linux-sg2042/drivers/block/swim.c

1009 lines
20 KiB
C
Raw Normal View History

/*
* Driver for SWIM (Sander Woz Integrated Machine) floppy controller
*
* Copyright (C) 2004,2008 Laurent Vivier <Laurent@lvivier.info>
*
* based on Alastair Bridgewater SWIM analysis, 2001
* based on SWIM3 driver (c) Paul Mackerras, 1996
* based on netBSD IWM driver (c) 1997, 1998 Hauke Fath.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
* 2004-08-21 (lv) - Initial implementation
* 2008-10-30 (lv) - Port to 2.6
*/
#include <linux/module.h>
#include <linux/fd.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include <linux/blkdev.h>
#include <linux/mutex.h>
#include <linux/hdreg.h>
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/platform_device.h>
#include <asm/mac_via.h>
#define CARDNAME "swim"
struct sector_header {
unsigned char side;
unsigned char track;
unsigned char sector;
unsigned char size;
unsigned char crc0;
unsigned char crc1;
} __attribute__((packed));
#define DRIVER_VERSION "Version 0.2 (2008-10-30)"
#define REG(x) unsigned char x, x ## _pad[0x200 - 1];
struct swim {
REG(write_data)
REG(write_mark)
REG(write_CRC)
REG(write_parameter)
REG(write_phase)
REG(write_setup)
REG(write_mode0)
REG(write_mode1)
REG(read_data)
REG(read_mark)
REG(read_error)
REG(read_parameter)
REG(read_phase)
REG(read_setup)
REG(read_status)
REG(read_handshake)
} __attribute__((packed));
#define swim_write(base, reg, v) out_8(&(base)->write_##reg, (v))
#define swim_read(base, reg) in_8(&(base)->read_##reg)
/* IWM registers */
struct iwm {
REG(ph0L)
REG(ph0H)
REG(ph1L)
REG(ph1H)
REG(ph2L)
REG(ph2H)
REG(ph3L)
REG(ph3H)
REG(mtrOff)
REG(mtrOn)
REG(intDrive)
REG(extDrive)
REG(q6L)
REG(q6H)
REG(q7L)
REG(q7H)
} __attribute__((packed));
#define iwm_write(base, reg, v) out_8(&(base)->reg, (v))
#define iwm_read(base, reg) in_8(&(base)->reg)
/* bits in phase register */
#define SEEK_POSITIVE 0x070
#define SEEK_NEGATIVE 0x074
#define STEP 0x071
#define MOTOR_ON 0x072
#define MOTOR_OFF 0x076
#define INDEX 0x073
#define EJECT 0x077
#define SETMFM 0x171
#define SETGCR 0x175
#define RELAX 0x033
#define LSTRB 0x008
#define CA_MASK 0x077
/* Select values for swim_select and swim_readbit */
#define READ_DATA_0 0x074
#define ONEMEG_DRIVE 0x075
#define SINGLE_SIDED 0x076
#define DRIVE_PRESENT 0x077
#define DISK_IN 0x170
#define WRITE_PROT 0x171
#define TRACK_ZERO 0x172
#define TACHO 0x173
#define READ_DATA_1 0x174
#define GCR_MODE 0x175
#define SEEK_COMPLETE 0x176
#define TWOMEG_MEDIA 0x177
/* Bits in handshake register */
#define MARK_BYTE 0x01
#define CRC_ZERO 0x02
#define RDDATA 0x04
#define SENSE 0x08
#define MOTEN 0x10
#define ERROR 0x20
#define DAT2BYTE 0x40
#define DAT1BYTE 0x80
/* bits in setup register */
#define S_INV_WDATA 0x01
#define S_3_5_SELECT 0x02
#define S_GCR 0x04
#define S_FCLK_DIV2 0x08
#define S_ERROR_CORR 0x10
#define S_IBM_DRIVE 0x20
#define S_GCR_WRITE 0x40
#define S_TIMEOUT 0x80
/* bits in mode register */
#define CLFIFO 0x01
#define ENBL1 0x02
#define ENBL2 0x04
#define ACTION 0x08
#define WRITE_MODE 0x10
#define HEDSEL 0x20
#define MOTON 0x80
/*----------------------------------------------------------------------------*/
enum drive_location {
INTERNAL_DRIVE = 0x02,
EXTERNAL_DRIVE = 0x04,
};
enum media_type {
DD_MEDIA,
HD_MEDIA,
};
struct floppy_state {
/* physical properties */
enum drive_location location; /* internal or external drive */
int head_number; /* single- or double-sided drive */
/* media */
int disk_in;
int ejected;
enum media_type type;
int write_protected;
int total_secs;
int secpercyl;
int secpertrack;
/* in-use information */
int track;
int ref_count;
struct gendisk *disk;
/* parent controller */
struct swim_priv *swd;
};
enum motor_action {
OFF,
ON,
};
enum head {
LOWER_HEAD = 0,
UPPER_HEAD = 1,
};
#define FD_MAX_UNIT 2
struct swim_priv {
struct swim __iomem *base;
spinlock_t lock;
int fdc_queue;
int floppy_count;
struct floppy_state unit[FD_MAX_UNIT];
};
extern int swim_read_sector_header(struct swim __iomem *base,
struct sector_header *header);
extern int swim_read_sector_data(struct swim __iomem *base,
unsigned char *data);
static DEFINE_MUTEX(swim_mutex);
static inline void set_swim_mode(struct swim __iomem *base, int enable)
{
struct iwm __iomem *iwm_base;
unsigned long flags;
if (!enable) {
swim_write(base, mode0, 0xf8);
return;
}
iwm_base = (struct iwm __iomem *)base;
local_irq_save(flags);
iwm_read(iwm_base, q7L);
iwm_read(iwm_base, mtrOff);
iwm_read(iwm_base, q6H);
iwm_write(iwm_base, q7H, 0x57);
iwm_write(iwm_base, q7H, 0x17);
iwm_write(iwm_base, q7H, 0x57);
iwm_write(iwm_base, q7H, 0x57);
local_irq_restore(flags);
}
static inline int get_swim_mode(struct swim __iomem *base)
{
unsigned long flags;
local_irq_save(flags);
swim_write(base, phase, 0xf5);
