linux-sg2042/drivers/mmc/host/sdhci.c

3382 lines
87 KiB
C
Raw Normal View History

/*
* linux/drivers/mmc/host/sdhci.c - Secure Digital Host Controller Interface driver
*
* Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or (at
* your option) any later version.
*
* Thanks to the following companies for their support:
*
* - JMicron (hardware and technical support)
*/
#include <linux/delay.h>
#include <linux/highmem.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/dma-mapping.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include <linux/scatterlist.h>
#include <linux/regulator/consumer.h>
#include <linux/pm_runtime.h>
#include <linux/leds.h>
#include <linux/mmc/mmc.h>
#include <linux/mmc/host.h>
#include <linux/mmc/card.h>
#include <linux/mmc/slot-gpio.h>
#include "sdhci.h"
#define DRIVER_NAME "sdhci"
#define DBG(f, x...) \
pr_debug(DRIVER_NAME " [%s()]: " f, __func__,## x)
#if defined(CONFIG_LEDS_CLASS) || (defined(CONFIG_LEDS_CLASS_MODULE) && \
defined(CONFIG_MMC_SDHCI_MODULE))
#define SDHCI_USE_LEDS_CLASS
#endif
mmc: sd: add support for tuning during uhs initialization Host Controller needs tuning during initialization to operate SDR50 and SDR104 UHS-I cards. Whether SDR50 mode actually needs tuning is indicated by bit 45 of the Host Controller Capabilities register. A new command CMD19 has been defined in the Physical Layer spec v3.01 to request the card to send tuning pattern. We enable Buffer Read Ready interrupt at the very begining of tuning procedure, because that is the only interrupt generated by the Host Controller during tuning. We program the block size to 64 in the Block Size register. We make sure that DMA Enable and Multi Block Select in the Transfer Mode register are set to 0 before actually sending CMD19. The tuning block is sent by the card to the Host Controller using DAT lines, so we set Data Present Select (bit 5) in the Command register. The Host Controller is responsible for doing the verfication of tuning block sent by the card at the hardware level. After sending CMD19, we wait for Buffer Read Ready interrupt. In case we don't receive an interrupt after the specified timeout value, we fall back on fixed sampling clock by setting Execute Tuning (bit 6) and Sampling Clock Select (bit 7) of Host Control2 register to 0. Before exiting the tuning procedure, we disable Buffer Read Ready interrupt and re-enable other interrupts. Tested by Zhangfei Gao with a Toshiba uhs card and general hs card, on mmp2 in SDMA mode. Signed-off-by: Arindam Nath <arindam.nath@amd.com> Reviewed-by: Philip Rakity <prakity@marvell.com> Tested-by: Philip Rakity <prakity@marvell.com> Acked-by: Zhangfei Gao <zhangfei.gao@marvell.com> Signed-off-by: Chris Ball <cjb@laptop.org>
2011-05-05 14:49:04 +08:00
#define MAX_TUNING_LOOP 40
static unsigned int debug_quirks = 0;
static unsigned int debug_quirks2;
static void sdhci_finish_data(struct sdhci_host *);
static void sdhci_finish_command(struct sdhci_host *);
static int sdhci_execute_tuning(struct mmc_host *mmc, u32 opcode);
static void sdhci_tuning_timer(unsigned long data);
static void sdhci_enable_preset_value(struct sdhci_host *host, bool enable);
#ifdef CONFIG_PM_RUNTIME
static int sdhci_runtime_pm_get(struct sdhci_host *host);
static int sdhci_runtime_pm_put(struct sdhci_host *host);
static void sdhci_runtime_pm_bus_on(struct sdhci_host *host);
static void sdhci_runtime_pm_bus_off(struct sdhci_host *host);
#else
static inline int sdhci_runtime_pm_get(struct sdhci_host *host)
{
return 0;
}
static inline int sdhci_runtime_pm_put(struct sdhci_host *host)
{
return 0;
}
static void sdhci_runtime_pm_bus_on(struct sdhci_host *host)
{
}
static void sdhci_runtime_pm_bus_off(struct sdhci_host *host)
{
}
#endif
static void sdhci_dumpregs(struct sdhci_host *host)
{
pr_debug(DRIVER_NAME ": =========== REGISTER DUMP (%s)===========\n",
mmc_hostname(host->mmc));
pr_debug(DRIVER_NAME ": Sys addr: 0x%08x | Version: 0x%08x\n",
sdhci_readl(host, SDHCI_DMA_ADDRESS),
sdhci_readw(host, SDHCI_HOST_VERSION));
pr_debug(DRIVER_NAME ": Blk size: 0x%08x | Blk cnt: 0x%08x\n",
sdhci_readw(host, SDHCI_BLOCK_SIZE),
sdhci_readw(host, SDHCI_BLOCK_COUNT));
pr_debug(DRIVER_NAME ": Argument: 0x%08x | Trn mode: 0x%08x\n",
sdhci_readl(host, SDHCI_ARGUMENT),
sdhci_readw(host, SDHCI_TRANSFER_MODE));
pr_debug(DRIVER_NAME ": Present: 0x%08x | Host ctl: 0x%08x\n",
sdhci_readl(host, SDHCI_PRESENT_STATE),
sdhci_readb(host, SDHCI_HOST_CONTROL));
pr_debug(DRIVER_NAME ": Power: 0x%08x | Blk gap: 0x%08x\n",
sdhci_readb(host, SDHCI_POWER_CONTROL),
sdhci_readb(host, SDHCI_BLOCK_GAP_CONTROL));
pr_debug(DRIVER_NAME ": Wake-up: 0x%08x | Clock: 0x%08x\n",
sdhci_readb(host, SDHCI_WAKE_UP_CONTROL),
sdhci_readw(host, SDHCI_CLOCK_CONTROL));
pr_debug(DRIVER_NAME ": Timeout: 0x%08x | Int stat: 0x%08x\n",
sdhci_readb(host, SDHCI_TIMEOUT_CONTROL),
sdhci_readl(host, SDHCI_INT_STATUS));
pr_debug(DRIVER_NAME ": Int enab: 0x%08x | Sig enab: 0x%08x\n",
sdhci_readl(host, SDHCI_INT_ENABLE),
sdhci_readl(host, SDHCI_SIGNAL_ENABLE));
pr_debug(DRIVER_NAME ": AC12 err: 0x%08x | Slot int: 0x%08x\n",
sdhci_readw(host, SDHCI_ACMD12_ERR),
sdhci_readw(host, SDHCI_SLOT_INT_STATUS));
pr_debug(DRIVER_NAME ": Caps: 0x%08x | Caps_1: 0x%08x\n",
sdhci_readl(host, SDHCI_CAPABILITIES),
sdhci_readl(host, SDHCI_CAPABILITIES_1));
pr_debug(DRIVER_NAME ": Cmd: 0x%08x | Max curr: 0x%08x\n",
sdhci_readw(host, SDHCI_COMMAND),
sdhci_readl(host, SDHCI_MAX_CURRENT));
pr_debug(DRIVER_NAME ": Host ctl2: 0x%08x\n",
mmc: sd: add support for signal voltage switch procedure Host Controller v3.00 adds another Capabilities register. Apart from other things, this new register indicates whether the Host Controller supports SDR50, SDR104, and DDR50 UHS-I modes. The spec doesn't mention about explicit support for SDR12 and SDR25 UHS-I modes, so the Host Controller v3.00 should support them by default. Also if the controller supports SDR104 mode, it will also support SDR50 mode as well. So depending on the host support, we set the corresponding MMC_CAP_* flags. One more new register. Host Control2 is added in v3.00, which is used during Signal Voltage Switch procedure described below. Since as per v3.00 spec, UHS-I supported hosts should set S18R to 1, we set S18R (bit 24) of OCR before sending ACMD41. We also need to set XPC (bit 28) of OCR in case the host can supply >150mA. This support is indicated by the Maximum Current Capabilities register of the Host Controller. If the response of ACMD41 has both CCS and S18A set, we start the signal voltage switch procedure, which if successfull, will switch the card from 3.3V signalling to 1.8V signalling. Signal voltage switch procedure adds support for a new command CMD11 in the Physical Layer Spec v3.01. As part of this procedure, we need to set 1.8V Signalling Enable (bit 3) of Host Control2 register, which if remains set after 5ms, means the switch to 1.8V signalling is successfull. Otherwise, we clear bit 24 of OCR and retry the initialization sequence. When we remove the card, and insert the same or another card, we need to make sure that we start with 3.3V signalling voltage. So we call mmc_set_signal_voltage() with MMC_SIGNAL_VOLTAGE_330 set so that we are back to 3.3V signalling voltage before we actually start initializing the card. Tested by Zhangfei Gao with a Toshiba uhs card and general hs card, on mmp2 in SDMA mode. Signed-off-by: Arindam Nath <arindam.nath@amd.com> Reviewed-by: Philip Rakity <prakity@marvell.com> Tested-by: Philip Rakity <prakity@marvell.com> Acked-by: Zhangfei Gao <zhangfei.gao@marvell.com> Signed-off-by: Chris Ball <cjb@laptop.org>
2011-05-05 14:48:57 +08:00
sdhci_readw(host, SDHCI_HOST_CONTROL2));
if (host->flags & SDHCI_USE_ADMA)
pr_debug(DRIVER_NAME ": ADMA Err: 0x%08x | ADMA Ptr: 0x%08x\n",
readl(host->ioaddr + SDHCI_ADMA_ERROR),
readl(host->ioaddr + SDHCI_ADMA_ADDRESS));
pr_debug(DRIVER_NAME ": ===========================================\n");
}
/*****************************************************************************\
* *
* Low level functions *
* *
\*****************************************************************************/
static void sdhci_clear_set_irqs(struct sdhci_host *host, u32 clear, u32 set)
{
u32 ier;
ier = sdhci_readl(host, SDHCI_INT_ENABLE);
ier &= ~clear;
ier |= set;
sdhci_writel(host, ier, SDHCI_INT_ENABLE);
sdhci_writel(host, ier, SDHCI_SIGNAL_ENABLE);
}
static void sdhci_unmask_irqs(struct sdhci_host *host, u32 irqs)
{
sdhci_clear_set_irqs(host, 0, irqs);
}
static void sdhci_mask_irqs(struct sdhci_host *host, u32 irqs)
{
sdhci_clear_set_irqs(host, irqs, 0);
}
static void sdhci_set_card_detection(struct sdhci_host *host, bool enable)
{
u32 present, irqs;
if ((host->quirks & SDHCI_QUIRK_BROKEN_CARD_DETECTION) ||
(host->mmc->caps & MMC_CAP_NONREMOVABLE))
return;
present = sdhci_readl(host, SDHCI_PRESENT_STATE) &
SDHCI_CARD_PRESENT;
irqs = present ? SDHCI_INT_CARD_REMOVE : SDHCI_INT_CARD_INSERT;
if (enable)
sdhci_unmask_irqs(host, irqs);
else
sdhci_mask_irqs(host, irqs);
}
static void sdhci_enable_card_detection(struct sdhci_host *host)
{
sdhci_set_card_detection(host, true);
}
static void sdhci_disable_card_detection(struct sdhci_host *host)
{
sdhci_set_card_detection(host, false);
}
static void sdhci_reset(struct sdhci_host *host, u8 mask)
{
unsigned long timeout;
u32 uninitialized_var(ier);
if (host->quirks & SDHCI_QUIRK_NO_CARD_NO_RESET) {
if (!(sdhci_readl(host, SDHCI_PRESENT_STATE) &
SDHCI_CARD_PRESENT))
return;
}
if (host->quirks & SDHCI_QUIRK_RESTORE_IRQS_AFTER_RESET)
ier = sdhci_readl(host, SDHCI_INT_ENABLE);
if (host->ops->platform_reset_enter)
host->ops->platform_reset_enter(host, mask);
sdhci_writeb(host, mask, SDHCI_SOFTWARE_RESET);
if (mask & SDHCI_RESET_ALL) {
host->clock = 0;
/* Reset-all turns off SD Bus Power */
if (host->quirks2 & SDHCI_QUIRK2_CARD_ON_NEEDS_BUS_ON)
sdhci_runtime_pm_bus_off(host);
}
/* Wait max 100 ms */
timeout = 100;
/* hw clears the bit when it's done */
while (sdhci_readb(host, SDHCI_SOFTWARE_RESET) & mask) {
if (timeout == 0) {
pr_err("%s: Reset 0x%x never completed.\n",
mmc_hostname(host->mmc), (int)mask);
sdhci_dumpregs(host);
return;
}
timeout--;
mdelay(1);
}
if (host->ops->platform_reset_exit)
host->ops->platform_reset_exit(host, mask);
if (host->quirks & SDHCI_QUIRK_RESTORE_IRQS_AFTER_RESET)
sdhci_clear_set_irqs(host, SDHCI_INT_ALL_MASK, ier);
if (host->flags & (SDHCI_USE_SDMA | SDHCI_USE_ADMA)) {
if ((host->ops->enable_dma) && (mask & SDHCI_RESET_ALL))
host->ops->enable_dma(host);
}
}
static void sdhci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios);
static void sdhci_init(struct sdhci_host *host, int soft)
{
if (soft)
sdhci_reset(host, SDHCI_RESET_CMD|SDHCI_RESET_DATA);
else
sdhci_reset(host, SDHCI_RESET_ALL);
sdhci_clear_set_irqs(host, SDHCI_INT_ALL_MASK,
SDHCI_INT_BUS_POWER | SDHCI_INT_DATA_END_BIT |
SDHCI_INT_DATA_CRC | SDHCI_INT_DATA_TIMEOUT | SDHCI_INT_INDEX |
SDHCI_INT_END_BIT | SDHCI_INT_CRC | SDHCI_INT_TIMEOUT |
SDHCI_INT_DATA_END | SDHCI_INT_RESPONSE);
if (soft) {
/* force clock reconfiguration */
host->clock = 0;
sdhci_set_ios(host->mmc, &host->mmc->ios);
}
}
static void sdhci_reinit(struct sdhci_host *host)
{
sdhci_init(host, 0);
/*
* Retuning stuffs are affected by different cards inserted and only
* applicable to UHS-I cards. So reset these fields to their initial
* value when card is removed.
*/
if (host->flags & SDHCI_USING_RETUNING_TIMER) {
host->flags &= ~SDHCI_USING_RETUNING_TIMER;
del_timer_sync(&host->tuning_timer);
host->flags &= ~SDHCI_NEEDS_RETUNING;
host->mmc->max_blk_count =
(host->quirks & SDHCI_QUIRK_NO_MULTIBLOCK) ? 1 : 65535;
}
sdhci_enable_card_detection(host);
}
static void sdhci_activate_led(struct sdhci_host *host)
{
u8 ctrl;
ctrl = sdhci_readb(host, SDHCI_HOST_CONTROL);
ctrl |= SDHCI_CTRL_LED;
sdhci_writeb(host, ctrl, SDHCI_HOST_CONTROL);
}
static void sdhci_deactivate_led(struct sdhci_host *host)
{
u8 ctrl;
ctrl = sdhci_readb(host, SDHCI_HOST_CONTROL);
ctrl &= ~SDHCI_CTRL_LED;
sdhci_writeb(host, ctrl, SDHCI_HOST_CONTROL);
}
#ifdef SDHCI_USE_LEDS_CLASS
static void sdhci_led_control(struct led_classdev *led,
enum led_brightness brightness)
{
struct sdhci_host *host = container_of(led, struct sdhci_host, led);
unsigned long flags;
spin_lock_irqsave(&host->lock, flags);
if (host->runtime_suspended)
goto out;
if (brightness == LED_OFF)
sdhci_deactivate_led(host);
else
sdhci_activate_led(host);
out:
spin_unlock_irqrestore(&host->lock, flags);
}
#endif
/*****************************************************************************\
* *
* Core functions *
* *
\*****************************************************************************/
static void sdhci_read_block_pio(struct sdhci_host *host)
{
unsigned long flags;
size_t blksize, len, chunk;
u32 uninitialized_var(scratch);
u8 *buf;
DBG("PIO reading\n");
blksize = host->data->blksz;
chunk = 0;
local_irq_save(flags);
while (blksize) {
if (!sg_miter_next(&host->sg_miter))
BUG();
len = min(host->sg_miter.length, blksize);
blksize -= len;
host->sg_miter.consumed = len;
buf = host->sg_miter.addr;
while (len) {
if (chunk == 0) {
scratch = sdhci_readl(host, SDHCI_BUFFER);
chunk = 4;
}
*buf = scratch & 0xFF;
buf++;
scratch >>= 8;
chunk--;
len--;
}
}
sg_miter_stop(&host->sg_miter);
local_irq_restore(flags);
}
static void sdhci_write_block_pio(struct sdhci_host *host)
{
unsigned long flags;
size_t blksize, len, chunk;
u32 scratch;
u8 *buf;
DBG("PIO writing\n");
blksize = host->data->blksz;
chunk = 0;
scratch = 0;
local_irq_save(flags);
while (blksize) {
if (!sg_miter_next(&host->sg_miter))
BUG();
len = min(host->sg_miter.length, blksize);
blksize -= len;
host->sg_miter.consumed = len;
buf = host->sg_miter.addr;
while (len) {
scratch |= (u32)*buf << (chunk * 8);
buf++;
chunk++;
len--;
if ((chunk == 4) || ((len == 0) && (blksize == 0))) {
sdhci_writel(host, scratch, SDHCI_BUFFER);
chunk = 0;
scratch = 0;
}
}
}
sg_miter_stop(&host->sg_miter);
local_irq_restore(flags);
}
static void sdhci_transfer_pio(struct sdhci_host *host)
{
u32 mask;
BUG_ON(!host->data);
if (host->blocks == 0)
return;
if (host->data->flags & MMC_DATA_READ)
mask = SDHCI_DATA_AVAILABLE;
else
mask = SDHCI_SPACE_AVAILABLE;
/*
* Some controllers (JMicron JMB38x) mess up the buffer bits
* for transfers < 4 bytes. As long as it is just one block,
* we can ignore the bits.
*/
if ((host->quirks & SDHCI_QUIRK_BROKEN_SMALL_PIO) &&
(host->data->blocks == 1))
mask = ~0;
while (sdhci_readl(host, SDHCI_PRESENT_STATE) & mask) {
if (host->quirks & SDHCI_QUIRK_PIO_NEEDS_DELAY)
udelay(100);
if (host->data->flags & MMC_DATA_READ)
sdhci_read_block_pio(host);
else
sdhci_write_block_pio(host);
host->blocks--;
if (host->blocks == 0)
break;
}
DBG("PIO transfer complete.\n");
}
static char *sdhci_kmap_atomic(struct scatterlist *sg, unsigned long *flags)
{
local_irq_save(*flags);
return kmap_atomic(sg_page(sg)) + sg->offset;
}
static void sdhci_kunmap_atomic(void *buffer, unsigned long *flags)
{
kunmap_atomic(buffer);
local_irq_restore(*flags);
}
static void sdhci_set_adma_desc(u8 *desc, u32 addr, int len, unsigned cmd)
{
__le32 *dataddr = (__le32 __force *)(desc + 4);
__le16 *cmdlen = (__le16 __force *)desc;
/* SDHCI specification says ADMA descriptors should be 4 byte
* aligned, so using 16 or 32bit operations should be safe. */
cmdlen[0] = cpu_to_le16(cmd);
cmdlen[1] = cpu_to_le16(len);
dataddr[0] = cpu_to_le32(addr);
}
static int sdhci_adma_table_pre(struct sdhci_host *host,
struct mmc_data *data)
{
int direction;
u8 *desc;
u8 *align;
dma_addr_t addr;
dma_addr_t align_addr;
int len, offset;
struct scatterlist *sg;
int i;
char *buffer;
unsigned long flags;
/*
* The spec does not specify endianness of descriptor table.
* We currently guess that it is LE.
*/
if (data->flags & MMC_DATA_READ)
direction = DMA_FROM_DEVICE;
else
direction = DMA_TO_DEVICE;
/*
* The ADMA descriptor table is mapped further down as we
* need to fill it with data first.
*/
host->align_addr = dma_map_single(mmc_dev(host->mmc),
host->align_buffer, 128 * 4, direction);
dma-mapping: add the device argument to dma_mapping_error() Add per-device dma_mapping_ops support for CONFIG_X86_64 as POWER architecture does: This enables us to cleanly fix the Calgary IOMMU issue that some devices are not behind the IOMMU (http://lkml.org/lkml/2008/5/8/423). I think that per-device dma_mapping_ops support would be also helpful for KVM people to support PCI passthrough but Andi thinks that this makes it difficult to support the PCI passthrough (see the above thread). So I CC'ed this to KVM camp. Comments are appreciated. A pointer to dma_mapping_ops to struct dev_archdata is added. If the pointer is non NULL, DMA operations in asm/dma-mapping.h use it. If it's NULL, the system-wide dma_ops pointer is used as before. If it's useful for KVM people, I plan to implement a mechanism to register a hook called when a new pci (or dma capable) device is created (it works with hot plugging). It enables IOMMUs to set up an appropriate dma_mapping_ops per device. The major obstacle is that dma_mapping_error doesn't take a pointer to the device unlike other DMA operations. So x86 can't have dma_mapping_ops per device. Note all the POWER IOMMUs use the same dma_mapping_error function so this is not a problem for POWER but x86 IOMMUs use different dma_mapping_error functions. The first patch adds the device argument to dma_mapping_error. The patch is trivial but large since it touches lots of drivers and dma-mapping.h in all the architecture. This patch: dma_mapping_error() doesn't take a pointer to the device unlike other DMA operations. So we can't have dma_mapping_ops per device. Note that POWER already has dma_mapping_ops per device but all the POWER IOMMUs use the same dma_mapping_error function. x86 IOMMUs use device argument. [akpm@linux-foundation.org: fix sge] [akpm@linux-foundation.org: fix svc_rdma] [akpm@linux-foundation.org: build fix] [akpm@linux-foundation.org: fix bnx2x] [akpm@linux-foundation.org: fix s2io] [akpm@linux-foundation.org: fix pasemi_mac] [akpm@linux-foundation.org: fix sdhci] [akpm@linux-foundation.org: build fix] [akpm@linux-foundation.org: fix sparc] [akpm@linux-foundation.org: fix ibmvscsi] Signed-off-by: FUJITA Tomonori <fujita.tomonori@lab.ntt.co.jp> Cc: Muli Ben-Yehuda <muli@il.ibm.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@elte.hu> Cc: Avi Kivity <avi@qumranet.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-26 10:44:49 +08:00
if (dma_mapping_error(mmc_dev(host->mmc), host->align_addr))
goto fail;
BUG_ON(host->align_addr & 0x3);
host->sg_count = dma_map_sg(mmc_dev(host->mmc),
data->sg, data->sg_len, direction);
if (host->sg_count == 0)
goto unmap_align;
desc = host->adma_desc;
align = host->align_buffer;
align_addr = host->align_addr;
for_each_sg(data->sg, sg, host->sg_count, i) {
addr = sg_dma_address(sg);
len = sg_dma_len(sg);
/*
* The SDHCI specification states that ADMA
* addresses must be 32-bit aligned. If they
* aren't, then we use a bounce buffer for
* the (up to three) bytes that screw up the
* alignment.
*/
offset = (4 - (addr & 0x3)) & 0x3;
if (offset) {
if (data->flags & MMC_DATA_WRITE) {
buffer = sdhci_kmap_atomic(sg, &flags);
WARN_ON(((long)buffer & PAGE_MASK) > (PAGE_SIZE - 3));
memcpy(align, buffer, offset);
sdhci_kunmap_atomic(buffer, &flags);
}
/* tran, valid */
sdhci_set_adma_desc(desc, align_addr, offset, 0x21);
BUG_ON(offset > 65536);
align += 4;
align_addr += 4;
desc += 8;
addr += offset;
len -= offset;
}
BUG_ON(len > 65536);
/* tran, valid */
sdhci_set_adma_desc(desc, addr, len, 0x21);
desc += 8;
/*
* If this triggers then we have a calculation bug
* somewhere. :/
*/
WARN_ON((desc - host->adma_desc) > (128 * 2 + 1) * 4);
}
if (host->quirks & SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC) {
/*
* Mark the last descriptor as the terminating descriptor
*/
if (desc != host->adma_desc) {
desc -= 8;
desc[0] |= 0x2; /* end */
}
} else {
/*
* Add a terminating entry.
*/
/* nop, end, valid */
sdhci_set_adma_desc(desc, 0, 0, 0x3);
}
/*
* Resync align buffer as we might have changed it.
*/
if (data->flags & MMC_DATA_WRITE) {
dma_sync_single_for_device(mmc_dev(host->mmc),
host->align_addr, 128 * 4, direction);
}
host->adma_addr = dma_map_single(mmc_dev(host->mmc),
host->adma_desc, (128 * 2 + 1) * 4, DMA_TO_DEVICE);
if (dma_mapping_error(mmc_dev(host->mmc), host->adma_addr))
goto unmap_entries;
BUG_ON(host->adma_addr & 0x3);
return 0;
unmap_entries:
dma_unmap_sg(mmc_dev(host->mmc), data->sg,
data->sg_len, direction);
unmap_align:
dma_unmap_single(mmc_dev(host->mmc), host->align_addr,
128 * 4, direction);
fail:
return -EINVAL;
}
static void sdhci_adma_table_post(struct sdhci_host *host,
struct mmc_data *data)
{
int direction;
struct scatterlist *sg;
int i, size;
u8 *align;
char *buffer;
unsigned long flags;
if (data->flags & MMC_DATA_READ)
direction = DMA_FROM_DEVICE;
else
direction = DMA_TO_DEVICE;
dma_unmap_single(mmc_dev(host->mmc), host->adma_addr,
(128 * 2 + 1) * 4, DMA_TO_DEVICE);
dma_unmap_single(mmc_dev(host->mmc), host->align_addr,
128 * 4, direction);
if (data->flags & MMC_DATA_READ) {
dma_sync_sg_for_cpu(mmc_dev(host->mmc), data->sg,
data->sg_len, direction);
align = host->align_buffer;
for_each_sg(data->sg, sg, host->sg_count, i) {
if (sg_dma_address(sg) & 0x3) {
size = 4 - (sg_dma_address(sg) & 0x3);
buffer = sdhci_kmap_atomic(sg, &flags);
WARN_ON(((long)buffer & PAGE_MASK) > (PAGE_SIZE - 3));
memcpy(buffer, align, size);
sdhci_kunmap_atomic(buffer, &flags);
align += 4;
}
}
}
dma_unmap_sg(mmc_dev(host->mmc), data->sg,
data->sg_len, direction);
}
static u8 sdhci_calc_timeout(struct sdhci_host *host, struct mmc_command *cmd)
{
u8 count;
struct mmc_data *data = cmd->data;
unsigned target_timeout, current_timeout;
/*
* If the host controller provides us with an incorrect timeout
* value, just skip the check and use 0xE. The hardware may take
* longer to time out, but that's much better than having a too-short
* timeout value.
*/
if (host->quirks & SDHCI_QUIRK_BROKEN_TIMEOUT_VAL)
return 0xE;
/* Unspecified timeout, assume max */
if (!data && !cmd->cmd_timeout_ms)
return 0xE;
/* timeout in us */
if (!data)
target_timeout = cmd->cmd_timeout_ms * 1000;
mmc: sdhci: check host->clock before using it as a denominator Sometimes host->clock could be zero which is a legal situation. This patch checks host->clock before usage as a denominator when timeout is calculated. A similar patch is applied for mmc core (see commit e9b8684, "mmc: fix division by zero in MMC core"). Without this patch, the execution of the sdhci_calc_timeout could end up with a backtrace: <0>[ 4.014319] divide error: 0000 [#1] PREEMPT SMP <4>[ 4.014352] Modules linked in: g_ether <4>[ 4.014376] <4>[ 4.014393] Pid: 33, comm: kworker/u:2 Not tainted 3.0.0+ #646 <4>[ 4.014421] EIP: 0060:[<c12fa38e>] EFLAGS: 00010046 CPU: 1 <4>[ 4.014449] EIP is at sdhci_calc_timeout+0x2e/0x100 <4>[ 4.014468] EAX: 00000000 EBX: f5930fc8 ECX: 00000000 EDX: 00000000 <4>[ 4.014488] ESI: f5291de8 EDI: f5291db8 EBP: f5291c6c ESP: f5291c50 <4>[ 4.014508] DS: 007b ES: 007b FS: 00d8 GS: 0000 SS: 0068 <0>[ 4.014529] Process kworker/u:2 (pid: 33, ti=f5290000 task=f53065a0 task.ti=f5290000) <0>[ 4.014546] Stack: <4>[ 4.014557] 00000082 c1054fdd f5291c78 04000000 f5930fc8 f5291de8 f5291db8 f5291cac <4>[ 4.014611] c12fab7c c107a98b f5291c88 c13b6d3f f593109c f5882000 f5291cac c1054fdd <4>[ 4.014663] 00000000 00000000 f5882000 00000082 f5930fc8 f5291db8 0000000a f5291ccc <0>[ 4.014716] Call Trace: <4>[ 4.014743] [<c1054fdd>] ? mod_timer+0x11d/0x380 <4>[ 4.014770] [<c12fab7c>] sdhci_prepare_data+0x2c/0x3a0 <4>[ 4.014798] [<c107a98b>] ? trace_hardirqs_off+0xb/0x10 <4>[ 4.014827] [<c13b6d3f>] ? _raw_spin_unlock_irqrestore+0x2f/0x60 <4>[ 4.014854] [<c1054fdd>] ? mod_timer+0x11d/0x380 <4>[ 4.014880] [<c12fc7db>] sdhci_send_command+0xdb/0x210 <4>[ 4.014906] [<c12fd5f3>] sdhci_request+0xc3/0x150 <4>[ 4.014932] [<c12ec56a>] mmc_start_request+0xda/0x200 <4>[ 4.014960] [<c120d7c2>] ? __raw_spin_lock_init+0x32/0x60 <4>[ 4.014989] [<c1066a85>] ? __init_waitqueue_head+0x35/0x50 <4>[ 4.015015] [<c12ec70b>] mmc_wait_for_req+0x7b/0x90 <4>[ 4.015045] [<c12f0c67>] mmc_send_cxd_data+0xf7/0x130 <4>[ 4.015076] [<c12ecbc0>] ? mmc_erase+0x140/0x140 <4>[ 4.015102] [<c12f139d>] mmc_send_ext_csd+0x1d/0x20 <4>[ 4.015125] [<c12efef0>] mmc_get_ext_csd+0x70/0x140 <4>[ 4.015151] [<c12effe8>] mmc_compare_ext_csds+0x28/0x190 <4>[ 4.015176] [<c12f039f>] mmc_init_card+0x24f/0x650 <4>[ 4.015201] [<c13b6d5d>] ? _raw_spin_unlock_irqrestore+0x4d/0x60 <4>[ 4.015226] [<c107fd9c>] ? trace_hardirqs_on_caller+0x11c/0x160 <4>[ 4.015255] [<c12f09a4>] mmc_attach_mmc+0xa4/0x190 <4>[ 4.015282] [<c12ee3f0>] mmc_rescan+0x210/0x240 <4>[ 4.015311] [<c105f9b6>] process_one_work+0x176/0x550 <4>[ 4.015336] [<c105f93a>] ? process_one_work+0xfa/0x550 <4>[ 4.015360] [<c12ee1e0>] ? mmc_init_erase+0x140/0x140 <4>[ 4.015385] [<c1061c2a>] worker_thread+0x12a/0x2c0 <4>[ 4.015410] [<c1061b00>] ? manage_workers.clone.18+0x100/0x100 <4>[ 4.015437] [<c1066244>] kthread+0x74/0x80 <4>[ 4.015463] [<c10661d0>] ? __init_kthread_worker+0x60/0x60 <4>[ 4.015490] [<c13b7dfa>] kernel_thread_helper+0x6/0xd <0>[ 4.015507] Code: 57 89 d7 56 53 89 c3 83 ec 10 8b 40 04 8b 72 28 f6 c4 10 89 45 f0 0f 85 91 00 00 00 85 f6 0f 84 c1 00 00 00 8b 4e 04 31 d2 89 c8 <f7> 73 58 ba d3 4d 62 10 89 c1 8b 06 f7 e2 c1 ea 06 01 d1 f7 45 <0>[ 4.015829] EIP: [<c12fa38e>] sdhci_calc_timeout+0x2e/0x100 SS:ESP 0068:f5291c50 Reported-by: Alexander Shishkin <alexander.shishkin@linux.intel.com> Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Chris Ball <cjb@laptop.org>
2011-08-03 23:35:59 +08:00
else {
target_timeout = data->timeout_ns / 1000;
if (host->clock)
target_timeout += data->timeout_clks / host->clock;
}
/*
* Figure out needed cycles.
* We do this in steps in order to fit inside a 32 bit int.
