON(!valid_dma_direction(direction));
__dma_complete_pa_range(dma_addr, size, direction);
}
EXPORT_SYMBOL(dma_unmap_single);
int dma_map_sg(struct device *dev, struct scatterlist *sglist, int nents,
enum dma_data_direction direction)
{
struct scatterlist *sg;
int i;
BUG_ON(!valid_dma_direction(direction));
WARN_ON(nents == 0 || sglist->length == 0);
for_each_sg(sglist, sg, nents, i) {
sg->dma_address = sg_phys(sg);
__dma_prep_pa_range(sg->dma_address, sg->length, direction);
}
return nents;
}
EXPORT_SYMBOL(dma_map_sg);
void dma_unmap_sg(struct device *dev, struct scatterlist *sglist, int nents,
enum dma_data_direction direction)
{
struct scatterlist *sg;
int i;
BUG_ON(!valid_dma_direction(direction));
for_each_sg(sglist, sg, nents, i) {
sg->dma_address = sg_phys(sg);
__dma_complete_pa_range(sg->dma_address, sg->length,
direction);
}
}
EXPORT_SYMBOL(dma_unmap_sg);
dma_addr_t dma_map_page(struct device *dev, struct page *page,
unsigned long offset, size_t size,
enum dma_data_direction direction)
{
BUG_ON(!valid_dma_direction(direction));
BUG_ON(offset + size > PAGE_SIZE);
__dma_prep_page(page, offset, size, direction);
return page_to_pa(page) + offset;
}
EXPORT_SYMBOL(dma_map_page);
void dma_unmap_page(struct device *dev, dma_addr_t dma_address, size_t size,
enum dma_data_direction direction)
{
BUG_ON(!valid_dma_direction(direction));
__dma_complete_page(pfn_to_page(PFN_DOWN(dma_address)),
dma_address & PAGE_OFFSET, size, direction);
}
EXPORT_SYMBOL(dma_unmap_page);
void dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_handle,
size_t size, enum dma_data_direction direction)
{
BUG_ON(!valid_dma_direction(direction));
__dma_complete_pa_range(dma_handle, size, direction);
}
EXPORT_SYMBOL(dma_sync_single_for_cpu);
void dma_sync_single_for_device(struct device *dev, dma_addr_t dma_handle,
size_t size, enum dma_data_direction direction)
{
__dma_prep_pa_range(dma_handle, size, direction);
}
EXPORT_SYMBOL(dma_sync_single_for_device);
void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sglist,
int nelems, enum dma_data_direction direction)
{
struct scatterlist *sg;
int i;
BUG_ON(!valid_dma_direction(direction));
WARN_ON(nelems == 0 || sglist->length == 0);
for_each_sg(sglist, sg, nelems, i) {
dma_sync_single_for_cpu(dev, sg->dma_address,
sg_dma_len(sg), direction);
}
}
EXPORT_SYMBOL(dma_sync_sg_for_cpu);
void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sglist,
int nelems, enum dma_data_direction direction)
{
struct scatterlist *sg;
int i;
BUG_ON(!valid_dma_direction(direction));
WARN_ON(nelems == 0 || sglist->length == 0);
for_each_sg(sglist, sg, nelems, i) {
dma_sync_single_for_device(dev, sg->dma_address,
sg_dma_len(sg), direction);
}
}
EXPORT_SYMBOL(dma_sync_sg_for_device);
void dma_sync_single_range_for_cpu(struct device *dev, dma_addr_t dma_handle,
unsigned long offset, size_t size,
enum dma_data_direction direction)
{
dma_sync_single_for_cpu(dev, dma_handle + offset, size, direction);
}
EXPORT_SYMBOL(dma_sync_single_range_for_cpu);
void dma_sync_single_range_for_device(struct device *dev,
dma_addr_t dma_handle,
unsigned long offset, size_t size,
enum dma_data_direction direction)
{
dma_sync_single_for_device(dev, dma_handle + offset, size, direction);
}
EXPORT_SYMBOL(dma_sync_single_range_for_device);
/*
* dma_alloc_noncoherent() is #defined to return coherent memory,
* so there's no need to do any flushing here.
*/
void dma_cache_sync(struct device *dev, void *vaddr, size_t size,
enum dma_data_direction direction)
{
}
EXPORT_SYMBOL(dma_cache_sync);