linux-sg2042/Documentation/networking/netconsole.rst

240 lines
8.0 KiB
ReStructuredText
Raw Normal View History

.. SPDX-License-Identifier: GPL-2.0
==========
Netconsole
==========
started by Ingo Molnar <mingo@redhat.com>, 2001.09.17
2.6 port and netpoll api by Matt Mackall <mpm@selenic.com>, Sep 9 2003
IPv6 support by Cong Wang <xiyou.wangcong@gmail.com>, Jan 1 2013
netconsole: implement extended console support printk logbuf keeps various metadata and optional key=value dictionary for structured messages, both of which are stripped when messages are handed to regular console drivers. It can be useful to have this metadata and dictionary available to netconsole consumers. This obviously makes logging via netconsole more complete and the sequence number in particular is useful in environments where messages may be lost or reordered in transit - e.g. when netconsole is used to collect messages in a large cluster where packets may have to travel congested hops to reach the aggregator. The lost and reordered messages can easily be identified and handled accordingly using the sequence numbers. printk recently added extended console support which can be selected by setting CON_EXTENDED flag. From console driver side, not much changes. The only difference is that the text passed to the write callback is formatted the same way as /dev/kmsg. This patch implements extended console support for netconsole which can be enabled by either prepending "+" to a netconsole boot param entry or echoing 1 to "extended" file in configfs. When enabled, netconsole transmits extended log messages with headers identical to /dev/kmsg output. There's one complication due to message fragments. netconsole limits the maximum message size to 1k and messages longer than that are split into multiple fragments. As all extended console messages should carry matching headers and be uniquely identifiable, each extended message fragment carries full copy of the metadata and an extra header field to identify the specific fragment. The optional header is of the form "ncfrag=OFF/LEN" where OFF is the byte offset into the message body and LEN is the total length. To avoid unnecessarily making printk format extended messages, Extended netconsole is registered with printk when the first extended netconsole is configured. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: David Miller <davem@davemloft.net> Cc: Kay Sievers <kay@vrfy.org> Cc: Petr Mladek <pmladek@suse.cz> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-26 06:01:41 +08:00
Extended console support by Tejun Heo <tj@kernel.org>, May 1 2015
Please send bug reports to Matt Mackall <mpm@selenic.com>
Satyam Sharma <satyam.sharma@gmail.com>, and Cong Wang <xiyou.wangcong@gmail.com>
[NET] netconsole: Support dynamic reconfiguration using configfs Based upon initial work by Keiichi Kii <k-keiichi@bx.jp.nec.com>. This patch introduces support for dynamic reconfiguration (adding, removing and/or modifying parameters of netconsole targets at runtime) using a userspace interface exported via configfs. Documentation is also updated accordingly. Issues and brief design overview: (1) Kernel-initiated creation / destruction of kernel objects is not possible with configfs -- the lifetimes of the "config items" is managed exclusively from userspace. But netconsole must support boot/module params too, and these are parsed in kernel and hence netpolls must be setup from the kernel. Joel Becker suggested to separately manage the lifetimes of the two kinds of netconsole_target objects -- those created via configfs mkdir(2) from userspace and those specified from the boot/module option string. This adds complexity and some redundancy here and also means that boot/module param-created targets are not exposed through the configfs namespace (and hence cannot be updated / destroyed dynamically). However, this saves us from locking / refcounting complexities that would need to be introduced in configfs to support kernel-initiated item creation / destroy there. (2) In configfs, item creation takes place in the call chain of the mkdir(2) syscall in the driver subsystem. If we used an ioctl(2) to create / destroy objects from userspace, the special userspace program is able to fill out the structure to be passed into the ioctl and hence specify attributes such as local interface that are required at the time we set up the netpoll. For configfs, this information is not available at the time of mkdir(2). So, we keep all newly-created targets (via configfs) disabled by default. The user is expected to set various attributes appropriately (including the local network interface if required) and then write(2) "1" to the "enabled" attribute. Thus, netpoll_setup() is then called on the set parameters in the context of _this_ write(2) on the "enabled" attribute itself. This design enables the user to reconfigure existing netconsole targets at runtime to be attached to newly-come-up interfaces that may not have existed when netconsole was loaded or when the targets were actually created. All this effectively enables us to get rid of custom ioctls. (3) Ultra-paranoid configfs attribute show() and store() operations, with sanity and input range checking, using only safe string primitives, and compliant with the recommendations in Documentation/filesystems/sysfs.txt. (4) A new function netpoll_print_options() is created in the netpoll API, that just prints out the configured parameters for a netpoll structure. netpoll_parse_options() is modified to use that and it is also exported to be used from netconsole. Signed-off-by: Satyam Sharma <satyam@infradead.org> Acked-by: Keiichi Kii <k-keiichi@bx.jp.nec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-08-11 06:35:05 +08:00
Introduction:
=============
This module logs kernel printk messages over UDP allowing debugging of
problem where disk logging fails and serial consoles are impractical.
It can be used either built-in or as a module. As a built-in,
netconsole initializes immediately after NIC cards and will bring up
the specified interface as soon as possible. While this doesn't allow
capture of early kernel panics, it does capture most of the boot
process.