* The first step is the minimum timeout, which will have a
* minimum resolution of 6 bits:
* (1) 2^13*1000 > 2^22,
* (2) host->timeout_clk < 2^16
* =>
* (1) / (2) > 2^6
*/
count = 0;
current_timeout = (1 << 13) * 1000 / host->timeout_clk;
while (current_timeout < target_timeout) {
count++;
current_timeout <<= 1;
if (count >= 0xF)
break;
}
if (count >= 0xF) {
DBG("%s: Too large timeout 0x%x requested for CMD%d!\n",
mmc_hostname(host->mmc), count, cmd->opcode);
count = 0xE;
}
return count;
}
static void sdhci_set_transfer_irqs(struct sdhci_host *host)
{
u32 pio_irqs = SDHCI_INT_DATA_AVAIL | SDHCI_INT_SPACE_AVAIL;
u32 dma_irqs = SDHCI_INT_DMA_END | SDHCI_INT_ADMA_ERROR;
if (host->flags & SDHCI_REQ_USE_DMA)
sdhci_clear_set_irqs(host, pio_irqs, dma_irqs);
else
sdhci_clear_set_irqs(host, dma_irqs, pio_irqs);
}
static void sdhci_prepare_data(struct sdhci_host *host, struct mmc_command *cmd)
{
u8 count;
u8 ctrl;
struct mmc_data *data = cmd->data;
int ret;
WARN_ON(host->data);
if (data || (cmd->flags & MMC_RSP_BUSY)) {
count = sdhci_calc_timeout(host, cmd);
sdhci_writeb(host, count, SDHCI_TIMEOUT_CONTROL);
}
if (!data)
return;
/* Sanity checks */
BUG_ON(data->blksz * data->blocks > 524288);
BUG_ON(data->blksz > host->mmc->max_blk_size);
BUG_ON(data->blocks > 65535);
host->data = data;
host->data_early = 0;
host->data->bytes_xfered = 0;
if (host->flags & (SDHCI_USE_SDMA | SDHCI_USE_ADMA))
host->flags |= SDHCI_REQ_USE_DMA;
/*
* FIXME: This doesn't account for merging when mapping the
* scatterlist.
*/
if (host->flags & SDHCI_REQ_USE_DMA) {
int broken, i;
struct scatterlist *sg;
broken = 0;
if (host->flags & SDHCI_USE_ADMA) {
if (host->quirks & SDHCI_QUIRK_32BIT_ADMA_SIZE)
broken = 1;
} else {
if (host->quirks & SDHCI_QUIRK_32BIT_DMA_SIZE)
broken = 1;
}
if (unlikely(broken)) {
for_each_sg(data->sg, sg, data->sg_len, i) {
if (sg->length & 0x3) {
DBG("Reverting to PIO because of "
"transfer size (%d)\n",
sg->length);
host->flags &= ~SDHCI_REQ_USE_DMA;
break;
}
}
}
}
/*
* The assumption here being that alignment is the same after
* translation to device address space.
*/
if (host->flags & SDHCI_REQ_USE_DMA) {
int broken, i;
struct scatterlist *sg;
broken = 0;
if (host->flags & SDHCI_USE_ADMA) {
/*
* As we use 3 byte chunks to work around
* alignment problems, we need to check this
* quirk.
*/
if (host->quirks & SDHCI_QUIRK_32BIT_ADMA_SIZE)
broken = 1;
} else {
if (host->quirks & SDHCI_QUIRK_32BIT_DMA_ADDR)
broken = 1;
}
if (unlikely(broken)) {
for_each_sg(data->sg, sg, data->sg_len, i) {
if (sg->offset & 0x3) {
DBG("Reverting to PIO because of "
"bad alignment\n");
host->flags &= ~SDHCI_REQ_USE_DMA;
break;
}
}
}
}
if (host->flags & SDHCI_REQ_USE_DMA) {
if (host->flags & SDHCI_USE_ADMA) {
ret = sdhci_adma_table_pre(host, data);
if (ret) {
/*
* This only happens when someone fed
* us an invalid request.
*/
WARN_ON(1);
host->flags &= ~SDHCI_REQ_USE_DMA;
} else {
sdhci_writel(host, host->adma_addr,
SDHCI_ADMA_ADDRESS);
}
} else {
int sg_cnt;
sg_cnt = dma_map_sg(mmc_dev(host->mmc),
data->sg, data->sg_len,
(data->flags & MMC_DATA_READ) ?
DMA_FROM_DEVICE :
DMA_TO_DEVICE);
if (sg_cnt == 0) {
/*
* This only happens when someone fed
* us an invalid request.
*/
WARN_ON(1);
host->flags &= ~SDHCI_REQ_USE_DMA;
} else {
WARN_ON(sg_cnt != 1);
sdhci_writel(host, sg_dma_address(data->sg),
SDHCI_DMA_ADDRESS);
}
}
}
/*
* Always adjust the DMA selection as some controllers
* (e.g. JMicron) can't do PIO properly when the selection
* is ADMA.
*/
if (host->version >= SDHCI_SPEC_200) {
ctrl = sdhci_readb(host, SDHCI_HOST_CONTROL);
ctrl &= ~SDHCI_CTRL_DMA_MASK;
if ((host->flags & SDHCI_REQ_USE_DMA) &&
(host->flags & SDHCI_USE_ADMA))
ctrl |= SDHCI_CTRL_ADMA32;
else
ctrl |= SDHCI_CTRL_SDMA;
sdhci_writeb(host, ctrl, SDHCI_HOST_CONTROL);
}
if (!(host->flags & SDHCI_REQ_USE_DMA)) {
int flags;
flags = SG_MITER_ATOMIC;
if (host->data->flags & MMC_DATA_READ)
flags |= SG_MITER_TO_SG;
else
flags |= SG_MITER_FROM_SG;
sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
host->blocks = data->blocks;
}
sdhci_set_transfer_irqs(host);
/* Set the DMA boundary value and block size */
sdhci_writew(host, SDHCI_MAKE_BLKSZ(SDHCI_DEFAULT_BOUNDARY_ARG,
data->blksz), SDHCI_BLOCK_SIZE);
sdhci_writew(host, data->blocks, SDHCI_BLOCK_COUNT);
}
static void sdhci_set_transfer_mode(struct sdhci_host *host,
struct mmc_command *cmd)
{
u16 mode;
struct mmc_data *data = cmd->data;
if (data == NULL) {
/* clear Auto CMD settings for no data CMDs */
mode = sdhci_readw(host, SDHCI_TRANSFER_MODE);
sdhci_writew(host, mode & ~(SDHCI_TRNS_AUTO_CMD12 |
SDHCI_TRNS_AUTO_CMD23), SDHCI_TRANSFER_MODE);
return;
}
WARN_ON(!host->data);
mode = SDHCI_TRNS_BLK_CNT_EN;
if (mmc_op_multi(cmd->opcode) || data->blocks > 1) {
mode |= SDHCI_TRNS_MULTI;
/*
* If we are sending CMD23, CMD12 never gets sent
* on successful completion (so no Auto-CMD12).
*/
if (!host->mrq->sbc && (host->flags & SDHCI_AUTO_CMD12))
mode |= SDHCI_TRNS_AUTO_CMD12;
else if (host->mrq->sbc && (host->flags & SDHCI_AUTO_CMD23)) {
mode |= SDHCI_TRNS_AUTO_CMD23;
sdhci_writel(host, host->mrq->sbc->arg, SDHCI_ARGUMENT2);
}
}
if (data->flags & MMC_DATA_READ)
mode |= SDHCI_TRNS_READ;
if (host->flags & SDHCI_REQ_USE_DMA)
mode |= SDHCI_TRNS_DMA;
sdhci_writew(host, mode, SDHCI_TRANSFER_MODE);
}
static void sdhci_finish_data(struct sdhci_host *host)
{
struct mmc_data *data;
BUG_ON(!host->data);
data = host->data;
host->data = NULL;
if (host->flags & SDHCI_REQ_USE_DMA) {
if (host->flags & SDHCI_USE_ADMA)
sdhci_adma_table_post(host, data);
else {
dma_unmap_sg(mmc_dev(host->mmc), data->sg,
data->sg_len, (data->flags & MMC_DATA_READ) ?
DMA_FROM_DEVICE : DMA_TO_DEVICE);
}
}
/*
* The specification states that the block count register must
* be updated, but it does not specify at what point in the
* data flow. That makes the register entirely useless to read
* back so we have to assume that nothing made it to the card
* in the event of an error.
*/
if (data->error)
data->bytes_xfered = 0;
else
data->bytes_xfered = data->blksz * data->blocks;
/*
* Need to send CMD12 if -
* a) open-ended multiblock transfer (no CMD23)
* b) error in multiblock transfer
*/
if (data->stop &&
(data->error ||
!host->mrq->sbc)) {
/*
* The controller needs a reset of internal state machines
* upon error conditions.
*/
if (data->error) {
sdhci_reset(host, SDHCI_RESET_CMD);
sdhci_reset(host, SDHCI_RESET_DATA);
}
sdhci_send_command(host, data->stop);
} else
tasklet_schedule(&host->finish_tasklet);
}
void sdhci_send_command(struct sdhci_host *host, struct mmc_command *cmd)
{
int flags;
u32 mask;
unsigned long timeout;
WARN_ON(host->cmd);
/* Wait max 10 ms */
timeout = 10;
mask = SDHCI_CMD_INHIBIT;
if ((cmd->data != NULL) || (cmd->flags & MMC_RSP_BUSY))
mask |= SDHCI_DATA_INHIBIT;
/* We shouldn't wait for data inihibit for stop commands, even
though they might use busy signaling */
if (host->mrq->data && (cmd == host->mrq->data->stop))
mask &= ~SDHCI_DATA_INHIBIT;
while (sdhci_readl(host, SDHCI_PRESENT_STATE) & mask) {
if (timeout == 0) {
pr_err("%s: Controller never released "
"inhibit bit(s).\n", mmc_hostname(host->mmc));
sdhci_dumpregs(host);
cmd->error = -EIO;
tasklet_schedule(&host->finish_tasklet);
return;
}
timeout--;
mdelay(1);
}
mod_timer(&host->timer, jiffies + 10 * HZ);
host->cmd = cmd;
sdhci_prepare_data(host, cmd);
sdhci_writel(host, cmd->arg, SDHCI_ARGUMENT);
sdhci_set_transfer_mode(host, cmd);
if ((cmd->flags & MMC_RSP_136) && (cmd->flags & MMC_RSP_BUSY)) {
pr_err("%s: Unsupported response type!\n",
mmc_hostname(host->mmc));
cmd->error = -EINVAL;
tasklet_schedule(&host->finish_tasklet);
return;
}
if (!(cmd->flags & MMC_RSP_PRESENT))
flags = SDHCI_CMD_RESP_NONE;
else if (cmd->flags & MMC_RSP_136)
flags = SDHCI_CMD_RESP_LONG;
else if (cmd->flags & MMC_RSP_BUSY)
flags = SDHCI_CMD_RESP_SHORT_BUSY;
else
flags = SDHCI_CMD_RESP_SHORT;
if (cmd->flags & MMC_RSP_CRC)
flags |= SDHCI_CMD_CRC;
if (cmd->flags & MMC_RSP_OPCODE)
flags |= SDHCI_CMD_INDEX;
mmc: sd: add support for tuning during uhs initialization Host Controller needs tuning during initialization to operate SDR50 and SDR104 UHS-I cards. Whether SDR50 mode actually needs tuning is indicated by bit 45 of the Host Controller Capabilities register. A new command CMD19 has been defined in the Physical Layer spec v3.01 to request the card to send tuning pattern. We enable Buffer Read Ready interrupt at the very begining of tuning procedure, because that is the only interrupt generated by the Host Controller during tuning. We program the block size to 64 in the Block Size register. We make sure that DMA Enable and Multi Block Select in the Transfer Mode register are set to 0 before actually sending CMD19. The tuning block is sent by the card to the Host Controller using DAT lines, so we set Data Present Select (bit 5) in the Command register. The Host Controller is responsible for doing the verfication of tuning block sent by the card at the hardware level. After sending CMD19, we wait for Buffer Read Ready interrupt. In case we don't receive an interrupt after the specified timeout value, we fall back on fixed sampling clock by setting Execute Tuning (bit 6) and Sampling Clock Select (bit 7) of Host Control2 register to 0. Before exiting the tuning procedure, we disable Buffer Read Ready interrupt and re-enable other interrupts. Tested by Zhangfei Gao with a Toshiba uhs card and general hs card, on mmp2 in SDMA mode. Signed-off-by: Arindam Nath <arindam.nath@amd.com> Reviewed-by: Philip Rakity <prakity@marvell.com> Tested-by: Philip Rakity <prakity@marvell.com> Acked-by: Zhangfei Gao <zhangfei.gao@marvell.com> Signed-off-by: Chris Ball <cjb@laptop.org>
2011-05-05 14:49:04 +08:00
/* CMD19 is special in that the Data Present Select should be set */
if (cmd->data || cmd->opcode == MMC_SEND_TUNING_BLOCK ||
cmd->opcode == MMC_SEND_TUNING_BLOCK_HS200)
flags |= SDHCI_CMD_DATA;
sdhci_writew(host, SDHCI_MAKE_CMD(cmd->opcode, flags), SDHCI_COMMAND);
}
EXPORT_SYMBOL_GPL(sdhci_send_command);
static void sdhci_finish_command(struct sdhci_host *host)
{
int i;
BUG_ON(host->cmd == NULL);
if (host->cmd->flags & MMC_RSP_PRESENT) {
if (host->cmd->flags & MMC_RSP_136) {
/* CRC is stripped so we need to do some shifting. */
for (i = 0;i < 4;i++) {
host->cmd->resp[i] = sdhci_readl(host,
SDHCI_RESPONSE + (3-i)*4) << 8;
if (i != 3)
host->cmd->resp[i] |=
sdhci_readb(host,
SDHCI_RESPONSE + (3-i)*4-1);
}
} else {
host->cmd->resp[0] = sdhci_readl(host, SDHCI_RESPONSE);
}
}
host->cmd->error = 0;
/* Finished CMD23, now send actual command. */
if (host->cmd == host->mrq->sbc) {
host->cmd = NULL;
sdhci_send_command(host, host->mrq->cmd);
} else {
/* Processed actual command. */
if (host->data && host->data_early)
sdhci_finish_data(host);
if (!host->cmd->data)
tasklet_schedule(&host->finish_tasklet);
host->cmd = NULL;
}
}
static u16 sdhci_get_preset_value(struct sdhci_host *host)
{
u16 ctrl, preset = 0;
ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
switch (ctrl & SDHCI_CTRL_UHS_MASK) {
case SDHCI_CTRL_UHS_SDR12:
preset = sdhci_readw(host, SDHCI_PRESET_FOR_SDR12);
break;
case SDHCI_CTRL_UHS_SDR25:
preset = sdhci_readw(host, SDHCI_PRESET_FOR_SDR25);
break;
case SDHCI_CTRL_UHS_SDR50:
preset = sdhci_readw(host, SDHCI_PRESET_FOR_SDR50);
break;
case SDHCI_CTRL_UHS_SDR104:
preset = sdhci_readw(host, SDHCI_PRESET_FOR_SDR104);
break;
case SDHCI_CTRL_UHS_DDR50:
preset = sdhci_readw(host, SDHCI_PRESET_FOR_DDR50);
break;
default:
pr_warn("%s: Invalid UHS-I mode selected\n",
mmc_hostname(host->mmc));
preset = sdhci_readw(host, SDHCI_PRESET_FOR_SDR12);
break;
}
return preset;
}
static void sdhci_set_clock(struct sdhci_host *host, unsigned int clock)
{
int div = 0; /* Initialized for compiler warning */
int real_div = div, clk_mul = 1;
u16 clk = 0;
unsigned long timeout;
if (clock && clock == host->clock)
return;
host->mmc->actual_clock = 0;
if (host->ops->set_clock) {
host->ops->set_clock(host, clock);
if (host->quirks & SDHCI_QUIRK_NONSTANDARD_CLOCK)
return;
}
sdhci_writew(host, 0, SDHCI_CLOCK_CONTROL);
if (clock == 0)
goto out;
if (host->version >= SDHCI_SPEC_300) {
if (sdhci_readw(host, SDHCI_HOST_CONTROL2) &
SDHCI_CTRL_PRESET_VAL_ENABLE) {
u16 pre_val;
clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL);
pre_val = sdhci_get_preset_value(host);
div = (pre_val & SDHCI_PRESET_SDCLK_FREQ_MASK)
>> SDHCI_PRESET_SDCLK_FREQ_SHIFT;
if (host->clk_mul &&
(pre_val & SDHCI_PRESET_CLKGEN_SEL_MASK)) {
clk = SDHCI_PROG_CLOCK_MODE;
real_div = div + 1;
clk_mul = host->clk_mul;
} else {
real_div = max_t(int, 1, div << 1);
}
goto clock_set;
}
/*
* Check if the Host Controller supports Programmable Clock
* Mode.
*/
if (host->clk_mul) {
for (div = 1; div <= 1024; div++) {
if ((host->max_clk * host->clk_mul / div)
<= clock)
break;
}
/*
* Set Programmable Clock Mode in the Clock
* Control register.
*/
clk = SDHCI_PROG_CLOCK_MODE;
real_div = div;
clk_mul = host->clk_mul;
div--;
} else {
/* Version 3.00 divisors must be a multiple of 2. */
if (host->max_clk <= clock)
div = 1;
else {
for (div = 2; div < SDHCI_MAX_DIV_SPEC_300;
div += 2) {
if ((host->max_clk / div) <= clock)
break;
}
}
real_div = div;
div >>= 1;
}
} else {
/* Version 2.00 divisors must be a power of 2. */
for (div = 1; div < SDHCI_MAX_DIV_SPEC_200; div *= 2) {
if ((host->max_clk / div) <= clock)
break;
}
real_div = div;
div >>= 1;
}
clock_set:
if (real_div)
host->mmc->actual_clock = (host->max_clk * clk_mul) / real_div;
clk |= (div & SDHCI_DIV_MASK) << SDHCI_DIVIDER_SHIFT;
clk |= ((div & SDHCI_DIV_HI_MASK) >> SDHCI_DIV_MASK_LEN)
<< SDHCI_DIVIDER_HI_SHIFT;
clk |= SDHCI_CLOCK_INT_EN;
sdhci_writew(host, clk, SDHCI_CLOCK_CONTROL);
/* Wait max 20 ms */
timeout = 20;
while (!((clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL))
& SDHCI_CLOCK_INT_STABLE)) {
if (timeout == 0) {
pr_err("%s: Internal clock never "
"stabilised.\n", mmc_hostname(host->mmc));
sdhci_dumpregs(host);
return;
}
timeout--;
mdelay(1);
}
clk |= SDHCI_CLOCK_CARD_EN;
sdhci_writew(host, clk, SDHCI_CLOCK_CONTROL);
out:
host->clock = clock;
}
static inline void sdhci_update_clock(struct sdhci_host *host)
{
unsigned int clock;
clock = host->clock;
host->clock = 0;
sdhci_set_clock(host, clock);
}
static int sdhci_set_power(struct sdhci_host *host, unsigned short power)
{
u8 pwr = 0;
if (power != (unsigned short)-1) {
switch (1 << power) {
case MMC_VDD_165_195:
pwr = SDHCI_POWER_180;
break;
case MMC_VDD_29_30:
case MMC_VDD_30_31:
pwr = SDHCI_POWER_300;
break;
case MMC_VDD_32_33:
case MMC_VDD_33_34:
pwr = SDHCI_POWER_330;
break;
default:
BUG();
}
}
if (host->pwr == pwr)
return -1;
host->pwr = pwr;
if (pwr == 0) {
sdhci_writeb(host, 0, SDHCI_POWER_CONTROL);
if (host->quirks2 & SDHCI_QUIRK2_CARD_ON_NEEDS_BUS_ON)
sdhci_runtime_pm_bus_off(host);
return 0;
}
/*
* Spec says that we should clear the power reg before setting
* a new value. Some controllers don't seem to like this though.
*/
if (!(host->quirks & SDHCI_QUIRK_SINGLE_POWER_WRITE))
sdhci_writeb(host, 0, SDHCI_POWER_CONTROL);
/*
* At least the Marvell CaFe chip gets confused if we set the voltage
* and set turn on power at the same time, so set the voltage first.
*/
if (host->quirks & SDHCI_QUIRK_NO_SIMULT_VDD_AND_POWER)
sdhci_writeb(host, pwr, SDHCI_POWER_CONTROL);
pwr |= SDHCI_POWER_ON;
sdhci_writeb(host, pwr, SDHCI_POWER_CONTROL);
if (host->quirks2 & SDHCI_QUIRK2_CARD_ON_NEEDS_BUS_ON)
sdhci_runtime_pm_bus_on(host);
/*
* Some controllers need an extra 10ms delay of 10ms before they
* can apply clock after applying power
*/
if (host->quirks & SDHCI_QUIRK_DELAY_AFTER_POWER)
mdelay(10);
return power;
}
/*****************************************************************************\
* *
* MMC callbacks *
* *
\*****************************************************************************/
static void sdhci_request(struct mmc_host *mmc, struct mmc_request *mrq)
{
struct sdhci_host *host;
int present;
unsigned long flags;
u32 tuning_opcode;
host = mmc_priv(mmc);
sdhci_runtime_pm_get(host);
spin_lock_irqsave(&host->lock, flags);
WARN_ON(host->mrq != NULL);
#ifndef SDHCI_USE_LEDS_CLASS
sdhci_activate_led(host);
#endif
/*
* Ensure we don't send the STOP for non-SET_BLOCK_COUNTED
* requests if Auto-CMD12 is enabled.
*/
if (!mrq->sbc && (host->flags & SDHCI_AUTO_CMD12)) {
if (mrq->stop) {
mrq->data->stop = NULL;
mrq->stop = NULL;
}
}
host->mrq = mrq;
/*
* Firstly check card presence from cd-gpio. The return could
* be one of the following possibilities:
* negative: cd-gpio is not available
* zero: cd-gpio is used, and card is removed
* one: cd-gpio is used, and card is present
*/
present = mmc_gpio_get_cd(host->mmc);
if (present < 0) {
/* If polling, assume that the card is always present. */
if (host->quirks & SDHCI_QUIRK_BROKEN_CARD_DETECTION)
present = 1;
else
present = sdhci_readl(host, SDHCI_PRESENT_STATE) &
SDHCI_CARD_PRESENT;
}
if (!present || host->flags & SDHCI_DEVICE_DEAD) {
host->mrq->cmd->error = -ENOMEDIUM;
tasklet_schedule(&host->finish_tasklet);
} else {
u32 present_state;
present_state = sdhci_readl(host, SDHCI_PRESENT_STATE);
/*
* Check if the re-tuning timer has already expired and there
* is no on-going data transfer. If so, we need to execute
* tuning procedure before sending command.
*/
if ((host->flags & SDHCI_NEEDS_RETUNING) &&
!(present_state & (SDHCI_DOING_WRITE | SDHCI_DOING_READ))) {
if (mmc->card) {
/* eMMC uses cmd21 but sd and sdio use cmd19 */
tuning_opcode =
mmc->card->type == MMC_TYPE_MMC ?
MMC_SEND_TUNING_BLOCK_HS200 :
MMC_SEND_TUNING_BLOCK;
/* Here we need to set the host->mrq to NULL,
* in case the pending finish_tasklet
* finishes it incorrectly.
*/
host->mrq = NULL;
spin_unlock_irqrestore(&host->lock, flags);
sdhci_execute_tuning(mmc, tuning_opcode);
spin_lock_irqsave(&host->lock, flags);
/* Restore original mmc_request structure */
host->mrq = mrq;
}
}
if (mrq->sbc && !(host->flags & SDHCI_AUTO_CMD23))
sdhci_send_command(host, mrq->sbc);
else
sdhci_send_command(host, mrq->cmd);
}
mmiowb();
spin_unlock_irqrestore(&host->lock, flags);
}
static void sdhci_do_set_ios(struct sdhci_host *host, struct mmc_ios *ios)
{
unsigned long flags;
int vdd_bit = -1;
u8 ctrl;
spin_lock_irqsave(&host->lock, flags);
if (host->flags & SDHCI_DEVICE_DEAD) {
spin_unlock_irqrestore(&host->lock, flags);
if (host->vmmc && ios->power_mode == MMC_POWER_OFF)
mmc_regulator_set_ocr(host->mmc, host->vmmc, 0);
return;
}
/*
* Reset the chip on each power off.
* Should clear out any weird states.
*/
if (ios->power_mode == MMC_POWER_OFF) {
sdhci_writel(host, 0, SDHCI_SIGNAL_ENABLE);
sdhci_reinit(host);
}
if (host->version >= SDHCI_SPEC_300 &&
(ios->power_mode == MMC_POWER_UP) &&
!(host->quirks2 & SDHCI_QUIRK2_PRESET_VALUE_BROKEN))
sdhci_enable_preset_value(host, false);
sdhci_set_clock(host, ios->clock);
if (ios->power_mode == MMC_POWER_OFF)
vdd_bit = sdhci_set_power(host, -1);
else
vdd_bit = sdhci_set_power(host, ios->vdd);
if (host->vmmc && vdd_bit != -1) {
spin_unlock_irqrestore(&host->lock, flags);
mmc_regulator_set_ocr(host->mmc, host->vmmc, vdd_bit);
spin_lock_irqsave(&host->lock, flags);
}
if (host->ops->platform_send_init_74_clocks)
host->ops->platform_send_init_74_clocks(host, ios->power_mode);
/*
* If your platform has 8-bit width support but is not a v3 controller,
* or if it requires special setup code, you should implement that in
* platform_bus_width().
*/
if (host->ops->platform_bus_width) {
host->ops->platform_bus_width(host, ios->bus_width);
} else {
ctrl = sdhci_readb(host, SDHCI_HOST_CONTROL);
if (ios->bus_width == MMC_BUS_WIDTH_8) {
ctrl &= ~SDHCI_CTRL_4BITBUS;
if (host->version >= SDHCI_SPEC_300)
ctrl |= SDHCI_CTRL_8BITBUS;
} else {
if (host->version >= SDHCI_SPEC_300)
ctrl &= ~SDHCI_CTRL_8BITBUS;
if (ios->bus_width == MMC_BUS_WIDTH_4)
ctrl |= SDHCI_CTRL_4BITBUS;
else
ctrl &= ~SDHCI_CTRL_4BITBUS;
}
sdhci_writeb(host, ctrl, SDHCI_HOST_CONTROL);
}
ctrl = sdhci_readb(host, SDHCI_HOST_CONTROL);
if ((ios->timing == MMC_TIMING_SD_HS ||
ios->timing == MMC_TIMING_MMC_HS)
&& !(host->quirks & SDHCI_QUIRK_NO_HISPD_BIT))
ctrl |= SDHCI_CTRL_HISPD;
else
ctrl &= ~SDHCI_CTRL_HISPD;
if (host->version >= SDHCI_SPEC_300) {
u16 clk, ctrl_2;
/* In case of UHS-I modes, set High Speed Enable */
if ((ios->timing == MMC_TIMING_MMC_HS200) ||
(ios->timing == MMC_TIMING_UHS_SDR50) ||
(ios->timing == MMC_TIMING_UHS_SDR104) ||
(ios->timing == MMC_TIMING_UHS_DDR50) ||
(ios->timing == MMC_TIMING_UHS_SDR25))
ctrl |= SDHCI_CTRL_HISPD;
ctrl_2 = sdhci_readw(host, SDHCI_HOST_CONTROL2);
if (!(ctrl_2 & SDHCI_CTRL_PRESET_VAL_ENABLE)) {
sdhci_writeb(host, ctrl, SDHCI_HOST_CONTROL);
/*
* We only need to set Driver Strength if the
* preset value enable is not set.
*/
ctrl_2 &= ~SDHCI_CTRL_DRV_TYPE_MASK;
if (ios->drv_type == MMC_SET_DRIVER_TYPE_A)
ctrl_2 |= SDHCI_CTRL_DRV_TYPE_A;
else if (ios->drv_type == MMC_SET_DRIVER_TYPE_C)
ctrl_2 |= SDHCI_CTRL_DRV_TYPE_C;
sdhci_writew(host, ctrl_2, SDHCI_HOST_CONTROL2);
} else {
/*
* According to SDHC Spec v3.00, if the Preset Value
* Enable in the Host Control 2 register is set, we
* need to reset SD Clock Enable before changing High
* Speed Enable to avoid generating clock gliches.
*/
/* Reset SD Clock Enable */
clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL);
clk &= ~SDHCI_CLOCK_CARD_EN;
sdhci_writew(host, clk, SDHCI_CLOCK_CONTROL);
sdhci_writeb(host, ctrl, SDHCI_HOST_CONTROL);
/* Re-enable SD Clock */
sdhci_update_clock(host);
}
/* Reset SD Clock Enable */
clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL);
clk &= ~SDHCI_CLOCK_CARD_EN;
sdhci_writew(host, clk, SDHCI_CLOCK_CONTROL);
if (host->ops->set_uhs_signaling)
host->ops->set_uhs_signaling(host, ios->timing);
else {
ctrl_2 = sdhci_readw(host, SDHCI_HOST_CONTROL2);
/* Select Bus Speed Mode for host */
ctrl_2 &= ~SDHCI_CTRL_UHS_MASK;
if ((ios->timing == MMC_TIMING_MMC_HS200) ||
(ios->timing == MMC_TIMING_UHS_SDR104))
ctrl_2 |= SDHCI_CTRL_UHS_SDR104;
else if (ios->timing == MMC_TIMING_UHS_SDR12)
ctrl_2 |= SDHCI_CTRL_UHS_SDR12;
else if (ios->timing == MMC_TIMING_UHS_SDR25)
ctrl_2 |= SDHCI_CTRL_UHS_SDR25;
else if (ios->timing == MMC_TIMING_UHS_SDR50)
ctrl_2 |= SDHCI_CTRL_UHS_SDR50;
else if (ios->timing == MMC_TIMING_UHS_DDR50)
ctrl_2 |= SDHCI_CTRL_UHS_DDR50;
sdhci_writew(host, ctrl_2, SDHCI_HOST_CONTROL2);
}
if (!(host->quirks2 & SDHCI_QUIRK2_PRESET_VALUE_BROKEN) &&
((ios->timing == MMC_TIMING_UHS_SDR12) ||
(ios->timing == MMC_TIMING_UHS_SDR25) ||
(ios->timing == MMC_TIMING_UHS_SDR50) ||
(ios->timing == MMC_TIMING_UHS_SDR104) ||
(ios->timing == MMC_TIMING_UHS_DDR50))) {
u16 preset;
sdhci_enable_preset_value(host, true);
preset = sdhci_get_preset_value(host);
ios->drv_type = (preset & SDHCI_PRESET_DRV_MASK)
>> SDHCI_PRESET_DRV_SHIFT;
}
/* Re-enable SD Clock */
sdhci_update_clock(host);
} else
sdhci_writeb(host, ctrl, SDHCI_HOST_CONTROL);
/*
* Some (ENE) controllers go apeshit on some ios operation,
* signalling timeout and CRC errors even on CMD0. Resetting
* it on each ios seems to solve the problem.
*/
if(host->quirks & SDHCI_QUIRK_RESET_CMD_DATA_ON_IOS)
sdhci_reset(host, SDHCI_RESET_CMD | SDHCI_RESET_DATA);
mmiowb();
spin_unlock_irqrestore(&host->lock, flags);
}
static void sdhci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
{
struct sdhci_host *host = mmc_priv(mmc);
sdhci_runtime_pm_get(host);
sdhci_do_set_ios(host, ios);
sdhci_runtime_pm_put(host);
}
static int sdhci_do_get_cd(struct sdhci_host *host)
{
int gpio_cd = mmc_gpio_get_cd(host->mmc);
if (host->flags & SDHCI_DEVICE_DEAD)
return 0;
/* If polling/nonremovable, assume that the card is always present. */
if ((host->quirks & SDHCI_QUIRK_BROKEN_CARD_DETECTION) ||
(host->mmc->caps & MMC_CAP_NONREMOVABLE))
return 1;
/* Try slot gpio detect */
if (!IS_ERR_VALUE(gpio_cd))
return !!gpio_cd;
/* Host native card detect */
return !!(sdhci_readl(host, SDHCI_PRESENT_STATE) & SDHCI_CARD_PRESENT);
}
static int sdhci_get_cd(struct mmc_host *mmc)
{
struct sdhci_host *host = mmc_priv(mmc);
int ret;
sdhci_runtime_pm_get(host);
ret = sdhci_do_get_cd(host);
sdhci_runtime_pm_put(host);
return ret;
}
static int sdhci_check_ro(struct sdhci_host *host)
{
unsigned long flags;
int is_readonly;
spin_lock_irqsave(&host->lock, flags);
if (host->flags & SDHCI_DEVICE_DEAD)
is_readonly = 0;
else if (host->ops->get_ro)
is_readonly = host->ops->get_ro(host);
else
is_readonly = !(sdhci_readl(host, SDHCI_PRESENT_STATE)
& SDHCI_WRITE_PROTECT);
spin_unlock_irqrestore(&host->lock, flags);
/* This quirk needs to be replaced by a callback-function later */
return host->quirks & SDHCI_QUIRK_INVERTED_WRITE_PROTECT ?
