linux-sg2042/drivers/phy/phy-miphy365x.c

625 lines
16 KiB
C
Raw Normal View History

/*
* Copyright (C) 2014 STMicroelectronics All Rights Reserved
*
* STMicroelectronics PHY driver MiPHY365 (for SoC STiH416).
*
* Authors: Alexandre Torgue <alexandre.torgue@st.com>
* Lee Jones <lee.jones@linaro.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2, as
* published by the Free Software Foundation.
*
*/
#include <linux/platform_device.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_platform.h>
#include <linux/of_address.h>
#include <linux/clk.h>
#include <linux/phy/phy.h>
#include <linux/delay.h>
#include <linux/mfd/syscon.h>
#include <linux/regmap.h>
#include <dt-bindings/phy/phy-miphy365x.h>
#define HFC_TIMEOUT 100
#define SYSCFG_SELECT_SATA_MASK BIT(1)
#define SYSCFG_SELECT_SATA_POS 1
/* MiPHY365x register definitions */
#define RESET_REG 0x00
#define RST_PLL BIT(1)
#define RST_PLL_CAL BIT(2)
#define RST_RX BIT(4)
#define RST_MACRO BIT(7)
#define STATUS_REG 0x01
#define IDLL_RDY BIT(0)
#define PLL_RDY BIT(1)
#define DES_BIT_LOCK BIT(2)
#define DES_SYMBOL_LOCK BIT(3)
#define CTRL_REG 0x02
#define TERM_EN BIT(0)
#define PCI_EN BIT(2)
#define DES_BIT_LOCK_EN BIT(3)
#define TX_POL BIT(5)
#define INT_CTRL_REG 0x03
#define BOUNDARY1_REG 0x10
#define SPDSEL_SEL BIT(0)
#define BOUNDARY3_REG 0x12
#define TX_SPDSEL_GEN1_VAL 0
#define TX_SPDSEL_GEN2_VAL 0x01
#define TX_SPDSEL_GEN3_VAL 0x02
#define RX_SPDSEL_GEN1_VAL 0
#define RX_SPDSEL_GEN2_VAL (0x01 << 3)
#define RX_SPDSEL_GEN3_VAL (0x02 << 3)
#define PCIE_REG 0x16
#define BUF_SEL_REG 0x20
#define CONF_GEN_SEL_GEN3 0x02
#define CONF_GEN_SEL_GEN2 0x01
#define PD_VDDTFILTER BIT(4)
#define TXBUF1_REG 0x21
#define SWING_VAL 0x04
#define SWING_VAL_GEN1 0x03
#define PREEMPH_VAL (0x3 << 5)
#define TXBUF2_REG 0x22
#define TXSLEW_VAL 0x2
#define TXSLEW_VAL_GEN1 0x4
#define RXBUF_OFFSET_CTRL_REG 0x23
#define RXBUF_REG 0x25
#define SDTHRES_VAL 0x01
#define EQ_ON3 (0x03 << 4)
#define EQ_ON1 (0x01 << 4)
#define COMP_CTRL1_REG 0x40
#define START_COMSR BIT(0)
#define START_COMZC BIT(1)
#define COMSR_DONE BIT(2)
#define COMZC_DONE BIT(3)
#define COMP_AUTO_LOAD BIT(4)
#define COMP_CTRL2_REG 0x41
#define COMP_2MHZ_RAT_GEN1 0x1e
#define COMP_2MHZ_RAT 0xf
#define COMP_CTRL3_REG 0x42
#define COMSR_COMP_REF 0x33
#define COMP_IDLL_REG 0x47
#define COMZC_IDLL 0x2a
#define PLL_CTRL1_REG 0x50
#define PLL_START_CAL BIT(0)
#define BUF_EN BIT(2)
#define SYNCHRO_TX BIT(3)
#define SSC_EN BIT(6)
#define CONFIG_PLL BIT(7)
#define PLL_CTRL2_REG 0x51
#define BYPASS_PLL_CAL BIT(1)
#define PLL_RAT_REG 0x52
#define PLL_SSC_STEP_MSB_REG 0x56
#define PLL_SSC_STEP_MSB_VAL 0x03
#define PLL_SSC_STEP_LSB_REG 0x57
#define PLL_SSC_STEP_LSB_VAL 0x63
#define PLL_SSC_PER_MSB_REG 0x58
#define PLL_SSC_PER_MSB_VAL 0
#define PLL_SSC_PER_LSB_REG 0x59
#define PLL_SSC_PER_LSB_VAL 0xf1
#define IDLL_TEST_REG 0x72
#define START_CLK_HF BIT(6)
#define DES_BITLOCK_REG 0x86
#define BIT_LOCK_LEVEL 0x01
#define BIT_LOCK_CNT_512 (0x03 << 5)
struct miphy365x_phy {
struct phy *phy;
void __iomem *base;
bool pcie_tx_pol_inv;
bool sata_tx_pol_inv;
u32 sata_gen;
u32 ctrlreg;
u8 type;
};
struct miphy365x_dev {
struct device *dev;
struct regmap *regmap;
struct mutex miphy_mutex;
struct miphy365x_phy **phys;
};
/*
* These values are represented in Device tree. They are considered to be ABI
* and although they can be extended any existing values must not change.