if (swim_read(base, phase) != 0xf5)
goto is_iwm;
swim_write(base, phase, 0xf6);
if (swim_read(base, phase) != 0xf6)
goto is_iwm;
swim_write(base, phase, 0xf7);
if (swim_read(base, phase) != 0xf7)
goto is_iwm;
local_irq_restore(flags);
return 1;
is_iwm:
local_irq_restore(flags);
return 0;
}
static inline void swim_select(struct swim __iomem *base, int sel)
{
swim_write(base, phase, RELAX);
via1_set_head(sel & 0x100);
swim_write(base, phase, sel & CA_MASK);
}
static inline void swim_action(struct swim __iomem *base, int action)
{
unsigned long flags;
local_irq_save(flags);
swim_select(base, action);
udelay(1);
swim_write(base, phase, (LSTRB<<4) | LSTRB);
udelay(1);
swim_write(base, phase, (LSTRB<<4) | ((~LSTRB) & 0x0F));
udelay(1);
local_irq_restore(flags);
}
static inline int swim_readbit(struct swim __iomem *base, int bit)
{
int stat;
swim_select(base, bit);
udelay(10);
stat = swim_read(base, handshake);
return (stat & SENSE) == 0;
}
static inline void swim_drive(struct swim __iomem *base,
enum drive_location location)
{
if (location == INTERNAL_DRIVE) {
swim_write(base, mode0, EXTERNAL_DRIVE); /* clear drive 1 bit */
swim_write(base, mode1, INTERNAL_DRIVE); /* set drive 0 bit */
} else if (location == EXTERNAL_DRIVE) {
swim_write(base, mode0, INTERNAL_DRIVE); /* clear drive 0 bit */
swim_write(base, mode1, EXTERNAL_DRIVE); /* set drive 1 bit */
}
}
static inline void swim_motor(struct swim __iomem *base,
enum motor_action action)
{
if (action == ON) {
int i;
swim_action(base, MOTOR_ON);
for (i = 0; i < 2*HZ; i++) {
swim_select(base, RELAX);
if (swim_readbit(base, MOTOR_ON))
break;
current->state = TASK_INTERRUPTIBLE;
schedule_timeout(1);
}
} else if (action == OFF) {
swim_action(base, MOTOR_OFF);
swim_select(base, RELAX);
}
}
static inline void swim_eject(struct swim __iomem *base)
{
int i;
swim_action(base, EJECT);
for (i = 0; i < 2*HZ; i++) {
swim_select(base, RELAX);
if (!swim_readbit(base, DISK_IN))
break;
current->state = TASK_INTERRUPTIBLE;
schedule_timeout(1);
}
swim_select(base, RELAX);
}
static inline void swim_head(struct swim __iomem *base, enum head head)
{
/* wait drive is ready */
if (head == UPPER_HEAD)
swim_select(base, READ_DATA_1);
else if (head == LOWER_HEAD)
swim_select(base, READ_DATA_0);
}
static inline int swim_step(struct swim __iomem *base)
{
int wait;
swim_action(base, STEP);
for (wait = 0; wait < HZ; wait++) {
current->state = TASK_INTERRUPTIBLE;
schedule_timeout(1);
swim_select(base, RELAX);
if (!swim_readbit(base, STEP))
return 0;
}
return -1;
}
static inline int swim_track00(struct swim __iomem *base)
{
int try;
swim_action(base, SEEK_NEGATIVE);
for (try = 0; try < 100; try++) {
swim_select(base, RELAX);
if (swim_readbit(base, TRACK_ZERO))
break;
if (swim_step(base))
return -1;
}
if (swim_readbit(base, TRACK_ZERO))
return 0;
return -1;
}
static inline int swim_seek(struct swim __iomem *base, int step)
{
if (step == 0)
return 0;
if (step < 0) {
swim_action(base, SEEK_NEGATIVE);
step = -step;
} else
swim_action(base, SEEK_POSITIVE);
for ( ; step > 0; step--) {
if (swim_step(base))
return -1;
}
return 0;
}
static inline int swim_track(struct floppy_state *fs, int track)
{
struct swim __iomem *base = fs->swd->base;
int ret;
ret = swim_seek(base, track - fs->track);
if (ret == 0)
fs->track = track;
else {
swim_track00(base);
fs->track = 0;
}
return ret;
}
static int floppy_eject(struct floppy_state *fs)
{
struct swim __iomem *base = fs->swd->base;
swim_drive(base, fs->location);
swim_motor(base, OFF);
swim_eject(base);
fs->disk_in = 0;
fs->ejected = 1;
return 0;
}
static inline int swim_read_sector(struct floppy_state *fs,
int side, int track,
int sector, unsigned char *buffer)
{
struct swim __iomem *base = fs->swd->base;
unsigned long flags;
struct sector_header header;
int ret = -1;
short i;
swim_track(fs, track);
swim_write(base, mode1, MOTON);
swim_head(base, side);
swim_write(base, mode0, side);
local_irq_save(flags);
for (i = 0; i < 36; i++) {
ret = swim_read_sector_header(base, &header);
if (!ret && (header.sector == sector)) {
/* found */
ret = swim_read_sector_data(base, buffer);
break;
}
}
local_irq_restore(flags);
swim_write(base, mode0, MOTON);
if ((header.side != side) || (header.track != track) ||
(header.sector != sector))
return 0;
return ret;
}
static blk_status_t floppy_read_sectors(struct floppy_state *fs,
int req_sector, int sectors_nb,
unsigned char *buffer)
{
struct swim __iomem *base = fs->swd->base;
int ret;
int side, track, sector;
int i, try;
swim_drive(base, fs->location);
for (i = req_sector; i < req_sector + sectors_nb; i++) {
int x;
track = i / fs->secpercyl;
x = i % fs->secpercyl;
side = x / fs->secpertrack;
sector = x % fs->secpertrack + 1;
try = 5;
do {
ret = swim_read_sector(fs, side, track, sector,
buffer);
if (try-- == 0)
