linux-sg2042/include/linux/stacktrace.h

45 lines
1.5 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 22:07:57 +08:00
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef __LINUX_STACKTRACE_H
#define __LINUX_STACKTRACE_H
#include <linux/types.h>
struct task_struct;
x86: Eliminate bp argument from the stack tracing routines The various stack tracing routines take a 'bp' argument in which the caller is supposed to provide the base pointer to use, or 0 if doesn't have one. Since bp is garbage whenever CONFIG_FRAME_POINTER is not defined, this means all callers in principle should either always pass 0, or be conditional on CONFIG_FRAME_POINTER. However, there are only really three use cases for stack tracing: (a) Trace the current task, including IRQ stack if any (b) Trace the current task, but skip IRQ stack (c) Trace some other task In all cases, if CONFIG_FRAME_POINTER is not defined, bp should just be 0. If it _is_ defined, then - in case (a) bp should be gotten directly from the CPU's register, so the caller should pass NULL for regs, - in case (b) the caller should should pass the IRQ registers to dump_trace(), - in case (c) bp should be gotten from the top of the task's stack, so the caller should pass NULL for regs. Hence, the bp argument is not necessary because the combination of task and regs is sufficient to determine an appropriate value for bp. This patch introduces a new inline function stack_frame(task, regs) that computes the desired bp. This function is then called from the two versions of dump_stack(). Signed-off-by: Soren Sandmann <ssp@redhat.com> Acked-by: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Arjan van de Ven <arjan@infradead.org>, Cc: Frederic Weisbecker <fweisbec@gmail.com>, Cc: Arnaldo Carvalho de Melo <acme@redhat.com>, LKML-Reference: <m3oc9rop28.fsf@dhcp-100-3-82.bos.redhat.com>> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2010-11-05 17:59:39 +08:00
struct pt_regs;
#ifdef CONFIG_STACKTRACE
struct stack_trace {
unsigned int nr_entries, max_entries;
unsigned long *entries;
int skip; /* input argument: How many entries to skip */
};
extern void save_stack_trace(struct stack_trace *trace);
extern void save_stack_trace_regs(struct pt_regs *regs,
struct stack_trace *trace);
extern void save_stack_trace_tsk(struct task_struct *tsk,
struct stack_trace *trace);
stacktrace/x86: add function for detecting reliable stack traces For live patching and possibly other use cases, a stack trace is only useful if it can be assured that it's completely reliable. Add a new save_stack_trace_tsk_reliable() function to achieve that. Note that if the target task isn't the current task, and the target task is allowed to run, then it could be writing the stack while the unwinder is reading it, resulting in possible corruption. So the caller of save_stack_trace_tsk_reliable() must ensure that the task is either 'current' or inactive. save_stack_trace_tsk_reliable() relies on the x86 unwinder's detection of pt_regs on the stack. If the pt_regs are not user-mode registers from a syscall, then they indicate an in-kernel interrupt or exception (e.g. preemption or a page fault), in which case the stack is considered unreliable due to the nature of frame pointers. It also relies on the x86 unwinder's detection of other issues, such as: - corrupted stack data - stack grows the wrong way - stack walk doesn't reach the bottom - user didn't provide a large enough entries array Such issues are reported by checking unwind_error() and !unwind_done(). Also add CONFIG_HAVE_RELIABLE_STACKTRACE so arch-independent code can determine at build time whether the function is implemented. Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Reviewed-by: Miroslav Benes <mbenes@suse.cz> Acked-by: Ingo Molnar <mingo@kernel.org> # for the x86 changes Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2017-02-14 09:42:28 +08:00
extern int save_stack_trace_tsk_reliable(struct task_struct *tsk,
struct stack_trace *trace);
extern void print_stack_trace(struct stack_trace *trace, int spaces);
extern int snprint_stack_trace(char *buf, size_t size,
struct stack_trace *trace, int spaces);
#ifdef CONFIG_USER_STACKTRACE_SUPPORT
extern void save_stack_trace_user(struct stack_trace *trace);
#else
# define save_stack_trace_user(trace) do { } while (0)
#endif