[NET] netconsole: Support dynamic reconfiguration using configfs Based upon initial work by Keiichi Kii <k-keiichi@bx.jp.nec.com>. This patch introduces support for dynamic reconfiguration (adding, removing and/or modifying parameters of netconsole targets at runtime) using a userspace interface exported via configfs. Documentation is also updated accordingly. Issues and brief design overview: (1) Kernel-initiated creation / destruction of kernel objects is not possible with configfs -- the lifetimes of the "config items" is managed exclusively from userspace. But netconsole must support boot/module params too, and these are parsed in kernel and hence netpolls must be setup from the kernel. Joel Becker suggested to separately manage the lifetimes of the two kinds of netconsole_target objects -- those created via configfs mkdir(2) from userspace and those specified from the boot/module option string. This adds complexity and some redundancy here and also means that boot/module param-created targets are not exposed through the configfs namespace (and hence cannot be updated / destroyed dynamically). However, this saves us from locking / refcounting complexities that would need to be introduced in configfs to support kernel-initiated item creation / destroy there. (2) In configfs, item creation takes place in the call chain of the mkdir(2) syscall in the driver subsystem. If we used an ioctl(2) to create / destroy objects from userspace, the special userspace program is able to fill out the structure to be passed into the ioctl and hence specify attributes such as local interface that are required at the time we set up the netpoll. For configfs, this information is not available at the time of mkdir(2). So, we keep all newly-created targets (via configfs) disabled by default. The user is expected to set various attributes appropriately (including the local network interface if required) and then write(2) "1" to the "enabled" attribute. Thus, netpoll_setup() is then called on the set parameters in the context of _this_ write(2) on the "enabled" attribute itself. This design enables the user to reconfigure existing netconsole targets at runtime to be attached to newly-come-up interfaces that may not have existed when netconsole was loaded or when the targets were actually created. All this effectively enables us to get rid of custom ioctls. (3) Ultra-paranoid configfs attribute show() and store() operations, with sanity and input range checking, using only safe string primitives, and compliant with the recommendations in Documentation/filesystems/sysfs.txt. (4) A new function netpoll_print_options() is created in the netpoll API, that just prints out the configured parameters for a netpoll structure. netpoll_parse_options() is modified to use that and it is also exported to be used from netconsole. Signed-off-by: Satyam Sharma <satyam@infradead.org> Acked-by: Keiichi Kii <k-keiichi@bx.jp.nec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-08-11 06:35:05 +08:00
Sender and receiver configuration:
==================================
It takes a string configuration parameter "netconsole" in the
following format::
netconsole: implement extended console support printk logbuf keeps various metadata and optional key=value dictionary for structured messages, both of which are stripped when messages are handed to regular console drivers. It can be useful to have this metadata and dictionary available to netconsole consumers. This obviously makes logging via netconsole more complete and the sequence number in particular is useful in environments where messages may be lost or reordered in transit - e.g. when netconsole is used to collect messages in a large cluster where packets may have to travel congested hops to reach the aggregator. The lost and reordered messages can easily be identified and handled accordingly using the sequence numbers. printk recently added extended console support which can be selected by setting CON_EXTENDED flag. From console driver side, not much changes. The only difference is that the text passed to the write callback is formatted the same way as /dev/kmsg. This patch implements extended console support for netconsole which can be enabled by either prepending "+" to a netconsole boot param entry or echoing 1 to "extended" file in configfs. When enabled, netconsole transmits extended log messages with headers identical to /dev/kmsg output. There's one complication due to message fragments. netconsole limits the maximum message size to 1k and messages longer than that are split into multiple fragments. As all extended console messages should carry matching headers and be uniquely identifiable, each extended message fragment carries full copy of the metadata and an extra header field to identify the specific fragment. The optional header is of the form "ncfrag=OFF/LEN" where OFF is the byte offset into the message body and LEN is the total length. To avoid unnecessarily making printk format extended messages, Extended netconsole is registered with printk when the first extended netconsole is configured. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: David Miller <davem@davemloft.net> Cc: Kay Sievers <kay@vrfy.org> Cc: Petr Mladek <pmladek@suse.cz> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-26 06:01:41 +08:00
netconsole=[+][src-port]@[src-ip]/[<dev>],[tgt-port]@<tgt-ip>/[tgt-macaddr]
where
+ if present, enable extended console support
src-port source for UDP packets (defaults to 6665)
src-ip source IP to use (interface address)
dev network interface (eth0)
tgt-port port for logging agent (6666)
tgt-ip IP address for logging agent
tgt-macaddr ethernet MAC address for logging agent (broadcast)
Examples::
linux netconsole=4444@10.0.0.1/eth1,9353@10.0.0.2/12:34:56:78:9a:bc
or::
insmod netconsole netconsole=@/,@10.0.0.2/
or using IPv6::
insmod netconsole netconsole=@/,@fd00:1:2:3::1/
It also supports logging to multiple remote agents by specifying
parameters for the multiple agents separated by semicolons and the
complete string enclosed in "quotes", thusly::
modprobe netconsole netconsole="@/,@10.0.0.2/;@/eth1,6892@10.0.0.3/"
Built-in netconsole starts immediately after the TCP stack is
initialized and attempts to bring up the supplied dev at the supplied
address.