return BLK_STS_IOERR;
} while (ret != 512);
buffer += ret;
}
return 0;
}
static struct request *swim_next_request(struct swim_priv *swd)
{
struct request_queue *q;
struct request *rq;
int old_pos = swd->fdc_queue;
do {
q = swd->unit[swd->fdc_queue].disk->queue;
if (++swd->fdc_queue == swd->floppy_count)
swd->fdc_queue = 0;
if (q) {
rq = blk_fetch_request(q);
if (rq)
return rq;
}
} while (swd->fdc_queue != old_pos);
return NULL;
}
static void do_fd_request(struct request_queue *q)
{
struct swim_priv *swd = q->queuedata;
struct request *req;
struct floppy_state *fs;
req = swim_next_request(swd);
while (req) {
blk_status_t err = BLK_STS_IOERR;
fs = req->rq_disk->private_data;
if (blk_rq_pos(req) >= fs->total_secs)
goto done;
if (!fs->disk_in)
goto done;
if (rq_data_dir(req) == WRITE && fs->write_protected)
goto done;
switch (rq_data_dir(req)) {
case WRITE:
/* NOT IMPLEMENTED */
break;
case READ:
err = floppy_read_sectors(fs, blk_rq_pos(req),
blk_rq_cur_sectors(req),
bio_data(req->bio));
break;
}
done:
block: implement and enforce request peek/start/fetch Till now block layer allowed two separate modes of request execution. A request is always acquired from the request queue via elv_next_request(). After that, drivers are free to either dequeue it or process it without dequeueing. Dequeue allows elv_next_request() to return the next request so that multiple requests can be in flight. Executing requests without dequeueing has its merits mostly in allowing drivers for simpler devices which can't do sg to deal with segments only without considering request boundary. However, the benefit this brings is dubious and declining while the cost of the API ambiguity is increasing. Segment based drivers are usually for very old or limited devices and as converting to dequeueing model isn't difficult, it doesn't justify the API overhead it puts on block layer and its more modern users. Previous patches converted all block low level drivers to dequeueing model. This patch completes the API transition by... * renaming elv_next_request() to blk_peek_request() * renaming blkdev_dequeue_request() to blk_start_request() * adding blk_fetch_request() which is combination of peek and start * disallowing completion of queued (not started) requests * applying new API to all LLDs Renamings are for consistency and to break out of tree code so that it's apparent that out of tree drivers need updating. [ Impact: block request issue API cleanup, no functional change ] Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Mike Miller <mike.miller@hp.com> Cc: unsik Kim <donari75@gmail.com> Cc: Paul Clements <paul.clements@steeleye.com> Cc: Tim Waugh <tim@cyberelk.net> Cc: Geert Uytterhoeven <Geert.Uytterhoeven@sonycom.com> Cc: David S. Miller <davem@davemloft.net> Cc: Laurent Vivier <Laurent@lvivier.info> Cc: Jeff Garzik <jgarzik@pobox.com> Cc: Jeremy Fitzhardinge <jeremy@xensource.com> Cc: Grant Likely <grant.likely@secretlab.ca> Cc: Adrian McMenamin <adrian@mcmen.demon.co.uk> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Bartlomiej Zolnierkiewicz <bzolnier@gmail.com> Cc: Borislav Petkov <petkovbb@googlemail.com> Cc: Sergei Shtylyov <sshtylyov@ru.mvista.com> Cc: Alex Dubov <oakad@yahoo.com> Cc: Pierre Ossman <drzeus@drzeus.cx> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Markus Lidel <Markus.Lidel@shadowconnect.com> Cc: Stefan Weinhuber <wein@de.ibm.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Pete Zaitcev <zaitcev@redhat.com> Cc: FUJITA Tomonori <fujita.tomonori@lab.ntt.co.jp> Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2009-05-08 10:54:16 +08:00
if (!__blk_end_request_cur(req, err))
req = swim_next_request(swd);
}
}
static struct floppy_struct floppy_type[4] = {
{ 0, 0, 0, 0, 0, 0x00, 0x00, 0x00, 0x00, NULL }, /* no testing */
{ 720, 9, 1, 80, 0, 0x2A, 0x02, 0xDF, 0x50, NULL }, /* 360KB SS 3.5"*/
{ 1440, 9, 2, 80, 0, 0x2A, 0x02, 0xDF, 0x50, NULL }, /* 720KB 3.5" */
{ 2880, 18, 2, 80, 0, 0x1B, 0x00, 0xCF, 0x6C, NULL }, /* 1.44MB 3.5" */
};
static int get_floppy_geometry(struct floppy_state *fs, int type,
struct floppy_struct **g)
{
if (type >= ARRAY_SIZE(floppy_type))
return -EINVAL;
if (type)
*g = &floppy_type[type];
else if (fs->type == HD_MEDIA) /* High-Density media */
*g = &floppy_type[3];
else if (fs->head_number == 2) /* double-sided */
*g = &floppy_type[2];
else
*g = &floppy_type[1];
return 0;
}
static void setup_medium(struct floppy_state *fs)
{
struct swim __iomem *base = fs->swd->base;
if (swim_readbit(base, DISK_IN)) {
struct floppy_struct *g;
fs->disk_in = 1;
fs->write_protected = swim_readbit(base, WRITE_PROT);
if (swim_track00(base))
printk(KERN_ERR
"SWIM: cannot move floppy head to track 0\n");
swim_track00(base);
fs->type = swim_readbit(base, TWOMEG_MEDIA) ?