stacktrace/x86: add function for detecting reliable stack traces For live patching and possibly other use cases, a stack trace is only useful if it can be assured that it's completely reliable. Add a new save_stack_trace_tsk_reliable() function to achieve that. Note that if the target task isn't the current task, and the target task is allowed to run, then it could be writing the stack while the unwinder is reading it, resulting in possible corruption. So the caller of save_stack_trace_tsk_reliable() must ensure that the task is either 'current' or inactive. save_stack_trace_tsk_reliable() relies on the x86 unwinder's detection of pt_regs on the stack. If the pt_regs are not user-mode registers from a syscall, then they indicate an in-kernel interrupt or exception (e.g. preemption or a page fault), in which case the stack is considered unreliable due to the nature of frame pointers. It also relies on the x86 unwinder's detection of other issues, such as: - corrupted stack data - stack grows the wrong way - stack walk doesn't reach the bottom - user didn't provide a large enough entries array Such issues are reported by checking unwind_error() and !unwind_done(). Also add CONFIG_HAVE_RELIABLE_STACKTRACE so arch-independent code can determine at build time whether the function is implemented. Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Reviewed-by: Miroslav Benes <mbenes@suse.cz> Acked-by: Ingo Molnar <mingo@kernel.org> # for the x86 changes Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2017-02-14 09:42:28 +08:00
#else /* !CONFIG_STACKTRACE */
# define save_stack_trace(trace) do { } while (0)
# define save_stack_trace_tsk(tsk, trace) do { } while (0)
# define save_stack_trace_user(trace) do { } while (0)
# define print_stack_trace(trace, spaces) do { } while (0)
# define snprint_stack_trace(buf, size, trace, spaces) do { } while (0)
stacktrace/x86: add function for detecting reliable stack traces For live patching and possibly other use cases, a stack trace is only useful if it can be assured that it's completely reliable. Add a new save_stack_trace_tsk_reliable() function to achieve that. Note that if the target task isn't the current task, and the target task is allowed to run, then it could be writing the stack while the unwinder is reading it, resulting in possible corruption. So the caller of save_stack_trace_tsk_reliable() must ensure that the task is either 'current' or inactive. save_stack_trace_tsk_reliable() relies on the x86 unwinder's detection of pt_regs on the stack. If the pt_regs are not user-mode registers from a syscall, then they indicate an in-kernel interrupt or exception (e.g. preemption or a page fault), in which case the stack is considered unreliable due to the nature of frame pointers. It also relies on the x86 unwinder's detection of other issues, such as: - corrupted stack data - stack grows the wrong way - stack walk doesn't reach the bottom - user didn't provide a large enough entries array Such issues are reported by checking unwind_error() and !unwind_done(). Also add CONFIG_HAVE_RELIABLE_STACKTRACE so arch-independent code can determine at build time whether the function is implemented. Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Reviewed-by: Miroslav Benes <mbenes@suse.cz> Acked-by: Ingo Molnar <mingo@kernel.org> # for the x86 changes Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2017-02-14 09:42:28 +08:00
# define save_stack_trace_tsk_reliable(tsk, trace) ({ -ENOSYS; })
#endif /* CONFIG_STACKTRACE */
stacktrace/x86: add function for detecting reliable stack traces For live patching and possibly other use cases, a stack trace is only useful if it can be assured that it's completely reliable. Add a new save_stack_trace_tsk_reliable() function to achieve that. Note that if the target task isn't the current task, and the target task is allowed to run, then it could be writing the stack while the unwinder is reading it, resulting in possible corruption. So the caller of save_stack_trace_tsk_reliable() must ensure that the task is either 'current' or inactive. save_stack_trace_tsk_reliable() relies on the x86 unwinder's detection of pt_regs on the stack. If the pt_regs are not user-mode registers from a syscall, then they indicate an in-kernel interrupt or exception (e.g. preemption or a page fault), in which case the stack is considered unreliable due to the nature of frame pointers. It also relies on the x86 unwinder's detection of other issues, such as: - corrupted stack data - stack grows the wrong way - stack walk doesn't reach the bottom - user didn't provide a large enough entries array Such issues are reported by checking unwind_error() and !unwind_done(). Also add CONFIG_HAVE_RELIABLE_STACKTRACE so arch-independent code can determine at build time whether the function is implemented. Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Reviewed-by: Miroslav Benes <mbenes@suse.cz> Acked-by: Ingo Molnar <mingo@kernel.org> # for the x86 changes Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2017-02-14 09:42:28 +08:00
#endif /* __LINUX_STACKTRACE_H */