The remote host has several options to receive the kernel messages,
for example:
1) syslogd
2) netcat
On distributions using a BSD-based netcat version (e.g. Fedora,
openSUSE and Ubuntu) the listening port must be specified without
the -p switch::
nc -u -l -p <port>' / 'nc -u -l <port>
or::
netcat -u -l -p <port>' / 'netcat -u -l <port>
3) socat
::
socat udp-recv:<port> -
[NET] netconsole: Support dynamic reconfiguration using configfs Based upon initial work by Keiichi Kii <k-keiichi@bx.jp.nec.com>. This patch introduces support for dynamic reconfiguration (adding, removing and/or modifying parameters of netconsole targets at runtime) using a userspace interface exported via configfs. Documentation is also updated accordingly. Issues and brief design overview: (1) Kernel-initiated creation / destruction of kernel objects is not possible with configfs -- the lifetimes of the "config items" is managed exclusively from userspace. But netconsole must support boot/module params too, and these are parsed in kernel and hence netpolls must be setup from the kernel. Joel Becker suggested to separately manage the lifetimes of the two kinds of netconsole_target objects -- those created via configfs mkdir(2) from userspace and those specified from the boot/module option string. This adds complexity and some redundancy here and also means that boot/module param-created targets are not exposed through the configfs namespace (and hence cannot be updated / destroyed dynamically). However, this saves us from locking / refcounting complexities that would need to be introduced in configfs to support kernel-initiated item creation / destroy there. (2) In configfs, item creation takes place in the call chain of the mkdir(2) syscall in the driver subsystem. If we used an ioctl(2) to create / destroy objects from userspace, the special userspace program is able to fill out the structure to be passed into the ioctl and hence specify attributes such as local interface that are required at the time we set up the netpoll. For configfs, this information is not available at the time of mkdir(2). So, we keep all newly-created targets (via configfs) disabled by default. The user is expected to set various attributes appropriately (including the local network interface if required) and then write(2) "1" to the "enabled" attribute. Thus, netpoll_setup() is then called on the set parameters in the context of _this_ write(2) on the "enabled" attribute itself. This design enables the user to reconfigure existing netconsole targets at runtime to be attached to newly-come-up interfaces that may not have existed when netconsole was loaded or when the targets were actually created. All this effectively enables us to get rid of custom ioctls. (3) Ultra-paranoid configfs attribute show() and store() operations, with sanity and input range checking, using only safe string primitives, and compliant with the recommendations in Documentation/filesystems/sysfs.txt. (4) A new function netpoll_print_options() is created in the netpoll API, that just prints out the configured parameters for a netpoll structure. netpoll_parse_options() is modified to use that and it is also exported to be used from netconsole. Signed-off-by: Satyam Sharma <satyam@infradead.org> Acked-by: Keiichi Kii <k-keiichi@bx.jp.nec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-08-11 06:35:05 +08:00
Dynamic reconfiguration:
========================
Dynamic reconfigurability is a useful addition to netconsole that enables
remote logging targets to be dynamically added, removed, or have their
parameters reconfigured at runtime from a configfs-based userspace interface.
[ Note that the parameters of netconsole targets that were specified/created
from the boot/module option are not exposed via this interface, and hence
cannot be modified dynamically. ]
To include this feature, select CONFIG_NETCONSOLE_DYNAMIC when building the
netconsole module (or kernel, if netconsole is built-in).
Some examples follow (where configfs is mounted at the /sys/kernel/config
mountpoint).
To add a remote logging target (target names can be arbitrary)::
[NET] netconsole: Support dynamic reconfiguration using configfs Based upon initial work by Keiichi Kii <k-keiichi@bx.jp.nec.com>. This patch introduces support for dynamic reconfiguration (adding, removing and/or modifying parameters of netconsole targets at runtime) using a userspace interface exported via configfs. Documentation is also updated accordingly. Issues and brief design overview: (1) Kernel-initiated creation / destruction of kernel objects is not possible with configfs -- the lifetimes of the "config items" is managed exclusively from userspace. But netconsole must support boot/module params too, and these are parsed in kernel and hence netpolls must be setup from the kernel. Joel Becker suggested to separately manage the lifetimes of the two kinds of netconsole_target objects -- those created via configfs mkdir(2) from userspace and those specified from the boot/module option string. This adds complexity and some redundancy here and also means that boot/module param-created targets are not exposed through the configfs namespace (and hence cannot be updated / destroyed dynamically). However, this saves us from locking / refcounting complexities that would need to be introduced in configfs to support kernel-initiated item creation / destroy there. (2) In configfs, item creation takes place in the call chain of the mkdir(2) syscall in the driver subsystem. If we used an ioctl(2) to create / destroy objects from userspace, the special userspace program is able to fill out the structure to be passed into the ioctl and hence specify attributes such as local interface that are required at the time we set up the netpoll. For configfs, this information is not available at the time of mkdir(2). So, we keep all newly-created targets (via configfs) disabled by default. The user is expected to set various attributes appropriately (including the local network interface if required) and then write(2) "1" to the "enabled" attribute. Thus, netpoll_setup() is then called on the set parameters in the context of _this_ write(2) on the "enabled" attribute itself. This design enables the user to reconfigure existing netconsole targets at runtime to be attached to newly-come-up interfaces that may not have existed when netconsole was loaded or when the targets were actually created. All this effectively enables us to get rid of custom ioctls. (3) Ultra-paranoid configfs attribute show() and store() operations, with sanity and input range checking, using only safe string primitives, and compliant with the recommendations in Documentation/filesystems/sysfs.txt. (4) A new function netpoll_print_options() is created in the netpoll API, that just prints out the configured parameters for a netpoll structure. netpoll_parse_options() is modified to use that and it is also exported to be used from netconsole. Signed-off-by: Satyam Sharma <satyam@infradead.org> Acked-by: Keiichi Kii <k-keiichi@bx.jp.nec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-08-11 06:35:05 +08:00
cd /sys/kernel/config/netconsole/
mkdir target1
Note that newly created targets have default parameter values (as mentioned
above) and are disabled by default -- they must first be enabled by writing
"1" to the "enabled" attribute (usually after setting parameters accordingly)
as described below.