*/
enum miphy_sata_gen {
SATA_GEN1 = 1,
SATA_GEN2,
SATA_GEN3
};
static u8 rx_tx_spd[] = {
0, /* GEN0 doesn't exist. */
TX_SPDSEL_GEN1_VAL | RX_SPDSEL_GEN1_VAL,
TX_SPDSEL_GEN2_VAL | RX_SPDSEL_GEN2_VAL,
TX_SPDSEL_GEN3_VAL | RX_SPDSEL_GEN3_VAL
};
/*
* This function selects the system configuration,
* either two SATA, one SATA and one PCIe, or two PCIe lanes.
*/
static int miphy365x_set_path(struct miphy365x_phy *miphy_phy,
struct miphy365x_dev *miphy_dev)
{
bool sata = (miphy_phy->type == MIPHY_TYPE_SATA);
return regmap_update_bits(miphy_dev->regmap,
miphy_phy->ctrlreg,
SYSCFG_SELECT_SATA_MASK,
sata << SYSCFG_SELECT_SATA_POS);
}
static int miphy365x_init_pcie_port(struct miphy365x_phy *miphy_phy,
struct miphy365x_dev *miphy_dev)
{
u8 val;
if (miphy_phy->pcie_tx_pol_inv) {
/* Invert Tx polarity and clear pci_txdetect_pol bit */
val = TERM_EN | PCI_EN | DES_BIT_LOCK_EN | TX_POL;
writeb_relaxed(val, miphy_phy->base + CTRL_REG);
writeb_relaxed(0x00, miphy_phy->base + PCIE_REG);
}
return 0;
}
static inline int miphy365x_hfc_not_rdy(struct miphy365x_phy *miphy_phy,
struct miphy365x_dev *miphy_dev)
{
unsigned long timeout = jiffies + msecs_to_jiffies(HFC_TIMEOUT);
u8 mask = IDLL_RDY | PLL_RDY;
u8 regval;
do {
regval = readb_relaxed(miphy_phy->base + STATUS_REG);
if (!(regval & mask))
return 0;
usleep_range(2000, 2500);
} while (time_before(jiffies, timeout));
dev_err(miphy_dev->dev, "HFC ready timeout!\n");
return -EBUSY;
}
static inline int miphy365x_rdy(struct miphy365x_phy *miphy_phy,
struct miphy365x_dev *miphy_dev)
{
unsigned long timeout = jiffies + msecs_to_jiffies(HFC_TIMEOUT);
u8 mask = IDLL_RDY | PLL_RDY;
u8 regval;
do {
regval = readb_relaxed(miphy_phy->base + STATUS_REG);
if ((regval & mask) == mask)
return 0;
usleep_range(2000, 2500);
} while (time_before(jiffies, timeout));
dev_err(miphy_dev->dev, "PHY not ready timeout!\n");
return -EBUSY;
}
static inline void miphy365x_set_comp(struct miphy365x_phy *miphy_phy,
struct miphy365x_dev *miphy_dev)
{
u8 val, mask;
if (miphy_phy->sata_gen == SATA_GEN1)
writeb_relaxed(COMP_2MHZ_RAT_GEN1,
miphy_phy->base + COMP_CTRL2_REG);
else
writeb_relaxed(COMP_2MHZ_RAT,
miphy_phy->base + COMP_CTRL2_REG);
if (miphy_phy->sata_gen != SATA_GEN3) {
writeb_relaxed(COMSR_COMP_REF,
miphy_phy->base + COMP_CTRL3_REG);
/*
* Force VCO current to value defined by address 0x5A
* and disable PCIe100Mref bit
* Enable auto load compensation for pll_i_bias
*/
writeb_relaxed(BYPASS_PLL_CAL, miphy_phy->base + PLL_CTRL2_REG);
writeb_relaxed(COMZC_IDLL, miphy_phy->base + COMP_IDLL_REG);
}
/*
* Force restart compensation and enable auto load
* for Comzc_Tx, Comzc_Rx and Comsr on macro
*/
val = START_COMSR | START_COMZC | COMP_AUTO_LOAD;
writeb_relaxed(val, miphy_phy->base + COMP_CTRL1_REG);
mask = COMSR_DONE | COMZC_DONE;
while ((readb_relaxed(miphy_phy->base + COMP_CTRL1_REG) & mask) != mask)
cpu_relax();
}
static inline void miphy365x_set_ssc(struct miphy365x_phy *miphy_phy,
struct miphy365x_dev *miphy_dev)
{
u8 val;
/*