HD_MEDIA : DD_MEDIA;
fs->head_number = swim_readbit(base, SINGLE_SIDED) ? 1 : 2;
get_floppy_geometry(fs, 0, &g);
fs->total_secs = g->size;
fs->secpercyl = g->head * g->sect;
fs->secpertrack = g->sect;
fs->track = 0;
} else {
fs->disk_in = 0;
}
}
static int floppy_open(struct block_device *bdev, fmode_t mode)
{
struct floppy_state *fs = bdev->bd_disk->private_data;
struct swim __iomem *base = fs->swd->base;
int err;
if (fs->ref_count == -1 || (fs->ref_count && mode & FMODE_EXCL))
return -EBUSY;
if (mode & FMODE_EXCL)
fs->ref_count = -1;
else
fs->ref_count++;
swim_write(base, setup, S_IBM_DRIVE | S_FCLK_DIV2);
udelay(10);
swim_drive(base, fs->location);
swim_motor(base, ON);
swim_action(base, SETMFM);
if (fs->ejected)
setup_medium(fs);
if (!fs->disk_in) {
err = -ENXIO;
goto out;
}
set_capacity(fs->disk, fs->total_secs);
if (mode & FMODE_NDELAY)
return 0;
if (mode & (FMODE_READ|FMODE_WRITE)) {
check_disk_change(bdev);
if ((mode & FMODE_WRITE) && fs->write_protected) {
err = -EROFS;
goto out;
}
}
return 0;
out:
if (fs->ref_count < 0)
fs->ref_count = 0;
else if (fs->ref_count > 0)
--fs->ref_count;
if (fs->ref_count == 0)
swim_motor(base, OFF);
return err;
}
static int floppy_unlocked_open(struct block_device *bdev, fmode_t mode)
{
int ret;
mutex_lock(&swim_mutex);
ret = floppy_open(bdev, mode);
mutex_unlock(&swim_mutex);
return ret;
}
static void floppy_release(struct gendisk *disk, fmode_t mode)
{
struct floppy_state *fs = disk->private_data;
struct swim __iomem *base = fs->swd->base;
mutex_lock(&swim_mutex);
if (fs->ref_count < 0)
fs->ref_count = 0;
else if (fs->ref_count > 0)
--fs->ref_count;
if (fs->ref_count == 0)
swim_motor(base, OFF);
mutex_unlock(&swim_mutex);
}
static int floppy_ioctl(struct block_device *bdev, fmode_t mode,
unsigned int cmd, unsigned long param)
{
struct floppy_state *fs = bdev->bd_disk->private_data;
int err;
if ((cmd & 0x80) && !capable(CAP_SYS_ADMIN))
return -EPERM;
switch (cmd) {
case FDEJECT:
if (fs->ref_count != 1)
return -EBUSY;
mutex_lock(&swim_mutex);
err = floppy_eject(fs);
mutex_unlock(&swim_mutex);
return err;
case FDGETPRM:
if (copy_to_user((void __user *) param, (void *) &floppy_type,
sizeof(struct floppy_struct)))
return -EFAULT;
return 0;
}
return -ENOTTY;
}
static int floppy_getgeo(struct block_device *bdev, struct hd_geometry *geo)
{
struct floppy_state *fs = bdev->bd_disk->private_data;
struct floppy_struct *g;
int ret;
ret = get_floppy_geometry(fs, 0, &g);
if (ret)
return ret;
geo->heads = g->head;
geo->sectors = g->sect;
geo->cylinders = g->track;
return 0;
}
static unsigned int floppy_check_events(struct gendisk *disk,
unsigned int clearing)
{
struct floppy_state *fs = disk->private_data;
return fs->ejected ? DISK_EVENT_MEDIA_CHANGE : 0;
}
static int floppy_revalidate(struct gendisk *disk)
{
struct floppy_state *fs = disk->private_data;
struct swim __iomem *base = fs->swd->base;
swim_drive(base, fs->location);
if (fs->ejected)
setup_medium(fs);
if (!fs->disk_in)
swim_motor(base, OFF);
else
fs->ejected = 0;
return !fs->disk_in;
}
static const struct block_device_operations floppy_fops = {
.owner = THIS_MODULE,
.open = floppy_unlocked_open,
.release = floppy_release,
.ioctl = floppy_ioctl,
.getgeo = floppy_getgeo,
.check_events = floppy_check_events,
.revalidate_disk = floppy_revalidate,
};
static struct kobject *floppy_find(dev_t dev, int *part, void *data)
{
struct swim_priv *swd = data;
int drive = (*part & 3);
block/swim: Fix array bounds check In the floppy_find() function in swim.c is a call to get_disk(swd->unit[drive].disk). The actual parameter to this call can be a NULL pointer when drive == swd->floppy_count. This causes an oops in get_disk(). Data read fault at 0x00000198 in Super Data (pc=0x1be5b6) BAD KERNEL BUSERR Oops: 00000000 Modules linked in: swim_mod ipv6 mac8390 PC: [<001be5b6>] get_disk+0xc/0x76 SR: 2004 SP: 9a078bc1 a2: 0213ed90 d0: 00000000 d1: 00000000 d2: 00000000 d3: 000000ff d4: 00000002 d5: 02983590 a0: 02332e00 a1: 022dfd64 Process dd (pid: 285, task=020ab25b) Frame format=B ssw=074d isc=4a88 isb=6732 daddr=00000198 dobuf=00000000 baddr=001be5bc dibuf=bfffffff ver=f Stack from 022dfca4: 00000000 0203fc00 0213ed90 022dfcc0 02982936 00000000 00200000 022dfd08 0020f85a 00200000 022dfd64 02332e00 004040fc 00000014 001be77e 022dfd64 00334e4a 001be3f8 0800001d 022dfd64 01c04b60 01c04b70 022aba80 029828f8 02332e00 022dfd2c 001be7ac 0203fc00 00200000 022dfd64 02103a00 01c04b60 01c04b60 0200e400 022dfd68 000e191a 00200000 022dfd64 02103a00 0800001d 00000000 00000003 000b89de 00500000 02103a00 01c04b60 02103a08 01c04c2e Call Trace: [<02982936>] floppy_find+0x3e/0x4a [swim_mod] [<00200000>] uart_remove_one_port+0x1a2/0x260 [<0020f85a>] kobj_lookup+0xde/0x132 [<00200000>] uart_remove_one_port+0x1a2/0x260 [<001be77e>] get_gendisk+0x0/0x130 [<00334e4a>] mutex_lock+0x0/0x2e [<001be3f8>] disk_block_events+0x0/0x6c [<029828f8>] floppy_find+0x0/0x4a [swim_mod] [<001be7ac>] get_gendisk+0x2e/0x130 [<00200000>] uart_remove_one_port+0x1a2/0x260 [<000e191a>] __blkdev_get+0x32/0x45a [<00200000>] uart_remove_one_port+0x1a2/0x260 [<000b89de>] complete_walk+0x0/0x8a [<000e1e22>] blkdev_get+0xe0/0x29a [<000e1fdc>] blkdev_open+0x0/0xb0 [<000b89de>] complete_walk+0x0/0x8a [<000e1fdc>] blkdev_open+0x0/0xb0 [<000e01cc>] bd_acquire+0x74/0x8a [<000e205c>] blkdev_open+0x80/0xb0 [<000e1fdc>] blkdev_open+0x0/0xb0 [<000abf24>] do_dentry_open+0x1a4/0x322 [<00020000>] __do_proc_douintvec+0x22/0x27e [<000b89de>] complete_walk+0x0/0x8a [<000baa62>] link_path_walk+0x0/0x48e [<000ba3f8>] inode_permission+0x20/0x54 [<000ac0e4>] vfs_open+0x42/0x78 [<000bc372>] path_openat+0x2b2/0xeaa [<000bc0c0>] path_openat+0x0/0xeaa [<0004463e>] __irq_wake_thread+0x0/0x4e [<0003a45a>] task_tick_fair+0x18/0xc8 [<000bd00a>] do_filp_open+0xa0/0xea [<000abae0>] do_sys_open+0x11a/0x1ee [<00020000>] __do_proc_douintvec+0x22/0x27e [<000abbf4>] SyS_open+0x1e/0x22 [<00020000>] __do_proc_douintvec+0x22/0x27e [<00002b40>] syscall+0x8/0xc [<00020000>] __do_proc_douintvec+0x22/0x27e [<0000c00b>] dyadic+0x1/0x28 Code: 4e5e 4e75 4e56 fffc 2f0b 2f02 266e 0008 <206b> 0198 4a88 6732 2428 002c 661e 486b 0058 4eb9 0032 0b96 588f 4a88 672c 2008 Disabling lock debugging due to kernel taint Fix the array index bounds check to avoid this. Cc: Laurent Vivier <lvivier@redhat.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: stable@vger.kernel.org # v4.14+ Fixes: 8852ecd97488 ("[PATCH] m68k: mac - Add SWIM floppy support") Tested-by: Stan Johnson <userm57@yahoo.com> Signed-off-by: Finn Thain <fthain@telegraphics.com.au> Acked-by: Laurent Vivier <lvivier@redhat.com> Reviewed-by: Geert Uytterhoeven <geert@linux-m68k.org> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-04-12 08:50:14 +08:00
if (drive >= swd->floppy_count)
return NULL;
*part = 0;
return get_disk_and_module(swd->unit[drive].disk);
}
static int swim_add_floppy(struct swim_priv *swd, enum drive_location location)
{
struct floppy_state *fs = &swd->unit[swd->floppy_count];
struct swim __iomem *base = swd->base;
fs->location = location;
swim_drive(base, location);
swim_motor(base, OFF);
fs->type = HD_MEDIA;
fs->head_number = 2;
fs->ref_count = 0;
fs->ejected = 1;
swd->floppy_count++;
return 0;
}
static int swim_floppy_init(struct swim_priv *swd)
{
int err;
int drive;
struct swim __iomem *base = swd->base;
/* scan floppy drives */
swim_drive(base, INTERNAL_DRIVE);
if (swim_readbit(base, DRIVE_PRESENT) &&
!swim_readbit(base, ONEMEG_DRIVE))
swim_add_floppy(swd, INTERNAL_DRIVE);
swim_drive(base, EXTERNAL_DRIVE);
if (swim_readbit(base, DRIVE_PRESENT) &&
!swim_readbit(base, ONEMEG_DRIVE))
swim_add_floppy(swd, EXTERNAL_DRIVE);
/* register floppy drives */
err = register_blkdev(FLOPPY_MAJOR, "fd");
if (err) {
printk(KERN_ERR "Unable to get major %d for SWIM floppy\n",
FLOPPY_MAJOR);
return -EBUSY;
}
spin_lock_init(&swd->lock);
for (drive = 0; drive < swd->floppy_count; drive++) {
swd->unit[drive].disk = alloc_disk(1);
if (swd->unit[drive].disk == NULL) {
err = -ENOMEM;
goto exit_put_disks;
}
swd->unit[drive].disk->queue = blk_init_queue(do_fd_request,
&swd->lock);
if (!swd->unit[drive].disk->queue) {
err = -ENOMEM;
goto exit_put_disks;
}
blk_queue_bounce_limit(swd->unit[drive].disk->queue,
BLK_BOUNCE_HIGH);
swd->unit[drive].disk->queue->queuedata = swd;
swd->unit[drive].swd = swd;
}
for (drive = 0; drive < swd->floppy_count; drive++) {
swd->unit[drive].disk->flags = GENHD_FL_REMOVABLE;
swd->unit[drive].disk->major = FLOPPY_MAJOR;
swd->unit[drive].disk->first_minor = drive;
sprintf(swd->unit[drive].disk->disk_name, "fd%d", drive);
swd->unit[drive].disk->fops = &floppy_fops;
swd->unit[drive].disk->private_data = &swd->unit[drive];
set_capacity(swd->unit[drive].disk, 2880);
add_disk(swd->unit[drive].disk);
}
blk_register_region(MKDEV(FLOPPY_MAJOR, 0), 256, THIS_MODULE,
floppy_find, NULL, swd);
return 0;
exit_put_disks:
unregister_blkdev(FLOPPY_MAJOR, "fd");
while (drive--)
put_disk(swd->unit[drive].disk);
return err;
}
static int swim_probe(struct platform_device *dev)
{
struct resource *res;
struct swim __iomem *swim_base;
struct swim_priv *swd;
int ret;
res = platform_get_resource(dev, IORESOURCE_MEM, 0);
if (!res) {
ret = -ENODEV;
goto out;
}
if (!request_mem_region(res->start, resource_size(res), CARDNAME)) {
ret = -EBUSY;
goto out;
}