To remove a target::
[NET] netconsole: Support dynamic reconfiguration using configfs Based upon initial work by Keiichi Kii <k-keiichi@bx.jp.nec.com>. This patch introduces support for dynamic reconfiguration (adding, removing and/or modifying parameters of netconsole targets at runtime) using a userspace interface exported via configfs. Documentation is also updated accordingly. Issues and brief design overview: (1) Kernel-initiated creation / destruction of kernel objects is not possible with configfs -- the lifetimes of the "config items" is managed exclusively from userspace. But netconsole must support boot/module params too, and these are parsed in kernel and hence netpolls must be setup from the kernel. Joel Becker suggested to separately manage the lifetimes of the two kinds of netconsole_target objects -- those created via configfs mkdir(2) from userspace and those specified from the boot/module option string. This adds complexity and some redundancy here and also means that boot/module param-created targets are not exposed through the configfs namespace (and hence cannot be updated / destroyed dynamically). However, this saves us from locking / refcounting complexities that would need to be introduced in configfs to support kernel-initiated item creation / destroy there. (2) In configfs, item creation takes place in the call chain of the mkdir(2) syscall in the driver subsystem. If we used an ioctl(2) to create / destroy objects from userspace, the special userspace program is able to fill out the structure to be passed into the ioctl and hence specify attributes such as local interface that are required at the time we set up the netpoll. For configfs, this information is not available at the time of mkdir(2). So, we keep all newly-created targets (via configfs) disabled by default. The user is expected to set various attributes appropriately (including the local network interface if required) and then write(2) "1" to the "enabled" attribute. Thus, netpoll_setup() is then called on the set parameters in the context of _this_ write(2) on the "enabled" attribute itself. This design enables the user to reconfigure existing netconsole targets at runtime to be attached to newly-come-up interfaces that may not have existed when netconsole was loaded or when the targets were actually created. All this effectively enables us to get rid of custom ioctls. (3) Ultra-paranoid configfs attribute show() and store() operations, with sanity and input range checking, using only safe string primitives, and compliant with the recommendations in Documentation/filesystems/sysfs.txt. (4) A new function netpoll_print_options() is created in the netpoll API, that just prints out the configured parameters for a netpoll structure. netpoll_parse_options() is modified to use that and it is also exported to be used from netconsole. Signed-off-by: Satyam Sharma <satyam@infradead.org> Acked-by: Keiichi Kii <k-keiichi@bx.jp.nec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-08-11 06:35:05 +08:00
rmdir /sys/kernel/config/netconsole/othertarget/
The interface exposes these parameters of a netconsole target to userspace:
============== ================================= ============
[NET] netconsole: Support dynamic reconfiguration using configfs Based upon initial work by Keiichi Kii <k-keiichi@bx.jp.nec.com>. This patch introduces support for dynamic reconfiguration (adding, removing and/or modifying parameters of netconsole targets at runtime) using a userspace interface exported via configfs. Documentation is also updated accordingly. Issues and brief design overview: (1) Kernel-initiated creation / destruction of kernel objects is not possible with configfs -- the lifetimes of the "config items" is managed exclusively from userspace. But netconsole must support boot/module params too, and these are parsed in kernel and hence netpolls must be setup from the kernel. Joel Becker suggested to separately manage the lifetimes of the two kinds of netconsole_target objects -- those created via configfs mkdir(2) from userspace and those specified from the boot/module option string. This adds complexity and some redundancy here and also means that boot/module param-created targets are not exposed through the configfs namespace (and hence cannot be updated / destroyed dynamically). However, this saves us from locking / refcounting complexities that would need to be introduced in configfs to support kernel-initiated item creation / destroy there. (2) In configfs, item creation takes place in the call chain of the mkdir(2) syscall in the driver subsystem. If we used an ioctl(2) to create / destroy objects from userspace, the special userspace program is able to fill out the structure to be passed into the ioctl and hence specify attributes such as local interface that are required at the time we set up the netpoll. For configfs, this information is not available at the time of mkdir(2). So, we keep all newly-created targets (via configfs) disabled by default. The user is expected to set various attributes appropriately (including the local network interface if required) and then write(2) "1" to the "enabled" attribute. Thus, netpoll_setup() is then called on the set parameters in the context of _this_ write(2) on the "enabled" attribute itself. This design enables the user to reconfigure existing netconsole targets at runtime to be attached to newly-come-up interfaces that may not have existed when netconsole was loaded or when the targets were actually created. All this effectively enables us to get rid of custom ioctls. (3) Ultra-paranoid configfs attribute show() and store() operations, with sanity and input range checking, using only safe string primitives, and compliant with the recommendations in Documentation/filesystems/sysfs.txt. (4) A new function netpoll_print_options() is created in the netpoll API, that just prints out the configured parameters for a netpoll structure. netpoll_parse_options() is modified to use that and it is also exported to be used from netconsole. Signed-off-by: Satyam Sharma <satyam@infradead.org> Acked-by: Keiichi Kii <k-keiichi@bx.jp.nec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-08-11 06:35:05 +08:00
enabled Is this target currently enabled? (read-write)
netconsole: implement extended console support printk logbuf keeps various metadata and optional key=value dictionary for structured messages, both of which are stripped when messages are handed to regular console drivers. It can be useful to have this metadata and dictionary available to netconsole consumers. This obviously makes logging via netconsole more complete and the sequence number in particular is useful in environments where messages may be lost or reordered in transit - e.g. when netconsole is used to collect messages in a large cluster where packets may have to travel congested hops to reach the aggregator. The lost and reordered messages can easily be identified and handled accordingly using the sequence numbers. printk recently added extended console support which can be selected by setting CON_EXTENDED flag. From console driver side, not much changes. The only difference is that the text passed to the write callback is formatted the same way as /dev/kmsg. This patch implements extended console support for netconsole which can be enabled by either prepending "+" to a netconsole boot param entry or echoing 1 to "extended" file in configfs. When enabled, netconsole transmits extended log messages with headers identical to /dev/kmsg output. There's one complication due to message fragments. netconsole limits the maximum message size to 1k and messages longer than that are split into multiple fragments. As all extended console messages should carry matching headers and be uniquely identifiable, each extended message fragment carries full copy of the metadata and an extra header field to identify the specific fragment. The optional header is of the form "ncfrag=OFF/LEN" where OFF is the byte offset into the message body and LEN is the total length. To avoid unnecessarily making printk format extended messages, Extended netconsole is registered with printk when the first extended netconsole is configured. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: David Miller <davem@davemloft.net> Cc: Kay Sievers <kay@vrfy.org> Cc: Petr Mladek <pmladek@suse.cz> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-26 06:01:41 +08:00