!is_readonly : is_readonly;
}
#define SAMPLE_COUNT 5
static int sdhci_do_get_ro(struct sdhci_host *host)
{
int i, ro_count;
if (!(host->quirks & SDHCI_QUIRK_UNSTABLE_RO_DETECT))
return sdhci_check_ro(host);
ro_count = 0;
for (i = 0; i < SAMPLE_COUNT; i++) {
if (sdhci_check_ro(host)) {
if (++ro_count > SAMPLE_COUNT / 2)
return 1;
}
msleep(30);
}
return 0;
}
static void sdhci_hw_reset(struct mmc_host *mmc)
{
struct sdhci_host *host = mmc_priv(mmc);
if (host->ops && host->ops->hw_reset)
host->ops->hw_reset(host);
}
static int sdhci_get_ro(struct mmc_host *mmc)
{
struct sdhci_host *host = mmc_priv(mmc);
int ret;
sdhci_runtime_pm_get(host);
ret = sdhci_do_get_ro(host);
sdhci_runtime_pm_put(host);
return ret;
}
static void sdhci_enable_sdio_irq_nolock(struct sdhci_host *host, int enable)
{
if (host->flags & SDHCI_DEVICE_DEAD)
goto out;
if (enable)
host->flags |= SDHCI_SDIO_IRQ_ENABLED;
else
host->flags &= ~SDHCI_SDIO_IRQ_ENABLED;
/* SDIO IRQ will be enabled as appropriate in runtime resume */
if (host->runtime_suspended)
goto out;
if (enable)
sdhci_unmask_irqs(host, SDHCI_INT_CARD_INT);
else
sdhci_mask_irqs(host, SDHCI_INT_CARD_INT);
out:
mmiowb();
}
static void sdhci_enable_sdio_irq(struct mmc_host *mmc, int enable)
{
struct sdhci_host *host = mmc_priv(mmc);
unsigned long flags;
spin_lock_irqsave(&host->lock, flags);
sdhci_enable_sdio_irq_nolock(host, enable);
spin_unlock_irqrestore(&host->lock, flags);
}
static int sdhci_do_start_signal_voltage_switch(struct sdhci_host *host,
struct mmc_ios *ios)
mmc: sd: add support for signal voltage switch procedure Host Controller v3.00 adds another Capabilities register. Apart from other things, this new register indicates whether the Host Controller supports SDR50, SDR104, and DDR50 UHS-I modes. The spec doesn't mention about explicit support for SDR12 and SDR25 UHS-I modes, so the Host Controller v3.00 should support them by default. Also if the controller supports SDR104 mode, it will also support SDR50 mode as well. So depending on the host support, we set the corresponding MMC_CAP_* flags. One more new register. Host Control2 is added in v3.00, which is used during Signal Voltage Switch procedure described below. Since as per v3.00 spec, UHS-I supported hosts should set S18R to 1, we set S18R (bit 24) of OCR before sending ACMD41. We also need to set XPC (bit 28) of OCR in case the host can supply >150mA. This support is indicated by the Maximum Current Capabilities register of the Host Controller. If the response of ACMD41 has both CCS and S18A set, we start the signal voltage switch procedure, which if successfull, will switch the card from 3.3V signalling to 1.8V signalling. Signal voltage switch procedure adds support for a new command CMD11 in the Physical Layer Spec v3.01. As part of this procedure, we need to set 1.8V Signalling Enable (bit 3) of Host Control2 register, which if remains set after 5ms, means the switch to 1.8V signalling is successfull. Otherwise, we clear bit 24 of OCR and retry the initialization sequence. When we remove the card, and insert the same or another card, we need to make sure that we start with 3.3V signalling voltage. So we call mmc_set_signal_voltage() with MMC_SIGNAL_VOLTAGE_330 set so that we are back to 3.3V signalling voltage before we actually start initializing the card. Tested by Zhangfei Gao with a Toshiba uhs card and general hs card, on mmp2 in SDMA mode. Signed-off-by: Arindam Nath <arindam.nath@amd.com> Reviewed-by: Philip Rakity <prakity@marvell.com> Tested-by: Philip Rakity <prakity@marvell.com> Acked-by: Zhangfei Gao <zhangfei.gao@marvell.com> Signed-off-by: Chris Ball <cjb@laptop.org>
2011-05-05 14:48:57 +08:00
{
u16 ctrl;
int ret;
mmc: sd: add support for signal voltage switch procedure Host Controller v3.00 adds another Capabilities register. Apart from other things, this new register indicates whether the Host Controller supports SDR50, SDR104, and DDR50 UHS-I modes. The spec doesn't mention about explicit support for SDR12 and SDR25 UHS-I modes, so the Host Controller v3.00 should support them by default. Also if the controller supports SDR104 mode, it will also support SDR50 mode as well. So depending on the host support, we set the corresponding MMC_CAP_* flags. One more new register. Host Control2 is added in v3.00, which is used during Signal Voltage Switch procedure described below. Since as per v3.00 spec, UHS-I supported hosts should set S18R to 1, we set S18R (bit 24) of OCR before sending ACMD41. We also need to set XPC (bit 28) of OCR in case the host can supply >150mA. This support is indicated by the Maximum Current Capabilities register of the Host Controller. If the response of ACMD41 has both CCS and S18A set, we start the signal voltage switch procedure, which if successfull, will switch the card from 3.3V signalling to 1.8V signalling. Signal voltage switch procedure adds support for a new command CMD11 in the Physical Layer Spec v3.01. As part of this procedure, we need to set 1.8V Signalling Enable (bit 3) of Host Control2 register, which if remains set after 5ms, means the switch to 1.8V signalling is successfull. Otherwise, we clear bit 24 of OCR and retry the initialization sequence. When we remove the card, and insert the same or another card, we need to make sure that we start with 3.3V signalling voltage. So we call mmc_set_signal_voltage() with MMC_SIGNAL_VOLTAGE_330 set so that we are back to 3.3V signalling voltage before we actually start initializing the card. Tested by Zhangfei Gao with a Toshiba uhs card and general hs card, on mmp2 in SDMA mode. Signed-off-by: Arindam Nath <arindam.nath@amd.com> Reviewed-by: Philip Rakity <prakity@marvell.com> Tested-by: Philip Rakity <prakity@marvell.com> Acked-by: Zhangfei Gao <zhangfei.gao@marvell.com> Signed-off-by: Chris Ball <cjb@laptop.org>
2011-05-05 14:48:57 +08:00
/*
* Signal Voltage Switching is only applicable for Host Controllers
* v3.00 and above.
*/
if (host->version < SDHCI_SPEC_300)
return 0;
mmc: sd: add support for signal voltage switch procedure Host Controller v3.00 adds another Capabilities register. Apart from other things, this new register indicates whether the Host Controller supports SDR50, SDR104, and DDR50 UHS-I modes. The spec doesn't mention about explicit support for SDR12 and SDR25 UHS-I modes, so the Host Controller v3.00 should support them by default. Also if the controller supports SDR104 mode, it will also support SDR50 mode as well. So depending on the host support, we set the corresponding MMC_CAP_* flags. One more new register. Host Control2 is added in v3.00, which is used during Signal Voltage Switch procedure described below. Since as per v3.00 spec, UHS-I supported hosts should set S18R to 1, we set S18R (bit 24) of OCR before sending ACMD41. We also need to set XPC (bit 28) of OCR in case the host can supply >150mA. This support is indicated by the Maximum Current Capabilities register of the Host Controller. If the response of ACMD41 has both CCS and S18A set, we start the signal voltage switch procedure, which if successfull, will switch the card from 3.3V signalling to 1.8V signalling. Signal voltage switch procedure adds support for a new command CMD11 in the Physical Layer Spec v3.01. As part of this procedure, we need to set 1.8V Signalling Enable (bit 3) of Host Control2 register, which if remains set after 5ms, means the switch to 1.8V signalling is successfull. Otherwise, we clear bit 24 of OCR and retry the initialization sequence. When we remove the card, and insert the same or another card, we need to make sure that we start with 3.3V signalling voltage. So we call mmc_set_signal_voltage() with MMC_SIGNAL_VOLTAGE_330 set so that we are back to 3.3V signalling voltage before we actually start initializing the card. Tested by Zhangfei Gao with a Toshiba uhs card and general hs card, on mmp2 in SDMA mode. Signed-off-by: Arindam Nath <arindam.nath@amd.com> Reviewed-by: Philip Rakity <prakity@marvell.com> Tested-by: Philip Rakity <prakity@marvell.com> Acked-by: Zhangfei Gao <zhangfei.gao@marvell.com> Signed-off-by: Chris Ball <cjb@laptop.org>
2011-05-05 14:48:57 +08:00
ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
switch (ios->signal_voltage) {
case MMC_SIGNAL_VOLTAGE_330:
/* Set 1.8V Signal Enable in the Host Control2 register to 0 */
ctrl &= ~SDHCI_CTRL_VDD_180;
sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2);
mmc: sd: add support for signal voltage switch procedure Host Controller v3.00 adds another Capabilities register. Apart from other things, this new register indicates whether the Host Controller supports SDR50, SDR104, and DDR50 UHS-I modes. The spec doesn't mention about explicit support for SDR12 and SDR25 UHS-I modes, so the Host Controller v3.00 should support them by default. Also if the controller supports SDR104 mode, it will also support SDR50 mode as well. So depending on the host support, we set the corresponding MMC_CAP_* flags. One more new register. Host Control2 is added in v3.00, which is used during Signal Voltage Switch procedure described below. Since as per v3.00 spec, UHS-I supported hosts should set S18R to 1, we set S18R (bit 24) of OCR before sending ACMD41. We also need to set XPC (bit 28) of OCR in case the host can supply >150mA. This support is indicated by the Maximum Current Capabilities register of the Host Controller. If the response of ACMD41 has both CCS and S18A set, we start the signal voltage switch procedure, which if successfull, will switch the card from 3.3V signalling to 1.8V signalling. Signal voltage switch procedure adds support for a new command CMD11 in the Physical Layer Spec v3.01. As part of this procedure, we need to set 1.8V Signalling Enable (bit 3) of Host Control2 register, which if remains set after 5ms, means the switch to 1.8V signalling is successfull. Otherwise, we clear bit 24 of OCR and retry the initialization sequence. When we remove the card, and insert the same or another card, we need to make sure that we start with 3.3V signalling voltage. So we call mmc_set_signal_voltage() with MMC_SIGNAL_VOLTAGE_330 set so that we are back to 3.3V signalling voltage before we actually start initializing the card. Tested by Zhangfei Gao with a Toshiba uhs card and general hs card, on mmp2 in SDMA mode. Signed-off-by: Arindam Nath <arindam.nath@amd.com> Reviewed-by: Philip Rakity <prakity@marvell.com> Tested-by: Philip Rakity <prakity@marvell.com> Acked-by: Zhangfei Gao <zhangfei.gao@marvell.com> Signed-off-by: Chris Ball <cjb@laptop.org>
2011-05-05 14:48:57 +08:00
if (host->vqmmc) {
ret = regulator_set_voltage(host->vqmmc, 2700000, 3600000);
if (ret) {
pr_warning("%s: Switching to 3.3V signalling voltage "
" failed\n", mmc_hostname(host->mmc));
return -EIO;
}
}
/* Wait for 5ms */
usleep_range(5000, 5500);
mmc: sd: add support for signal voltage switch procedure Host Controller v3.00 adds another Capabilities register. Apart from other things, this new register indicates whether the Host Controller supports SDR50, SDR104, and DDR50 UHS-I modes. The spec doesn't mention about explicit support for SDR12 and SDR25 UHS-I modes, so the Host Controller v3.00 should support them by default. Also if the controller supports SDR104 mode, it will also support SDR50 mode as well. So depending on the host support, we set the corresponding MMC_CAP_* flags. One more new register. Host Control2 is added in v3.00, which is used during Signal Voltage Switch procedure described below. Since as per v3.00 spec, UHS-I supported hosts should set S18R to 1, we set S18R (bit 24) of OCR before sending ACMD41. We also need to set XPC (bit 28) of OCR in case the host can supply >150mA. This support is indicated by the Maximum Current Capabilities register of the Host Controller. If the response of ACMD41 has both CCS and S18A set, we start the signal voltage switch procedure, which if successfull, will switch the card from 3.3V signalling to 1.8V signalling. Signal voltage switch procedure adds support for a new command CMD11 in the Physical Layer Spec v3.01. As part of this procedure, we need to set 1.8V Signalling Enable (bit 3) of Host Control2 register, which if remains set after 5ms, means the switch to 1.8V signalling is successfull. Otherwise, we clear bit 24 of OCR and retry the initialization sequence. When we remove the card, and insert the same or another card, we need to make sure that we start with 3.3V signalling voltage. So we call mmc_set_signal_voltage() with MMC_SIGNAL_VOLTAGE_330 set so that we are back to 3.3V signalling voltage before we actually start initializing the card. Tested by Zhangfei Gao with a Toshiba uhs card and general hs card, on mmp2 in SDMA mode. Signed-off-by: Arindam Nath <arindam.nath@amd.com> Reviewed-by: Philip Rakity <prakity@marvell.com> Tested-by: Philip Rakity <prakity@marvell.com> Acked-by: Zhangfei Gao <zhangfei.gao@marvell.com> Signed-off-by: Chris Ball <cjb@laptop.org>
2011-05-05 14:48:57 +08:00
/* 3.3V regulator output should be stable within 5 ms */
ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
if (!(ctrl & SDHCI_CTRL_VDD_180))
return 0;
pr_warning("%s: 3.3V regulator output did not became stable\n",
mmc_hostname(host->mmc));
return -EAGAIN;
case MMC_SIGNAL_VOLTAGE_180:
if (host->vqmmc) {
ret = regulator_set_voltage(host->vqmmc,
1700000, 1950000);
if (ret) {
pr_warning("%s: Switching to 1.8V signalling voltage "
" failed\n", mmc_hostname(host->mmc));
return -EIO;
}
}
/*
* Enable 1.8V Signal Enable in the Host Control2
* register
*/
ctrl |= SDHCI_CTRL_VDD_180;
sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2);
/* Wait for 5ms */
usleep_range(5000, 5500);
mmc: sd: add support for signal voltage switch procedure Host Controller v3.00 adds another Capabilities register. Apart from other things, this new register indicates whether the Host Controller supports SDR50, SDR104, and DDR50 UHS-I modes. The spec doesn't mention about explicit support for SDR12 and SDR25 UHS-I modes, so the Host Controller v3.00 should support them by default. Also if the controller supports SDR104 mode, it will also support SDR50 mode as well. So depending on the host support, we set the corresponding MMC_CAP_* flags. One more new register. Host Control2 is added in v3.00, which is used during Signal Voltage Switch procedure described below. Since as per v3.00 spec, UHS-I supported hosts should set S18R to 1, we set S18R (bit 24) of OCR before sending ACMD41. We also need to set XPC (bit 28) of OCR in case the host can supply >150mA. This support is indicated by the Maximum Current Capabilities register of the Host Controller. If the response of ACMD41 has both CCS and S18A set, we start the signal voltage switch procedure, which if successfull, will switch the card from 3.3V signalling to 1.8V signalling. Signal voltage switch procedure adds support for a new command CMD11 in the Physical Layer Spec v3.01. As part of this procedure, we need to set 1.8V Signalling Enable (bit 3) of Host Control2 register, which if remains set after 5ms, means the switch to 1.8V signalling is successfull. Otherwise, we clear bit 24 of OCR and retry the initialization sequence. When we remove the card, and insert the same or another card, we need to make sure that we start with 3.3V signalling voltage. So we call mmc_set_signal_voltage() with MMC_SIGNAL_VOLTAGE_330 set so that we are back to 3.3V signalling voltage before we actually start initializing the card. Tested by Zhangfei Gao with a Toshiba uhs card and general hs card, on mmp2 in SDMA mode. Signed-off-by: Arindam Nath <arindam.nath@amd.com> Reviewed-by: Philip Rakity <prakity@marvell.com> Tested-by: Philip Rakity <prakity@marvell.com> Acked-by: Zhangfei Gao <zhangfei.gao@marvell.com> Signed-off-by: Chris Ball <cjb@laptop.org>
2011-05-05 14:48:57 +08:00
/* 1.8V regulator output should be stable within 5 ms */
ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
if (ctrl & SDHCI_CTRL_VDD_180)
return 0;
mmc: sd: add support for signal voltage switch procedure Host Controller v3.00 adds another Capabilities register. Apart from other things, this new register indicates whether the Host Controller supports SDR50, SDR104, and DDR50 UHS-I modes. The spec doesn't mention about explicit support for SDR12 and SDR25 UHS-I modes, so the Host Controller v3.00 should support them by default. Also if the controller supports SDR104 mode, it will also support SDR50 mode as well. So depending on the host support, we set the corresponding MMC_CAP_* flags. One more new register. Host Control2 is added in v3.00, which is used during Signal Voltage Switch procedure described below. Since as per v3.00 spec, UHS-I supported hosts should set S18R to 1, we set S18R (bit 24) of OCR before sending ACMD41. We also need to set XPC (bit 28) of OCR in case the host can supply >150mA. This support is indicated by the Maximum Current Capabilities register of the Host Controller. If the response of ACMD41 has both CCS and S18A set, we start the signal voltage switch procedure, which if successfull, will switch the card from 3.3V signalling to 1.8V signalling. Signal voltage switch procedure adds support for a new command CMD11 in the Physical Layer Spec v3.01. As part of this procedure, we need to set 1.8V Signalling Enable (bit 3) of Host Control2 register, which if remains set after 5ms, means the switch to 1.8V signalling is successfull. Otherwise, we clear bit 24 of OCR and retry the initialization sequence. When we remove the card, and insert the same or another card, we need to make sure that we start with 3.3V signalling voltage. So we call mmc_set_signal_voltage() with MMC_SIGNAL_VOLTAGE_330 set so that we are back to 3.3V signalling voltage before we actually start initializing the card. Tested by Zhangfei Gao with a Toshiba uhs card and general hs card, on mmp2 in SDMA mode. Signed-off-by: Arindam Nath <arindam.nath@amd.com> Reviewed-by: Philip Rakity <prakity@marvell.com> Tested-by: Philip Rakity <prakity@marvell.com> Acked-by: Zhangfei Gao <zhangfei.gao@marvell.com> Signed-off-by: Chris Ball <cjb@laptop.org>
2011-05-05 14:48:57 +08:00
pr_warning("%s: 1.8V regulator output did not became stable\n",
mmc_hostname(host->mmc));
mmc: sd: add support for signal voltage switch procedure Host Controller v3.00 adds another Capabilities register. Apart from other things, this new register indicates whether the Host Controller supports SDR50, SDR104, and DDR50 UHS-I modes. The spec doesn't mention about explicit support for SDR12 and SDR25 UHS-I modes, so the Host Controller v3.00 should support them by default. Also if the controller supports SDR104 mode, it will also support SDR50 mode as well. So depending on the host support, we set the corresponding MMC_CAP_* flags. One more new register. Host Control2 is added in v3.00, which is used during Signal Voltage Switch procedure described below. Since as per v3.00 spec, UHS-I supported hosts should set S18R to 1, we set S18R (bit 24) of OCR before sending ACMD41. We also need to set XPC (bit 28) of OCR in case the host can supply >150mA. This support is indicated by the Maximum Current Capabilities register of the Host Controller. If the response of ACMD41 has both CCS and S18A set, we start the signal voltage switch procedure, which if successfull, will switch the card from 3.3V signalling to 1.8V signalling. Signal voltage switch procedure adds support for a new command CMD11 in the Physical Layer Spec v3.01. As part of this procedure, we need to set 1.8V Signalling Enable (bit 3) of Host Control2 register, which if remains set after 5ms, means the switch to 1.8V signalling is successfull. Otherwise, we clear bit 24 of OCR and retry the initialization sequence. When we remove the card, and insert the same or another card, we need to make sure that we start with 3.3V signalling voltage. So we call mmc_set_signal_voltage() with MMC_SIGNAL_VOLTAGE_330 set so that we are back to 3.3V signalling voltage before we actually start initializing the card. Tested by Zhangfei Gao with a Toshiba uhs card and general hs card, on mmp2 in SDMA mode. Signed-off-by: Arindam Nath <arindam.nath@amd.com> Reviewed-by: Philip Rakity <prakity@marvell.com> Tested-by: Philip Rakity <prakity@marvell.com> Acked-by: Zhangfei Gao <zhangfei.gao@marvell.com> Signed-off-by: Chris Ball <cjb@laptop.org>
2011-05-05 14:48:57 +08:00
return -EAGAIN;
case MMC_SIGNAL_VOLTAGE_120:
if (host->vqmmc) {
ret = regulator_set_voltage(host->vqmmc, 1100000, 1300000);
if (ret) {
pr_warning("%s: Switching to 1.2V signalling voltage "
" failed\n", mmc_hostname(host->mmc));
return -EIO;
mmc: sd: add support for signal voltage switch procedure Host Controller v3.00 adds another Capabilities register. Apart from other things, this new register indicates whether the Host Controller supports SDR50, SDR104, and DDR50 UHS-I modes. The spec doesn't mention about explicit support for SDR12 and SDR25 UHS-I modes, so the Host Controller v3.00 should support them by default. Also if the controller supports SDR104 mode, it will also support SDR50 mode as well. So depending on the host support, we set the corresponding MMC_CAP_* flags. One more new register. Host Control2 is added in v3.00, which is used during Signal Voltage Switch procedure described below. Since as per v3.00 spec, UHS-I supported hosts should set S18R to 1, we set S18R (bit 24) of OCR before sending ACMD41. We also need to set XPC (bit 28) of OCR in case the host can supply >150mA. This support is indicated by the Maximum Current Capabilities register of the Host Controller. If the response of ACMD41 has both CCS and S18A set, we start the signal voltage switch procedure, which if successfull, will switch the card from 3.3V signalling to 1.8V signalling. Signal voltage switch procedure adds support for a new command CMD11 in the Physical Layer Spec v3.01. As part of this procedure, we need to set 1.8V Signalling Enable (bit 3) of Host Control2 register, which if remains set after 5ms, means the switch to 1.8V signalling is successfull. Otherwise, we clear bit 24 of OCR and retry the initialization sequence. When we remove the card, and insert the same or another card, we need to make sure that we start with 3.3V signalling voltage. So we call mmc_set_signal_voltage() with MMC_SIGNAL_VOLTAGE_330 set so that we are back to 3.3V signalling voltage before we actually start initializing the card. Tested by Zhangfei Gao with a Toshiba uhs card and general hs card, on mmp2 in SDMA mode. Signed-off-by: Arindam Nath <arindam.nath@amd.com> Reviewed-by: Philip Rakity <prakity@marvell.com> Tested-by: Philip Rakity <prakity@marvell.com> Acked-by: Zhangfei Gao <zhangfei.gao@marvell.com> Signed-off-by: Chris Ball <cjb@laptop.org>
2011-05-05 14:48:57 +08:00
}
}
return 0;
default:
mmc: sd: add support for signal voltage switch procedure Host Controller v3.00 adds another Capabilities register. Apart from other things, this new register indicates whether the Host Controller supports SDR50, SDR104, and DDR50 UHS-I modes. The spec doesn't mention about explicit support for SDR12 and SDR25 UHS-I modes, so the Host Controller v3.00 should support them by default. Also if the controller supports SDR104 mode, it will also support SDR50 mode as well. So depending on the host support, we set the corresponding MMC_CAP_* flags. One more new register. Host Control2 is added in v3.00, which is used during Signal Voltage Switch procedure described below. Since as per v3.00 spec, UHS-I supported hosts should set S18R to 1, we set S18R (bit 24) of OCR before sending ACMD41. We also need to set XPC (bit 28) of OCR in case the host can supply >150mA. This support is indicated by the Maximum Current Capabilities register of the Host Controller. If the response of ACMD41 has both CCS and S18A set, we start the signal voltage switch procedure, which if successfull, will switch the card from 3.3V signalling to 1.8V signalling. Signal voltage switch procedure adds support for a new command CMD11 in the Physical Layer Spec v3.01. As part of this procedure, we need to set 1.8V Signalling Enable (bit 3) of Host Control2 register, which if remains set after 5ms, means the switch to 1.8V signalling is successfull. Otherwise, we clear bit 24 of OCR and retry the initialization sequence. When we remove the card, and insert the same or another card, we need to make sure that we start with 3.3V signalling voltage. So we call mmc_set_signal_voltage() with MMC_SIGNAL_VOLTAGE_330 set so that we are back to 3.3V signalling voltage before we actually start initializing the card. Tested by Zhangfei Gao with a Toshiba uhs card and general hs card, on mmp2 in SDMA mode. Signed-off-by: Arindam Nath <arindam.nath@amd.com> Reviewed-by: Philip Rakity <prakity@marvell.com> Tested-by: Philip Rakity <prakity@marvell.com> Acked-by: Zhangfei Gao <zhangfei.gao@marvell.com> Signed-off-by: Chris Ball <cjb@laptop.org>
2011-05-05 14:48:57 +08:00
/* No signal voltage switch required */
return 0;
}
mmc: sd: add support for signal voltage switch procedure Host Controller v3.00 adds another Capabilities register. Apart from other things, this new register indicates whether the Host Controller supports SDR50, SDR104, and DDR50 UHS-I modes. The spec doesn't mention about explicit support for SDR12 and SDR25 UHS-I modes, so the Host Controller v3.00 should support them by default. Also if the controller supports SDR104 mode, it will also support SDR50 mode as well. So depending on the host support, we set the corresponding MMC_CAP_* flags. One more new register. Host Control2 is added in v3.00, which is used during Signal Voltage Switch procedure described below. Since as per v3.00 spec, UHS-I supported hosts should set S18R to 1, we set S18R (bit 24) of OCR before sending ACMD41. We also need to set XPC (bit 28) of OCR in case the host can supply >150mA. This support is indicated by the Maximum Current Capabilities register of the Host Controller. If the response of ACMD41 has both CCS and S18A set, we start the signal voltage switch procedure, which if successfull, will switch the card from 3.3V signalling to 1.8V signalling. Signal voltage switch procedure adds support for a new command CMD11 in the Physical Layer Spec v3.01. As part of this procedure, we need to set 1.8V Signalling Enable (bit 3) of Host Control2 register, which if remains set after 5ms, means the switch to 1.8V signalling is successfull. Otherwise, we clear bit 24 of OCR and retry the initialization sequence. When we remove the card, and insert the same or another card, we need to make sure that we start with 3.3V signalling voltage. So we call mmc_set_signal_voltage() with MMC_SIGNAL_VOLTAGE_330 set so that we are back to 3.3V signalling voltage before we actually start initializing the card. Tested by Zhangfei Gao with a Toshiba uhs card and general hs card, on mmp2 in SDMA mode. Signed-off-by: Arindam Nath <arindam.nath@amd.com> Reviewed-by: Philip Rakity <prakity@marvell.com> Tested-by: Philip Rakity <prakity@marvell.com> Acked-by: Zhangfei Gao <zhangfei.gao@marvell.com> Signed-off-by: Chris Ball <cjb@laptop.org>
2011-05-05 14:48:57 +08:00
}
static int sdhci_start_signal_voltage_switch(struct mmc_host *mmc,
struct mmc_ios *ios)
{
struct sdhci_host *host = mmc_priv(mmc);
int err;
if (host->version < SDHCI_SPEC_300)
return 0;
sdhci_runtime_pm_get(host);
err = sdhci_do_start_signal_voltage_switch(host, ios);
sdhci_runtime_pm_put(host);
return err;
}
static int sdhci_card_busy(struct mmc_host *mmc)
{
struct sdhci_host *host = mmc_priv(mmc);
u32 present_state;
sdhci_runtime_pm_get(host);
/* Check whether DAT[3:0] is 0000 */
present_state = sdhci_readl(host, SDHCI_PRESENT_STATE);
sdhci_runtime_pm_put(host);
return !(present_state & SDHCI_DATA_LVL_MASK);
}
static int sdhci_execute_tuning(struct mmc_host *mmc, u32 opcode)
mmc: sd: add support for tuning during uhs initialization Host Controller needs tuning during initialization to operate SDR50 and SDR104 UHS-I cards. Whether SDR50 mode actually needs tuning is indicated by bit 45 of the Host Controller Capabilities register. A new command CMD19 has been defined in the Physical Layer spec v3.01 to request the card to send tuning pattern. We enable Buffer Read Ready interrupt at the very begining of tuning procedure, because that is the only interrupt generated by the Host Controller during tuning. We program the block size to 64 in the Block Size register. We make sure that DMA Enable and Multi Block Select in the Transfer Mode register are set to 0 before actually sending CMD19. The tuning block is sent by the card to the Host Controller using DAT lines, so we set Data Present Select (bit 5) in the Command register. The Host Controller is responsible for doing the verfication of tuning block sent by the card at the hardware level. After sending CMD19, we wait for Buffer Read Ready interrupt. In case we don't receive an interrupt after the specified timeout value, we fall back on fixed sampling clock by setting Execute Tuning (bit 6) and Sampling Clock Select (bit 7) of Host Control2 register to 0. Before exiting the tuning procedure, we disable Buffer Read Ready interrupt and re-enable other interrupts. Tested by Zhangfei Gao with a Toshiba uhs card and general hs card, on mmp2 in SDMA mode. Signed-off-by: Arindam Nath <arindam.nath@amd.com> Reviewed-by: Philip Rakity <prakity@marvell.com> Tested-by: Philip Rakity <prakity@marvell.com> Acked-by: Zhangfei Gao <zhangfei.gao@marvell.com> Signed-off-by: Chris Ball <cjb@laptop.org>
2011-05-05 14:49:04 +08:00
{
struct sdhci_host *host;
u16 ctrl;
u32 ier;
int tuning_loop_counter = MAX_TUNING_LOOP;
unsigned long timeout;
int err = 0;
bool requires_tuning_nonuhs = false;