m68k/mac: Don't remap SWIM MMIO region For reasons I don't understand, calling ioremap() then iounmap() on the SWIM MMIO region causes a hang on 68030 (but not on 68040). ~# modprobe swim_mod SWIM floppy driver Version 0.2 (2008-10-30) SWIM device not found ! watchdog: BUG: soft lockup - CPU#0 stuck for 23s! [modprobe:285] Modules linked in: swim_mod(+) Format 00 Vector: 0064 PC: 000075aa Status: 2000 Not tainted ORIG_D0: ffffffff D0: d00c0000 A2: 007c2370 A1: 003f810c A0: 00040000 D5: d0096800 D4: d0097e00 D3: 00000001 D2: 00000003 D1: 00000000 Non-Maskable Interrupt Modules linked in: swim_mod(+) PC: [<000075ba>] __iounmap+0x24/0x10e SR: 2000 SP: 007abc48 a2: 007c2370 d0: d00c0000 d1: 000001a0 d2: 00000019 d3: 00000001 d4: d0097e00 d5: d0096800 a0: 00040000 a1: 003f810c Process modprobe (pid: 285, task=007c2370) Frame format=0 Stack from 007abc7c: ffffffed 00000000 006a4060 004712e0 007abca0 000076ea d0080000 00080000 010bb4b8 007abcd8 010ba542 d0096000 00000000 00000000 00000001 010bb59c 00000000 007abf30 010bb4b8 0047760a 0047763c 00477612 00616540 007abcec 0020a91a 00477600 0047760a 010bb4cc 007abd18 002092f2 0047760a 00333b06 007abd5c 00000000 0047760a 010bb4cc 00404f90 004776b8 00000001 007abd38 00209446 010bb4cc 0047760a 010bb4cc 0020938e 0031f8be 00616540 007abd64 Call Trace: [<000076ea>] iounmap+0x46/0x5a [<00080000>] shrink_page_list+0x7f6/0xe06 [<010ba542>] swim_probe+0xe4/0x496 [swim_mod] [<0020a91a>] platform_drv_probe+0x20/0x5e [<002092f2>] driver_probe_device+0x21c/0x2b8 [<00333b06>] mutex_lock+0x0/0x2e [<00209446>] __driver_attach+0xb8/0xce [<0020938e>] __driver_attach+0x0/0xce [<0031f8be>] klist_next+0x0/0xa0 [<00207562>] bus_for_each_dev+0x74/0xba [<000344c0>] blocking_notifier_call_chain+0x0/0x20 [<00333b06>] mutex_lock+0x0/0x2e [<00208e44>] driver_attach+0x1a/0x1e [<0020938e>] __driver_attach+0x0/0xce [<00207e26>] bus_add_driver+0x188/0x234 [<000344c0>] blocking_notifier_call_chain+0x0/0x20 [<00209894>] driver_register+0x58/0x104 [<000344c0>] blocking_notifier_call_chain+0x0/0x20 [<010bd000>] swim_init+0x0/0x2c [swim_mod] [<0020a7be>] __platform_driver_register+0x38/0x3c [<010bd028>] swim_init+0x28/0x2c [swim_mod] [<000020dc>] do_one_initcall+0x38/0x196 [<000344c0>] blocking_notifier_call_chain+0x0/0x20 [<003331cc>] mutex_unlock+0x0/0x3e [<00333b06>] mutex_lock+0x0/0x2e [<003331cc>] mutex_unlock+0x0/0x3e [<00333b06>] mutex_lock+0x0/0x2e [<003331cc>] mutex_unlock+0x0/0x3e [<00333b06>] mutex_lock+0x0/0x2e [<003331cc>] mutex_unlock+0x0/0x3e [<00333b06>] mutex_lock+0x0/0x2e [<00075008>] __free_pages+0x0/0x38 [<000045c0>] mangle_kernel_stack+0x30/0xda [<000344c0>] blocking_notifier_call_chain+0x0/0x20 [<003331cc>] mutex_unlock+0x0/0x3e [<00333b06>] mutex_lock+0x0/0x2e [<0005ced4>] do_init_module+0x42/0x266 [<010bd000>] swim_init+0x0/0x2c [swim_mod] [<000344c0>] blocking_notifier_call_chain+0x0/0x20 [<0005eda0>] load_module+0x1a30/0x1e70 [<0000465d>] mangle_kernel_stack+0xcd/0xda [<00331c64>] __generic_copy_from_user+0x0/0x46 [<0033256e>] _cond_resched+0x0/0x32 [<00331b9c>] memset+0x0/0x98 [<0033256e>] _cond_resched+0x0/0x32 [<0005f25c>] SyS_init_module+0x7c/0x112 [<00002000>] _start+0x0/0x8 [<00002000>] _start+0x0/0x8 [<00331c82>] __generic_copy_from_user+0x1e/0x46 [<0005f2b2>] SyS_init_module+0xd2/0x112 [<0000465d>] mangle_kernel_stack+0xcd/0xda [<00002b40>] syscall+0x8/0xc [<0000465d>] mangle_kernel_stack+0xcd/0xda [<0008c00c>] pcpu_balance_workfn+0xb2/0x40e Code: 2200 7419 e4a9 e589 2841 d9fc 0000 1000 <2414> 7203 c282 7602 b681 6600 0096 0242 fe00 0482 0000 0000 e9c0 11c3 ed89 2642 There's no need to call ioremap() for the SWIM address range, as it lies within the usual IO device region at 0x5000 0000, which has already been mapped by head.S. Remove the redundant ioremap() and iounmap() calls to fix the hang. Cc: Laurent Vivier <lvivier@redhat.com> Cc: stable@vger.kernel.org # v4.14+ Tested-by: Stan Johnson <userm57@yahoo.com> Signed-off-by: Finn Thain <fthain@telegraphics.com.au> Acked-by: Laurent Vivier <lvivier@redhat.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-04-12 08:50:14 +08:00
swim_base = (struct swim __iomem *)res->start;
if (!swim_base) {
ret = -ENOMEM;
goto out_release_io;
}
/* probe device */
set_swim_mode(swim_base, 1);
if (!get_swim_mode(swim_base)) {
printk(KERN_INFO "SWIM device not found !\n");
ret = -ENODEV;