extended Extended mode enabled (read-write)
[NET] netconsole: Support dynamic reconfiguration using configfs Based upon initial work by Keiichi Kii <k-keiichi@bx.jp.nec.com>. This patch introduces support for dynamic reconfiguration (adding, removing and/or modifying parameters of netconsole targets at runtime) using a userspace interface exported via configfs. Documentation is also updated accordingly. Issues and brief design overview: (1) Kernel-initiated creation / destruction of kernel objects is not possible with configfs -- the lifetimes of the "config items" is managed exclusively from userspace. But netconsole must support boot/module params too, and these are parsed in kernel and hence netpolls must be setup from the kernel. Joel Becker suggested to separately manage the lifetimes of the two kinds of netconsole_target objects -- those created via configfs mkdir(2) from userspace and those specified from the boot/module option string. This adds complexity and some redundancy here and also means that boot/module param-created targets are not exposed through the configfs namespace (and hence cannot be updated / destroyed dynamically). However, this saves us from locking / refcounting complexities that would need to be introduced in configfs to support kernel-initiated item creation / destroy there. (2) In configfs, item creation takes place in the call chain of the mkdir(2) syscall in the driver subsystem. If we used an ioctl(2) to create / destroy objects from userspace, the special userspace program is able to fill out the structure to be passed into the ioctl and hence specify attributes such as local interface that are required at the time we set up the netpoll. For configfs, this information is not available at the time of mkdir(2). So, we keep all newly-created targets (via configfs) disabled by default. The user is expected to set various attributes appropriately (including the local network interface if required) and then write(2) "1" to the "enabled" attribute. Thus, netpoll_setup() is then called on the set parameters in the context of _this_ write(2) on the "enabled" attribute itself. This design enables the user to reconfigure existing netconsole targets at runtime to be attached to newly-come-up interfaces that may not have existed when netconsole was loaded or when the targets were actually created. All this effectively enables us to get rid of custom ioctls. (3) Ultra-paranoid configfs attribute show() and store() operations, with sanity and input range checking, using only safe string primitives, and compliant with the recommendations in Documentation/filesystems/sysfs.txt. (4) A new function netpoll_print_options() is created in the netpoll API, that just prints out the configured parameters for a netpoll structure. netpoll_parse_options() is modified to use that and it is also exported to be used from netconsole. Signed-off-by: Satyam Sharma <satyam@infradead.org> Acked-by: Keiichi Kii <k-keiichi@bx.jp.nec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-08-11 06:35:05 +08:00
dev_name Local network interface name (read-write)
local_port Source UDP port to use (read-write)
remote_port Remote agent's UDP port (read-write)
local_ip Source IP address to use (read-write)
remote_ip Remote agent's IP address (read-write)
local_mac Local interface's MAC address (read-only)
remote_mac Remote agent's MAC address (read-write)
============== ================================= ============
[NET] netconsole: Support dynamic reconfiguration using configfs Based upon initial work by Keiichi Kii <k-keiichi@bx.jp.nec.com>. This patch introduces support for dynamic reconfiguration (adding, removing and/or modifying parameters of netconsole targets at runtime) using a userspace interface exported via configfs. Documentation is also updated accordingly. Issues and brief design overview: (1) Kernel-initiated creation / destruction of kernel objects is not possible with configfs -- the lifetimes of the "config items" is managed exclusively from userspace. But netconsole must support boot/module params too, and these are parsed in kernel and hence netpolls must be setup from the kernel. Joel Becker suggested to separately manage the lifetimes of the two kinds of netconsole_target objects -- those created via configfs mkdir(2) from userspace and those specified from the boot/module option string. This adds complexity and some redundancy here and also means that boot/module param-created targets are not exposed through the configfs namespace (and hence cannot be updated / destroyed dynamically). However, this saves us from locking / refcounting complexities that would need to be introduced in configfs to support kernel-initiated item creation / destroy there. (2) In configfs, item creation takes place in the call chain of the mkdir(2) syscall in the driver subsystem. If we used an ioctl(2) to create / destroy objects from userspace, the special userspace program is able to fill out the structure to be passed into the ioctl and hence specify attributes such as local interface that are required at the time we set up the netpoll. For configfs, this information is not available at the time of mkdir(2). So, we keep all newly-created targets (via configfs) disabled by default. The user is expected to set various attributes appropriately (including the local network interface if required) and then write(2) "1" to the "enabled" attribute. Thus, netpoll_setup() is then called on the set parameters in the context of _this_ write(2) on the "enabled" attribute itself. This design enables the user to reconfigure existing netconsole targets at runtime to be attached to newly-come-up interfaces that may not have existed when netconsole was loaded or when the targets were actually created. All this effectively enables us to get rid of custom ioctls. (3) Ultra-paranoid configfs attribute show() and store() operations, with sanity and input range checking, using only safe string primitives, and compliant with the recommendations in Documentation/filesystems/sysfs.txt. (4) A new function netpoll_print_options() is created in the netpoll API, that just prints out the configured parameters for a netpoll structure. netpoll_parse_options() is modified to use that and it is also exported to be used from netconsole. Signed-off-by: Satyam Sharma <satyam@infradead.org> Acked-by: Keiichi Kii <k-keiichi@bx.jp.nec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-08-11 06:35:05 +08:00
The "enabled" attribute is also used to control whether the parameters of
a target can be updated or not -- you can modify the parameters of only
disabled targets (i.e. if "enabled" is 0).