mmc: sdhci: fix lockdep error in tuning routine The sdhci_execute_tuning routine gets lock separately by disable_irq(host->irq); spin_lock(&host->lock); It will cause the following lockdep error message since the &host->lock could also be got in irq context. Use spin_lock_irqsave/spin_unlock_restore instead to get rid of this error message. [ INFO: inconsistent lock state ] 3.13.0-rc1+ #287 Not tainted --------------------------------- inconsistent {IN-HARDIRQ-W} -> {HARDIRQ-ON-W} usage. kworker/u2:1/33 [HC0[0]:SC0[0]:HE1:SE1] takes: (&(&host->lock)->rlock){?.-...}, at: [<8045f7f4>] sdhci_execute_tuning+0x4c/0x710 {IN-HARDIRQ-W} state was registered at: [<8005f030>] mark_lock+0x140/0x6ac [<80060760>] __lock_acquire+0xb30/0x1cbc [<800620d0>] lock_acquire+0x70/0x84 [<8061d1c8>] _raw_spin_lock+0x30/0x40 [<804605cc>] sdhci_irq+0x24/0xa68 [<8006b1d4>] handle_irq_event_percpu+0x54/0x18c [<8006b350>] handle_irq_event+0x44/0x64 [<8006e50c>] handle_fasteoi_irq+0xa0/0x170 [<8006a8f0>] generic_handle_irq+0x30/0x44 [<8000f238>] handle_IRQ+0x54/0xbc [<8000864c>] gic_handle_irq+0x30/0x64 [<80013024>] __irq_svc+0x44/0x5c [<80329bf4>] dev_vprintk_emit+0x50/0x58 [<80329c24>] dev_printk_emit+0x28/0x30 [<80329fec>] __dev_printk+0x4c/0x90 [<8032a180>] dev_err+0x3c/0x48 [<802dd4f0>] _regulator_get+0x158/0x1cc [<802dd5b4>] regulator_get_optional+0x18/0x1c [<80461df4>] sdhci_add_host+0x42c/0xbd8 [<80464820>] sdhci_esdhc_imx_probe+0x378/0x67c [<8032ee88>] platform_drv_probe+0x20/0x50 [<8032d48c>] driver_probe_device+0x118/0x234 [<8032d690>] __driver_attach+0x9c/0xa0 [<8032b89c>] bus_for_each_dev+0x68/0x9c [<8032cf44>] driver_attach+0x20/0x28 [<8032cbc8>] bus_add_driver+0x148/0x1f4 [<8032dce0>] driver_register+0x80/0x100 [<8032ee54>] __platform_driver_register+0x50/0x64 [<8084b094>] sdhci_esdhc_imx_driver_init+0x18/0x20 [<80008980>] do_one_initcall+0x108/0x16c [<8081cca4>] kernel_init_freeable+0x10c/0x1d0 [<80611b28>] kernel_init+0x10/0x120 [<8000e9c8>] ret_from_fork+0x14/0x2c irq event stamp: 805 hardirqs last enabled at (805): [<8061d43c>] _raw_spin_unlock_irqrestore+0x38/0x4c hardirqs last disabled at (804): [<8061d2c8>] _raw_spin_lock_irqsave+0x24/0x54 softirqs last enabled at (570): [<8002b824>] __do_softirq+0x1c4/0x290 softirqs last disabled at (561): [<8002bcf4>] irq_exit+0xb4/0x10c other info that might help us debug this: Possible unsafe locking scenario: CPU0 ---- lock(&(&host->lock)->rlock); <Interrupt> lock(&(&host->lock)->rlock); *** DEADLOCK *** 2 locks held by kworker/u2:1/33: #0: (kmmcd){.+.+..}, at: [<8003db18>] process_one_work+0x128/0x468 #1: ((&(&host->detect)->work)){+.+...}, at: [<8003db18>] process_one_work+0x128/0x468 stack backtrace: CPU: 0 PID: 33 Comm: kworker/u2:1 Not tainted 3.13.0-rc1+ #287 Workqueue: kmmcd mmc_rescan Backtrace: [<80012160>] (dump_backtrace+0x0/0x10c) from [<80012438>] (show_stack+0x18/0x1c) r6:bfad0900 r5:00000000 r4:8088ecc8 r3:bfad0900 [<80012420>] (show_stack+0x0/0x1c) from [<806169ec>] (dump_stack+0x84/0x9c) [<80616968>] (dump_stack+0x0/0x9c) from [<806147b4>] (print_usage_bug+0x260/0x2d0) r5:8076ba88 r4:80977410 [<80614554>] (print_usage_bug+0x0/0x2d0) from [<8005f0d0>] (mark_lock+0x1e0/0x6ac) r9:8005e678 r8:00000000 r7:bfad0900 r6:00001015 r5:bfad0cd0 r4:00000002 [<8005eef0>] (mark_lock+0x0/0x6ac) from [<80060234>] (__lock_acquire+0x604/0x1cbc) [<8005fc30>] (__lock_acquire+0x0/0x1cbc) from [<800620d0>] (lock_acquire+0x70/0x84) [<80062060>] (lock_acquire+0x0/0x84) from [<8061d1c8>] (_raw_spin_lock+0x30/0x40) r7:00000000 r6:bfb63000 r5:00000000 r4:bfb60568 [<8061d198>] (_raw_spin_lock+0x0/0x40) from [<8045f7f4>] (sdhci_execute_tuning+0x4c/0x710) r4:bfb60000 [<8045f7a8>] (sdhci_execute_tuning+0x0/0x710) from [<80453454>] (mmc_sd_init_card+0x5f8/0x660) [<80452e5c>] (mmc_sd_init_card+0x0/0x660) from [<80453748>] (mmc_attach_sd+0xb4/0x180) r9:bf92d400 r8:8065f364 r7:00061a80 r6:bfb60000 r5:8065f358 r4:bfb60000 [<80453694>] (mmc_attach_sd+0x0/0x180) from [<8044d9f8>] (mmc_rescan+0x284/0x2f0) r5:8065f358 r4:bfb602f8 [<8044d774>] (mmc_rescan+0x0/0x2f0) from [<8003db94>] (process_one_work+0x1a4/0x468) r8:00000000 r7:bfb55eb0 r6:bf80dc00 r5:bfb602f8 r4:bfb35980 r3:8044d774 [<8003d9f0>] (process_one_work+0x0/0x468) from [<8003e850>] (worker_thread+0x118/0x3e0) [<8003e738>] (worker_thread+0x0/0x3e0) from [<80044de0>] (kthread+0xd4/0xf0) [<80044d0c>] (kthread+0x0/0xf0) from [<8000e9c8>] (ret_from_fork+0x14/0x2c) r7:00000000 r6:00000000 r5:80044d0c r4:bfb37b40 Signed-off-by: Dong Aisheng <b29396@freescale.com> Cc: stable <stable@vger.kernel.org> Signed-off-by: Chris Ball <chris@printf.net>
2013-12-23 19:13:04 +08:00
unsigned long flags;
mmc: sd: add support for tuning during uhs initialization Host Controller needs tuning during initialization to operate SDR50 and SDR104 UHS-I cards. Whether SDR50 mode actually needs tuning is indicated by bit 45 of the Host Controller Capabilities register. A new command CMD19 has been defined in the Physical Layer spec v3.01 to request the card to send tuning pattern. We enable Buffer Read Ready interrupt at the very begining of tuning procedure, because that is the only interrupt generated by the Host Controller during tuning. We program the block size to 64 in the Block Size register. We make sure that DMA Enable and Multi Block Select in the Transfer Mode register are set to 0 before actually sending CMD19. The tuning block is sent by the card to the Host Controller using DAT lines, so we set Data Present Select (bit 5) in the Command register. The Host Controller is responsible for doing the verfication of tuning block sent by the card at the hardware level. After sending CMD19, we wait for Buffer Read Ready interrupt. In case we don't receive an interrupt after the specified timeout value, we fall back on fixed sampling clock by setting Execute Tuning (bit 6) and Sampling Clock Select (bit 7) of Host Control2 register to 0. Before exiting the tuning procedure, we disable Buffer Read Ready interrupt and re-enable other interrupts. Tested by Zhangfei Gao with a Toshiba uhs card and general hs card, on mmp2 in SDMA mode. Signed-off-by: Arindam Nath <arindam.nath@amd.com> Reviewed-by: Philip Rakity <prakity@marvell.com> Tested-by: Philip Rakity <prakity@marvell.com> Acked-by: Zhangfei Gao <zhangfei.gao@marvell.com> Signed-off-by: Chris Ball <cjb@laptop.org>
2011-05-05 14:49:04 +08:00
host = mmc_priv(mmc);
sdhci_runtime_pm_get(host);
mmc: sdhci: fix lockdep error in tuning routine The sdhci_execute_tuning routine gets lock separately by disable_irq(host->irq); spin_lock(&host->lock); It will cause the following lockdep error message since the &host->lock could also be got in irq context. Use spin_lock_irqsave/spin_unlock_restore instead to get rid of this error message. [ INFO: inconsistent lock state ] 3.13.0-rc1+ #287 Not tainted --------------------------------- inconsistent {IN-HARDIRQ-W} -> {HARDIRQ-ON-W} usage. kworker/u2:1/33 [HC0[0]:SC0[0]:HE1:SE1] takes: (&(&host->lock)->rlock){?.-...}, at: [<8045f7f4>] sdhci_execute_tuning+0x4c/0x710 {IN-HARDIRQ-W} state was registered at: [<8005f030>] mark_lock+0x140/0x6ac [<80060760>] __lock_acquire+0xb30/0x1cbc [<800620d0>] lock_acquire+0x70/0x84 [<8061d1c8>] _raw_spin_lock+0x30/0x40 [<804605cc>] sdhci_irq+0x24/0xa68 [<8006b1d4>] handle_irq_event_percpu+0x54/0x18c [<8006b350>] handle_irq_event+0x44/0x64 [<8006e50c>] handle_fasteoi_irq+0xa0/0x170 [<8006a8f0>] generic_handle_irq+0x30/0x44 [<8000f238>] handle_IRQ+0x54/0xbc [<8000864c>] gic_handle_irq+0x30/0x64 [<80013024>] __irq_svc+0x44/0x5c [<80329bf4>] dev_vprintk_emit+0x50/0x58 [<80329c24>] dev_printk_emit+0x28/0x30 [<80329fec>] __dev_printk+0x4c/0x90 [<8032a180>] dev_err+0x3c/0x48 [<802dd4f0>] _regulator_get+0x158/0x1cc [<802dd5b4>] regulator_get_optional+0x18/0x1c [<80461df4>] sdhci_add_host+0x42c/0xbd8 [<80464820>] sdhci_esdhc_imx_probe+0x378/0x67c [<8032ee88>] platform_drv_probe+0x20/0x50 [<8032d48c>] driver_probe_device+0x118/0x234 [<8032d690>] __driver_attach+0x9c/0xa0 [<8032b89c>] bus_for_each_dev+0x68/0x9c [<8032cf44>] driver_attach+0x20/0x28 [<8032cbc8>] bus_add_driver+0x148/0x1f4 [<8032dce0>] driver_register+0x80/0x100 [<8032ee54>] __platform_driver_register+0x50/0x64 [<8084b094>] sdhci_esdhc_imx_driver_init+0x18/0x20 [<80008980>] do_one_initcall+0x108/0x16c [<8081cca4>] kernel_init_freeable+0x10c/0x1d0 [<80611b28>] kernel_init+0x10/0x120 [<8000e9c8>] ret_from_fork+0x14/0x2c irq event stamp: 805 hardirqs last enabled at (805): [<8061d43c>] _raw_spin_unlock_irqrestore+0x38/0x4c hardirqs last disabled at (804): [<8061d2c8>] _raw_spin_lock_irqsave+0x24/0x54 softirqs last enabled at (570): [<8002b824>] __do_softirq+0x1c4/0x290 softirqs last disabled at (561): [<8002bcf4>] irq_exit+0xb4/0x10c other info that might help us debug this: Possible unsafe locking scenario: CPU0 ---- lock(&(&host->lock)->rlock); <Interrupt> lock(&(&host->lock)->rlock); *** DEADLOCK *** 2 locks held by kworker/u2:1/33: #0: (kmmcd){.+.+..}, at: [<8003db18>] process_one_work+0x128/0x468 #1: ((&(&host->detect)->work)){+.+...}, at: [<8003db18>] process_one_work+0x128/0x468 stack backtrace: CPU: 0 PID: 33 Comm: kworker/u2:1 Not tainted 3.13.0-rc1+ #287 Workqueue: kmmcd mmc_rescan Backtrace: [<80012160>] (dump_backtrace+0x0/0x10c) from [<80012438>] (show_stack+0x18/0x1c) r6:bfad0900 r5:00000000 r4:8088ecc8 r3:bfad0900 [<80012420>] (show_stack+0x0/0x1c) from [<806169ec>] (dump_stack+0x84/0x9c) [<80616968>] (dump_stack+0x0/0x9c) from [<806147b4>] (print_usage_bug+0x260/0x2d0) r5:8076ba88 r4:80977410 [<80614554>] (print_usage_bug+0x0/0x2d0) from [<8005f0d0>] (mark_lock+0x1e0/0x6ac) r9:8005e678 r8:00000000 r7:bfad0900 r6:00001015 r5:bfad0cd0 r4:00000002 [<8005eef0>] (mark_lock+0x0/0x6ac) from [<80060234>] (__lock_acquire+0x604/0x1cbc) [<8005fc30>] (__lock_acquire+0x0/0x1cbc) from [<800620d0>] (lock_acquire+0x70/0x84) [<80062060>] (lock_acquire+0x0/0x84) from [<8061d1c8>] (_raw_spin_lock+0x30/0x40) r7:00000000 r6:bfb63000 r5:00000000 r4:bfb60568 [<8061d198>] (_raw_spin_lock+0x0/0x40) from [<8045f7f4>] (sdhci_execute_tuning+0x4c/0x710) r4:bfb60000 [<8045f7a8>] (sdhci_execute_tuning+0x0/0x710) from [<80453454>] (mmc_sd_init_card+0x5f8/0x660) [<80452e5c>] (mmc_sd_init_card+0x0/0x660) from [<80453748>] (mmc_attach_sd+0xb4/0x180) r9:bf92d400 r8:8065f364 r7:00061a80 r6:bfb60000 r5:8065f358 r4:bfb60000 [<80453694>] (mmc_attach_sd+0x0/0x180) from [<8044d9f8>] (mmc_rescan+0x284/0x2f0) r5:8065f358 r4:bfb602f8 [<8044d774>] (mmc_rescan+0x0/0x2f0) from [<8003db94>] (process_one_work+0x1a4/0x468) r8:00000000 r7:bfb55eb0 r6:bf80dc00 r5:bfb602f8 r4:bfb35980 r3:8044d774 [<8003d9f0>] (process_one_work+0x0/0x468) from [<8003e850>] (worker_thread+0x118/0x3e0) [<8003e738>] (worker_thread+0x0/0x3e0) from [<80044de0>] (kthread+0xd4/0xf0) [<80044d0c>] (kthread+0x0/0xf0) from [<8000e9c8>] (ret_from_fork+0x14/0x2c) r7:00000000 r6:00000000 r5:80044d0c r4:bfb37b40 Signed-off-by: Dong Aisheng <b29396@freescale.com> Cc: stable <stable@vger.kernel.org> Signed-off-by: Chris Ball <chris@printf.net>
2013-12-23 19:13:04 +08:00
spin_lock_irqsave(&host->lock, flags);
mmc: sd: add support for tuning during uhs initialization Host Controller needs tuning during initialization to operate SDR50 and SDR104 UHS-I cards. Whether SDR50 mode actually needs tuning is indicated by bit 45 of the Host Controller Capabilities register. A new command CMD19 has been defined in the Physical Layer spec v3.01 to request the card to send tuning pattern. We enable Buffer Read Ready interrupt at the very begining of tuning procedure, because that is the only interrupt generated by the Host Controller during tuning. We program the block size to 64 in the Block Size register. We make sure that DMA Enable and Multi Block Select in the Transfer Mode register are set to 0 before actually sending CMD19. The tuning block is sent by the card to the Host Controller using DAT lines, so we set Data Present Select (bit 5) in the Command register. The Host Controller is responsible for doing the verfication of tuning block sent by the card at the hardware level. After sending CMD19, we wait for Buffer Read Ready interrupt. In case we don't receive an interrupt after the specified timeout value, we fall back on fixed sampling clock by setting Execute Tuning (bit 6) and Sampling Clock Select (bit 7) of Host Control2 register to 0. Before exiting the tuning procedure, we disable Buffer Read Ready interrupt and re-enable other interrupts. Tested by Zhangfei Gao with a Toshiba uhs card and general hs card, on mmp2 in SDMA mode. Signed-off-by: Arindam Nath <arindam.nath@amd.com> Reviewed-by: Philip Rakity <prakity@marvell.com> Tested-by: Philip Rakity <prakity@marvell.com> Acked-by: Zhangfei Gao <zhangfei.gao@marvell.com> Signed-off-by: Chris Ball <cjb@laptop.org>
2011-05-05 14:49:04 +08:00
ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
/*
* The Host Controller needs tuning only in case of SDR104 mode
* and for SDR50 mode when Use Tuning for SDR50 is set in the
mmc: sd: add support for tuning during uhs initialization Host Controller needs tuning during initialization to operate SDR50 and SDR104 UHS-I cards. Whether SDR50 mode actually needs tuning is indicated by bit 45 of the Host Controller Capabilities register. A new command CMD19 has been defined in the Physical Layer spec v3.01 to request the card to send tuning pattern. We enable Buffer Read Ready interrupt at the very begining of tuning procedure, because that is the only interrupt generated by the Host Controller during tuning. We program the block size to 64 in the Block Size register. We make sure that DMA Enable and Multi Block Select in the Transfer Mode register are set to 0 before actually sending CMD19. The tuning block is sent by the card to the Host Controller using DAT lines, so we set Data Present Select (bit 5) in the Command register. The Host Controller is responsible for doing the verfication of tuning block sent by the card at the hardware level. After sending CMD19, we wait for Buffer Read Ready interrupt. In case we don't receive an interrupt after the specified timeout value, we fall back on fixed sampling clock by setting Execute Tuning (bit 6) and Sampling Clock Select (bit 7) of Host Control2 register to 0. Before exiting the tuning procedure, we disable Buffer Read Ready interrupt and re-enable other interrupts. Tested by Zhangfei Gao with a Toshiba uhs card and general hs card, on mmp2 in SDMA mode. Signed-off-by: Arindam Nath <arindam.nath@amd.com> Reviewed-by: Philip Rakity <prakity@marvell.com> Tested-by: Philip Rakity <prakity@marvell.com> Acked-by: Zhangfei Gao <zhangfei.gao@marvell.com> Signed-off-by: Chris Ball <cjb@laptop.org>
2011-05-05 14:49:04 +08:00
* Capabilities register.
* If the Host Controller supports the HS200 mode then the
* tuning function has to be executed.
mmc: sd: add support for tuning during uhs initialization Host Controller needs tuning during initialization to operate SDR50 and SDR104 UHS-I cards. Whether SDR50 mode actually needs tuning is indicated by bit 45 of the Host Controller Capabilities register. A new command CMD19 has been defined in the Physical Layer spec v3.01 to request the card to send tuning pattern. We enable Buffer Read Ready interrupt at the very begining of tuning procedure, because that is the only interrupt generated by the Host Controller during tuning. We program the block size to 64 in the Block Size register. We make sure that DMA Enable and Multi Block Select in the Transfer Mode register are set to 0 before actually sending CMD19. The tuning block is sent by the card to the Host Controller using DAT lines, so we set Data Present Select (bit 5) in the Command register. The Host Controller is responsible for doing the verfication of tuning block sent by the card at the hardware level. After sending CMD19, we wait for Buffer Read Ready interrupt. In case we don't receive an interrupt after the specified timeout value, we fall back on fixed sampling clock by setting Execute Tuning (bit 6) and Sampling Clock Select (bit 7) of Host Control2 register to 0. Before exiting the tuning procedure, we disable Buffer Read Ready interrupt and re-enable other interrupts. Tested by Zhangfei Gao with a Toshiba uhs card and general hs card, on mmp2 in SDMA mode. Signed-off-by: Arindam Nath <arindam.nath@amd.com> Reviewed-by: Philip Rakity <prakity@marvell.com> Tested-by: Philip Rakity <prakity@marvell.com> Acked-by: Zhangfei Gao <zhangfei.gao@marvell.com> Signed-off-by: Chris Ball <cjb@laptop.org>
2011-05-05 14:49:04 +08:00
*/
if (((ctrl & SDHCI_CTRL_UHS_MASK) == SDHCI_CTRL_UHS_SDR50) &&
(host->flags & SDHCI_SDR50_NEEDS_TUNING ||
host->flags & SDHCI_SDR104_NEEDS_TUNING))
requires_tuning_nonuhs = true;
mmc: sd: add support for tuning during uhs initialization Host Controller needs tuning during initialization to operate SDR50 and SDR104 UHS-I cards. Whether SDR50 mode actually needs tuning is indicated by bit 45 of the Host Controller Capabilities register. A new command CMD19 has been defined in the Physical Layer spec v3.01 to request the card to send tuning pattern. We enable Buffer Read Ready interrupt at the very begining of tuning procedure, because that is the only interrupt generated by the Host Controller during tuning. We program the block size to 64 in the Block Size register. We make sure that DMA Enable and Multi Block Select in the Transfer Mode register are set to 0 before actually sending CMD19. The tuning block is sent by the card to the Host Controller using DAT lines, so we set Data Present Select (bit 5) in the Command register. The Host Controller is responsible for doing the verfication of tuning block sent by the card at the hardware level. After sending CMD19, we wait for Buffer Read Ready interrupt. In case we don't receive an interrupt after the specified timeout value, we fall back on fixed sampling clock by setting Execute Tuning (bit 6) and Sampling Clock Select (bit 7) of Host Control2 register to 0. Before exiting the tuning procedure, we disable Buffer Read Ready interrupt and re-enable other interrupts. Tested by Zhangfei Gao with a Toshiba uhs card and general hs card, on mmp2 in SDMA mode. Signed-off-by: Arindam Nath <arindam.nath@amd.com> Reviewed-by: Philip Rakity <prakity@marvell.com> Tested-by: Philip Rakity <prakity@marvell.com> Acked-by: Zhangfei Gao <zhangfei.gao@marvell.com> Signed-off-by: Chris Ball <cjb@laptop.org>
2011-05-05 14:49:04 +08:00
if (((ctrl & SDHCI_CTRL_UHS_MASK) == SDHCI_CTRL_UHS_SDR104) ||
requires_tuning_nonuhs)
mmc: sd: add support for tuning during uhs initialization Host Controller needs tuning during initialization to operate SDR50 and SDR104 UHS-I cards. Whether SDR50 mode actually needs tuning is indicated by bit 45 of the Host Controller Capabilities register. A new command CMD19 has been defined in the Physical Layer spec v3.01 to request the card to send tuning pattern. We enable Buffer Read Ready interrupt at the very begining of tuning procedure, because that is the only interrupt generated by the Host Controller during tuning. We program the block size to 64 in the Block Size register. We make sure that DMA Enable and Multi Block Select in the Transfer Mode register are set to 0 before actually sending CMD19. The tuning block is sent by the card to the Host Controller using DAT lines, so we set Data Present Select (bit 5) in the Command register. The Host Controller is responsible for doing the verfication of tuning block sent by the card at the hardware level. After sending CMD19, we wait for Buffer Read Ready interrupt. In case we don't receive an interrupt after the specified timeout value, we fall back on fixed sampling clock by setting Execute Tuning (bit 6) and Sampling Clock Select (bit 7) of Host Control2 register to 0. Before exiting the tuning procedure, we disable Buffer Read Ready interrupt and re-enable other interrupts. Tested by Zhangfei Gao with a Toshiba uhs card and general hs card, on mmp2 in SDMA mode. Signed-off-by: Arindam Nath <arindam.nath@amd.com> Reviewed-by: Philip Rakity <prakity@marvell.com> Tested-by: Philip Rakity <prakity@marvell.com> Acked-by: Zhangfei Gao <zhangfei.gao@marvell.com> Signed-off-by: Chris Ball <cjb@laptop.org>
2011-05-05 14:49:04 +08:00
ctrl |= SDHCI_CTRL_EXEC_TUNING;
else {
mmc: sdhci: fix lockdep error in tuning routine The sdhci_execute_tuning routine gets lock separately by disable_irq(host->irq); spin_lock(&host->lock); It will cause the following lockdep error message since the &host->lock could also be got in irq context. Use spin_lock_irqsave/spin_unlock_restore instead to get rid of this error message. [ INFO: inconsistent lock state ] 3.13.0-rc1+ #287 Not tainted --------------------------------- inconsistent {IN-HARDIRQ-W} -> {HARDIRQ-ON-W} usage. kworker/u2:1/33 [HC0[0]:SC0[0]:HE1:SE1] takes: (&(&host->lock)->rlock){?.-...}, at: [<8045f7f4>] sdhci_execute_tuning+0x4c/0x710 {IN-HARDIRQ-W} state was registered at: [<8005f030>] mark_lock+0x140/0x6ac [<80060760>] __lock_acquire+0xb30/0x1cbc [<800620d0>] lock_acquire+0x70/0x84 [<8061d1c8>] _raw_spin_lock+0x30/0x40 [<804605cc>] sdhci_irq+0x24/0xa68 [<8006b1d4>] handle_irq_event_percpu+0x54/0x18c [<8006b350>] handle_irq_event+0x44/0x64 [<8006e50c>] handle_fasteoi_irq+0xa0/0x170 [<8006a8f0>] generic_handle_irq+0x30/0x44 [<8000f238>] handle_IRQ+0x54/0xbc [<8000864c>] gic_handle_irq+0x30/0x64 [<80013024>] __irq_svc+0x44/0x5c [<80329bf4>] dev_vprintk_emit+0x50/0x58 [<80329c24>] dev_printk_emit+0x28/0x30 [<80329fec>] __dev_printk+0x4c/0x90 [<8032a180>] dev_err+0x3c/0x48 [<802dd4f0>] _regulator_get+0x158/0x1cc [<802dd5b4>] regulator_get_optional+0x18/0x1c [<80461df4>] sdhci_add_host+0x42c/0xbd8 [<80464820>] sdhci_esdhc_imx_probe+0x378/0x67c [<8032ee88>] platform_drv_probe+0x20/0x50 [<8032d48c>] driver_probe_device+0x118/0x234 [<8032d690>] __driver_attach+0x9c/0xa0 [<8032b89c>] bus_for_each_dev+0x68/0x9c [<8032cf44>] driver_attach+0x20/0x28 [<8032cbc8>] bus_add_driver+0x148/0x1f4 [<8032dce0>] driver_register+0x80/0x100 [<8032ee54>] __platform_driver_register+0x50/0x64 [<8084b094>] sdhci_esdhc_imx_driver_init+0x18/0x20 [<80008980>] do_one_initcall+0x108/0x16c [<8081cca4>] kernel_init_freeable+0x10c/0x1d0 [<80611b28>] kernel_init+0x10/0x120 [<8000e9c8>] ret_from_fork+0x14/0x2c irq event stamp: 805 hardirqs last enabled at (805): [<8061d43c>] _raw_spin_unlock_irqrestore+0x38/0x4c hardirqs last disabled at (804): [<8061d2c8>] _raw_spin_lock_irqsave+0x24/0x54 softirqs last enabled at (570): [<8002b824>] __do_softirq+0x1c4/0x290 softirqs last disabled at (561): [<8002bcf4>] irq_exit+0xb4/0x10c other info that might help us debug this: Possible unsafe locking scenario: CPU0 ---- lock(&(&host->lock)->rlock); <Interrupt> lock(&(&host->lock)->rlock); *** DEADLOCK *** 2 locks held by kworker/u2:1/33: #0: (kmmcd){.+.+..}, at: [<8003db18>] process_one_work+0x128/0x468 #1: ((&(&host->detect)->work)){+.+...}, at: [<8003db18>] process_one_work+0x128/0x468 stack backtrace: CPU: 0 PID: 33 Comm: kworker/u2:1 Not tainted 3.13.0-rc1+ #287 Workqueue: kmmcd mmc_rescan Backtrace: [<80012160>] (dump_backtrace+0x0/0x10c) from [<80012438>] (show_stack+0x18/0x1c) r6:bfad0900 r5:00000000 r4:8088ecc8 r3:bfad0900 [<80012420>] (show_stack+0x0/0x1c) from [<806169ec>] (dump_stack+0x84/0x9c) [<80616968>] (dump_stack+0x0/0x9c) from [<806147b4>] (print_usage_bug+0x260/0x2d0) r5:8076ba88 r4:80977410 [<80614554>] (print_usage_bug+0x0/0x2d0) from [<8005f0d0>] (mark_lock+0x1e0/0x6ac) r9:8005e678 r8:00000000 r7:bfad0900 r6:00001015 r5:bfad0cd0 r4:00000002 [<8005eef0>] (mark_lock+0x0/0x6ac) from [<80060234>] (__lock_acquire+0x604/0x1cbc) [<8005fc30>] (__lock_acquire+0x0/0x1cbc) from [<800620d0>] (lock_acquire+0x70/0x84) [<80062060>] (lock_acquire+0x0/0x84) from [<8061d1c8>] (_raw_spin_lock+0x30/0x40) r7:00000000 r6:bfb63000 r5:00000000 r4:bfb60568 [<8061d198>] (_raw_spin_lock+0x0/0x40) from [<8045f7f4>] (sdhci_execute_tuning+0x4c/0x710) r4:bfb60000 [<8045f7a8>] (sdhci_execute_tuning+0x0/0x710) from [<80453454>] (mmc_sd_init_card+0x5f8/0x660) [<80452e5c>] (mmc_sd_init_card+0x0/0x660) from [<80453748>] (mmc_attach_sd+0xb4/0x180) r9:bf92d400 r8:8065f364 r7:00061a80 r6:bfb60000 r5:8065f358 r4:bfb60000 [<80453694>] (mmc_attach_sd+0x0/0x180) from [<8044d9f8>] (mmc_rescan+0x284/0x2f0) r5:8065f358 r4:bfb602f8 [<8044d774>] (mmc_rescan+0x0/0x2f0) from [<8003db94>] (process_one_work+0x1a4/0x468) r8:00000000 r7:bfb55eb0 r6:bf80dc00 r5:bfb602f8 r4:bfb35980 r3:8044d774 [<8003d9f0>] (process_one_work+0x0/0x468) from [<8003e850>] (worker_thread+0x118/0x3e0) [<8003e738>] (worker_thread+0x0/0x3e0) from [<80044de0>] (kthread+0xd4/0xf0) [<80044d0c>] (kthread+0x0/0xf0) from [<8000e9c8>] (ret_from_fork+0x14/0x2c) r7:00000000 r6:00000000 r5:80044d0c r4:bfb37b40 Signed-off-by: Dong Aisheng <b29396@freescale.com> Cc: stable <stable@vger.kernel.org> Signed-off-by: Chris Ball <chris@printf.net>
2013-12-23 19:13:04 +08:00
spin_unlock_irqrestore(&host->lock, flags);
sdhci_runtime_pm_put(host);
mmc: sd: add support for tuning during uhs initialization Host Controller needs tuning during initialization to operate SDR50 and SDR104 UHS-I cards. Whether SDR50 mode actually needs tuning is indicated by bit 45 of the Host Controller Capabilities register. A new command CMD19 has been defined in the Physical Layer spec v3.01 to request the card to send tuning pattern. We enable Buffer Read Ready interrupt at the very begining of tuning procedure, because that is the only interrupt generated by the Host Controller during tuning. We program the block size to 64 in the Block Size register. We make sure that DMA Enable and Multi Block Select in the Transfer Mode register are set to 0 before actually sending CMD19. The tuning block is sent by the card to the Host Controller using DAT lines, so we set Data Present Select (bit 5) in the Command register. The Host Controller is responsible for doing the verfication of tuning block sent by the card at the hardware level. After sending CMD19, we wait for Buffer Read Ready interrupt. In case we don't receive an interrupt after the specified timeout value, we fall back on fixed sampling clock by setting Execute Tuning (bit 6) and Sampling Clock Select (bit 7) of Host Control2 register to 0. Before exiting the tuning procedure, we disable Buffer Read Ready interrupt and re-enable other interrupts. Tested by Zhangfei Gao with a Toshiba uhs card and general hs card, on mmp2 in SDMA mode. Signed-off-by: Arindam Nath <arindam.nath@amd.com> Reviewed-by: Philip Rakity <prakity@marvell.com> Tested-by: Philip Rakity <prakity@marvell.com> Acked-by: Zhangfei Gao <zhangfei.gao@marvell.com> Signed-off-by: Chris Ball <cjb@laptop.org>
2011-05-05 14:49:04 +08:00
return 0;
}
if (host->ops->platform_execute_tuning) {
mmc: sdhci: fix lockdep error in tuning routine The sdhci_execute_tuning routine gets lock separately by disable_irq(host->irq); spin_lock(&host->lock); It will cause the following lockdep error message since the &host->lock could also be got in irq context. Use spin_lock_irqsave/spin_unlock_restore instead to get rid of this error message. [ INFO: inconsistent lock state ] 3.13.0-rc1+ #287 Not tainted --------------------------------- inconsistent {IN-HARDIRQ-W} -> {HARDIRQ-ON-W} usage. kworker/u2:1/33 [HC0[0]:SC0[0]:HE1:SE1] takes: (&(&host->lock)->rlock){?.-...}, at: [<8045f7f4>] sdhci_execute_tuning+0x4c/0x710 {IN-HARDIRQ-W} state was registered at: [<8005f030>] mark_lock+0x140/0x6ac [<80060760>] __lock_acquire+0xb30/0x1cbc [<800620d0>] lock_acquire+0x70/0x84 [<8061d1c8>] _raw_spin_lock+0x30/0x40 [<804605cc>] sdhci_irq+0x24/0xa68 [<8006b1d4>] handle_irq_event_percpu+0x54/0x18c [<8006b350>] handle_irq_event+0x44/0x64 [<8006e50c>] handle_fasteoi_irq+0xa0/0x170 [<8006a8f0>] generic_handle_irq+0x30/0x44 [<8000f238>] handle_IRQ+0x54/0xbc [<8000864c>] gic_handle_irq+0x30/0x64 [<80013024>] __irq_svc+0x44/0x5c [<80329bf4>] dev_vprintk_emit+0x50/0x58 [<80329c24>] dev_printk_emit+0x28/0x30 [<80329fec>] __dev_printk+0x4c/0x90 [<8032a180>] dev_err+0x3c/0x48 [<802dd4f0>] _regulator_get+0x158/0x1cc [<802dd5b4>] regulator_get_optional+0x18/0x1c [<80461df4>] sdhci_add_host+0x42c/0xbd8 [<80464820>] sdhci_esdhc_imx_probe+0x378/0x67c [<8032ee88>] platform_drv_probe+0x20/0x50 [<8032d48c>] driver_probe_device+0x118/0x234 [<8032d690>] __driver_attach+0x9c/0xa0 [<8032b89c>] bus_for_each_dev+0x68/0x9c [<8032cf44>] driver_attach+0x20/0x28 [<8032cbc8>] bus_add_driver+0x148/0x1f4 [<8032dce0>] driver_register+0x80/0x100 [<8032ee54>] __platform_driver_register+0x50/0x64 [<8084b094>] sdhci_esdhc_imx_driver_init+0x18/0x20 [<80008980>] do_one_initcall+0x108/0x16c [<8081cca4>] kernel_init_freeable+0x10c/0x1d0 [<80611b28>] kernel_init+0x10/0x120 [<8000e9c8>] ret_from_fork+0x14/0x2c irq event stamp: 805 hardirqs last enabled at (805): [<8061d43c>] _raw_spin_unlock_irqrestore+0x38/0x4c hardirqs last disabled at (804): [<8061d2c8>] _raw_spin_lock_irqsave+0x24/0x54 softirqs last enabled at (570): [<8002b824>] __do_softirq+0x1c4/0x290 softirqs last disabled at (561): [<8002bcf4>] irq_exit+0xb4/0x10c other info that might help us debug this: Possible unsafe locking scenario: CPU0 ---- lock(&(&host->lock)->rlock); <Interrupt> lock(&(&host->lock)->rlock); *** DEADLOCK *** 2 locks held by kworker/u2:1/33: #0: (kmmcd){.+.+..}, at: [<8003db18>] process_one_work+0x128/0x468 #1: ((&(&host->detect)->work)){+.+...}, at: [<8003db18>] process_one_work+0x128/0x468 stack backtrace: CPU: 0 PID: 33 Comm: kworker/u2:1 Not tainted 3.13.0-rc1+ #287 Workqueue: kmmcd mmc_rescan Backtrace: [<80012160>] (dump_backtrace+0x0/0x10c) from [<80012438>] (show_stack+0x18/0x1c) r6:bfad0900 r5:00000000 r4:8088ecc8 r3:bfad0900 [<80012420>] (show_stack+0x0/0x1c) from [<806169ec>] (dump_stack+0x84/0x9c) [<80616968>] (dump_stack+0x0/0x9c) from [<806147b4>] (print_usage_bug+0x260/0x2d0) r5:8076ba88 r4:80977410 [<80614554>] (print_usage_bug+0x0/0x2d0) from [<8005f0d0>] (mark_lock+0x1e0/0x6ac) r9:8005e678 r8:00000000 r7:bfad0900 r6:00001015 r5:bfad0cd0 r4:00000002 [<8005eef0>] (mark_lock+0x0/0x6ac) from [<80060234>] (__lock_acquire+0x604/0x1cbc) [<8005fc30>] (__lock_acquire+0x0/0x1cbc) from [<800620d0>] (lock_acquire+0x70/0x84) [<80062060>] (lock_acquire+0x0/0x84) from [<8061d1c8>] (_raw_spin_lock+0x30/0x40) r7:00000000 r6:bfb63000 r5:00000000 r4:bfb60568 [<8061d198>] (_raw_spin_lock+0x0/0x40) from [<8045f7f4>] (sdhci_execute_tuning+0x4c/0x710) r4:bfb60000 [<8045f7a8>] (sdhci_execute_tuning+0x0/0x710) from [<80453454>] (mmc_sd_init_card+0x5f8/0x660) [<80452e5c>] (mmc_sd_init_card+0x0/0x660) from [<80453748>] (mmc_attach_sd+0xb4/0x180) r9:bf92d400 r8:8065f364 r7:00061a80 r6:bfb60000 r5:8065f358 r4:bfb60000 [<80453694>] (mmc_attach_sd+0x0/0x180) from [<8044d9f8>] (mmc_rescan+0x284/0x2f0) r5:8065f358 r4:bfb602f8 [<8044d774>] (mmc_rescan+0x0/0x2f0) from [<8003db94>] (process_one_work+0x1a4/0x468) r8:00000000 r7:bfb55eb0 r6:bf80dc00 r5:bfb602f8 r4:bfb35980 r3:8044d774 [<8003d9f0>] (process_one_work+0x0/0x468) from [<8003e850>] (worker_thread+0x118/0x3e0) [<8003e738>] (worker_thread+0x0/0x3e0) from [<80044de0>] (kthread+0xd4/0xf0) [<80044d0c>] (kthread+0x0/0xf0) from [<8000e9c8>] (ret_from_fork+0x14/0x2c) r7:00000000 r6:00000000 r5:80044d0c r4:bfb37b40 Signed-off-by: Dong Aisheng <b29396@freescale.com> Cc: stable <stable@vger.kernel.org> Signed-off-by: Chris Ball <chris@printf.net>
2013-12-23 19:13:04 +08:00
spin_unlock_irqrestore(&host->lock, flags);
err = host->ops->platform_execute_tuning(host, opcode);
sdhci_runtime_pm_put(host);
return err;
}
mmc: sd: add support for tuning during uhs initialization Host Controller needs tuning during initialization to operate SDR50 and SDR104 UHS-I cards. Whether SDR50 mode actually needs tuning is indicated by bit 45 of the Host Controller Capabilities register. A new command CMD19 has been defined in the Physical Layer spec v3.01 to request the card to send tuning pattern. We enable Buffer Read Ready interrupt at the very begining of tuning procedure, because that is the only interrupt generated by the Host Controller during tuning. We program the block size to 64 in the Block Size register. We make sure that DMA Enable and Multi Block Select in the Transfer Mode register are set to 0 before actually sending CMD19. The tuning block is sent by the card to the Host Controller using DAT lines, so we set Data Present Select (bit 5) in the Command register. The Host Controller is responsible for doing the verfication of tuning block sent by the card at the hardware level. After sending CMD19, we wait for Buffer Read Ready interrupt. In case we don't receive an interrupt after the specified timeout value, we fall back on fixed sampling clock by setting Execute Tuning (bit 6) and Sampling Clock Select (bit 7) of Host Control2 register to 0. Before exiting the tuning procedure, we disable Buffer Read Ready interrupt and re-enable other interrupts. Tested by Zhangfei Gao with a Toshiba uhs card and general hs card, on mmp2 in SDMA mode. Signed-off-by: Arindam Nath <arindam.nath@amd.com> Reviewed-by: Philip Rakity <prakity@marvell.com> Tested-by: Philip Rakity <prakity@marvell.com> Acked-by: Zhangfei Gao <zhangfei.gao@marvell.com> Signed-off-by: Chris Ball <cjb@laptop.org>
2011-05-05 14:49:04 +08:00
sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2);
/*
* As per the Host Controller spec v3.00, tuning command
* generates Buffer Read Ready interrupt, so enable that.