* SSC Settings. SSC will be enabled through Link
* SSC Ampl. = 0.4%
* SSC Freq = 31KHz
*/
writeb_relaxed(PLL_SSC_STEP_MSB_VAL,
miphy_phy->base + PLL_SSC_STEP_MSB_REG);
writeb_relaxed(PLL_SSC_STEP_LSB_VAL,
miphy_phy->base + PLL_SSC_STEP_LSB_REG);
writeb_relaxed(PLL_SSC_PER_MSB_VAL,
miphy_phy->base + PLL_SSC_PER_MSB_REG);
writeb_relaxed(PLL_SSC_PER_LSB_VAL,
miphy_phy->base + PLL_SSC_PER_LSB_REG);
/* SSC Settings complete */
if (miphy_phy->sata_gen == SATA_GEN1) {
val = PLL_START_CAL | BUF_EN | SYNCHRO_TX | CONFIG_PLL;
writeb_relaxed(val, miphy_phy->base + PLL_CTRL1_REG);
} else {
val = SSC_EN | PLL_START_CAL | BUF_EN | SYNCHRO_TX | CONFIG_PLL;
writeb_relaxed(val, miphy_phy->base + PLL_CTRL1_REG);
}
}
static int miphy365x_init_sata_port(struct miphy365x_phy *miphy_phy,
struct miphy365x_dev *miphy_dev)
{
int ret;
u8 val;
/*
* Force PHY macro reset, PLL calibration reset, PLL reset
* and assert Deserializer Reset
*/
val = RST_PLL | RST_PLL_CAL | RST_RX | RST_MACRO;
writeb_relaxed(val, miphy_phy->base + RESET_REG);
if (miphy_phy->sata_tx_pol_inv)
writeb_relaxed(TX_POL, miphy_phy->base + CTRL_REG);
/*
* Force macro1 to use rx_lspd, tx_lspd
* Force Rx_Clock on first I-DLL phase
* Force Des in HP mode on macro, rx_lspd, tx_lspd for Gen2/3
*/
writeb_relaxed(SPDSEL_SEL, miphy_phy->base + BOUNDARY1_REG);
writeb_relaxed(START_CLK_HF, miphy_phy->base + IDLL_TEST_REG);
val = rx_tx_spd[miphy_phy->sata_gen];
writeb_relaxed(val, miphy_phy->base + BOUNDARY3_REG);
/* Wait for HFC_READY = 0 */
ret = miphy365x_hfc_not_rdy(miphy_phy, miphy_dev);
if (ret)
return ret;
/* Compensation Recalibration */
miphy365x_set_comp(miphy_phy, miphy_dev);
switch (miphy_phy->sata_gen) {
case SATA_GEN3:
/*
* TX Swing target 550-600mv peak to peak diff
* Tx Slew target 90-110ps rising/falling time
* Rx Eq ON3, Sigdet threshold SDTH1
*/
val = PD_VDDTFILTER | CONF_GEN_SEL_GEN3;
writeb_relaxed(val, miphy_phy->base + BUF_SEL_REG);
val = SWING_VAL | PREEMPH_VAL;
writeb_relaxed(val, miphy_phy->base + TXBUF1_REG);
writeb_relaxed(TXSLEW_VAL, miphy_phy->base + TXBUF2_REG);
writeb_relaxed(0x00, miphy_phy->base + RXBUF_OFFSET_CTRL_REG);
val = SDTHRES_VAL | EQ_ON3;
writeb_relaxed(val, miphy_phy->base + RXBUF_REG);
break;
case SATA_GEN2:
/*
* conf gen sel=0x1 to program Gen2 banked registers
* VDDT filter ON
* Tx Swing target 550-600mV peak-to-peak diff
* Tx Slew target 90-110 ps rising/falling time
* RX Equalization ON1, Sigdet threshold SDTH1
*/
writeb_relaxed(CONF_GEN_SEL_GEN2,
miphy_phy->base + BUF_SEL_REG);
writeb_relaxed(SWING_VAL, miphy_phy->base + TXBUF1_REG);
writeb_relaxed(TXSLEW_VAL, miphy_phy->base + TXBUF2_REG);
val = SDTHRES_VAL | EQ_ON1;
writeb_relaxed(val, miphy_phy->base + RXBUF_REG);
break;
case SATA_GEN1:
/*
* conf gen sel = 00b to program Gen1 banked registers
* VDDT filter ON
* Tx Swing target 500-550mV peak-to-peak diff
* Tx Slew target120-140 ps rising/falling time
*/
writeb_relaxed(PD_VDDTFILTER, miphy_phy->base + BUF_SEL_REG);
writeb_relaxed(SWING_VAL_GEN1, miphy_phy->base + TXBUF1_REG);