To update a target's parameters::
[NET] netconsole: Support dynamic reconfiguration using configfs Based upon initial work by Keiichi Kii <k-keiichi@bx.jp.nec.com>. This patch introduces support for dynamic reconfiguration (adding, removing and/or modifying parameters of netconsole targets at runtime) using a userspace interface exported via configfs. Documentation is also updated accordingly. Issues and brief design overview: (1) Kernel-initiated creation / destruction of kernel objects is not possible with configfs -- the lifetimes of the "config items" is managed exclusively from userspace. But netconsole must support boot/module params too, and these are parsed in kernel and hence netpolls must be setup from the kernel. Joel Becker suggested to separately manage the lifetimes of the two kinds of netconsole_target objects -- those created via configfs mkdir(2) from userspace and those specified from the boot/module option string. This adds complexity and some redundancy here and also means that boot/module param-created targets are not exposed through the configfs namespace (and hence cannot be updated / destroyed dynamically). However, this saves us from locking / refcounting complexities that would need to be introduced in configfs to support kernel-initiated item creation / destroy there. (2) In configfs, item creation takes place in the call chain of the mkdir(2) syscall in the driver subsystem. If we used an ioctl(2) to create / destroy objects from userspace, the special userspace program is able to fill out the structure to be passed into the ioctl and hence specify attributes such as local interface that are required at the time we set up the netpoll. For configfs, this information is not available at the time of mkdir(2). So, we keep all newly-created targets (via configfs) disabled by default. The user is expected to set various attributes appropriately (including the local network interface if required) and then write(2) "1" to the "enabled" attribute. Thus, netpoll_setup() is then called on the set parameters in the context of _this_ write(2) on the "enabled" attribute itself. This design enables the user to reconfigure existing netconsole targets at runtime to be attached to newly-come-up interfaces that may not have existed when netconsole was loaded or when the targets were actually created. All this effectively enables us to get rid of custom ioctls. (3) Ultra-paranoid configfs attribute show() and store() operations, with sanity and input range checking, using only safe string primitives, and compliant with the recommendations in Documentation/filesystems/sysfs.txt. (4) A new function netpoll_print_options() is created in the netpoll API, that just prints out the configured parameters for a netpoll structure. netpoll_parse_options() is modified to use that and it is also exported to be used from netconsole. Signed-off-by: Satyam Sharma <satyam@infradead.org> Acked-by: Keiichi Kii <k-keiichi@bx.jp.nec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-08-11 06:35:05 +08:00
cat enabled # check if enabled is 1
echo 0 > enabled # disable the target (if required)
echo eth2 > dev_name # set local interface
echo 10.0.0.4 > remote_ip # update some parameter
echo cb:a9:87:65:43:21 > remote_mac # update more parameters
echo 1 > enabled # enable target again
You can also update the local interface dynamically. This is especially
useful if you want to use interfaces that have newly come up (and may not
have existed when netconsole was loaded / initialized).
netconsole: implement extended console support printk logbuf keeps various metadata and optional key=value dictionary for structured messages, both of which are stripped when messages are handed to regular console drivers. It can be useful to have this metadata and dictionary available to netconsole consumers. This obviously makes logging via netconsole more complete and the sequence number in particular is useful in environments where messages may be lost or reordered in transit - e.g. when netconsole is used to collect messages in a large cluster where packets may have to travel congested hops to reach the aggregator. The lost and reordered messages can easily be identified and handled accordingly using the sequence numbers. printk recently added extended console support which can be selected by setting CON_EXTENDED flag. From console driver side, not much changes. The only difference is that the text passed to the write callback is formatted the same way as /dev/kmsg. This patch implements extended console support for netconsole which can be enabled by either prepending "+" to a netconsole boot param entry or echoing 1 to "extended" file in configfs. When enabled, netconsole transmits extended log messages with headers identical to /dev/kmsg output. There's one complication due to message fragments. netconsole limits the maximum message size to 1k and messages longer than that are split into multiple fragments. As all extended console messages should carry matching headers and be uniquely identifiable, each extended message fragment carries full copy of the metadata and an extra header field to identify the specific fragment. The optional header is of the form "ncfrag=OFF/LEN" where OFF is the byte offset into the message body and LEN is the total length. To avoid unnecessarily making printk format extended messages, Extended netconsole is registered with printk when the first extended netconsole is configured. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: David Miller <davem@davemloft.net> Cc: Kay Sievers <kay@vrfy.org> Cc: Petr Mladek <pmladek@suse.cz> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-26 06:01:41 +08:00
Extended console:
=================
If '+' is prefixed to the configuration line or "extended" config file
is set to 1, extended console support is enabled. An example boot
param follows::
netconsole: implement extended console support printk logbuf keeps various metadata and optional key=value dictionary for structured messages, both of which are stripped when messages are handed to regular console drivers. It can be useful to have this metadata and dictionary available to netconsole consumers. This obviously makes logging via netconsole more complete and the sequence number in particular is useful in environments where messages may be lost or reordered in transit - e.g. when netconsole is used to collect messages in a large cluster where packets may have to travel congested hops to reach the aggregator. The lost and reordered messages can easily be identified and handled accordingly using the sequence numbers. printk recently added extended console support which can be selected by setting CON_EXTENDED flag. From console driver side, not much changes. The only difference is that the text passed to the write callback is formatted the same way as /dev/kmsg. This patch implements extended console support for netconsole which can be enabled by either prepending "+" to a netconsole boot param entry or echoing 1 to "extended" file in configfs. When enabled, netconsole transmits extended log messages with headers identical to /dev/kmsg output. There's one complication due to message fragments. netconsole limits the maximum message size to 1k and messages longer than that are split into multiple fragments. As all extended console messages should carry matching headers and be uniquely identifiable, each extended message fragment carries full copy of the metadata and an extra header field to identify the specific fragment. The optional header is of the form "ncfrag=OFF/LEN" where OFF is the byte offset into the message body and LEN is the total length. To avoid unnecessarily making printk format extended messages, Extended netconsole is registered with printk when the first extended netconsole is configured. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: David Miller <davem@davemloft.net> Cc: Kay Sievers <kay@vrfy.org> Cc: Petr Mladek <pmladek@suse.cz> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-26 06:01:41 +08:00