*
* Note: The spec clearly says that when tuning sequence
* is being performed, the controller does not generate
* interrupts other than Buffer Read Ready interrupt. But
* to make sure we don't hit a controller bug, we _only_
* enable Buffer Read Ready interrupt here.
*/
ier = sdhci_readl(host, SDHCI_INT_ENABLE);
sdhci_clear_set_irqs(host, ier, SDHCI_INT_DATA_AVAIL);
/*
* Issue CMD19 repeatedly till Execute Tuning is set to 0 or the number
* of loops reaches 40 times or a timeout of 150ms occurs.
*/
timeout = 150;
do {
struct mmc_command cmd = {0};
struct mmc_request mrq = {NULL};
mmc: sd: add support for tuning during uhs initialization Host Controller needs tuning during initialization to operate SDR50 and SDR104 UHS-I cards. Whether SDR50 mode actually needs tuning is indicated by bit 45 of the Host Controller Capabilities register. A new command CMD19 has been defined in the Physical Layer spec v3.01 to request the card to send tuning pattern. We enable Buffer Read Ready interrupt at the very begining of tuning procedure, because that is the only interrupt generated by the Host Controller during tuning. We program the block size to 64 in the Block Size register. We make sure that DMA Enable and Multi Block Select in the Transfer Mode register are set to 0 before actually sending CMD19. The tuning block is sent by the card to the Host Controller using DAT lines, so we set Data Present Select (bit 5) in the Command register. The Host Controller is responsible for doing the verfication of tuning block sent by the card at the hardware level. After sending CMD19, we wait for Buffer Read Ready interrupt. In case we don't receive an interrupt after the specified timeout value, we fall back on fixed sampling clock by setting Execute Tuning (bit 6) and Sampling Clock Select (bit 7) of Host Control2 register to 0. Before exiting the tuning procedure, we disable Buffer Read Ready interrupt and re-enable other interrupts. Tested by Zhangfei Gao with a Toshiba uhs card and general hs card, on mmp2 in SDMA mode. Signed-off-by: Arindam Nath <arindam.nath@amd.com> Reviewed-by: Philip Rakity <prakity@marvell.com> Tested-by: Philip Rakity <prakity@marvell.com> Acked-by: Zhangfei Gao <zhangfei.gao@marvell.com> Signed-off-by: Chris Ball <cjb@laptop.org>
2011-05-05 14:49:04 +08:00
if (!tuning_loop_counter && !timeout)
break;
cmd.opcode = opcode;
mmc: sd: add support for tuning during uhs initialization Host Controller needs tuning during initialization to operate SDR50 and SDR104 UHS-I cards. Whether SDR50 mode actually needs tuning is indicated by bit 45 of the Host Controller Capabilities register. A new command CMD19 has been defined in the Physical Layer spec v3.01 to request the card to send tuning pattern. We enable Buffer Read Ready interrupt at the very begining of tuning procedure, because that is the only interrupt generated by the Host Controller during tuning. We program the block size to 64 in the Block Size register. We make sure that DMA Enable and Multi Block Select in the Transfer Mode register are set to 0 before actually sending CMD19. The tuning block is sent by the card to the Host Controller using DAT lines, so we set Data Present Select (bit 5) in the Command register. The Host Controller is responsible for doing the verfication of tuning block sent by the card at the hardware level. After sending CMD19, we wait for Buffer Read Ready interrupt. In case we don't receive an interrupt after the specified timeout value, we fall back on fixed sampling clock by setting Execute Tuning (bit 6) and Sampling Clock Select (bit 7) of Host Control2 register to 0. Before exiting the tuning procedure, we disable Buffer Read Ready interrupt and re-enable other interrupts. Tested by Zhangfei Gao with a Toshiba uhs card and general hs card, on mmp2 in SDMA mode. Signed-off-by: Arindam Nath <arindam.nath@amd.com> Reviewed-by: Philip Rakity <prakity@marvell.com> Tested-by: Philip Rakity <prakity@marvell.com> Acked-by: Zhangfei Gao <zhangfei.gao@marvell.com> Signed-off-by: Chris Ball <cjb@laptop.org>
2011-05-05 14:49:04 +08:00
cmd.arg = 0;
cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC;
cmd.retries = 0;
cmd.data = NULL;
cmd.error = 0;
mrq.cmd = &cmd;
host->mrq = &mrq;
/*
* In response to CMD19, the card sends 64 bytes of tuning
* block to the Host Controller. So we set the block size
* to 64 here.
*/
if (cmd.opcode == MMC_SEND_TUNING_BLOCK_HS200) {
if (mmc->ios.bus_width == MMC_BUS_WIDTH_8)
sdhci_writew(host, SDHCI_MAKE_BLKSZ(7, 128),
SDHCI_BLOCK_SIZE);
else if (mmc->ios.bus_width == MMC_BUS_WIDTH_4)
sdhci_writew(host, SDHCI_MAKE_BLKSZ(7, 64),
SDHCI_BLOCK_SIZE);
} else {
sdhci_writew(host, SDHCI_MAKE_BLKSZ(7, 64),
SDHCI_BLOCK_SIZE);
}
mmc: sd: add support for tuning during uhs initialization Host Controller needs tuning during initialization to operate SDR50 and SDR104 UHS-I cards. Whether SDR50 mode actually needs tuning is indicated by bit 45 of the Host Controller Capabilities register. A new command CMD19 has been defined in the Physical Layer spec v3.01 to request the card to send tuning pattern. We enable Buffer Read Ready interrupt at the very begining of tuning procedure, because that is the only interrupt generated by the Host Controller during tuning. We program the block size to 64 in the Block Size register. We make sure that DMA Enable and Multi Block Select in the Transfer Mode register are set to 0 before actually sending CMD19. The tuning block is sent by the card to the Host Controller using DAT lines, so we set Data Present Select (bit 5) in the Command register. The Host Controller is responsible for doing the verfication of tuning block sent by the card at the hardware level. After sending CMD19, we wait for Buffer Read Ready interrupt. In case we don't receive an interrupt after the specified timeout value, we fall back on fixed sampling clock by setting Execute Tuning (bit 6) and Sampling Clock Select (bit 7) of Host Control2 register to 0. Before exiting the tuning procedure, we disable Buffer Read Ready interrupt and re-enable other interrupts. Tested by Zhangfei Gao with a Toshiba uhs card and general hs card, on mmp2 in SDMA mode. Signed-off-by: Arindam Nath <arindam.nath@amd.com> Reviewed-by: Philip Rakity <prakity@marvell.com> Tested-by: Philip Rakity <prakity@marvell.com> Acked-by: Zhangfei Gao <zhangfei.gao@marvell.com> Signed-off-by: Chris Ball <cjb@laptop.org>
2011-05-05 14:49:04 +08:00
/*
* The tuning block is sent by the card to the host controller.
* So we set the TRNS_READ bit in the Transfer Mode register.
* This also takes care of setting DMA Enable and Multi Block
* Select in the same register to 0.
*/
sdhci_writew(host, SDHCI_TRNS_READ, SDHCI_TRANSFER_MODE);
sdhci_send_command(host, &cmd);
host->cmd = NULL;
host->mrq = NULL;
mmc: sdhci: fix lockdep error in tuning routine The sdhci_execute_tuning routine gets lock separately by disable_irq(host->irq); spin_lock(&host->lock); It will cause the following lockdep error message since the &host->lock could also be got in irq context. Use spin_lock_irqsave/spin_unlock_restore instead to get rid of this error message. [ INFO: inconsistent lock state ] 3.13.0-rc1+ #287 Not tainted --------------------------------- inconsistent {IN-HARDIRQ-W} -> {HARDIRQ-ON-W} usage. kworker/u2:1/33 [HC0[0]:SC0[0]:HE1:SE1] takes: (&(&host->lock)->rlock){?.-...}, at: [<8045f7f4>] sdhci_execute_tuning+0x4c/0x710 {IN-HARDIRQ-W} state was registered at: [<8005f030>] mark_lock+0x140/0x6ac [<80060760>] __lock_acquire+0xb30/0x1cbc [<800620d0>] lock_acquire+0x70/0x84 [<8061d1c8>] _raw_spin_lock+0x30/0x40 [<804605cc>] sdhci_irq+0x24/0xa68 [<8006b1d4>] handle_irq_event_percpu+0x54/0x18c [<8006b350>] handle_irq_event+0x44/0x64 [<8006e50c>] handle_fasteoi_irq+0xa0/0x170 [<8006a8f0>] generic_handle_irq+0x30/0x44 [<8000f238>] handle_IRQ+0x54/0xbc [<8000864c>] gic_handle_irq+0x30/0x64 [<80013024>] __irq_svc+0x44/0x5c [<80329bf4>] dev_vprintk_emit+0x50/0x58 [<80329c24>] dev_printk_emit+0x28/0x30 [<80329fec>] __dev_printk+0x4c/0x90 [<8032a180>] dev_err+0x3c/0x48 [<802dd4f0>] _regulator_get+0x158/0x1cc [<802dd5b4>] regulator_get_optional+0x18/0x1c [<80461df4>] sdhci_add_host+0x42c/0xbd8 [<80464820>] sdhci_esdhc_imx_probe+0x378/0x67c [<8032ee88>] platform_drv_probe+0x20/0x50 [<8032d48c>] driver_probe_device+0x118/0x234 [<8032d690>] __driver_attach+0x9c/0xa0 [<8032b89c>] bus_for_each_dev+0x68/0x9c [<8032cf44>] driver_attach+0x20/0x28 [<8032cbc8>] bus_add_driver+0x148/0x1f4 [<8032dce0>] driver_register+0x80/0x100 [<8032ee54>] __platform_driver_register+0x50/0x64 [<8084b094>] sdhci_esdhc_imx_driver_init+0x18/0x20 [<80008980>] do_one_initcall+0x108/0x16c [<8081cca4>] kernel_init_freeable+0x10c/0x1d0 [<80611b28>] kernel_init+0x10/0x120 [<8000e9c8>] ret_from_fork+0x14/0x2c irq event stamp: 805 hardirqs last enabled at (805): [<8061d43c>] _raw_spin_unlock_irqrestore+0x38/0x4c hardirqs last disabled at (804): [<8061d2c8>] _raw_spin_lock_irqsave+0x24/0x54 softirqs last enabled at (570): [<8002b824>] __do_softirq+0x1c4/0x290 softirqs last disabled at (561): [<8002bcf4>] irq_exit+0xb4/0x10c other info that might help us debug this: Possible unsafe locking scenario: CPU0 ---- lock(&(&host->lock)->rlock); <Interrupt> lock(&(&host->lock)->rlock); *** DEADLOCK *** 2 locks held by kworker/u2:1/33: #0: (kmmcd){.+.+..}, at: [<8003db18>] process_one_work+0x128/0x468 #1: ((&(&host->detect)->work)){+.+...}, at: [<8003db18>] process_one_work+0x128/0x468 stack backtrace: CPU: 0 PID: 33 Comm: kworker/u2:1 Not tainted 3.13.0-rc1+ #287 Workqueue: kmmcd mmc_rescan Backtrace: [<80012160>] (dump_backtrace+0x0/0x10c) from [<80012438>] (show_stack+0x18/0x1c) r6:bfad0900 r5:00000000 r4:8088ecc8 r3:bfad0900 [<80012420>] (show_stack+0x0/0x1c) from [<806169ec>] (dump_stack+0x84/0x9c) [<80616968>] (dump_stack+0x0/0x9c) from [<806147b4>] (print_usage_bug+0x260/0x2d0) r5:8076ba88 r4:80977410 [<80614554>] (print_usage_bug+0x0/0x2d0) from [<8005f0d0>] (mark_lock+0x1e0/0x6ac) r9:8005e678 r8:00000000 r7:bfad0900 r6:00001015 r5:bfad0cd0 r4:00000002 [<8005eef0>] (mark_lock+0x0/0x6ac) from [<80060234>] (__lock_acquire+0x604/0x1cbc) [<8005fc30>] (__lock_acquire+0x0/0x1cbc) from [<800620d0>] (lock_acquire+0x70/0x84) [<80062060>] (lock_acquire+0x0/0x84) from [<8061d1c8>] (_raw_spin_lock+0x30/0x40) r7:00000000 r6:bfb63000 r5:00000000 r4:bfb60568 [<8061d198>] (_raw_spin_lock+0x0/0x40) from [<8045f7f4>] (sdhci_execute_tuning+0x4c/0x710) r4:bfb60000 [<8045f7a8>] (sdhci_execute_tuning+0x0/0x710) from [<80453454>] (mmc_sd_init_card+0x5f8/0x660) [<80452e5c>] (mmc_sd_init_card+0x0/0x660) from [<80453748>] (mmc_attach_sd+0xb4/0x180) r9:bf92d400 r8:8065f364 r7:00061a80 r6:bfb60000 r5:8065f358 r4:bfb60000 [<80453694>] (mmc_attach_sd+0x0/0x180) from [<8044d9f8>] (mmc_rescan+0x284/0x2f0) r5:8065f358 r4:bfb602f8 [<8044d774>] (mmc_rescan+0x0/0x2f0) from [<8003db94>] (process_one_work+0x1a4/0x468) r8:00000000 r7:bfb55eb0 r6:bf80dc00 r5:bfb602f8 r4:bfb35980 r3:8044d774 [<8003d9f0>] (process_one_work+0x0/0x468) from [<8003e850>] (worker_thread+0x118/0x3e0) [<8003e738>] (worker_thread+0x0/0x3e0) from [<80044de0>] (kthread+0xd4/0xf0) [<80044d0c>] (kthread+0x0/0xf0) from [<8000e9c8>] (ret_from_fork+0x14/0x2c) r7:00000000 r6:00000000 r5:80044d0c r4:bfb37b40 Signed-off-by: Dong Aisheng <b29396@freescale.com> Cc: stable <stable@vger.kernel.org> Signed-off-by: Chris Ball <chris@printf.net>
2013-12-23 19:13:04 +08:00
spin_unlock_irqrestore(&host->lock, flags);
mmc: sd: add support for tuning during uhs initialization Host Controller needs tuning during initialization to operate SDR50 and SDR104 UHS-I cards. Whether SDR50 mode actually needs tuning is indicated by bit 45 of the Host Controller Capabilities register. A new command CMD19 has been defined in the Physical Layer spec v3.01 to request the card to send tuning pattern. We enable Buffer Read Ready interrupt at the very begining of tuning procedure, because that is the only interrupt generated by the Host Controller during tuning. We program the block size to 64 in the Block Size register. We make sure that DMA Enable and Multi Block Select in the Transfer Mode register are set to 0 before actually sending CMD19. The tuning block is sent by the card to the Host Controller using DAT lines, so we set Data Present Select (bit 5) in the Command register. The Host Controller is responsible for doing the verfication of tuning block sent by the card at the hardware level. After sending CMD19, we wait for Buffer Read Ready interrupt. In case we don't receive an interrupt after the specified timeout value, we fall back on fixed sampling clock by setting Execute Tuning (bit 6) and Sampling Clock Select (bit 7) of Host Control2 register to 0. Before exiting the tuning procedure, we disable Buffer Read Ready interrupt and re-enable other interrupts. Tested by Zhangfei Gao with a Toshiba uhs card and general hs card, on mmp2 in SDMA mode. Signed-off-by: Arindam Nath <arindam.nath@amd.com> Reviewed-by: Philip Rakity <prakity@marvell.com> Tested-by: Philip Rakity <prakity@marvell.com> Acked-by: Zhangfei Gao <zhangfei.gao@marvell.com> Signed-off-by: Chris Ball <cjb@laptop.org>
2011-05-05 14:49:04 +08:00
/* Wait for Buffer Read Ready interrupt */
wait_event_interruptible_timeout(host->buf_ready_int,
(host->tuning_done == 1),
msecs_to_jiffies(50));
mmc: sdhci: fix lockdep error in tuning routine The sdhci_execute_tuning routine gets lock separately by disable_irq(host->irq); spin_lock(&host->lock); It will cause the following lockdep error message since the &host->lock could also be got in irq context. Use spin_lock_irqsave/spin_unlock_restore instead to get rid of this error message. [ INFO: inconsistent lock state ] 3.13.0-rc1+ #287 Not tainted --------------------------------- inconsistent {IN-HARDIRQ-W} -> {HARDIRQ-ON-W} usage. kworker/u2:1/33 [HC0[0]:SC0[0]:HE1:SE1] takes: (&(&host->lock)->rlock){?.-...}, at: [<8045f7f4>] sdhci_execute_tuning+0x4c/0x710 {IN-HARDIRQ-W} state was registered at: [<8005f030>] mark_lock+0x140/0x6ac [<80060760>] __lock_acquire+0xb30/0x1cbc [<800620d0>] lock_acquire+0x70/0x84 [<8061d1c8>] _raw_spin_lock+0x30/0x40 [<804605cc>] sdhci_irq+0x24/0xa68 [<8006b1d4>] handle_irq_event_percpu+0x54/0x18c [<8006b350>] handle_irq_event+0x44/0x64 [<8006e50c>] handle_fasteoi_irq+0xa0/0x170 [<8006a8f0>] generic_handle_irq+0x30/0x44 [<8000f238>] handle_IRQ+0x54/0xbc [<8000864c>] gic_handle_irq+0x30/0x64 [<80013024>] __irq_svc+0x44/0x5c [<80329bf4>] dev_vprintk_emit+0x50/0x58 [<80329c24>] dev_printk_emit+0x28/0x30 [<80329fec>] __dev_printk+0x4c/0x90 [<8032a180>] dev_err+0x3c/0x48 [<802dd4f0>] _regulator_get+0x158/0x1cc [<802dd5b4>] regulator_get_optional+0x18/0x1c [<80461df4>] sdhci_add_host+0x42c/0xbd8 [<80464820>] sdhci_esdhc_imx_probe+0x378/0x67c [<8032ee88>] platform_drv_probe+0x20/0x50 [<8032d48c>] driver_probe_device+0x118/0x234 [<8032d690>] __driver_attach+0x9c/0xa0 [<8032b89c>] bus_for_each_dev+0x68/0x9c [<8032cf44>] driver_attach+0x20/0x28 [<8032cbc8>] bus_add_driver+0x148/0x1f4 [<8032dce0>] driver_register+0x80/0x100 [<8032ee54>] __platform_driver_register+0x50/0x64 [<8084b094>] sdhci_esdhc_imx_driver_init+0x18/0x20 [<80008980>] do_one_initcall+0x108/0x16c [<8081cca4>] kernel_init_freeable+0x10c/0x1d0 [<80611b28>] kernel_init+0x10/0x120 [<8000e9c8>] ret_from_fork+0x14/0x2c irq event stamp: 805 hardirqs last enabled at (805): [<8061d43c>] _raw_spin_unlock_irqrestore+0x38/0x4c hardirqs last disabled at (804): [<8061d2c8>] _raw_spin_lock_irqsave+0x24/0x54 softirqs last enabled at (570): [<8002b824>] __do_softirq+0x1c4/0x290 softirqs last disabled at (561): [<8002bcf4>] irq_exit+0xb4/0x10c other info that might help us debug this: Possible unsafe locking scenario: CPU0 ---- lock(&(&host->lock)->rlock); <Interrupt> lock(&(&host->lock)->rlock); *** DEADLOCK *** 2 locks held by kworker/u2:1/33: #0: (kmmcd){.+.+..}, at: [<8003db18>] process_one_work+0x128/0x468 #1: ((&(&host->detect)->work)){+.+...}, at: [<8003db18>] process_one_work+0x128/0x468 stack backtrace: CPU: 0 PID: 33 Comm: kworker/u2:1 Not tainted 3.13.0-rc1+ #287 Workqueue: kmmcd mmc_rescan Backtrace: [<80012160>] (dump_backtrace+0x0/0x10c) from [<80012438>] (show_stack+0x18/0x1c) r6:bfad0900 r5:00000000 r4:8088ecc8 r3:bfad0900 [<80012420>] (show_stack+0x0/0x1c) from [<806169ec>] (dump_stack+0x84/0x9c) [<80616968>] (dump_stack+0x0/0x9c) from [<806147b4>] (print_usage_bug+0x260/0x2d0) r5:8076ba88 r4:80977410 [<80614554>] (print_usage_bug+0x0/0x2d0) from [<8005f0d0>] (mark_lock+0x1e0/0x6ac) r9:8005e678 r8:00000000 r7:bfad0900 r6:00001015 r5:bfad0cd0 r4:00000002 [<8005eef0>] (mark_lock+0x0/0x6ac) from [<80060234>] (__lock_acquire+0x604/0x1cbc) [<8005fc30>] (__lock_acquire+0x0/0x1cbc) from [<800620d0>] (lock_acquire+0x70/0x84) [<80062060>] (lock_acquire+0x0/0x84) from [<8061d1c8>] (_raw_spin_lock+0x30/0x40) r7:00000000 r6:bfb63000 r5:00000000 r4:bfb60568 [<8061d198>] (_raw_spin_lock+0x0/0x40) from [<8045f7f4>] (sdhci_execute_tuning+0x4c/0x710) r4:bfb60000 [<8045f7a8>] (sdhci_execute_tuning+0x0/0x710) from [<80453454>] (mmc_sd_init_card+0x5f8/0x660) [<80452e5c>] (mmc_sd_init_card+0x0/0x660) from [<80453748>] (mmc_attach_sd+0xb4/0x180) r9:bf92d400 r8:8065f364 r7:00061a80 r6:bfb60000 r5:8065f358 r4:bfb60000 [<80453694>] (mmc_attach_sd+0x0/0x180) from [<8044d9f8>] (mmc_rescan+0x284/0x2f0) r5:8065f358 r4:bfb602f8 [<8044d774>] (mmc_rescan+0x0/0x2f0) from [<8003db94>] (process_one_work+0x1a4/0x468) r8:00000000 r7:bfb55eb0 r6:bf80dc00 r5:bfb602f8 r4:bfb35980 r3:8044d774 [<8003d9f0>] (process_one_work+0x0/0x468) from [<8003e850>] (worker_thread+0x118/0x3e0) [<8003e738>] (worker_thread+0x0/0x3e0) from [<80044de0>] (kthread+0xd4/0xf0) [<80044d0c>] (kthread+0x0/0xf0) from [<8000e9c8>] (ret_from_fork+0x14/0x2c) r7:00000000 r6:00000000 r5:80044d0c r4:bfb37b40 Signed-off-by: Dong Aisheng <b29396@freescale.com> Cc: stable <stable@vger.kernel.org> Signed-off-by: Chris Ball <chris@printf.net>
2013-12-23 19:13:04 +08:00
spin_lock_irqsave(&host->lock, flags);
mmc: sd: add support for tuning during uhs initialization Host Controller needs tuning during initialization to operate SDR50 and SDR104 UHS-I cards. Whether SDR50 mode actually needs tuning is indicated by bit 45 of the Host Controller Capabilities register. A new command CMD19 has been defined in the Physical Layer spec v3.01 to request the card to send tuning pattern. We enable Buffer Read Ready interrupt at the very begining of tuning procedure, because that is the only interrupt generated by the Host Controller during tuning. We program the block size to 64 in the Block Size register. We make sure that DMA Enable and Multi Block Select in the Transfer Mode register are set to 0 before actually sending CMD19. The tuning block is sent by the card to the Host Controller using DAT lines, so we set Data Present Select (bit 5) in the Command register. The Host Controller is responsible for doing the verfication of tuning block sent by the card at the hardware level. After sending CMD19, we wait for Buffer Read Ready interrupt. In case we don't receive an interrupt after the specified timeout value, we fall back on fixed sampling clock by setting Execute Tuning (bit 6) and Sampling Clock Select (bit 7) of Host Control2 register to 0. Before exiting the tuning procedure, we disable Buffer Read Ready interrupt and re-enable other interrupts. Tested by Zhangfei Gao with a Toshiba uhs card and general hs card, on mmp2 in SDMA mode. Signed-off-by: Arindam Nath <arindam.nath@amd.com> Reviewed-by: Philip Rakity <prakity@marvell.com> Tested-by: Philip Rakity <prakity@marvell.com> Acked-by: Zhangfei Gao <zhangfei.gao@marvell.com> Signed-off-by: Chris Ball <cjb@laptop.org>
2011-05-05 14:49:04 +08:00
if (!host->tuning_done) {
pr_info(DRIVER_NAME ": Timeout waiting for "
mmc: sd: add support for tuning during uhs initialization Host Controller needs tuning during initialization to operate SDR50 and SDR104 UHS-I cards. Whether SDR50 mode actually needs tuning is indicated by bit 45 of the Host Controller Capabilities register. A new command CMD19 has been defined in the Physical Layer spec v3.01 to request the card to send tuning pattern. We enable Buffer Read Ready interrupt at the very begining of tuning procedure, because that is the only interrupt generated by the Host Controller during tuning. We program the block size to 64 in the Block Size register. We make sure that DMA Enable and Multi Block Select in the Transfer Mode register are set to 0 before actually sending CMD19. The tuning block is sent by the card to the Host Controller using DAT lines, so we set Data Present Select (bit 5) in the Command register. The Host Controller is responsible for doing the verfication of tuning block sent by the card at the hardware level. After sending CMD19, we wait for Buffer Read Ready interrupt. In case we don't receive an interrupt after the specified timeout value, we fall back on fixed sampling clock by setting Execute Tuning (bit 6) and Sampling Clock Select (bit 7) of Host Control2 register to 0. Before exiting the tuning procedure, we disable Buffer Read Ready interrupt and re-enable other interrupts. Tested by Zhangfei Gao with a Toshiba uhs card and general hs card, on mmp2 in SDMA mode. Signed-off-by: Arindam Nath <arindam.nath@amd.com> Reviewed-by: Philip Rakity <prakity@marvell.com> Tested-by: Philip Rakity <prakity@marvell.com> Acked-by: Zhangfei Gao <zhangfei.gao@marvell.com> Signed-off-by: Chris Ball <cjb@laptop.org>
2011-05-05 14:49:04 +08:00
"Buffer Read Ready interrupt during tuning "
"procedure, falling back to fixed sampling "
"clock\n");
ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
ctrl &= ~SDHCI_CTRL_TUNED_CLK;
ctrl &= ~SDHCI_CTRL_EXEC_TUNING;
sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2);
err = -EIO;
goto out;
}
host->tuning_done = 0;
ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
tuning_loop_counter--;
timeout--;
mdelay(1);
} while (ctrl & SDHCI_CTRL_EXEC_TUNING);
/*
* The Host Driver has exhausted the maximum number of loops allowed,
* so use fixed sampling frequency.
*/
if (!tuning_loop_counter || !timeout) {
ctrl &= ~SDHCI_CTRL_TUNED_CLK;
sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2);
err = -EIO;
mmc: sd: add support for tuning during uhs initialization Host Controller needs tuning during initialization to operate SDR50 and SDR104 UHS-I cards. Whether SDR50 mode actually needs tuning is indicated by bit 45 of the Host Controller Capabilities register. A new command CMD19 has been defined in the Physical Layer spec v3.01 to request the card to send tuning pattern. We enable Buffer Read Ready interrupt at the very begining of tuning procedure, because that is the only interrupt generated by the Host Controller during tuning. We program the block size to 64 in the Block Size register. We make sure that DMA Enable and Multi Block Select in the Transfer Mode register are set to 0 before actually sending CMD19. The tuning block is sent by the card to the Host Controller using DAT lines, so we set Data Present Select (bit 5) in the Command register. The Host Controller is responsible for doing the verfication of tuning block sent by the card at the hardware level. After sending CMD19, we wait for Buffer Read Ready interrupt. In case we don't receive an interrupt after the specified timeout value, we fall back on fixed sampling clock by setting Execute Tuning (bit 6) and Sampling Clock Select (bit 7) of Host Control2 register to 0. Before exiting the tuning procedure, we disable Buffer Read Ready interrupt and re-enable other interrupts. Tested by Zhangfei Gao with a Toshiba uhs card and general hs card, on mmp2 in SDMA mode. Signed-off-by: Arindam Nath <arindam.nath@amd.com> Reviewed-by: Philip Rakity <prakity@marvell.com> Tested-by: Philip Rakity <prakity@marvell.com> Acked-by: Zhangfei Gao <zhangfei.gao@marvell.com> Signed-off-by: Chris Ball <cjb@laptop.org>
2011-05-05 14:49:04 +08:00
} else {
if (!(ctrl & SDHCI_CTRL_TUNED_CLK)) {
pr_info(DRIVER_NAME ": Tuning procedure"
mmc: sd: add support for tuning during uhs initialization Host Controller needs tuning during initialization to operate SDR50 and SDR104 UHS-I cards. Whether SDR50 mode actually needs tuning is indicated by bit 45 of the Host Controller Capabilities register. A new command CMD19 has been defined in the Physical Layer spec v3.01 to request the card to send tuning pattern. We enable Buffer Read Ready interrupt at the very begining of tuning procedure, because that is the only interrupt generated by the Host Controller during tuning. We program the block size to 64 in the Block Size register. We make sure that DMA Enable and Multi Block Select in the Transfer Mode register are set to 0 before actually sending CMD19. The tuning block is sent by the card to the Host Controller using DAT lines, so we set Data Present Select (bit 5) in the Command register. The Host Controller is responsible for doing the verfication of tuning block sent by the card at the hardware level. After sending CMD19, we wait for Buffer Read Ready interrupt. In case we don't receive an interrupt after the specified timeout value, we fall back on fixed sampling clock by setting Execute Tuning (bit 6) and Sampling Clock Select (bit 7) of Host Control2 register to 0. Before exiting the tuning procedure, we disable Buffer Read Ready interrupt and re-enable other interrupts. Tested by Zhangfei Gao with a Toshiba uhs card and general hs card, on mmp2 in SDMA mode. Signed-off-by: Arindam Nath <arindam.nath@amd.com> Reviewed-by: Philip Rakity <prakity@marvell.com> Tested-by: Philip Rakity <prakity@marvell.com> Acked-by: Zhangfei Gao <zhangfei.gao@marvell.com> Signed-off-by: Chris Ball <cjb@laptop.org>
2011-05-05 14:49:04 +08:00
" failed, falling back to fixed sampling"
" clock\n");
err = -EIO;
}
}
out:
/*
* If this is the very first time we are here, we start the retuning
* timer. Since only during the first time, SDHCI_NEEDS_RETUNING
* flag won't be set, we check this condition before actually starting
* the timer.