writeb_relaxed(TXSLEW_VAL_GEN1, miphy_phy->base + TXBUF2_REG);
break;
default:
break;
}
/* Force Macro1 in partial mode & release pll cal reset */
writeb_relaxed(RST_RX, miphy_phy->base + RESET_REG);
usleep_range(100, 150);
miphy365x_set_ssc(miphy_phy, miphy_dev);
/* Wait for phy_ready */
ret = miphy365x_rdy(miphy_phy, miphy_dev);
if (ret)
return ret;
/*
* Enable macro1 to use rx_lspd & tx_lspd
* Release Rx_Clock on first I-DLL phase on macro1
* Assert deserializer reset
* des_bit_lock_en is set
* bit lock detection strength
* Deassert deserializer reset
*/
writeb_relaxed(0x00, miphy_phy->base + BOUNDARY1_REG);
writeb_relaxed(0x00, miphy_phy->base + IDLL_TEST_REG);
writeb_relaxed(RST_RX, miphy_phy->base + RESET_REG);
val = miphy_phy->sata_tx_pol_inv ?
(TX_POL | DES_BIT_LOCK_EN) : DES_BIT_LOCK_EN;
writeb_relaxed(val, miphy_phy->base + CTRL_REG);
val = BIT_LOCK_CNT_512 | BIT_LOCK_LEVEL;
writeb_relaxed(val, miphy_phy->base + DES_BITLOCK_REG);
writeb_relaxed(0x00, miphy_phy->base + RESET_REG);
return 0;
}
static int miphy365x_init(struct phy *phy)
{
struct miphy365x_phy *miphy_phy = phy_get_drvdata(phy);
struct miphy365x_dev *miphy_dev = dev_get_drvdata(phy->dev.parent);
int ret = 0;
mutex_lock(&miphy_dev->miphy_mutex);
ret = miphy365x_set_path(miphy_phy, miphy_dev);
if (ret) {
mutex_unlock(&miphy_dev->miphy_mutex);
return ret;
}
/* Initialise Miphy for PCIe or SATA */
if (miphy_phy->type == MIPHY_TYPE_PCIE)
ret = miphy365x_init_pcie_port(miphy_phy, miphy_dev);
else
ret = miphy365x_init_sata_port(miphy_phy, miphy_dev);
mutex_unlock(&miphy_dev->miphy_mutex);
return ret;
}
int miphy365x_get_addr(struct device *dev, struct miphy365x_phy *miphy_phy,
int index)
{
struct device_node *phynode = miphy_phy->phy->dev.of_node;
const char *name;
int type = miphy_phy->type;
int ret;
ret = of_property_read_string_index(phynode, "reg-names", index, &name);
if (ret) {
dev_err(dev, "no reg-names property not found\n");
return ret;
}
if (!((!strncmp(name, "sata", 4) && type == MIPHY_TYPE_SATA) ||
(!strncmp(name, "pcie", 4) && type == MIPHY_TYPE_PCIE)))
return 0;
miphy_phy->base = of_iomap(phynode, index);
if (!miphy_phy->base) {
dev_err(dev, "Failed to map %s\n", phynode->full_name);
return -EINVAL;
}
return 0;
}
static struct phy *miphy365x_xlate(struct device *dev,
struct of_phandle_args *args)
{
struct miphy365x_dev *miphy_dev = dev_get_drvdata(dev);
struct miphy365x_phy *miphy_phy = NULL;
struct device_node *phynode = args->np;
int ret, index;
if (!of_device_is_available(phynode)) {
dev_warn(dev, "Requested PHY is disabled\n");
return ERR_PTR(-ENODEV);
}
if (args->args_count != 1) {
dev_err(dev, "Invalid number of cells in 'phy' property\n");
return ERR_PTR(-EINVAL);
}
for (index = 0; index < of_get_child_count(dev->of_node); index++)
if (phynode == miphy_dev->phys[index]->phy->dev.of_node) {
miphy_phy = miphy_dev->phys[index];
break;
}
if (!miphy_phy) {
dev_err(dev, "Failed to find appropriate phy\n");
return ERR_PTR(-EINVAL);
}