linux netconsole=+4444@10.0.0.1/eth1,9353@10.0.0.2/12:34:56:78:9a:bc
Log messages are transmitted with extended metadata header in the
following format which is the same as /dev/kmsg::
netconsole: implement extended console support printk logbuf keeps various metadata and optional key=value dictionary for structured messages, both of which are stripped when messages are handed to regular console drivers. It can be useful to have this metadata and dictionary available to netconsole consumers. This obviously makes logging via netconsole more complete and the sequence number in particular is useful in environments where messages may be lost or reordered in transit - e.g. when netconsole is used to collect messages in a large cluster where packets may have to travel congested hops to reach the aggregator. The lost and reordered messages can easily be identified and handled accordingly using the sequence numbers. printk recently added extended console support which can be selected by setting CON_EXTENDED flag. From console driver side, not much changes. The only difference is that the text passed to the write callback is formatted the same way as /dev/kmsg. This patch implements extended console support for netconsole which can be enabled by either prepending "+" to a netconsole boot param entry or echoing 1 to "extended" file in configfs. When enabled, netconsole transmits extended log messages with headers identical to /dev/kmsg output. There's one complication due to message fragments. netconsole limits the maximum message size to 1k and messages longer than that are split into multiple fragments. As all extended console messages should carry matching headers and be uniquely identifiable, each extended message fragment carries full copy of the metadata and an extra header field to identify the specific fragment. The optional header is of the form "ncfrag=OFF/LEN" where OFF is the byte offset into the message body and LEN is the total length. To avoid unnecessarily making printk format extended messages, Extended netconsole is registered with printk when the first extended netconsole is configured. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: David Miller <davem@davemloft.net> Cc: Kay Sievers <kay@vrfy.org> Cc: Petr Mladek <pmladek@suse.cz> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-26 06:01:41 +08:00
<level>,<sequnum>,<timestamp>,<contflag>;<message text>
Non printable characters in <message text> are escaped using "\xff"
notation. If the message contains optional dictionary, verbatim
newline is used as the delimeter.
If a message doesn't fit in certain number of bytes (currently 1000),
the message is split into multiple fragments by netconsole. These
fragments are transmitted with "ncfrag" header field added::
netconsole: implement extended console support printk logbuf keeps various metadata and optional key=value dictionary for structured messages, both of which are stripped when messages are handed to regular console drivers. It can be useful to have this metadata and dictionary available to netconsole consumers. This obviously makes logging via netconsole more complete and the sequence number in particular is useful in environments where messages may be lost or reordered in transit - e.g. when netconsole is used to collect messages in a large cluster where packets may have to travel congested hops to reach the aggregator. The lost and reordered messages can easily be identified and handled accordingly using the sequence numbers. printk recently added extended console support which can be selected by setting CON_EXTENDED flag. From console driver side, not much changes. The only difference is that the text passed to the write callback is formatted the same way as /dev/kmsg. This patch implements extended console support for netconsole which can be enabled by either prepending "+" to a netconsole boot param entry or echoing 1 to "extended" file in configfs. When enabled, netconsole transmits extended log messages with headers identical to /dev/kmsg output. There's one complication due to message fragments. netconsole limits the maximum message size to 1k and messages longer than that are split into multiple fragments. As all extended console messages should carry matching headers and be uniquely identifiable, each extended message fragment carries full copy of the metadata and an extra header field to identify the specific fragment. The optional header is of the form "ncfrag=OFF/LEN" where OFF is the byte offset into the message body and LEN is the total length. To avoid unnecessarily making printk format extended messages, Extended netconsole is registered with printk when the first extended netconsole is configured. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: David Miller <davem@davemloft.net> Cc: Kay Sievers <kay@vrfy.org> Cc: Petr Mladek <pmladek@suse.cz> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-26 06:01:41 +08:00
ncfrag=<byte-offset>/<total-bytes>
For example, assuming a lot smaller chunk size, a message "the first
chunk, the 2nd chunk." may be split as follows::
netconsole: implement extended console support printk logbuf keeps various metadata and optional key=value dictionary for structured messages, both of which are stripped when messages are handed to regular console drivers. It can be useful to have this metadata and dictionary available to netconsole consumers. This obviously makes logging via netconsole more complete and the sequence number in particular is useful in environments where messages may be lost or reordered in transit - e.g. when netconsole is used to collect messages in a large cluster where packets may have to travel congested hops to reach the aggregator. The lost and reordered messages can easily be identified and handled accordingly using the sequence numbers. printk recently added extended console support which can be selected by setting CON_EXTENDED flag. From console driver side, not much changes. The only difference is that the text passed to the write callback is formatted the same way as /dev/kmsg. This patch implements extended console support for netconsole which can be enabled by either prepending "+" to a netconsole boot param entry or echoing 1 to "extended" file in configfs. When enabled, netconsole transmits extended log messages with headers identical to /dev/kmsg output. There's one complication due to message fragments. netconsole limits the maximum message size to 1k and messages longer than that are split into multiple fragments. As all extended console messages should carry matching headers and be uniquely identifiable, each extended message fragment carries full copy of the metadata and an extra header field to identify the specific fragment. The optional header is of the form "ncfrag=OFF/LEN" where OFF is the byte offset into the message body and LEN is the total length. To avoid unnecessarily making printk format extended messages, Extended netconsole is registered with printk when the first extended netconsole is configured. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: David Miller <davem@davemloft.net> Cc: Kay Sievers <kay@vrfy.org> Cc: Petr Mladek <pmladek@suse.cz> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-26 06:01:41 +08:00
6,416,1758426,-,ncfrag=0/31;the first chunk,
6,416,1758426,-,ncfrag=16/31; the 2nd chunk.