*/
if (!(host->flags & SDHCI_NEEDS_RETUNING) && host->tuning_count &&
(host->tuning_mode == SDHCI_TUNING_MODE_1)) {
host->flags |= SDHCI_USING_RETUNING_TIMER;
mod_timer(&host->tuning_timer, jiffies +
host->tuning_count * HZ);
/* Tuning mode 1 limits the maximum data length to 4MB */
mmc->max_blk_count = (4 * 1024 * 1024) / mmc->max_blk_size;
} else {
host->flags &= ~SDHCI_NEEDS_RETUNING;
/* Reload the new initial value for timer */
if (host->tuning_mode == SDHCI_TUNING_MODE_1)
mod_timer(&host->tuning_timer, jiffies +
host->tuning_count * HZ);
}
/*
* In case tuning fails, host controllers which support re-tuning can
* try tuning again at a later time, when the re-tuning timer expires.
* So for these controllers, we return 0. Since there might be other
* controllers who do not have this capability, we return error for
* them. SDHCI_USING_RETUNING_TIMER means the host is currently using
* a retuning timer to do the retuning for the card.
*/
if (err && (host->flags & SDHCI_USING_RETUNING_TIMER))
err = 0;
mmc: sd: add support for tuning during uhs initialization Host Controller needs tuning during initialization to operate SDR50 and SDR104 UHS-I cards. Whether SDR50 mode actually needs tuning is indicated by bit 45 of the Host Controller Capabilities register. A new command CMD19 has been defined in the Physical Layer spec v3.01 to request the card to send tuning pattern. We enable Buffer Read Ready interrupt at the very begining of tuning procedure, because that is the only interrupt generated by the Host Controller during tuning. We program the block size to 64 in the Block Size register. We make sure that DMA Enable and Multi Block Select in the Transfer Mode register are set to 0 before actually sending CMD19. The tuning block is sent by the card to the Host Controller using DAT lines, so we set Data Present Select (bit 5) in the Command register. The Host Controller is responsible for doing the verfication of tuning block sent by the card at the hardware level. After sending CMD19, we wait for Buffer Read Ready interrupt. In case we don't receive an interrupt after the specified timeout value, we fall back on fixed sampling clock by setting Execute Tuning (bit 6) and Sampling Clock Select (bit 7) of Host Control2 register to 0. Before exiting the tuning procedure, we disable Buffer Read Ready interrupt and re-enable other interrupts. Tested by Zhangfei Gao with a Toshiba uhs card and general hs card, on mmp2 in SDMA mode. Signed-off-by: Arindam Nath <arindam.nath@amd.com> Reviewed-by: Philip Rakity <prakity@marvell.com> Tested-by: Philip Rakity <prakity@marvell.com> Acked-by: Zhangfei Gao <zhangfei.gao@marvell.com> Signed-off-by: Chris Ball <cjb@laptop.org>
2011-05-05 14:49:04 +08:00
sdhci_clear_set_irqs(host, SDHCI_INT_DATA_AVAIL, ier);
mmc: sdhci: fix lockdep error in tuning routine The sdhci_execute_tuning routine gets lock separately by disable_irq(host->irq); spin_lock(&host->lock); It will cause the following lockdep error message since the &host->lock could also be got in irq context. Use spin_lock_irqsave/spin_unlock_restore instead to get rid of this error message. [ INFO: inconsistent lock state ] 3.13.0-rc1+ #287 Not tainted --------------------------------- inconsistent {IN-HARDIRQ-W} -> {HARDIRQ-ON-W} usage. kworker/u2:1/33 [HC0[0]:SC0[0]:HE1:SE1] takes: (&(&host->lock)->rlock){?.-...}, at: [<8045f7f4>] sdhci_execute_tuning+0x4c/0x710 {IN-HARDIRQ-W} state was registered at: [<8005f030>] mark_lock+0x140/0x6ac [<80060760>] __lock_acquire+0xb30/0x1cbc [<800620d0>] lock_acquire+0x70/0x84 [<8061d1c8>] _raw_spin_lock+0x30/0x40 [<804605cc>] sdhci_irq+0x24/0xa68 [<8006b1d4>] handle_irq_event_percpu+0x54/0x18c [<8006b350>] handle_irq_event+0x44/0x64 [<8006e50c>] handle_fasteoi_irq+0xa0/0x170 [<8006a8f0>] generic_handle_irq+0x30/0x44 [<8000f238>] handle_IRQ+0x54/0xbc [<8000864c>] gic_handle_irq+0x30/0x64 [<80013024>] __irq_svc+0x44/0x5c [<80329bf4>] dev_vprintk_emit+0x50/0x58 [<80329c24>] dev_printk_emit+0x28/0x30 [<80329fec>] __dev_printk+0x4c/0x90 [<8032a180>] dev_err+0x3c/0x48 [<802dd4f0>] _regulator_get+0x158/0x1cc [<802dd5b4>] regulator_get_optional+0x18/0x1c [<80461df4>] sdhci_add_host+0x42c/0xbd8 [<80464820>] sdhci_esdhc_imx_probe+0x378/0x67c [<8032ee88>] platform_drv_probe+0x20/0x50 [<8032d48c>] driver_probe_device+0x118/0x234 [<8032d690>] __driver_attach+0x9c/0xa0 [<8032b89c>] bus_for_each_dev+0x68/0x9c [<8032cf44>] driver_attach+0x20/0x28 [<8032cbc8>] bus_add_driver+0x148/0x1f4 [<8032dce0>] driver_register+0x80/0x100 [<8032ee54>] __platform_driver_register+0x50/0x64 [<8084b094>] sdhci_esdhc_imx_driver_init+0x18/0x20 [<80008980>] do_one_initcall+0x108/0x16c [<8081cca4>] kernel_init_freeable+0x10c/0x1d0 [<80611b28>] kernel_init+0x10/0x120 [<8000e9c8>] ret_from_fork+0x14/0x2c irq event stamp: 805 hardirqs last enabled at (805): [<8061d43c>] _raw_spin_unlock_irqrestore+0x38/0x4c hardirqs last disabled at (804): [<8061d2c8>] _raw_spin_lock_irqsave+0x24/0x54 softirqs last enabled at (570): [<8002b824>] __do_softirq+0x1c4/0x290 softirqs last disabled at (561): [<8002bcf4>] irq_exit+0xb4/0x10c other info that might help us debug this: Possible unsafe locking scenario: CPU0 ---- lock(&(&host->lock)->rlock); <Interrupt> lock(&(&host->lock)->rlock); *** DEADLOCK *** 2 locks held by kworker/u2:1/33: #0: (kmmcd){.+.+..}, at: [<8003db18>] process_one_work+0x128/0x468 #1: ((&(&host->detect)->work)){+.+...}, at: [<8003db18>] process_one_work+0x128/0x468 stack backtrace: CPU: 0 PID: 33 Comm: kworker/u2:1 Not tainted 3.13.0-rc1+ #287 Workqueue: kmmcd mmc_rescan Backtrace: [<80012160>] (dump_backtrace+0x0/0x10c) from [<80012438>] (show_stack+0x18/0x1c) r6:bfad0900 r5:00000000 r4:8088ecc8 r3:bfad0900 [<80012420>] (show_stack+0x0/0x1c) from [<806169ec>] (dump_stack+0x84/0x9c) [<80616968>] (dump_stack+0x0/0x9c) from [<806147b4>] (print_usage_bug+0x260/0x2d0) r5:8076ba88 r4:80977410 [<80614554>] (print_usage_bug+0x0/0x2d0) from [<8005f0d0>] (mark_lock+0x1e0/0x6ac) r9:8005e678 r8:00000000 r7:bfad0900 r6:00001015 r5:bfad0cd0 r4:00000002 [<8005eef0>] (mark_lock+0x0/0x6ac) from [<80060234>] (__lock_acquire+0x604/0x1cbc) [<8005fc30>] (__lock_acquire+0x0/0x1cbc) from [<800620d0>] (lock_acquire+0x70/0x84) [<80062060>] (lock_acquire+0x0/0x84) from [<8061d1c8>] (_raw_spin_lock+0x30/0x40) r7:00000000 r6:bfb63000 r5:00000000 r4:bfb60568 [<8061d198>] (_raw_spin_lock+0x0/0x40) from [<8045f7f4>] (sdhci_execute_tuning+0x4c/0x710) r4:bfb60000 [<8045f7a8>] (sdhci_execute_tuning+0x0/0x710) from [<80453454>] (mmc_sd_init_card+0x5f8/0x660) [<80452e5c>] (mmc_sd_init_card+0x0/0x660) from [<80453748>] (mmc_attach_sd+0xb4/0x180) r9:bf92d400 r8:8065f364 r7:00061a80 r6:bfb60000 r5:8065f358 r4:bfb60000 [<80453694>] (mmc_attach_sd+0x0/0x180) from [<8044d9f8>] (mmc_rescan+0x284/0x2f0) r5:8065f358 r4:bfb602f8 [<8044d774>] (mmc_rescan+0x0/0x2f0) from [<8003db94>] (process_one_work+0x1a4/0x468) r8:00000000 r7:bfb55eb0 r6:bf80dc00 r5:bfb602f8 r4:bfb35980 r3:8044d774 [<8003d9f0>] (process_one_work+0x0/0x468) from [<8003e850>] (worker_thread+0x118/0x3e0) [<8003e738>] (worker_thread+0x0/0x3e0) from [<80044de0>] (kthread+0xd4/0xf0) [<80044d0c>] (kthread+0x0/0xf0) from [<8000e9c8>] (ret_from_fork+0x14/0x2c) r7:00000000 r6:00000000 r5:80044d0c r4:bfb37b40 Signed-off-by: Dong Aisheng <b29396@freescale.com> Cc: stable <stable@vger.kernel.org> Signed-off-by: Chris Ball <chris@printf.net>
2013-12-23 19:13:04 +08:00
spin_unlock_irqrestore(&host->lock, flags);
sdhci_runtime_pm_put(host);
mmc: sd: add support for tuning during uhs initialization Host Controller needs tuning during initialization to operate SDR50 and SDR104 UHS-I cards. Whether SDR50 mode actually needs tuning is indicated by bit 45 of the Host Controller Capabilities register. A new command CMD19 has been defined in the Physical Layer spec v3.01 to request the card to send tuning pattern. We enable Buffer Read Ready interrupt at the very begining of tuning procedure, because that is the only interrupt generated by the Host Controller during tuning. We program the block size to 64 in the Block Size register. We make sure that DMA Enable and Multi Block Select in the Transfer Mode register are set to 0 before actually sending CMD19. The tuning block is sent by the card to the Host Controller using DAT lines, so we set Data Present Select (bit 5) in the Command register. The Host Controller is responsible for doing the verfication of tuning block sent by the card at the hardware level. After sending CMD19, we wait for Buffer Read Ready interrupt. In case we don't receive an interrupt after the specified timeout value, we fall back on fixed sampling clock by setting Execute Tuning (bit 6) and Sampling Clock Select (bit 7) of Host Control2 register to 0. Before exiting the tuning procedure, we disable Buffer Read Ready interrupt and re-enable other interrupts. Tested by Zhangfei Gao with a Toshiba uhs card and general hs card, on mmp2 in SDMA mode. Signed-off-by: Arindam Nath <arindam.nath@amd.com> Reviewed-by: Philip Rakity <prakity@marvell.com> Tested-by: Philip Rakity <prakity@marvell.com> Acked-by: Zhangfei Gao <zhangfei.gao@marvell.com> Signed-off-by: Chris Ball <cjb@laptop.org>
2011-05-05 14:49:04 +08:00
return err;
}
static void sdhci_enable_preset_value(struct sdhci_host *host, bool enable)
{
u16 ctrl;
/* Host Controller v3.00 defines preset value registers */
if (host->version < SDHCI_SPEC_300)
return;
ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
/*
* We only enable or disable Preset Value if they are not already
* enabled or disabled respectively. Otherwise, we bail out.
*/
if (enable && !(ctrl & SDHCI_CTRL_PRESET_VAL_ENABLE)) {
ctrl |= SDHCI_CTRL_PRESET_VAL_ENABLE;
sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2);
host->flags |= SDHCI_PV_ENABLED;
} else if (!enable && (ctrl & SDHCI_CTRL_PRESET_VAL_ENABLE)) {
ctrl &= ~SDHCI_CTRL_PRESET_VAL_ENABLE;
sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2);
host->flags &= ~SDHCI_PV_ENABLED;
}
}
static void sdhci_card_event(struct mmc_host *mmc)
{
struct sdhci_host *host = mmc_priv(mmc);
unsigned long flags;
/* First check if client has provided their own card event */
if (host->ops->card_event)
host->ops->card_event(host);
spin_lock_irqsave(&host->lock, flags);
/* Check host->mrq first in case we are runtime suspended */
if (host->mrq && !sdhci_do_get_cd(host)) {
pr_err("%s: Card removed during transfer!\n",
mmc_hostname(host->mmc));
pr_err("%s: Resetting controller.\n",
mmc_hostname(host->mmc));
sdhci_reset(host, SDHCI_RESET_CMD);
sdhci_reset(host, SDHCI_RESET_DATA);
host->mrq->cmd->error = -ENOMEDIUM;
tasklet_schedule(&host->finish_tasklet);
}
spin_unlock_irqrestore(&host->lock, flags);
}
static const struct mmc_host_ops sdhci_ops = {
.request = sdhci_request,
.set_ios = sdhci_set_ios,
.get_cd = sdhci_get_cd,
.get_ro = sdhci_get_ro,
.hw_reset = sdhci_hw_reset,
.enable_sdio_irq = sdhci_enable_sdio_irq,
.start_signal_voltage_switch = sdhci_start_signal_voltage_switch,
.execute_tuning = sdhci_execute_tuning,
.card_event = sdhci_card_event,
.card_busy = sdhci_card_busy,
};
/*****************************************************************************\
* *
* Tasklets *
* *
\*****************************************************************************/
static void sdhci_tasklet_card(unsigned long param)
{
struct sdhci_host *host = (struct sdhci_host*)param;
sdhci_card_event(host->mmc);
mmc_detect_change(host->mmc, msecs_to_jiffies(200));
}
static void sdhci_tasklet_finish(unsigned long param)
{
struct sdhci_host *host;
unsigned long flags;
struct mmc_request *mrq;
host = (struct sdhci_host*)param;
spin_lock_irqsave(&host->lock, flags);
/*
* If this tasklet gets rescheduled while running, it will
* be run again afterwards but without any active request.
*/
if (!host->mrq) {
spin_unlock_irqrestore(&host->lock, flags);
return;
}
del_timer(&host->timer);
mrq = host->mrq;
/*
* The controller needs a reset of internal state machines
* upon error conditions.
*/
if (!(host->flags & SDHCI_DEVICE_DEAD) &&
((mrq->cmd && mrq->cmd->error) ||
(mrq->data && (mrq->data->error ||
(mrq->data->stop && mrq->data->stop->error))) ||
(host->quirks & SDHCI_QUIRK_RESET_AFTER_REQUEST))) {
/* Some controllers need this kick or reset won't work here */
if (host->quirks & SDHCI_QUIRK_CLOCK_BEFORE_RESET)
/* This is to force an update */
sdhci_update_clock(host);
/* Spec says we should do both at the same time, but Ricoh
controllers do not like that. */
sdhci_reset(host, SDHCI_RESET_CMD);
sdhci_reset(host, SDHCI_RESET_DATA);
}
host->mrq = NULL;
host->cmd = NULL;
host->data = NULL;
#ifndef SDHCI_USE_LEDS_CLASS
sdhci_deactivate_led(host);
#endif
mmiowb();
spin_unlock_irqrestore(&host->lock, flags);
mmc_request_done(host->mmc, mrq);
sdhci_runtime_pm_put(host);
}
static void sdhci_timeout_timer(unsigned long data)
{
struct sdhci_host *host;
unsigned long flags;
host = (struct sdhci_host*)data;
spin_lock_irqsave(&host->lock, flags);
if (host->mrq) {
pr_err("%s: Timeout waiting for hardware "
"interrupt.\n", mmc_hostname(host->mmc));
sdhci_dumpregs(host);
if (host->data) {
host->data->error = -ETIMEDOUT;
sdhci_finish_data(host);
} else {
if (host->cmd)
host->cmd->error = -ETIMEDOUT;
else
host->mrq->cmd->error = -ETIMEDOUT;
tasklet_schedule(&host->finish_tasklet);
}
}
mmiowb();
spin_unlock_irqrestore(&host->lock, flags);
}
static void sdhci_tuning_timer(unsigned long data)
{
struct sdhci_host *host;
unsigned long flags;
host = (struct sdhci_host *)data;
spin_lock_irqsave(&host->lock, flags);
host->flags |= SDHCI_NEEDS_RETUNING;
spin_unlock_irqrestore(&host->lock, flags);
}
/*****************************************************************************\
* *
* Interrupt handling *
* *
\*****************************************************************************/
static void sdhci_cmd_irq(struct sdhci_host *host, u32 intmask)
{
BUG_ON(intmask == 0);
if (!host->cmd) {
pr_err("%s: Got command interrupt 0x%08x even "
"though no command operation was in progress.\n",
mmc_hostname(host->mmc), (unsigned)intmask);
sdhci_dumpregs(host);
return;
}
if (intmask & SDHCI_INT_TIMEOUT)
host->cmd->error = -ETIMEDOUT;
else if (intmask & (SDHCI_INT_CRC | SDHCI_INT_END_BIT |
SDHCI_INT_INDEX))
host->cmd->error = -EILSEQ;
if (host->cmd->error) {
tasklet_schedule(&host->finish_tasklet);
return;
}
/*
* The host can send and interrupt when the busy state has
* ended, allowing us to wait without wasting CPU cycles.
* Unfortunately this is overloaded on the "data complete"
* interrupt, so we need to take some care when handling
* it.
*
* Note: The 1.0 specification is a bit ambiguous about this
* feature so there might be some problems with older
* controllers.
*/
if (host->cmd->flags & MMC_RSP_BUSY) {
if (host->cmd->data)
DBG("Cannot wait for busy signal when also "
"doing a data transfer");
else if (!(host->quirks & SDHCI_QUIRK_NO_BUSY_IRQ))
return;
/* The controller does not support the end-of-busy IRQ,
* fall through and take the SDHCI_INT_RESPONSE */
}
if (intmask & SDHCI_INT_RESPONSE)
sdhci_finish_command(host);
}
#ifdef CONFIG_MMC_DEBUG
static void sdhci_show_adma_error(struct sdhci_host *host)
{
const char *name = mmc_hostname(host->mmc);
u8 *desc = host->adma_desc;
__le32 *dma;
__le16 *len;
u8 attr;
sdhci_dumpregs(host);
while (true) {
dma = (__le32 *)(desc + 4);
len = (__le16 *)(desc + 2);
attr = *desc;
DBG("%s: %p: DMA 0x%08x, LEN 0x%04x, Attr=0x%02x\n",
name, desc, le32_to_cpu(*dma), le16_to_cpu(*len), attr);
desc += 8;
if (attr & 2)
break;
}
}
#else
static void sdhci_show_adma_error(struct sdhci_host *host) { }
#endif
static void sdhci_data_irq(struct sdhci_host *host, u32 intmask)
{
u32 command;
BUG_ON(intmask == 0);
mmc: sd: add support for tuning during uhs initialization Host Controller needs tuning during initialization to operate SDR50 and SDR104 UHS-I cards. Whether SDR50 mode actually needs tuning is indicated by bit 45 of the Host Controller Capabilities register. A new command CMD19 has been defined in the Physical Layer spec v3.01 to request the card to send tuning pattern. We enable Buffer Read Ready interrupt at the very begining of tuning procedure, because that is the only interrupt generated by the Host Controller during tuning. We program the block size to 64 in the Block Size register. We make sure that DMA Enable and Multi Block Select in the Transfer Mode register are set to 0 before actually sending CMD19. The tuning block is sent by the card to the Host Controller using DAT lines, so we set Data Present Select (bit 5) in the Command register. The Host Controller is responsible for doing the verfication of tuning block sent by the card at the hardware level. After sending CMD19, we wait for Buffer Read Ready interrupt. In case we don't receive an interrupt after the specified timeout value, we fall back on fixed sampling clock by setting Execute Tuning (bit 6) and Sampling Clock Select (bit 7) of Host Control2 register to 0. Before exiting the tuning procedure, we disable Buffer Read Ready interrupt and re-enable other interrupts. Tested by Zhangfei Gao with a Toshiba uhs card and general hs card, on mmp2 in SDMA mode. Signed-off-by: Arindam Nath <arindam.nath@amd.com> Reviewed-by: Philip Rakity <prakity@marvell.com> Tested-by: Philip Rakity <prakity@marvell.com> Acked-by: Zhangfei Gao <zhangfei.gao@marvell.com> Signed-off-by: Chris Ball <cjb@laptop.org>
2011-05-05 14:49:04 +08:00
/* CMD19 generates _only_ Buffer Read Ready interrupt */
if (intmask & SDHCI_INT_DATA_AVAIL) {
command = SDHCI_GET_CMD(sdhci_readw(host, SDHCI_COMMAND));
if (command == MMC_SEND_TUNING_BLOCK ||
command == MMC_SEND_TUNING_BLOCK_HS200) {
mmc: sd: add support for tuning during uhs initialization Host Controller needs tuning during initialization to operate SDR50 and SDR104 UHS-I cards. Whether SDR50 mode actually needs tuning is indicated by bit 45 of the Host Controller Capabilities register. A new command CMD19 has been defined in the Physical Layer spec v3.01 to request the card to send tuning pattern. We enable Buffer Read Ready interrupt at the very begining of tuning procedure, because that is the only interrupt generated by the Host Controller during tuning. We program the block size to 64 in the Block Size register. We make sure that DMA Enable and Multi Block Select in the Transfer Mode register are set to 0 before actually sending CMD19. The tuning block is sent by the card to the Host Controller using DAT lines, so we set Data Present Select (bit 5) in the Command register. The Host Controller is responsible for doing the verfication of tuning block sent by the card at the hardware level. After sending CMD19, we wait for Buffer Read Ready interrupt. In case we don't receive an interrupt after the specified timeout value, we fall back on fixed sampling clock by setting Execute Tuning (bit 6) and Sampling Clock Select (bit 7) of Host Control2 register to 0. Before exiting the tuning procedure, we disable Buffer Read Ready interrupt and re-enable other interrupts. Tested by Zhangfei Gao with a Toshiba uhs card and general hs card, on mmp2 in SDMA mode. Signed-off-by: Arindam Nath <arindam.nath@amd.com> Reviewed-by: Philip Rakity <prakity@marvell.com> Tested-by: Philip Rakity <prakity@marvell.com> Acked-by: Zhangfei Gao <zhangfei.gao@marvell.com> Signed-off-by: Chris Ball <cjb@laptop.org>
2011-05-05 14:49:04 +08:00
host->tuning_done = 1;
wake_up(&host->buf_ready_int);
return;
}
}
if (!host->data) {
/*
* The "data complete" interrupt is also used to
* indicate that a busy state has ended. See comment
* above in sdhci_cmd_irq().
*/
if (host->cmd && (host->cmd->flags & MMC_RSP_BUSY)) {
if (intmask & SDHCI_INT_DATA_END) {
sdhci_finish_command(host);
return;
}
}
pr_err("%s: Got data interrupt 0x%08x even "
"though no data operation was in progress.\n",
mmc_hostname(host->mmc), (unsigned)intmask);
sdhci_dumpregs(host);
return;
}
if (intmask & SDHCI_INT_DATA_TIMEOUT)
host->data->error = -ETIMEDOUT;
else if (intmask & SDHCI_INT_DATA_END_BIT)
host->data->error = -EILSEQ;
else if ((intmask & SDHCI_INT_DATA_CRC) &&
SDHCI_GET_CMD(sdhci_readw(host, SDHCI_COMMAND))
!= MMC_BUS_TEST_R)
host->data->error = -EILSEQ;
else if (intmask & SDHCI_INT_ADMA_ERROR) {
pr_err("%s: ADMA error\n", mmc_hostname(host->mmc));
sdhci_show_adma_error(host);
host->data->error = -EIO;
if (host->ops->adma_workaround)
host->ops->adma_workaround(host, intmask);
}
if (host->data->error)
sdhci_finish_data(host);
else {
if (intmask & (SDHCI_INT_DATA_AVAIL | SDHCI_INT_SPACE_AVAIL))
sdhci_transfer_pio(host);
/*
* We currently don't do anything fancy with DMA
* boundaries, but as we can't disable the feature
* we need to at least restart the transfer.
*
* According to the spec sdhci_readl(host, SDHCI_DMA_ADDRESS)
* should return a valid address to continue from, but as
* some controllers are faulty, don't trust them.
*/
if (intmask & SDHCI_INT_DMA_END) {
u32 dmastart, dmanow;
dmastart = sg_dma_address(host->data->sg);
dmanow = dmastart + host->data->bytes_xfered;
/*
* Force update to the next DMA block boundary.
*/
dmanow = (dmanow &
~(SDHCI_DEFAULT_BOUNDARY_SIZE - 1)) +
SDHCI_DEFAULT_BOUNDARY_SIZE;
host->data->bytes_xfered = dmanow - dmastart;
DBG("%s: DMA base 0x%08x, transferred 0x%06x bytes,"
" next 0x%08x\n",
mmc_hostname(host->mmc), dmastart,
host->data->bytes_xfered, dmanow);
sdhci_writel(host, dmanow, SDHCI_DMA_ADDRESS);
}
if (intmask & SDHCI_INT_DATA_END) {
if (host->cmd) {
/*
* Data managed to finish before the
* command completed. Make sure we do
* things in the proper order.
*/
host->data_early = 1;
} else {
sdhci_finish_data(host);
}
}
}
}
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 21:55:46 +08:00
static irqreturn_t sdhci_irq(int irq, void *dev_id)
{
irqreturn_t result;
struct sdhci_host *host = dev_id;
u32 intmask, unexpected = 0;
int cardint = 0, max_loops = 16;
spin_lock(&host->lock);
if (host->runtime_suspended) {
spin_unlock(&host->lock);
pr_warning("%s: got irq while runtime suspended\n",
mmc_hostname(host->mmc));
return IRQ_HANDLED;
}
intmask = sdhci_readl(host, SDHCI_INT_STATUS);
if (!intmask || intmask == 0xffffffff) {
result = IRQ_NONE;
goto out;
}
again:
DBG("*** %s got interrupt: 0x%08x\n",
mmc_hostname(host->mmc), intmask);
if (intmask & (SDHCI_INT_CARD_INSERT | SDHCI_INT_CARD_REMOVE)) {
u32 present = sdhci_readl(host, SDHCI_PRESENT_STATE) &
SDHCI_CARD_PRESENT;
/*
* There is a observation on i.mx esdhc. INSERT bit will be
* immediately set again when it gets cleared, if a card is
* inserted. We have to mask the irq to prevent interrupt
* storm which will freeze the system. And the REMOVE gets
* the same situation.
*
* More testing are needed here to ensure it works for other
* platforms though.
*/
sdhci_mask_irqs(host, present ? SDHCI_INT_CARD_INSERT :
SDHCI_INT_CARD_REMOVE);
sdhci_unmask_irqs(host, present ? SDHCI_INT_CARD_REMOVE :
SDHCI_INT_CARD_INSERT);
sdhci_writel(host, intmask & (SDHCI_INT_CARD_INSERT |
SDHCI_INT_CARD_REMOVE), SDHCI_INT_STATUS);
intmask &= ~(SDHCI_INT_CARD_INSERT | SDHCI_INT_CARD_REMOVE);
tasklet_schedule(&host->card_tasklet);
}
if (intmask & SDHCI_INT_CMD_MASK) {
sdhci_writel(host, intmask & SDHCI_INT_CMD_MASK,
SDHCI_INT_STATUS);
sdhci_cmd_irq(host, intmask & SDHCI_INT_CMD_MASK);
}
if (intmask & SDHCI_INT_DATA_MASK) {
sdhci_writel(host, intmask & SDHCI_INT_DATA_MASK,
SDHCI_INT_STATUS);
sdhci_data_irq(host, intmask & SDHCI_INT_DATA_MASK);
}
intmask &= ~(SDHCI_INT_CMD_MASK | SDHCI_INT_DATA_MASK);
intmask &= ~SDHCI_INT_ERROR;
if (intmask & SDHCI_INT_BUS_POWER) {
pr_err("%s: Card is consuming too much power!\n",
mmc_hostname(host->mmc));
sdhci_writel(host, SDHCI_INT_BUS_POWER, SDHCI_INT_STATUS);
}
intmask &= ~SDHCI_INT_BUS_POWER;
if (intmask & SDHCI_INT_CARD_INT)
cardint = 1;
intmask &= ~SDHCI_INT_CARD_INT;
if (intmask) {
unexpected |= intmask;
sdhci_writel(host, intmask, SDHCI_INT_STATUS);
}
result = IRQ_HANDLED;
intmask = sdhci_readl(host, SDHCI_INT_STATUS);
/*
* If we know we'll call the driver to signal SDIO IRQ, disregard
* further indications of Card Interrupt in the status to avoid a
* needless loop.
*/
if (cardint)
intmask &= ~SDHCI_INT_CARD_INT;
if (intmask && --max_loops)
goto again;
out:
spin_unlock(&host->lock);
if (unexpected) {
pr_err("%s: Unexpected interrupt 0x%08x.\n",
mmc_hostname(host->mmc), unexpected);
sdhci_dumpregs(host);
}
/*
* We have to delay this as it calls back into the driver.