miphy_phy->type = args->args[0];
if (!(miphy_phy->type == MIPHY_TYPE_SATA ||
miphy_phy->type == MIPHY_TYPE_PCIE)) {
dev_err(dev, "Unsupported device type: %d\n", miphy_phy->type);
return ERR_PTR(-EINVAL);
}
/* Each port handles SATA and PCIE - third entry is always sysconf. */
for (index = 0; index < 3; index++) {
ret = miphy365x_get_addr(dev, miphy_phy, index);
if (ret < 0)
return ERR_PTR(ret);
}
return miphy_phy->phy;
}
static struct phy_ops miphy365x_ops = {
.init = miphy365x_init,
.owner = THIS_MODULE,
};
static int miphy365x_of_probe(struct device_node *phynode,
struct miphy365x_phy *miphy_phy)
{
of_property_read_u32(phynode, "st,sata-gen", &miphy_phy->sata_gen);
if (!miphy_phy->sata_gen)
miphy_phy->sata_gen = SATA_GEN1;
miphy_phy->pcie_tx_pol_inv =
of_property_read_bool(phynode, "st,pcie-tx-pol-inv");
miphy_phy->sata_tx_pol_inv =
of_property_read_bool(phynode, "st,sata-tx-pol-inv");
return 0;
}
static int miphy365x_probe(struct platform_device *pdev)
{
struct device_node *child, *np = pdev->dev.of_node;
struct miphy365x_dev *miphy_dev;
struct phy_provider *provider;
struct phy *phy;
int chancount, port = 0;
int ret;
miphy_dev = devm_kzalloc(&pdev->dev, sizeof(*miphy_dev), GFP_KERNEL);
if (!miphy_dev)
return -ENOMEM;
chancount = of_get_child_count(np);
miphy_dev->phys = devm_kzalloc(&pdev->dev, sizeof(phy) * chancount,
GFP_KERNEL);
if (!miphy_dev->phys)
return -ENOMEM;
miphy_dev->regmap = syscon_regmap_lookup_by_phandle(np, "st,syscfg");
if (IS_ERR(miphy_dev->regmap)) {
dev_err(miphy_dev->dev, "No syscfg phandle specified\n");
return PTR_ERR(miphy_dev->regmap);
}
miphy_dev->dev = &pdev->dev;
dev_set_drvdata(&pdev->dev, miphy_dev);
mutex_init(&miphy_dev->miphy_mutex);
for_each_child_of_node(np, child) {
struct miphy365x_phy *miphy_phy;
miphy_phy = devm_kzalloc(&pdev->dev, sizeof(*miphy_phy),
GFP_KERNEL);
if (!miphy_phy)
return -ENOMEM;
miphy_dev->phys[port] = miphy_phy;
phy = devm_phy_create(&pdev->dev, child, &miphy365x_ops);
if (IS_ERR(phy)) {
dev_err(&pdev->dev, "failed to create PHY\n");
return PTR_ERR(phy);
}
miphy_dev->phys[port]->phy = phy;
ret = miphy365x_of_probe(child, miphy_phy);
if (ret)
return ret;
phy_set_drvdata(phy, miphy_dev->phys[port]);
port++;
/* sysconfig offsets are indexed from 1 */
ret = of_property_read_u32_index(np, "st,syscfg", port,
&miphy_phy->ctrlreg);
if (ret) {
dev_err(&pdev->dev, "No sysconfig offset found\n");
return ret;
}
}
provider = devm_of_phy_provider_register(&pdev->dev, miphy365x_xlate);
return PTR_ERR_OR_ZERO(provider);
}
static const struct of_device_id miphy365x_of_match[] = {
{ .compatible = "st,miphy365x-phy", },
{ },
};
MODULE_DEVICE_TABLE(of, miphy365x_of_match);
static struct platform_driver miphy365x_driver = {
.probe = miphy365x_probe,
.driver = {
.name = "miphy365x-phy",
.of_match_table = miphy365x_of_match,
}
};
module_platform_driver(miphy365x_driver);
MODULE_AUTHOR("Alexandre Torgue <alexandre.torgue@st.com>");
MODULE_DESCRIPTION("STMicroelectronics miphy365x driver");
MODULE_LICENSE("GPL v2");