[NET] netconsole: Support dynamic reconfiguration using configfs Based upon initial work by Keiichi Kii <k-keiichi@bx.jp.nec.com>. This patch introduces support for dynamic reconfiguration (adding, removing and/or modifying parameters of netconsole targets at runtime) using a userspace interface exported via configfs. Documentation is also updated accordingly. Issues and brief design overview: (1) Kernel-initiated creation / destruction of kernel objects is not possible with configfs -- the lifetimes of the "config items" is managed exclusively from userspace. But netconsole must support boot/module params too, and these are parsed in kernel and hence netpolls must be setup from the kernel. Joel Becker suggested to separately manage the lifetimes of the two kinds of netconsole_target objects -- those created via configfs mkdir(2) from userspace and those specified from the boot/module option string. This adds complexity and some redundancy here and also means that boot/module param-created targets are not exposed through the configfs namespace (and hence cannot be updated / destroyed dynamically). However, this saves us from locking / refcounting complexities that would need to be introduced in configfs to support kernel-initiated item creation / destroy there. (2) In configfs, item creation takes place in the call chain of the mkdir(2) syscall in the driver subsystem. If we used an ioctl(2) to create / destroy objects from userspace, the special userspace program is able to fill out the structure to be passed into the ioctl and hence specify attributes such as local interface that are required at the time we set up the netpoll. For configfs, this information is not available at the time of mkdir(2). So, we keep all newly-created targets (via configfs) disabled by default. The user is expected to set various attributes appropriately (including the local network interface if required) and then write(2) "1" to the "enabled" attribute. Thus, netpoll_setup() is then called on the set parameters in the context of _this_ write(2) on the "enabled" attribute itself. This design enables the user to reconfigure existing netconsole targets at runtime to be attached to newly-come-up interfaces that may not have existed when netconsole was loaded or when the targets were actually created. All this effectively enables us to get rid of custom ioctls. (3) Ultra-paranoid configfs attribute show() and store() operations, with sanity and input range checking, using only safe string primitives, and compliant with the recommendations in Documentation/filesystems/sysfs.txt. (4) A new function netpoll_print_options() is created in the netpoll API, that just prints out the configured parameters for a netpoll structure. netpoll_parse_options() is modified to use that and it is also exported to be used from netconsole. Signed-off-by: Satyam Sharma <satyam@infradead.org> Acked-by: Keiichi Kii <k-keiichi@bx.jp.nec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-08-11 06:35:05 +08:00
Miscellaneous notes:
====================
.. Warning::
the default target ethernet setting uses the broadcast
ethernet address to send packets, which can cause increased load on
other systems on the same ethernet segment.
.. Tip::
some LAN switches may be configured to suppress ethernet broadcasts
so it is advised to explicitly specify the remote agents' MAC addresses
from the config parameters passed to netconsole.
.. Tip::
to find out the MAC address of, say, 10.0.0.2, you may try using::
ping -c 1 10.0.0.2 ; /sbin/arp -n | grep 10.0.0.2
.. Tip::
in case the remote logging agent is on a separate LAN subnet than
the sender, it is suggested to try specifying the MAC address of the
default gateway (you may use /sbin/route -n to find it out) as the
remote MAC address instead.
.. note::
the network device (eth1 in the above case) can run any kind
of other network traffic, netconsole is not intrusive. Netconsole
might cause slight delays in other traffic if the volume of kernel
messages is high, but should have no other impact.
.. note::
if you find that the remote logging agent is not receiving or
printing all messages from the sender, it is likely that you have set
the "console_loglevel" parameter (on the sender) to only send high
priority messages to the console. You can change this at runtime using::
dmesg -n 8
or by specifying "debug" on the kernel command line at boot, to send
all kernel messages to the console. A specific value for this parameter
can also be set using the "loglevel" kernel boot option. See the
dmesg(8) man page and Documentation/admin-guide/kernel-parameters.rst
for details.
Netconsole was designed to be as instantaneous as possible, to
enable the logging of even the most critical kernel bugs. It works
from IRQ contexts as well, and does not enable interrupts while
sending packets. Due to these unique needs, configuration cannot
be more automatic, and some fundamental limitations will remain:
only IP networks, UDP packets and ethernet devices are supported.