*/
if (cardint)
mmc_signal_sdio_irq(host->mmc);
return result;
}
/*****************************************************************************\
* *
* Suspend/resume *
* *
\*****************************************************************************/
#ifdef CONFIG_PM
void sdhci_enable_irq_wakeups(struct sdhci_host *host)
{
u8 val;
u8 mask = SDHCI_WAKE_ON_INSERT | SDHCI_WAKE_ON_REMOVE
| SDHCI_WAKE_ON_INT;
val = sdhci_readb(host, SDHCI_WAKE_UP_CONTROL);
val |= mask ;
/* Avoid fake wake up */
if (host->quirks & SDHCI_QUIRK_BROKEN_CARD_DETECTION)
val &= ~(SDHCI_WAKE_ON_INSERT | SDHCI_WAKE_ON_REMOVE);
sdhci_writeb(host, val, SDHCI_WAKE_UP_CONTROL);
}
EXPORT_SYMBOL_GPL(sdhci_enable_irq_wakeups);
void sdhci_disable_irq_wakeups(struct sdhci_host *host)
{
u8 val;
u8 mask = SDHCI_WAKE_ON_INSERT | SDHCI_WAKE_ON_REMOVE
| SDHCI_WAKE_ON_INT;
val = sdhci_readb(host, SDHCI_WAKE_UP_CONTROL);
val &= ~mask;
sdhci_writeb(host, val, SDHCI_WAKE_UP_CONTROL);
}
EXPORT_SYMBOL_GPL(sdhci_disable_irq_wakeups);
int sdhci_suspend_host(struct sdhci_host *host)
{
if (host->ops->platform_suspend)
host->ops->platform_suspend(host);
sdhci_disable_card_detection(host);
/* Disable tuning since we are suspending */
if (host->flags & SDHCI_USING_RETUNING_TIMER) {
del_timer_sync(&host->tuning_timer);
host->flags &= ~SDHCI_NEEDS_RETUNING;
}
if (!device_may_wakeup(mmc_dev(host->mmc))) {
sdhci_mask_irqs(host, SDHCI_INT_ALL_MASK);
free_irq(host->irq, host);
} else {
sdhci_enable_irq_wakeups(host);
enable_irq_wake(host->irq);
}
return 0;
}
EXPORT_SYMBOL_GPL(sdhci_suspend_host);
int sdhci_resume_host(struct sdhci_host *host)
{
int ret = 0;
if (host->flags & (SDHCI_USE_SDMA | SDHCI_USE_ADMA)) {
if (host->ops->enable_dma)
host->ops->enable_dma(host);
}
if (!device_may_wakeup(mmc_dev(host->mmc))) {
ret = request_irq(host->irq, sdhci_irq, IRQF_SHARED,
mmc_hostname(host->mmc), host);
if (ret)
return ret;
} else {
sdhci_disable_irq_wakeups(host);
disable_irq_wake(host->irq);
}
if ((host->mmc->pm_flags & MMC_PM_KEEP_POWER) &&
(host->quirks2 & SDHCI_QUIRK2_HOST_OFF_CARD_ON)) {
/* Card keeps power but host controller does not */
sdhci_init(host, 0);
host->pwr = 0;
host->clock = 0;
sdhci_do_set_ios(host, &host->mmc->ios);
} else {
sdhci_init(host, (host->mmc->pm_flags & MMC_PM_KEEP_POWER));
mmiowb();
}
sdhci_enable_card_detection(host);
if (host->ops->platform_resume)
host->ops->platform_resume(host);
/* Set the re-tuning expiration flag */
if (host->flags & SDHCI_USING_RETUNING_TIMER)
host->flags |= SDHCI_NEEDS_RETUNING;
return ret;
}
EXPORT_SYMBOL_GPL(sdhci_resume_host);
#endif /* CONFIG_PM */
#ifdef CONFIG_PM_RUNTIME
static int sdhci_runtime_pm_get(struct sdhci_host *host)
{
return pm_runtime_get_sync(host->mmc->parent);
}
static int sdhci_runtime_pm_put(struct sdhci_host *host)
{
pm_runtime_mark_last_busy(host->mmc->parent);
return pm_runtime_put_autosuspend(host->mmc->parent);
}
static void sdhci_runtime_pm_bus_on(struct sdhci_host *host)
{
if (host->runtime_suspended || host->bus_on)
return;
host->bus_on = true;
pm_runtime_get_noresume(host->mmc->parent);
}
static void sdhci_runtime_pm_bus_off(struct sdhci_host *host)
{
if (host->runtime_suspended || !host->bus_on)
return;
host->bus_on = false;
pm_runtime_put_noidle(host->mmc->parent);
}
int sdhci_runtime_suspend_host(struct sdhci_host *host)
{
unsigned long flags;
int ret = 0;
/* Disable tuning since we are suspending */
if (host->flags & SDHCI_USING_RETUNING_TIMER) {
del_timer_sync(&host->tuning_timer);
host->flags &= ~SDHCI_NEEDS_RETUNING;
}
spin_lock_irqsave(&host->lock, flags);
sdhci_mask_irqs(host, SDHCI_INT_ALL_MASK);
spin_unlock_irqrestore(&host->lock, flags);
synchronize_irq(host->irq);
spin_lock_irqsave(&host->lock, flags);
host->runtime_suspended = true;
spin_unlock_irqrestore(&host->lock, flags);
return ret;
}
EXPORT_SYMBOL_GPL(sdhci_runtime_suspend_host);
int sdhci_runtime_resume_host(struct sdhci_host *host)
{
unsigned long flags;
int ret = 0, host_flags = host->flags;
if (host_flags & (SDHCI_USE_SDMA | SDHCI_USE_ADMA)) {
if (host->ops->enable_dma)
host->ops->enable_dma(host);
}
sdhci_init(host, 0);
/* Force clock and power re-program */
host->pwr = 0;
host->clock = 0;
sdhci_do_set_ios(host, &host->mmc->ios);
sdhci_do_start_signal_voltage_switch(host, &host->mmc->ios);
if ((host_flags & SDHCI_PV_ENABLED) &&
!(host->quirks2 & SDHCI_QUIRK2_PRESET_VALUE_BROKEN)) {
spin_lock_irqsave(&host->lock, flags);
sdhci_enable_preset_value(host, true);
spin_unlock_irqrestore(&host->lock, flags);
}
/* Set the re-tuning expiration flag */
if (host->flags & SDHCI_USING_RETUNING_TIMER)
host->flags |= SDHCI_NEEDS_RETUNING;
spin_lock_irqsave(&host->lock, flags);
host->runtime_suspended = false;
/* Enable SDIO IRQ */
if ((host->flags & SDHCI_SDIO_IRQ_ENABLED))
sdhci_enable_sdio_irq_nolock(host, true);
/* Enable Card Detection */
sdhci_enable_card_detection(host);
spin_unlock_irqrestore(&host->lock, flags);
return ret;
}
EXPORT_SYMBOL_GPL(sdhci_runtime_resume_host);
#endif
/*****************************************************************************\
* *
* Device allocation/registration *
* *
\*****************************************************************************/
struct sdhci_host *sdhci_alloc_host(struct device *dev,
size_t priv_size)
{
struct mmc_host *mmc;
struct sdhci_host *host;
WARN_ON(dev == NULL);
mmc = mmc_alloc_host(sizeof(struct sdhci_host) + priv_size, dev);
if (!mmc)
return ERR_PTR(-ENOMEM);
host = mmc_priv(mmc);
host->mmc = mmc;
return host;
}
EXPORT_SYMBOL_GPL(sdhci_alloc_host);
int sdhci_add_host(struct sdhci_host *host)
{
struct mmc_host *mmc;
u32 caps[2] = {0, 0};
mmc: sd: add support for signal voltage switch procedure Host Controller v3.00 adds another Capabilities register. Apart from other things, this new register indicates whether the Host Controller supports SDR50, SDR104, and DDR50 UHS-I modes. The spec doesn't mention about explicit support for SDR12 and SDR25 UHS-I modes, so the Host Controller v3.00 should support them by default. Also if the controller supports SDR104 mode, it will also support SDR50 mode as well. So depending on the host support, we set the corresponding MMC_CAP_* flags. One more new register. Host Control2 is added in v3.00, which is used during Signal Voltage Switch procedure described below. Since as per v3.00 spec, UHS-I supported hosts should set S18R to 1, we set S18R (bit 24) of OCR before sending ACMD41. We also need to set XPC (bit 28) of OCR in case the host can supply >150mA. This support is indicated by the Maximum Current Capabilities register of the Host Controller. If the response of ACMD41 has both CCS and S18A set, we start the signal voltage switch procedure, which if successfull, will switch the card from 3.3V signalling to 1.8V signalling. Signal voltage switch procedure adds support for a new command CMD11 in the Physical Layer Spec v3.01. As part of this procedure, we need to set 1.8V Signalling Enable (bit 3) of Host Control2 register, which if remains set after 5ms, means the switch to 1.8V signalling is successfull. Otherwise, we clear bit 24 of OCR and retry the initialization sequence. When we remove the card, and insert the same or another card, we need to make sure that we start with 3.3V signalling voltage. So we call mmc_set_signal_voltage() with MMC_SIGNAL_VOLTAGE_330 set so that we are back to 3.3V signalling voltage before we actually start initializing the card. Tested by Zhangfei Gao with a Toshiba uhs card and general hs card, on mmp2 in SDMA mode. Signed-off-by: Arindam Nath <arindam.nath@amd.com> Reviewed-by: Philip Rakity <prakity@marvell.com> Tested-by: Philip Rakity <prakity@marvell.com> Acked-by: Zhangfei Gao <zhangfei.gao@marvell.com> Signed-off-by: Chris Ball <cjb@laptop.org>
2011-05-05 14:48:57 +08:00
u32 max_current_caps;
unsigned int ocr_avail;
int ret;
WARN_ON(host == NULL);
if (host == NULL)
return -EINVAL;
mmc = host->mmc;
if (debug_quirks)
host->quirks = debug_quirks;
if (debug_quirks2)
host->quirks2 = debug_quirks2;
sdhci_reset(host, SDHCI_RESET_ALL);
host->version = sdhci_readw(host, SDHCI_HOST_VERSION);
host->version = (host->version & SDHCI_SPEC_VER_MASK)
>> SDHCI_SPEC_VER_SHIFT;
if (host->version > SDHCI_SPEC_300) {
pr_err("%s: Unknown controller version (%d). "
"You may experience problems.\n", mmc_hostname(mmc),
host->version);
}
mmc: sd: add support for signal voltage switch procedure Host Controller v3.00 adds another Capabilities register. Apart from other things, this new register indicates whether the Host Controller supports SDR50, SDR104, and DDR50 UHS-I modes. The spec doesn't mention about explicit support for SDR12 and SDR25 UHS-I modes, so the Host Controller v3.00 should support them by default. Also if the controller supports SDR104 mode, it will also support SDR50 mode as well. So depending on the host support, we set the corresponding MMC_CAP_* flags. One more new register. Host Control2 is added in v3.00, which is used during Signal Voltage Switch procedure described below. Since as per v3.00 spec, UHS-I supported hosts should set S18R to 1, we set S18R (bit 24) of OCR before sending ACMD41. We also need to set XPC (bit 28) of OCR in case the host can supply >150mA. This support is indicated by the Maximum Current Capabilities register of the Host Controller. If the response of ACMD41 has both CCS and S18A set, we start the signal voltage switch procedure, which if successfull, will switch the card from 3.3V signalling to 1.8V signalling. Signal voltage switch procedure adds support for a new command CMD11 in the Physical Layer Spec v3.01. As part of this procedure, we need to set 1.8V Signalling Enable (bit 3) of Host Control2 register, which if remains set after 5ms, means the switch to 1.8V signalling is successfull. Otherwise, we clear bit 24 of OCR and retry the initialization sequence. When we remove the card, and insert the same or another card, we need to make sure that we start with 3.3V signalling voltage. So we call mmc_set_signal_voltage() with MMC_SIGNAL_VOLTAGE_330 set so that we are back to 3.3V signalling voltage before we actually start initializing the card. Tested by Zhangfei Gao with a Toshiba uhs card and general hs card, on mmp2 in SDMA mode. Signed-off-by: Arindam Nath <arindam.nath@amd.com> Reviewed-by: Philip Rakity <prakity@marvell.com> Tested-by: Philip Rakity <prakity@marvell.com> Acked-by: Zhangfei Gao <zhangfei.gao@marvell.com> Signed-off-by: Chris Ball <cjb@laptop.org>
2011-05-05 14:48:57 +08:00
caps[0] = (host->quirks & SDHCI_QUIRK_MISSING_CAPS) ? host->caps :
sdhci_readl(host, SDHCI_CAPABILITIES);
if (host->version >= SDHCI_SPEC_300)
caps[1] = (host->quirks & SDHCI_QUIRK_MISSING_CAPS) ?
host->caps1 :
sdhci_readl(host, SDHCI_CAPABILITIES_1);
mmc: sd: add support for signal voltage switch procedure Host Controller v3.00 adds another Capabilities register. Apart from other things, this new register indicates whether the Host Controller supports SDR50, SDR104, and DDR50 UHS-I modes. The spec doesn't mention about explicit support for SDR12 and SDR25 UHS-I modes, so the Host Controller v3.00 should support them by default. Also if the controller supports SDR104 mode, it will also support SDR50 mode as well. So depending on the host support, we set the corresponding MMC_CAP_* flags. One more new register. Host Control2 is added in v3.00, which is used during Signal Voltage Switch procedure described below. Since as per v3.00 spec, UHS-I supported hosts should set S18R to 1, we set S18R (bit 24) of OCR before sending ACMD41. We also need to set XPC (bit 28) of OCR in case the host can supply >150mA. This support is indicated by the Maximum Current Capabilities register of the Host Controller. If the response of ACMD41 has both CCS and S18A set, we start the signal voltage switch procedure, which if successfull, will switch the card from 3.3V signalling to 1.8V signalling. Signal voltage switch procedure adds support for a new command CMD11 in the Physical Layer Spec v3.01. As part of this procedure, we need to set 1.8V Signalling Enable (bit 3) of Host Control2 register, which if remains set after 5ms, means the switch to 1.8V signalling is successfull. Otherwise, we clear bit 24 of OCR and retry the initialization sequence. When we remove the card, and insert the same or another card, we need to make sure that we start with 3.3V signalling voltage. So we call mmc_set_signal_voltage() with MMC_SIGNAL_VOLTAGE_330 set so that we are back to 3.3V signalling voltage before we actually start initializing the card. Tested by Zhangfei Gao with a Toshiba uhs card and general hs card, on mmp2 in SDMA mode. Signed-off-by: Arindam Nath <arindam.nath@amd.com> Reviewed-by: Philip Rakity <prakity@marvell.com> Tested-by: Philip Rakity <prakity@marvell.com> Acked-by: Zhangfei Gao <zhangfei.gao@marvell.com> Signed-off-by: Chris Ball <cjb@laptop.org>
2011-05-05 14:48:57 +08:00
if (host->quirks & SDHCI_QUIRK_FORCE_DMA)
host->flags |= SDHCI_USE_SDMA;
mmc: sd: add support for signal voltage switch procedure Host Controller v3.00 adds another Capabilities register. Apart from other things, this new register indicates whether the Host Controller supports SDR50, SDR104, and DDR50 UHS-I modes. The spec doesn't mention about explicit support for SDR12 and SDR25 UHS-I modes, so the Host Controller v3.00 should support them by default. Also if the controller supports SDR104 mode, it will also support SDR50 mode as well. So depending on the host support, we set the corresponding MMC_CAP_* flags. One more new register. Host Control2 is added in v3.00, which is used during Signal Voltage Switch procedure described below. Since as per v3.00 spec, UHS-I supported hosts should set S18R to 1, we set S18R (bit 24) of OCR before sending ACMD41. We also need to set XPC (bit 28) of OCR in case the host can supply >150mA. This support is indicated by the Maximum Current Capabilities register of the Host Controller. If the response of ACMD41 has both CCS and S18A set, we start the signal voltage switch procedure, which if successfull, will switch the card from 3.3V signalling to 1.8V signalling. Signal voltage switch procedure adds support for a new command CMD11 in the Physical Layer Spec v3.01. As part of this procedure, we need to set 1.8V Signalling Enable (bit 3) of Host Control2 register, which if remains set after 5ms, means the switch to 1.8V signalling is successfull. Otherwise, we clear bit 24 of OCR and retry the initialization sequence. When we remove the card, and insert the same or another card, we need to make sure that we start with 3.3V signalling voltage. So we call mmc_set_signal_voltage() with MMC_SIGNAL_VOLTAGE_330 set so that we are back to 3.3V signalling voltage before we actually start initializing the card. Tested by Zhangfei Gao with a Toshiba uhs card and general hs card, on mmp2 in SDMA mode. Signed-off-by: Arindam Nath <arindam.nath@amd.com> Reviewed-by: Philip Rakity <prakity@marvell.com> Tested-by: Philip Rakity <prakity@marvell.com> Acked-by: Zhangfei Gao <zhangfei.gao@marvell.com> Signed-off-by: Chris Ball <cjb@laptop.org>
2011-05-05 14:48:57 +08:00
else if (!(caps[0] & SDHCI_CAN_DO_SDMA))
DBG("Controller doesn't have SDMA capability\n");
else
host->flags |= SDHCI_USE_SDMA;
if ((host->quirks & SDHCI_QUIRK_BROKEN_DMA) &&
(host->flags & SDHCI_USE_SDMA)) {
DBG("Disabling DMA as it is marked broken\n");
host->flags &= ~SDHCI_USE_SDMA;
}
mmc: sd: add support for signal voltage switch procedure Host Controller v3.00 adds another Capabilities register. Apart from other things, this new register indicates whether the Host Controller supports SDR50, SDR104, and DDR50 UHS-I modes. The spec doesn't mention about explicit support for SDR12 and SDR25 UHS-I modes, so the Host Controller v3.00 should support them by default. Also if the controller supports SDR104 mode, it will also support SDR50 mode as well. So depending on the host support, we set the corresponding MMC_CAP_* flags. One more new register. Host Control2 is added in v3.00, which is used during Signal Voltage Switch procedure described below. Since as per v3.00 spec, UHS-I supported hosts should set S18R to 1, we set S18R (bit 24) of OCR before sending ACMD41. We also need to set XPC (bit 28) of OCR in case the host can supply >150mA. This support is indicated by the Maximum Current Capabilities register of the Host Controller. If the response of ACMD41 has both CCS and S18A set, we start the signal voltage switch procedure, which if successfull, will switch the card from 3.3V signalling to 1.8V signalling. Signal voltage switch procedure adds support for a new command CMD11 in the Physical Layer Spec v3.01. As part of this procedure, we need to set 1.8V Signalling Enable (bit 3) of Host Control2 register, which if remains set after 5ms, means the switch to 1.8V signalling is successfull. Otherwise, we clear bit 24 of OCR and retry the initialization sequence. When we remove the card, and insert the same or another card, we need to make sure that we start with 3.3V signalling voltage. So we call mmc_set_signal_voltage() with MMC_SIGNAL_VOLTAGE_330 set so that we are back to 3.3V signalling voltage before we actually start initializing the card. Tested by Zhangfei Gao with a Toshiba uhs card and general hs card, on mmp2 in SDMA mode. Signed-off-by: Arindam Nath <arindam.nath@amd.com> Reviewed-by: Philip Rakity <prakity@marvell.com> Tested-by: Philip Rakity <prakity@marvell.com> Acked-by: Zhangfei Gao <zhangfei.gao@marvell.com> Signed-off-by: Chris Ball <cjb@laptop.org>
2011-05-05 14:48:57 +08:00
if ((host->version >= SDHCI_SPEC_200) &&
(caps[0] & SDHCI_CAN_DO_ADMA2))
host->flags |= SDHCI_USE_ADMA;
if ((host->quirks & SDHCI_QUIRK_BROKEN_ADMA) &&
(host->flags & SDHCI_USE_ADMA)) {
DBG("Disabling ADMA as it is marked broken\n");
host->flags &= ~SDHCI_USE_ADMA;
}
if (host->flags & (SDHCI_USE_SDMA | SDHCI_USE_ADMA)) {
if (host->ops->enable_dma) {
if (host->ops->enable_dma(host)) {
pr_warning("%s: No suitable DMA "
"available. Falling back to PIO.\n",
mmc_hostname(mmc));
host->flags &=
~(SDHCI_USE_SDMA | SDHCI_USE_ADMA);
}
}
}
if (host->flags & SDHCI_USE_ADMA) {
/*
* We need to allocate descriptors for all sg entries
* (128) and potentially one alignment transfer for
* each of those entries.
*/
host->adma_desc = kmalloc((128 * 2 + 1) * 4, GFP_KERNEL);
host->align_buffer = kmalloc(128 * 4, GFP_KERNEL);
if (!host->adma_desc || !host->align_buffer) {
kfree(host->adma_desc);
kfree(host->align_buffer);
pr_warning("%s: Unable to allocate ADMA "
"buffers. Falling back to standard DMA.\n",
mmc_hostname(mmc));
host->flags &= ~SDHCI_USE_ADMA;
}
}
/*
* If we use DMA, then it's up to the caller to set the DMA
* mask, but PIO does not need the hw shim so we set a new
* mask here in that case.
*/
if (!(host->flags & (SDHCI_USE_SDMA | SDHCI_USE_ADMA))) {
host->dma_mask = DMA_BIT_MASK(64);
mmc_dev(host->mmc)->dma_mask = &host->dma_mask;
}
if (host->version >= SDHCI_SPEC_300)
mmc: sd: add support for signal voltage switch procedure Host Controller v3.00 adds another Capabilities register. Apart from other things, this new register indicates whether the Host Controller supports SDR50, SDR104, and DDR50 UHS-I modes. The spec doesn't mention about explicit support for SDR12 and SDR25 UHS-I modes, so the Host Controller v3.00 should support them by default. Also if the controller supports SDR104 mode, it will also support SDR50 mode as well. So depending on the host support, we set the corresponding MMC_CAP_* flags. One more new register. Host Control2 is added in v3.00, which is used during Signal Voltage Switch procedure described below. Since as per v3.00 spec, UHS-I supported hosts should set S18R to 1, we set S18R (bit 24) of OCR before sending ACMD41. We also need to set XPC (bit 28) of OCR in case the host can supply >150mA. This support is indicated by the Maximum Current Capabilities register of the Host Controller. If the response of ACMD41 has both CCS and S18A set, we start the signal voltage switch procedure, which if successfull, will switch the card from 3.3V signalling to 1.8V signalling. Signal voltage switch procedure adds support for a new command CMD11 in the Physical Layer Spec v3.01. As part of this procedure, we need to set 1.8V Signalling Enable (bit 3) of Host Control2 register, which if remains set after 5ms, means the switch to 1.8V signalling is successfull. Otherwise, we clear bit 24 of OCR and retry the initialization sequence. When we remove the card, and insert the same or another card, we need to make sure that we start with 3.3V signalling voltage. So we call mmc_set_signal_voltage() with MMC_SIGNAL_VOLTAGE_330 set so that we are back to 3.3V signalling voltage before we actually start initializing the card. Tested by Zhangfei Gao with a Toshiba uhs card and general hs card, on mmp2 in SDMA mode. Signed-off-by: Arindam Nath <arindam.nath@amd.com> Reviewed-by: Philip Rakity <prakity@marvell.com> Tested-by: Philip Rakity <prakity@marvell.com> Acked-by: Zhangfei Gao <zhangfei.gao@marvell.com> Signed-off-by: Chris Ball <cjb@laptop.org>
2011-05-05 14:48:57 +08:00
host->max_clk = (caps[0] & SDHCI_CLOCK_V3_BASE_MASK)
>> SDHCI_CLOCK_BASE_SHIFT;
else
mmc: sd: add support for signal voltage switch procedure Host Controller v3.00 adds another Capabilities register. Apart from other things, this new register indicates whether the Host Controller supports SDR50, SDR104, and DDR50 UHS-I modes. The spec doesn't mention about explicit support for SDR12 and SDR25 UHS-I modes, so the Host Controller v3.00 should support them by default. Also if the controller supports SDR104 mode, it will also support SDR50 mode as well. So depending on the host support, we set the corresponding MMC_CAP_* flags. One more new register. Host Control2 is added in v3.00, which is used during Signal Voltage Switch procedure described below. Since as per v3.00 spec, UHS-I supported hosts should set S18R to 1, we set S18R (bit 24) of OCR before sending ACMD41. We also need to set XPC (bit 28) of OCR in case the host can supply >150mA. This support is indicated by the Maximum Current Capabilities register of the Host Controller. If the response of ACMD41 has both CCS and S18A set, we start the signal voltage switch procedure, which if successfull, will switch the card from 3.3V signalling to 1.8V signalling. Signal voltage switch procedure adds support for a new command CMD11 in the Physical Layer Spec v3.01. As part of this procedure, we need to set 1.8V Signalling Enable (bit 3) of Host Control2 register, which if remains set after 5ms, means the switch to 1.8V signalling is successfull. Otherwise, we clear bit 24 of OCR and retry the initialization sequence. When we remove the card, and insert the same or another card, we need to make sure that we start with 3.3V signalling voltage. So we call mmc_set_signal_voltage() with MMC_SIGNAL_VOLTAGE_330 set so that we are back to 3.3V signalling voltage before we actually start initializing the card. Tested by Zhangfei Gao with a Toshiba uhs card and general hs card, on mmp2 in SDMA mode. Signed-off-by: Arindam Nath <arindam.nath@amd.com> Reviewed-by: Philip Rakity <prakity@marvell.com> Tested-by: Philip Rakity <prakity@marvell.com> Acked-by: Zhangfei Gao <zhangfei.gao@marvell.com> Signed-off-by: Chris Ball <cjb@laptop.org>
2011-05-05 14:48:57 +08:00
host->max_clk = (caps[0] & SDHCI_CLOCK_BASE_MASK)
>> SDHCI_CLOCK_BASE_SHIFT;
host->max_clk *= 1000000;
if (host->max_clk == 0 || host->quirks &
SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN) {
if (!host->ops->get_max_clock) {
pr_err("%s: Hardware doesn't specify base clock "
"frequency.\n", mmc_hostname(mmc));
return -ENODEV;
}
host->max_clk = host->ops->get_max_clock(host);
}
/*
* In case of Host Controller v3.00, find out whether clock
* multiplier is supported.
*/
host->clk_mul = (caps[1] & SDHCI_CLOCK_MUL_MASK) >>
SDHCI_CLOCK_MUL_SHIFT;
/*
* In case the value in Clock Multiplier is 0, then programmable
* clock mode is not supported, otherwise the actual clock
* multiplier is one more than the value of Clock Multiplier
* in the Capabilities Register.
*/
if (host->clk_mul)
host->clk_mul += 1;
/*
* Set host parameters.
*/
mmc->ops = &sdhci_ops;
mmc->f_max = host->max_clk;
if (host->ops->get_min_clock)
mmc->f_min = host->ops->get_min_clock(host);
else if (host->version >= SDHCI_SPEC_300) {
if (host->clk_mul) {
mmc->f_min = (host->max_clk * host->clk_mul) / 1024;
mmc->f_max = host->max_clk * host->clk_mul;
} else
mmc->f_min = host->max_clk / SDHCI_MAX_DIV_SPEC_300;
} else
mmc->f_min = host->max_clk / SDHCI_MAX_DIV_SPEC_200;
host->timeout_clk =
(caps[0] & SDHCI_TIMEOUT_CLK_MASK) >> SDHCI_TIMEOUT_CLK_SHIFT;
if (host->timeout_clk == 0) {
if (host->ops->get_timeout_clock) {
host->timeout_clk = host->ops->get_timeout_clock(host);
} else if (!(host->quirks &
SDHCI_QUIRK_DATA_TIMEOUT_USES_SDCLK)) {
pr_err("%s: Hardware doesn't specify timeout clock "
"frequency.\n", mmc_hostname(mmc));
return -ENODEV;
}
}
if (caps[0] & SDHCI_TIMEOUT_CLK_UNIT)
host->timeout_clk *= 1000;
if (host->quirks & SDHCI_QUIRK_DATA_TIMEOUT_USES_SDCLK)
host->timeout_clk = mmc->f_max / 1000;
mmc->max_discard_to = (1 << 27) / host->timeout_clk;
mmc->caps |= MMC_CAP_SDIO_IRQ | MMC_CAP_ERASE | MMC_CAP_CMD23;
if (host->quirks & SDHCI_QUIRK_MULTIBLOCK_READ_ACMD12)
host->flags |= SDHCI_AUTO_CMD12;
/* Auto-CMD23 stuff only works in ADMA or PIO. */
if ((host->version >= SDHCI_SPEC_300) &&
((host->flags & SDHCI_USE_ADMA) ||
!(host->flags & SDHCI_USE_SDMA))) {
host->flags |= SDHCI_AUTO_CMD23;
DBG("%s: Auto-CMD23 available\n", mmc_hostname(mmc));
} else {
DBG("%s: Auto-CMD23 unavailable\n", mmc_hostname(mmc));
}
/*
* A controller may support 8-bit width, but the board itself
* might not have the pins brought out. Boards that support
* 8-bit width must set "mmc->caps |= MMC_CAP_8_BIT_DATA;" in
* their platform code before calling sdhci_add_host(), and we
* won't assume 8-bit width for hosts without that CAP.
*/
if (!(host->quirks & SDHCI_QUIRK_FORCE_1_BIT_DATA))
mmc->caps |= MMC_CAP_4_BIT_DATA;
if (host->quirks2 & SDHCI_QUIRK2_HOST_NO_CMD23)
mmc->caps &= ~MMC_CAP_CMD23;
mmc: sd: add support for signal voltage switch procedure Host Controller v3.00 adds another Capabilities register. Apart from other things, this new register indicates whether the Host Controller supports SDR50, SDR104, and DDR50 UHS-I modes. The spec doesn't mention about explicit support for SDR12 and SDR25 UHS-I modes, so the Host Controller v3.00 should support them by default. Also if the controller supports SDR104 mode, it will also support SDR50 mode as well. So depending on the host support, we set the corresponding MMC_CAP_* flags. One more new register. Host Control2 is added in v3.00, which is used during Signal Voltage Switch procedure described below. Since as per v3.00 spec, UHS-I supported hosts should set S18R to 1, we set S18R (bit 24) of OCR before sending ACMD41. We also need to set XPC (bit 28) of OCR in case the host can supply >150mA. This support is indicated by the Maximum Current Capabilities register of the Host Controller. If the response of ACMD41 has both CCS and S18A set, we start the signal voltage switch procedure, which if successfull, will switch the card from 3.3V signalling to 1.8V signalling. Signal voltage switch procedure adds support for a new command CMD11 in the Physical Layer Spec v3.01. As part of this procedure, we need to set 1.8V Signalling Enable (bit 3) of Host Control2 register, which if remains set after 5ms, means the switch to 1.8V signalling is successfull. Otherwise, we clear bit 24 of OCR and retry the initialization sequence. When we remove the card, and insert the same or another card, we need to make sure that we start with 3.3V signalling voltage. So we call mmc_set_signal_voltage() with MMC_SIGNAL_VOLTAGE_330 set so that we are back to 3.3V signalling voltage before we actually start initializing the card. Tested by Zhangfei Gao with a Toshiba uhs card and general hs card, on mmp2 in SDMA mode. Signed-off-by: Arindam Nath <arindam.nath@amd.com> Reviewed-by: Philip Rakity <prakity@marvell.com> Tested-by: Philip Rakity <prakity@marvell.com> Acked-by: Zhangfei Gao <zhangfei.gao@marvell.com> Signed-off-by: Chris Ball <cjb@laptop.org>
2011-05-05 14:48:57 +08:00
if (caps[0] & SDHCI_CAN_DO_HISPD)
mmc->caps |= MMC_CAP_SD_HIGHSPEED | MMC_CAP_MMC_HIGHSPEED;
if ((host->quirks & SDHCI_QUIRK_BROKEN_CARD_DETECTION) &&
!(host->mmc->caps & MMC_CAP_NONREMOVABLE))
mmc->caps |= MMC_CAP_NEEDS_POLL;
/* If vqmmc regulator and no 1.8V signalling, then there's no UHS */
host->vqmmc = regulator_get_optional(mmc_dev(mmc), "vqmmc");
if (IS_ERR_OR_NULL(host->vqmmc)) {
if (PTR_ERR(host->vqmmc) < 0) {
pr_info("%s: no vqmmc regulator found\n",
mmc_hostname(mmc));
host->vqmmc = NULL;
}
} else {
ret = regulator_enable(host->vqmmc);
if (!regulator_is_supported_voltage(host->vqmmc, 1700000,
1950000))
caps[1] &= ~(SDHCI_SUPPORT_SDR104 |
SDHCI_SUPPORT_SDR50 |
SDHCI_SUPPORT_DDR50);
if (ret) {
pr_warn("%s: Failed to enable vqmmc regulator: %d\n",
mmc_hostname(mmc), ret);
host->vqmmc = NULL;
}
}
if (host->quirks2 & SDHCI_QUIRK2_NO_1_8_V)
caps[1] &= ~(SDHCI_SUPPORT_SDR104 | SDHCI_SUPPORT_SDR50 |
SDHCI_SUPPORT_DDR50);
/* Any UHS-I mode in caps implies SDR12 and SDR25 support. */
if (caps[1] & (SDHCI_SUPPORT_SDR104 | SDHCI_SUPPORT_SDR50 |
SDHCI_SUPPORT_DDR50))
mmc: sd: add support for signal voltage switch procedure Host Controller v3.00 adds another Capabilities register. Apart from other things, this new register indicates whether the Host Controller supports SDR50, SDR104, and DDR50 UHS-I modes. The spec doesn't mention about explicit support for SDR12 and SDR25 UHS-I modes, so the Host Controller v3.00 should support them by default. Also if the controller supports SDR104 mode, it will also support SDR50 mode as well. So depending on the host support, we set the corresponding MMC_CAP_* flags. One more new register. Host Control2 is added in v3.00, which is used during Signal Voltage Switch procedure described below. Since as per v3.00 spec, UHS-I supported hosts should set S18R to 1, we set S18R (bit 24) of OCR before sending ACMD41. We also need to set XPC (bit 28) of OCR in case the host can supply >150mA. This support is indicated by the Maximum Current Capabilities register of the Host Controller. If the response of ACMD41 has both CCS and S18A set, we start the signal voltage switch procedure, which if successfull, will switch the card from 3.3V signalling to 1.8V signalling. Signal voltage switch procedure adds support for a new command CMD11 in the Physical Layer Spec v3.01. As part of this procedure, we need to set 1.8V Signalling Enable (bit 3) of Host Control2 register, which if remains set after 5ms, means the switch to 1.8V signalling is successfull. Otherwise, we clear bit 24 of OCR and retry the initialization sequence. When we remove the card, and insert the same or another card, we need to make sure that we start with 3.3V signalling voltage. So we call mmc_set_signal_voltage() with MMC_SIGNAL_VOLTAGE_330 set so that we are back to 3.3V signalling voltage before we actually start initializing the card. Tested by Zhangfei Gao with a Toshiba uhs card and general hs card, on mmp2 in SDMA mode. Signed-off-by: Arindam Nath <arindam.nath@amd.com> Reviewed-by: Philip Rakity <prakity@marvell.com> Tested-by: Philip Rakity <prakity@marvell.com> Acked-by: Zhangfei Gao <zhangfei.gao@marvell.com> Signed-off-by: Chris Ball <cjb@laptop.org>
2011-05-05 14:48:57 +08:00
mmc->caps |= MMC_CAP_UHS_SDR12 | MMC_CAP_UHS_SDR25;
/* SDR104 supports also implies SDR50 support */
if (caps[1] & SDHCI_SUPPORT_SDR104) {
mmc: sd: add support for signal voltage switch procedure Host Controller v3.00 adds another Capabilities register. Apart from other things, this new register indicates whether the Host Controller supports SDR50, SDR104, and DDR50 UHS-I modes. The spec doesn't mention about explicit support for SDR12 and SDR25 UHS-I modes, so the Host Controller v3.00 should support them by default. Also if the controller supports SDR104 mode, it will also support SDR50 mode as well. So depending on the host support, we set the corresponding MMC_CAP_* flags. One more new register. Host Control2 is added in v3.00, which is used during Signal Voltage Switch procedure described below. Since as per v3.00 spec, UHS-I supported hosts should set S18R to 1, we set S18R (bit 24) of OCR before sending ACMD41. We also need to set XPC (bit 28) of OCR in case the host can supply >150mA. This support is indicated by the Maximum Current Capabilities register of the Host Controller. If the response of ACMD41 has both CCS and S18A set, we start the signal voltage switch procedure, which if successfull, will switch the card from 3.3V signalling to 1.8V signalling. Signal voltage switch procedure adds support for a new command CMD11 in the Physical Layer Spec v3.01. As part of this procedure, we need to set 1.8V Signalling Enable (bit 3) of Host Control2 register, which if remains set after 5ms, means the switch to 1.8V signalling is successfull. Otherwise, we clear bit 24 of OCR and retry the initialization sequence. When we remove the card, and insert the same or another card, we need to make sure that we start with 3.3V signalling voltage. So we call mmc_set_signal_voltage() with MMC_SIGNAL_VOLTAGE_330 set so that we are back to 3.3V signalling voltage before we actually start initializing the card. Tested by Zhangfei Gao with a Toshiba uhs card and general hs card, on mmp2 in SDMA mode. Signed-off-by: Arindam Nath <arindam.nath@amd.com> Reviewed-by: Philip Rakity <prakity@marvell.com> Tested-by: Philip Rakity <prakity@marvell.com> Acked-by: Zhangfei Gao <zhangfei.gao@marvell.com> Signed-off-by: Chris Ball <cjb@laptop.org>
2011-05-05 14:48:57 +08:00
mmc->caps |= MMC_CAP_UHS_SDR104 | MMC_CAP_UHS_SDR50;
/* SD3.0: SDR104 is supported so (for eMMC) the caps2
* field can be promoted to support HS200.