m68k/mac: Don't remap SWIM MMIO region For reasons I don't understand, calling ioremap() then iounmap() on the SWIM MMIO region causes a hang on 68030 (but not on 68040). ~# modprobe swim_mod SWIM floppy driver Version 0.2 (2008-10-30) SWIM device not found ! watchdog: BUG: soft lockup - CPU#0 stuck for 23s! [modprobe:285] Modules linked in: swim_mod(+) Format 00 Vector: 0064 PC: 000075aa Status: 2000 Not tainted ORIG_D0: ffffffff D0: d00c0000 A2: 007c2370 A1: 003f810c A0: 00040000 D5: d0096800 D4: d0097e00 D3: 00000001 D2: 00000003 D1: 00000000 Non-Maskable Interrupt Modules linked in: swim_mod(+) PC: [<000075ba>] __iounmap+0x24/0x10e SR: 2000 SP: 007abc48 a2: 007c2370 d0: d00c0000 d1: 000001a0 d2: 00000019 d3: 00000001 d4: d0097e00 d5: d0096800 a0: 00040000 a1: 003f810c Process modprobe (pid: 285, task=007c2370) Frame format=0 Stack from 007abc7c: ffffffed 00000000 006a4060 004712e0 007abca0 000076ea d0080000 00080000 010bb4b8 007abcd8 010ba542 d0096000 00000000 00000000 00000001 010bb59c 00000000 007abf30 010bb4b8 0047760a 0047763c 00477612 00616540 007abcec 0020a91a 00477600 0047760a 010bb4cc 007abd18 002092f2 0047760a 00333b06 007abd5c 00000000 0047760a 010bb4cc 00404f90 004776b8 00000001 007abd38 00209446 010bb4cc 0047760a 010bb4cc 0020938e 0031f8be 00616540 007abd64 Call Trace: [<000076ea>] iounmap+0x46/0x5a [<00080000>] shrink_page_list+0x7f6/0xe06 [<010ba542>] swim_probe+0xe4/0x496 [swim_mod] [<0020a91a>] platform_drv_probe+0x20/0x5e [<002092f2>] driver_probe_device+0x21c/0x2b8 [<00333b06>] mutex_lock+0x0/0x2e [<00209446>] __driver_attach+0xb8/0xce [<0020938e>] __driver_attach+0x0/0xce [<0031f8be>] klist_next+0x0/0xa0 [<00207562>] bus_for_each_dev+0x74/0xba [<000344c0>] blocking_notifier_call_chain+0x0/0x20 [<00333b06>] mutex_lock+0x0/0x2e [<00208e44>] driver_attach+0x1a/0x1e [<0020938e>] __driver_attach+0x0/0xce [<00207e26>] bus_add_driver+0x188/0x234 [<000344c0>] blocking_notifier_call_chain+0x0/0x20 [<00209894>] driver_register+0x58/0x104 [<000344c0>] blocking_notifier_call_chain+0x0/0x20 [<010bd000>] swim_init+0x0/0x2c [swim_mod] [<0020a7be>] __platform_driver_register+0x38/0x3c [<010bd028>] swim_init+0x28/0x2c [swim_mod] [<000020dc>] do_one_initcall+0x38/0x196 [<000344c0>] blocking_notifier_call_chain+0x0/0x20 [<003331cc>] mutex_unlock+0x0/0x3e [<00333b06>] mutex_lock+0x0/0x2e [<003331cc>] mutex_unlock+0x0/0x3e [<00333b06>] mutex_lock+0x0/0x2e [<003331cc>] mutex_unlock+0x0/0x3e [<00333b06>] mutex_lock+0x0/0x2e [<003331cc>] mutex_unlock+0x0/0x3e [<00333b06>] mutex_lock+0x0/0x2e [<00075008>] __free_pages+0x0/0x38 [<000045c0>] mangle_kernel_stack+0x30/0xda [<000344c0>] blocking_notifier_call_chain+0x0/0x20 [<003331cc>] mutex_unlock+0x0/0x3e [<00333b06>] mutex_lock+0x0/0x2e [<0005ced4>] do_init_module+0x42/0x266 [<010bd000>] swim_init+0x0/0x2c [swim_mod] [<000344c0>] blocking_notifier_call_chain+0x0/0x20 [<0005eda0>] load_module+0x1a30/0x1e70 [<0000465d>] mangle_kernel_stack+0xcd/0xda [<00331c64>] __generic_copy_from_user+0x0/0x46 [<0033256e>] _cond_resched+0x0/0x32 [<00331b9c>] memset+0x0/0x98 [<0033256e>] _cond_resched+0x0/0x32 [<0005f25c>] SyS_init_module+0x7c/0x112 [<00002000>] _start+0x0/0x8 [<00002000>] _start+0x0/0x8 [<00331c82>] __generic_copy_from_user+0x1e/0x46 [<0005f2b2>] SyS_init_module+0xd2/0x112 [<0000465d>] mangle_kernel_stack+0xcd/0xda [<00002b40>] syscall+0x8/0xc [<0000465d>] mangle_kernel_stack+0xcd/0xda [<0008c00c>] pcpu_balance_workfn+0xb2/0x40e Code: 2200 7419 e4a9 e589 2841 d9fc 0000 1000 <2414> 7203 c282 7602 b681 6600 0096 0242 fe00 0482 0000 0000 e9c0 11c3 ed89 2642 There's no need to call ioremap() for the SWIM address range, as it lies within the usual IO device region at 0x5000 0000, which has already been mapped by head.S. Remove the redundant ioremap() and iounmap() calls to fix the hang. Cc: Laurent Vivier <lvivier@redhat.com> Cc: stable@vger.kernel.org # v4.14+ Tested-by: Stan Johnson <userm57@yahoo.com> Signed-off-by: Finn Thain <fthain@telegraphics.com.au> Acked-by: Laurent Vivier <lvivier@redhat.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-04-12 08:50:14 +08:00
goto out_release_io;
}
/* set platform driver data */
swd = kzalloc(sizeof(struct swim_priv), GFP_KERNEL);
if (!swd) {
ret = -ENOMEM;
m68k/mac: Don't remap SWIM MMIO region For reasons I don't understand, calling ioremap() then iounmap() on the SWIM MMIO region causes a hang on 68030 (but not on 68040). ~# modprobe swim_mod SWIM floppy driver Version 0.2 (2008-10-30) SWIM device not found ! watchdog: BUG: soft lockup - CPU#0 stuck for 23s! [modprobe:285] Modules linked in: swim_mod(+) Format 00 Vector: 0064 PC: 000075aa Status: 2000 Not tainted ORIG_D0: ffffffff D0: d00c0000 A2: 007c2370 A1: 003f810c A0: 00040000 D5: d0096800 D4: d0097e00 D3: 00000001 D2: 00000003 D1: 00000000 Non-Maskable Interrupt Modules linked in: swim_mod(+) PC: [<000075ba>] __iounmap+0x24/0x10e SR: 2000 SP: 007abc48 a2: 007c2370 d0: d00c0000 d1: 000001a0 d2: 00000019 d3: 00000001 d4: d0097e00 d5: d0096800 a0: 00040000 a1: 003f810c Process modprobe (pid: 285, task=007c2370) Frame format=0 Stack from 007abc7c: ffffffed 00000000 006a4060 004712e0 007abca0 000076ea d0080000 00080000 010bb4b8 007abcd8 010ba542 d0096000 00000000 00000000 00000001 010bb59c 00000000 007abf30 010bb4b8 0047760a 0047763c 00477612 00616540 007abcec 0020a91a 00477600 0047760a 010bb4cc 007abd18 002092f2 0047760a 00333b06 007abd5c 00000000 0047760a 010bb4cc 00404f90 004776b8 00000001 007abd38 00209446 010bb4cc 0047760a 010bb4cc 0020938e 0031f8be 00616540 007abd64 Call Trace: [<000076ea>] iounmap+0x46/0x5a [<00080000>] shrink_page_list+0x7f6/0xe06 [<010ba542>] swim_probe+0xe4/0x496 [swim_mod] [<0020a91a>] platform_drv_probe+0x20/0x5e [<002092f2>] driver_probe_device+0x21c/0x2b8 [<00333b06>] mutex_lock+0x0/0x2e [<00209446>] __driver_attach+0xb8/0xce [<0020938e>] __driver_attach+0x0/0xce [<0031f8be>] klist_next+0x0/0xa0 [<00207562>] bus_for_each_dev+0x74/0xba [<000344c0>] blocking_notifier_call_chain+0x0/0x20 [<00333b06>] mutex_lock+0x0/0x2e [<00208e44>] driver_attach+0x1a/0x1e [<0020938e>] __driver_attach+0x0/0xce [<00207e26>] bus_add_driver+0x188/0x234 [<000344c0>] blocking_notifier_call_chain+0x0/0x20 [<00209894>] driver_register+0x58/0x104 [<000344c0>] blocking_notifier_call_chain+0x0/0x20 [<010bd000>] swim_init+0x0/0x2c [swim_mod] [<0020a7be>] __platform_driver_register+0x38/0x3c [<010bd028>] swim_init+0x28/0x2c [swim_mod] [<000020dc>] do_one_initcall+0x38/0x196 [<000344c0>] blocking_notifier_call_chain+0x0/0x20 [<003331cc>] mutex_unlock+0x0/0x3e [<00333b06>] mutex_lock+0x0/0x2e [<003331cc>] mutex_unlock+0x0/0x3e [<00333b06>] mutex_lock+0x0/0x2e [<003331cc>] mutex_unlock+0x0/0x3e [<00333b06>] mutex_lock+0x0/0x2e [<003331cc>] mutex_unlock+0x0/0x3e [<00333b06>] mutex_lock+0x0/0x2e [<00075008>] __free_pages+0x0/0x38 [<000045c0>] mangle_kernel_stack+0x30/0xda [<000344c0>] blocking_notifier_call_chain+0x0/0x20 [<003331cc>] mutex_unlock+0x0/0x3e [<00333b06>] mutex_lock+0x0/0x2e [<0005ced4>] do_init_module+0x42/0x266 [<010bd000>] swim_init+0x0/0x2c [swim_mod] [<000344c0>] blocking_notifier_call_chain+0x0/0x20 [<0005eda0>] load_module+0x1a30/0x1e70 [<0000465d>] mangle_kernel_stack+0xcd/0xda [<00331c64>] __generic_copy_from_user+0x0/0x46 [<0033256e>] _cond_resched+0x0/0x32 [<00331b9c>] memset+0x0/0x98 [<0033256e>] _cond_resched+0x0/0x32 [<0005f25c>] SyS_init_module+0x7c/0x112 [<00002000>] _start+0x0/0x8 [<00002000>] _start+0x0/0x8 [<00331c82>] __generic_copy_from_user+0x1e/0x46 [<0005f2b2>] SyS_init_module+0xd2/0x112 [<0000465d>] mangle_kernel_stack+0xcd/0xda [<00002b40>] syscall+0x8/0xc [<0000465d>] mangle_kernel_stack+0xcd/0xda [<0008c00c>] pcpu_balance_workfn+0xb2/0x40e Code: 2200 7419 e4a9 e589 2841 d9fc 0000 1000 <2414> 7203 c282 7602 b681 6600 0096 0242 fe00 0482 0000 0000 e9c0 11c3 ed89 2642 There's no need to call ioremap() for the SWIM address range, as it lies within the usual IO device region at 0x5000 0000, which has already been mapped by head.S. Remove the redundant ioremap() and iounmap() calls to fix the hang. Cc: Laurent Vivier <lvivier@redhat.com> Cc: stable@vger.kernel.org # v4.14+ Tested-by: Stan Johnson <userm57@yahoo.com> Signed-off-by: Finn Thain <fthain@telegraphics.com.au> Acked-by: Laurent Vivier <lvivier@redhat.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-04-12 08:50:14 +08:00
goto out_release_io;
}
platform_set_drvdata(dev, swd);
swd->base = swim_base;
ret = swim_floppy_init(swd);
if (ret)
goto out_kfree;
return 0;
out_kfree:
kfree(swd);
out_release_io:
release_mem_region(res->start, resource_size(res));
out:
return ret;
}
static int swim_remove(struct platform_device *dev)
{
struct swim_priv *swd = platform_get_drvdata(dev);
int drive;
struct resource *res;
blk_unregister_region(MKDEV(FLOPPY_MAJOR, 0), 256);
for (drive = 0; drive < swd->floppy_count; drive++) {
del_gendisk(swd->unit[drive].disk);
blk_cleanup_queue(swd->unit[drive].disk->queue);
put_disk(swd->unit[drive].disk);
}
unregister_blkdev(FLOPPY_MAJOR, "fd");
/* eject floppies */
for (drive = 0; drive < swd->floppy_count; drive++)
floppy_eject(&swd->unit[drive]);
res = platform_get_resource(dev, IORESOURCE_MEM, 0);
if (res)
release_mem_region(res->start, resource_size(res));
kfree(swd);
return 0;
}
static struct platform_driver swim_driver = {
.probe = swim_probe,
.remove = swim_remove,
.driver = {
.name = CARDNAME,
},
};
static int __init swim_init(void)
{
printk(KERN_INFO "SWIM floppy driver %s\n", DRIVER_VERSION);
return platform_driver_register(&swim_driver);
}
module_init(swim_init);
static void __exit swim_exit(void)
{
platform_driver_unregister(&swim_driver);
}
module_exit(swim_exit);
MODULE_DESCRIPTION("Driver for SWIM floppy controller");
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Laurent Vivier <laurent@lvivier.info>");
MODULE_ALIAS_BLOCKDEV_MAJOR(FLOPPY_MAJOR);