*/
if (!(host->quirks2 & SDHCI_QUIRK2_BROKEN_HS200))
mmc->caps2 |= MMC_CAP2_HS200;
} else if (caps[1] & SDHCI_SUPPORT_SDR50)
mmc: sd: add support for signal voltage switch procedure Host Controller v3.00 adds another Capabilities register. Apart from other things, this new register indicates whether the Host Controller supports SDR50, SDR104, and DDR50 UHS-I modes. The spec doesn't mention about explicit support for SDR12 and SDR25 UHS-I modes, so the Host Controller v3.00 should support them by default. Also if the controller supports SDR104 mode, it will also support SDR50 mode as well. So depending on the host support, we set the corresponding MMC_CAP_* flags. One more new register. Host Control2 is added in v3.00, which is used during Signal Voltage Switch procedure described below. Since as per v3.00 spec, UHS-I supported hosts should set S18R to 1, we set S18R (bit 24) of OCR before sending ACMD41. We also need to set XPC (bit 28) of OCR in case the host can supply >150mA. This support is indicated by the Maximum Current Capabilities register of the Host Controller. If the response of ACMD41 has both CCS and S18A set, we start the signal voltage switch procedure, which if successfull, will switch the card from 3.3V signalling to 1.8V signalling. Signal voltage switch procedure adds support for a new command CMD11 in the Physical Layer Spec v3.01. As part of this procedure, we need to set 1.8V Signalling Enable (bit 3) of Host Control2 register, which if remains set after 5ms, means the switch to 1.8V signalling is successfull. Otherwise, we clear bit 24 of OCR and retry the initialization sequence. When we remove the card, and insert the same or another card, we need to make sure that we start with 3.3V signalling voltage. So we call mmc_set_signal_voltage() with MMC_SIGNAL_VOLTAGE_330 set so that we are back to 3.3V signalling voltage before we actually start initializing the card. Tested by Zhangfei Gao with a Toshiba uhs card and general hs card, on mmp2 in SDMA mode. Signed-off-by: Arindam Nath <arindam.nath@amd.com> Reviewed-by: Philip Rakity <prakity@marvell.com> Tested-by: Philip Rakity <prakity@marvell.com> Acked-by: Zhangfei Gao <zhangfei.gao@marvell.com> Signed-off-by: Chris Ball <cjb@laptop.org>
2011-05-05 14:48:57 +08:00
mmc->caps |= MMC_CAP_UHS_SDR50;
if (caps[1] & SDHCI_SUPPORT_DDR50)
mmc->caps |= MMC_CAP_UHS_DDR50;
/* Does the host need tuning for SDR50? */
mmc: sd: add support for tuning during uhs initialization Host Controller needs tuning during initialization to operate SDR50 and SDR104 UHS-I cards. Whether SDR50 mode actually needs tuning is indicated by bit 45 of the Host Controller Capabilities register. A new command CMD19 has been defined in the Physical Layer spec v3.01 to request the card to send tuning pattern. We enable Buffer Read Ready interrupt at the very begining of tuning procedure, because that is the only interrupt generated by the Host Controller during tuning. We program the block size to 64 in the Block Size register. We make sure that DMA Enable and Multi Block Select in the Transfer Mode register are set to 0 before actually sending CMD19. The tuning block is sent by the card to the Host Controller using DAT lines, so we set Data Present Select (bit 5) in the Command register. The Host Controller is responsible for doing the verfication of tuning block sent by the card at the hardware level. After sending CMD19, we wait for Buffer Read Ready interrupt. In case we don't receive an interrupt after the specified timeout value, we fall back on fixed sampling clock by setting Execute Tuning (bit 6) and Sampling Clock Select (bit 7) of Host Control2 register to 0. Before exiting the tuning procedure, we disable Buffer Read Ready interrupt and re-enable other interrupts. Tested by Zhangfei Gao with a Toshiba uhs card and general hs card, on mmp2 in SDMA mode. Signed-off-by: Arindam Nath <arindam.nath@amd.com> Reviewed-by: Philip Rakity <prakity@marvell.com> Tested-by: Philip Rakity <prakity@marvell.com> Acked-by: Zhangfei Gao <zhangfei.gao@marvell.com> Signed-off-by: Chris Ball <cjb@laptop.org>
2011-05-05 14:49:04 +08:00
if (caps[1] & SDHCI_USE_SDR50_TUNING)
host->flags |= SDHCI_SDR50_NEEDS_TUNING;
/* Does the host need tuning for SDR104 / HS200? */
if (mmc->caps2 & MMC_CAP2_HS200)
host->flags |= SDHCI_SDR104_NEEDS_TUNING;
/* Driver Type(s) (A, C, D) supported by the host */
if (caps[1] & SDHCI_DRIVER_TYPE_A)
mmc->caps |= MMC_CAP_DRIVER_TYPE_A;
if (caps[1] & SDHCI_DRIVER_TYPE_C)
mmc->caps |= MMC_CAP_DRIVER_TYPE_C;
if (caps[1] & SDHCI_DRIVER_TYPE_D)
mmc->caps |= MMC_CAP_DRIVER_TYPE_D;
/* Initial value for re-tuning timer count */
host->tuning_count = (caps[1] & SDHCI_RETUNING_TIMER_COUNT_MASK) >>
SDHCI_RETUNING_TIMER_COUNT_SHIFT;
/*
* In case Re-tuning Timer is not disabled, the actual value of
* re-tuning timer will be 2 ^ (n - 1).
*/
if (host->tuning_count)
host->tuning_count = 1 << (host->tuning_count - 1);
/* Re-tuning mode supported by the Host Controller */
host->tuning_mode = (caps[1] & SDHCI_RETUNING_MODE_MASK) >>
SDHCI_RETUNING_MODE_SHIFT;
ocr_avail = 0;
host->vmmc = regulator_get_optional(mmc_dev(mmc), "vmmc");
if (IS_ERR_OR_NULL(host->vmmc)) {
if (PTR_ERR(host->vmmc) < 0) {
pr_info("%s: no vmmc regulator found\n",
mmc_hostname(mmc));
host->vmmc = NULL;
}
}
#ifdef CONFIG_REGULATOR
/*
* Voltage range check makes sense only if regulator reports
* any voltage value.
*/
if (host->vmmc && regulator_get_voltage(host->vmmc) > 0) {
ret = regulator_is_supported_voltage(host->vmmc, 2700000,
3600000);
if ((ret <= 0) || (!(caps[0] & SDHCI_CAN_VDD_330)))
caps[0] &= ~SDHCI_CAN_VDD_330;
if ((ret <= 0) || (!(caps[0] & SDHCI_CAN_VDD_300)))
caps[0] &= ~SDHCI_CAN_VDD_300;
ret = regulator_is_supported_voltage(host->vmmc, 1700000,
1950000);
if ((ret <= 0) || (!(caps[0] & SDHCI_CAN_VDD_180)))
caps[0] &= ~SDHCI_CAN_VDD_180;
}
#endif /* CONFIG_REGULATOR */
mmc: sd: add support for signal voltage switch procedure Host Controller v3.00 adds another Capabilities register. Apart from other things, this new register indicates whether the Host Controller supports SDR50, SDR104, and DDR50 UHS-I modes. The spec doesn't mention about explicit support for SDR12 and SDR25 UHS-I modes, so the Host Controller v3.00 should support them by default. Also if the controller supports SDR104 mode, it will also support SDR50 mode as well. So depending on the host support, we set the corresponding MMC_CAP_* flags. One more new register. Host Control2 is added in v3.00, which is used during Signal Voltage Switch procedure described below. Since as per v3.00 spec, UHS-I supported hosts should set S18R to 1, we set S18R (bit 24) of OCR before sending ACMD41. We also need to set XPC (bit 28) of OCR in case the host can supply >150mA. This support is indicated by the Maximum Current Capabilities register of the Host Controller. If the response of ACMD41 has both CCS and S18A set, we start the signal voltage switch procedure, which if successfull, will switch the card from 3.3V signalling to 1.8V signalling. Signal voltage switch procedure adds support for a new command CMD11 in the Physical Layer Spec v3.01. As part of this procedure, we need to set 1.8V Signalling Enable (bit 3) of Host Control2 register, which if remains set after 5ms, means the switch to 1.8V signalling is successfull. Otherwise, we clear bit 24 of OCR and retry the initialization sequence. When we remove the card, and insert the same or another card, we need to make sure that we start with 3.3V signalling voltage. So we call mmc_set_signal_voltage() with MMC_SIGNAL_VOLTAGE_330 set so that we are back to 3.3V signalling voltage before we actually start initializing the card. Tested by Zhangfei Gao with a Toshiba uhs card and general hs card, on mmp2 in SDMA mode. Signed-off-by: Arindam Nath <arindam.nath@amd.com> Reviewed-by: Philip Rakity <prakity@marvell.com> Tested-by: Philip Rakity <prakity@marvell.com> Acked-by: Zhangfei Gao <zhangfei.gao@marvell.com> Signed-off-by: Chris Ball <cjb@laptop.org>
2011-05-05 14:48:57 +08:00
/*
* According to SD Host Controller spec v3.00, if the Host System
* can afford more than 150mA, Host Driver should set XPC to 1. Also
* the value is meaningful only if Voltage Support in the Capabilities
* register is set. The actual current value is 4 times the register
* value.
*/
max_current_caps = sdhci_readl(host, SDHCI_MAX_CURRENT);
if (!max_current_caps && host->vmmc) {
u32 curr = regulator_get_current_limit(host->vmmc);
if (curr > 0) {
/* convert to SDHCI_MAX_CURRENT format */
curr = curr/1000; /* convert to mA */
curr = curr/SDHCI_MAX_CURRENT_MULTIPLIER;
curr = min_t(u32, curr, SDHCI_MAX_CURRENT_LIMIT);
max_current_caps =
(curr << SDHCI_MAX_CURRENT_330_SHIFT) |
(curr << SDHCI_MAX_CURRENT_300_SHIFT) |
(curr << SDHCI_MAX_CURRENT_180_SHIFT);
}
}
mmc: sd: add support for signal voltage switch procedure Host Controller v3.00 adds another Capabilities register. Apart from other things, this new register indicates whether the Host Controller supports SDR50, SDR104, and DDR50 UHS-I modes. The spec doesn't mention about explicit support for SDR12 and SDR25 UHS-I modes, so the Host Controller v3.00 should support them by default. Also if the controller supports SDR104 mode, it will also support SDR50 mode as well. So depending on the host support, we set the corresponding MMC_CAP_* flags. One more new register. Host Control2 is added in v3.00, which is used during Signal Voltage Switch procedure described below. Since as per v3.00 spec, UHS-I supported hosts should set S18R to 1, we set S18R (bit 24) of OCR before sending ACMD41. We also need to set XPC (bit 28) of OCR in case the host can supply >150mA. This support is indicated by the Maximum Current Capabilities register of the Host Controller. If the response of ACMD41 has both CCS and S18A set, we start the signal voltage switch procedure, which if successfull, will switch the card from 3.3V signalling to 1.8V signalling. Signal voltage switch procedure adds support for a new command CMD11 in the Physical Layer Spec v3.01. As part of this procedure, we need to set 1.8V Signalling Enable (bit 3) of Host Control2 register, which if remains set after 5ms, means the switch to 1.8V signalling is successfull. Otherwise, we clear bit 24 of OCR and retry the initialization sequence. When we remove the card, and insert the same or another card, we need to make sure that we start with 3.3V signalling voltage. So we call mmc_set_signal_voltage() with MMC_SIGNAL_VOLTAGE_330 set so that we are back to 3.3V signalling voltage before we actually start initializing the card. Tested by Zhangfei Gao with a Toshiba uhs card and general hs card, on mmp2 in SDMA mode. Signed-off-by: Arindam Nath <arindam.nath@amd.com> Reviewed-by: Philip Rakity <prakity@marvell.com> Tested-by: Philip Rakity <prakity@marvell.com> Acked-by: Zhangfei Gao <zhangfei.gao@marvell.com> Signed-off-by: Chris Ball <cjb@laptop.org>
2011-05-05 14:48:57 +08:00
if (caps[0] & SDHCI_CAN_VDD_330) {
ocr_avail |= MMC_VDD_32_33 | MMC_VDD_33_34;
mmc: sd: add support for signal voltage switch procedure Host Controller v3.00 adds another Capabilities register. Apart from other things, this new register indicates whether the Host Controller supports SDR50, SDR104, and DDR50 UHS-I modes. The spec doesn't mention about explicit support for SDR12 and SDR25 UHS-I modes, so the Host Controller v3.00 should support them by default. Also if the controller supports SDR104 mode, it will also support SDR50 mode as well. So depending on the host support, we set the corresponding MMC_CAP_* flags. One more new register. Host Control2 is added in v3.00, which is used during Signal Voltage Switch procedure described below. Since as per v3.00 spec, UHS-I supported hosts should set S18R to 1, we set S18R (bit 24) of OCR before sending ACMD41. We also need to set XPC (bit 28) of OCR in case the host can supply >150mA. This support is indicated by the Maximum Current Capabilities register of the Host Controller. If the response of ACMD41 has both CCS and S18A set, we start the signal voltage switch procedure, which if successfull, will switch the card from 3.3V signalling to 1.8V signalling. Signal voltage switch procedure adds support for a new command CMD11 in the Physical Layer Spec v3.01. As part of this procedure, we need to set 1.8V Signalling Enable (bit 3) of Host Control2 register, which if remains set after 5ms, means the switch to 1.8V signalling is successfull. Otherwise, we clear bit 24 of OCR and retry the initialization sequence. When we remove the card, and insert the same or another card, we need to make sure that we start with 3.3V signalling voltage. So we call mmc_set_signal_voltage() with MMC_SIGNAL_VOLTAGE_330 set so that we are back to 3.3V signalling voltage before we actually start initializing the card. Tested by Zhangfei Gao with a Toshiba uhs card and general hs card, on mmp2 in SDMA mode. Signed-off-by: Arindam Nath <arindam.nath@amd.com> Reviewed-by: Philip Rakity <prakity@marvell.com> Tested-by: Philip Rakity <prakity@marvell.com> Acked-by: Zhangfei Gao <zhangfei.gao@marvell.com> Signed-off-by: Chris Ball <cjb@laptop.org>
2011-05-05 14:48:57 +08:00
mmc->max_current_330 = ((max_current_caps &
mmc: sd: add support for signal voltage switch procedure Host Controller v3.00 adds another Capabilities register. Apart from other things, this new register indicates whether the Host Controller supports SDR50, SDR104, and DDR50 UHS-I modes. The spec doesn't mention about explicit support for SDR12 and SDR25 UHS-I modes, so the Host Controller v3.00 should support them by default. Also if the controller supports SDR104 mode, it will also support SDR50 mode as well. So depending on the host support, we set the corresponding MMC_CAP_* flags. One more new register. Host Control2 is added in v3.00, which is used during Signal Voltage Switch procedure described below. Since as per v3.00 spec, UHS-I supported hosts should set S18R to 1, we set S18R (bit 24) of OCR before sending ACMD41. We also need to set XPC (bit 28) of OCR in case the host can supply >150mA. This support is indicated by the Maximum Current Capabilities register of the Host Controller. If the response of ACMD41 has both CCS and S18A set, we start the signal voltage switch procedure, which if successfull, will switch the card from 3.3V signalling to 1.8V signalling. Signal voltage switch procedure adds support for a new command CMD11 in the Physical Layer Spec v3.01. As part of this procedure, we need to set 1.8V Signalling Enable (bit 3) of Host Control2 register, which if remains set after 5ms, means the switch to 1.8V signalling is successfull. Otherwise, we clear bit 24 of OCR and retry the initialization sequence. When we remove the card, and insert the same or another card, we need to make sure that we start with 3.3V signalling voltage. So we call mmc_set_signal_voltage() with MMC_SIGNAL_VOLTAGE_330 set so that we are back to 3.3V signalling voltage before we actually start initializing the card. Tested by Zhangfei Gao with a Toshiba uhs card and general hs card, on mmp2 in SDMA mode. Signed-off-by: Arindam Nath <arindam.nath@amd.com> Reviewed-by: Philip Rakity <prakity@marvell.com> Tested-by: Philip Rakity <prakity@marvell.com> Acked-by: Zhangfei Gao <zhangfei.gao@marvell.com> Signed-off-by: Chris Ball <cjb@laptop.org>
2011-05-05 14:48:57 +08:00
SDHCI_MAX_CURRENT_330_MASK) >>
SDHCI_MAX_CURRENT_330_SHIFT) *
SDHCI_MAX_CURRENT_MULTIPLIER;
}
if (caps[0] & SDHCI_CAN_VDD_300) {
ocr_avail |= MMC_VDD_29_30 | MMC_VDD_30_31;
mmc: sd: add support for signal voltage switch procedure Host Controller v3.00 adds another Capabilities register. Apart from other things, this new register indicates whether the Host Controller supports SDR50, SDR104, and DDR50 UHS-I modes. The spec doesn't mention about explicit support for SDR12 and SDR25 UHS-I modes, so the Host Controller v3.00 should support them by default. Also if the controller supports SDR104 mode, it will also support SDR50 mode as well. So depending on the host support, we set the corresponding MMC_CAP_* flags. One more new register. Host Control2 is added in v3.00, which is used during Signal Voltage Switch procedure described below. Since as per v3.00 spec, UHS-I supported hosts should set S18R to 1, we set S18R (bit 24) of OCR before sending ACMD41. We also need to set XPC (bit 28) of OCR in case the host can supply >150mA. This support is indicated by the Maximum Current Capabilities register of the Host Controller. If the response of ACMD41 has both CCS and S18A set, we start the signal voltage switch procedure, which if successfull, will switch the card from 3.3V signalling to 1.8V signalling. Signal voltage switch procedure adds support for a new command CMD11 in the Physical Layer Spec v3.01. As part of this procedure, we need to set 1.8V Signalling Enable (bit 3) of Host Control2 register, which if remains set after 5ms, means the switch to 1.8V signalling is successfull. Otherwise, we clear bit 24 of OCR and retry the initialization sequence. When we remove the card, and insert the same or another card, we need to make sure that we start with 3.3V signalling voltage. So we call mmc_set_signal_voltage() with MMC_SIGNAL_VOLTAGE_330 set so that we are back to 3.3V signalling voltage before we actually start initializing the card. Tested by Zhangfei Gao with a Toshiba uhs card and general hs card, on mmp2 in SDMA mode. Signed-off-by: Arindam Nath <arindam.nath@amd.com> Reviewed-by: Philip Rakity <prakity@marvell.com> Tested-by: Philip Rakity <prakity@marvell.com> Acked-by: Zhangfei Gao <zhangfei.gao@marvell.com> Signed-off-by: Chris Ball <cjb@laptop.org>
2011-05-05 14:48:57 +08:00
mmc->max_current_300 = ((max_current_caps &
mmc: sd: add support for signal voltage switch procedure Host Controller v3.00 adds another Capabilities register. Apart from other things, this new register indicates whether the Host Controller supports SDR50, SDR104, and DDR50 UHS-I modes. The spec doesn't mention about explicit support for SDR12 and SDR25 UHS-I modes, so the Host Controller v3.00 should support them by default. Also if the controller supports SDR104 mode, it will also support SDR50 mode as well. So depending on the host support, we set the corresponding MMC_CAP_* flags. One more new register. Host Control2 is added in v3.00, which is used during Signal Voltage Switch procedure described below. Since as per v3.00 spec, UHS-I supported hosts should set S18R to 1, we set S18R (bit 24) of OCR before sending ACMD41. We also need to set XPC (bit 28) of OCR in case the host can supply >150mA. This support is indicated by the Maximum Current Capabilities register of the Host Controller. If the response of ACMD41 has both CCS and S18A set, we start the signal voltage switch procedure, which if successfull, will switch the card from 3.3V signalling to 1.8V signalling. Signal voltage switch procedure adds support for a new command CMD11 in the Physical Layer Spec v3.01. As part of this procedure, we need to set 1.8V Signalling Enable (bit 3) of Host Control2 register, which if remains set after 5ms, means the switch to 1.8V signalling is successfull. Otherwise, we clear bit 24 of OCR and retry the initialization sequence. When we remove the card, and insert the same or another card, we need to make sure that we start with 3.3V signalling voltage. So we call mmc_set_signal_voltage() with MMC_SIGNAL_VOLTAGE_330 set so that we are back to 3.3V signalling voltage before we actually start initializing the card. Tested by Zhangfei Gao with a Toshiba uhs card and general hs card, on mmp2 in SDMA mode. Signed-off-by: Arindam Nath <arindam.nath@amd.com> Reviewed-by: Philip Rakity <prakity@marvell.com> Tested-by: Philip Rakity <prakity@marvell.com> Acked-by: Zhangfei Gao <zhangfei.gao@marvell.com> Signed-off-by: Chris Ball <cjb@laptop.org>
2011-05-05 14:48:57 +08:00
SDHCI_MAX_CURRENT_300_MASK) >>
SDHCI_MAX_CURRENT_300_SHIFT) *
SDHCI_MAX_CURRENT_MULTIPLIER;
}
if (caps[0] & SDHCI_CAN_VDD_180) {
ocr_avail |= MMC_VDD_165_195;
mmc->max_current_180 = ((max_current_caps &
mmc: sd: add support for signal voltage switch procedure Host Controller v3.00 adds another Capabilities register. Apart from other things, this new register indicates whether the Host Controller supports SDR50, SDR104, and DDR50 UHS-I modes. The spec doesn't mention about explicit support for SDR12 and SDR25 UHS-I modes, so the Host Controller v3.00 should support them by default. Also if the controller supports SDR104 mode, it will also support SDR50 mode as well. So depending on the host support, we set the corresponding MMC_CAP_* flags. One more new register. Host Control2 is added in v3.00, which is used during Signal Voltage Switch procedure described below. Since as per v3.00 spec, UHS-I supported hosts should set S18R to 1, we set S18R (bit 24) of OCR before sending ACMD41. We also need to set XPC (bit 28) of OCR in case the host can supply >150mA. This support is indicated by the Maximum Current Capabilities register of the Host Controller. If the response of ACMD41 has both CCS and S18A set, we start the signal voltage switch procedure, which if successfull, will switch the card from 3.3V signalling to 1.8V signalling. Signal voltage switch procedure adds support for a new command CMD11 in the Physical Layer Spec v3.01. As part of this procedure, we need to set 1.8V Signalling Enable (bit 3) of Host Control2 register, which if remains set after 5ms, means the switch to 1.8V signalling is successfull. Otherwise, we clear bit 24 of OCR and retry the initialization sequence. When we remove the card, and insert the same or another card, we need to make sure that we start with 3.3V signalling voltage. So we call mmc_set_signal_voltage() with MMC_SIGNAL_VOLTAGE_330 set so that we are back to 3.3V signalling voltage before we actually start initializing the card. Tested by Zhangfei Gao with a Toshiba uhs card and general hs card, on mmp2 in SDMA mode. Signed-off-by: Arindam Nath <arindam.nath@amd.com> Reviewed-by: Philip Rakity <prakity@marvell.com> Tested-by: Philip Rakity <prakity@marvell.com> Acked-by: Zhangfei Gao <zhangfei.gao@marvell.com> Signed-off-by: Chris Ball <cjb@laptop.org>
2011-05-05 14:48:57 +08:00
SDHCI_MAX_CURRENT_180_MASK) >>
SDHCI_MAX_CURRENT_180_SHIFT) *
SDHCI_MAX_CURRENT_MULTIPLIER;
}
if (host->ocr_mask)
ocr_avail = host->ocr_mask;
mmc->ocr_avail = ocr_avail;
mmc->ocr_avail_sdio = ocr_avail;
if (host->ocr_avail_sdio)
mmc->ocr_avail_sdio &= host->ocr_avail_sdio;
mmc->ocr_avail_sd = ocr_avail;
if (host->ocr_avail_sd)
mmc->ocr_avail_sd &= host->ocr_avail_sd;
else /* normal SD controllers don't support 1.8V */
mmc->ocr_avail_sd &= ~MMC_VDD_165_195;
mmc->ocr_avail_mmc = ocr_avail;
if (host->ocr_avail_mmc)
mmc->ocr_avail_mmc &= host->ocr_avail_mmc;
if (mmc->ocr_avail == 0) {
pr_err("%s: Hardware doesn't report any "
"support voltages.\n", mmc_hostname(mmc));
return -ENODEV;
}
spin_lock_init(&host->lock);
/*
* Maximum number of segments. Depends on if the hardware
* can do scatter/gather or not.
*/
if (host->flags & SDHCI_USE_ADMA)
mmc->max_segs = 128;
else if (host->flags & SDHCI_USE_SDMA)
mmc->max_segs = 1;
else /* PIO */
mmc->max_segs = 128;
/*
* Maximum number of sectors in one transfer. Limited by DMA boundary
* size (512KiB).
*/
mmc->max_req_size = 524288;
/*
* Maximum segment size. Could be one segment with the maximum number
* of bytes. When doing hardware scatter/gather, each entry cannot
* be larger than 64 KiB though.
*/
if (host->flags & SDHCI_USE_ADMA) {
if (host->quirks & SDHCI_QUIRK_BROKEN_ADMA_ZEROLEN_DESC)
mmc->max_seg_size = 65535;
else
mmc->max_seg_size = 65536;
} else {
mmc->max_seg_size = mmc->max_req_size;
}
/*
* Maximum block size. This varies from controller to controller and
* is specified in the capabilities register.
*/
if (host->quirks & SDHCI_QUIRK_FORCE_BLK_SZ_2048) {
mmc->max_blk_size = 2;
} else {
mmc: sd: add support for signal voltage switch procedure Host Controller v3.00 adds another Capabilities register. Apart from other things, this new register indicates whether the Host Controller supports SDR50, SDR104, and DDR50 UHS-I modes. The spec doesn't mention about explicit support for SDR12 and SDR25 UHS-I modes, so the Host Controller v3.00 should support them by default. Also if the controller supports SDR104 mode, it will also support SDR50 mode as well. So depending on the host support, we set the corresponding MMC_CAP_* flags. One more new register. Host Control2 is added in v3.00, which is used during Signal Voltage Switch procedure described below. Since as per v3.00 spec, UHS-I supported hosts should set S18R to 1, we set S18R (bit 24) of OCR before sending ACMD41. We also need to set XPC (bit 28) of OCR in case the host can supply >150mA. This support is indicated by the Maximum Current Capabilities register of the Host Controller. If the response of ACMD41 has both CCS and S18A set, we start the signal voltage switch procedure, which if successfull, will switch the card from 3.3V signalling to 1.8V signalling. Signal voltage switch procedure adds support for a new command CMD11 in the Physical Layer Spec v3.01. As part of this procedure, we need to set 1.8V Signalling Enable (bit 3) of Host Control2 register, which if remains set after 5ms, means the switch to 1.8V signalling is successfull. Otherwise, we clear bit 24 of OCR and retry the initialization sequence. When we remove the card, and insert the same or another card, we need to make sure that we start with 3.3V signalling voltage. So we call mmc_set_signal_voltage() with MMC_SIGNAL_VOLTAGE_330 set so that we are back to 3.3V signalling voltage before we actually start initializing the card. Tested by Zhangfei Gao with a Toshiba uhs card and general hs card, on mmp2 in SDMA mode. Signed-off-by: Arindam Nath <arindam.nath@amd.com> Reviewed-by: Philip Rakity <prakity@marvell.com> Tested-by: Philip Rakity <prakity@marvell.com> Acked-by: Zhangfei Gao <zhangfei.gao@marvell.com> Signed-off-by: Chris Ball <cjb@laptop.org>
2011-05-05 14:48:57 +08:00
mmc->max_blk_size = (caps[0] & SDHCI_MAX_BLOCK_MASK) >>
SDHCI_MAX_BLOCK_SHIFT;
if (mmc->max_blk_size >= 3) {
pr_warning("%s: Invalid maximum block size, "
"assuming 512 bytes\n", mmc_hostname(mmc));
mmc->max_blk_size = 0;
}
}
mmc->max_blk_size = 512 << mmc->max_blk_size;
/*
* Maximum block count.
*/
mmc->max_blk_count = (host->quirks & SDHCI_QUIRK_NO_MULTIBLOCK) ? 1 : 65535;
/*
* Init tasklets.
*/
tasklet_init(&host->card_tasklet,
sdhci_tasklet_card, (unsigned long)host);
tasklet_init(&host->finish_tasklet,
sdhci_tasklet_finish, (unsigned long)host);
setup_timer(&host->timer, sdhci_timeout_timer, (unsigned long)host);
if (host->version >= SDHCI_SPEC_300) {
mmc: sd: add support for tuning during uhs initialization Host Controller needs tuning during initialization to operate SDR50 and SDR104 UHS-I cards. Whether SDR50 mode actually needs tuning is indicated by bit 45 of the Host Controller Capabilities register. A new command CMD19 has been defined in the Physical Layer spec v3.01 to request the card to send tuning pattern. We enable Buffer Read Ready interrupt at the very begining of tuning procedure, because that is the only interrupt generated by the Host Controller during tuning. We program the block size to 64 in the Block Size register. We make sure that DMA Enable and Multi Block Select in the Transfer Mode register are set to 0 before actually sending CMD19. The tuning block is sent by the card to the Host Controller using DAT lines, so we set Data Present Select (bit 5) in the Command register. The Host Controller is responsible for doing the verfication of tuning block sent by the card at the hardware level. After sending CMD19, we wait for Buffer Read Ready interrupt. In case we don't receive an interrupt after the specified timeout value, we fall back on fixed sampling clock by setting Execute Tuning (bit 6) and Sampling Clock Select (bit 7) of Host Control2 register to 0. Before exiting the tuning procedure, we disable Buffer Read Ready interrupt and re-enable other interrupts. Tested by Zhangfei Gao with a Toshiba uhs card and general hs card, on mmp2 in SDMA mode. Signed-off-by: Arindam Nath <arindam.nath@amd.com> Reviewed-by: Philip Rakity <prakity@marvell.com> Tested-by: Philip Rakity <prakity@marvell.com> Acked-by: Zhangfei Gao <zhangfei.gao@marvell.com> Signed-off-by: Chris Ball <cjb@laptop.org>
2011-05-05 14:49:04 +08:00
init_waitqueue_head(&host->buf_ready_int);
/* Initialize re-tuning timer */
init_timer(&host->tuning_timer);
host->tuning_timer.data = (unsigned long)host;
host->tuning_timer.function = sdhci_tuning_timer;
}
mmc: sdhci: request irq after sdhci_init() is called Generally request_irq() should be called after hardware has been initialized into a sane state. However, sdhci driver currently calls request_irq() before sdhci_init(). At least, the following kernel panic seen on i.MX6 is caused by that. The sdhci controller on i.MX6 may have noisy glitch on DAT1 line, which will trigger SDIO interrupt handling once request_irq() is called. But at this point, the SDIO interrupt handler host->sdio_irq_thread has not been registered yet. Thus, we see the NULL pointer access with wake_up_process(host->sdio_irq_thread) in mmc_signal_sdio_irq(). Fix the panic by simply reverse the calling sequence between request_irq() and sdhci_init(). sdhci-pltfm: SDHCI platform and OF driver helper mmc0: no vqmmc regulator found mmc0: no vmmc regulator found Unable to handle kernel NULL pointer dereference at virtual address 00000000 pgd = 80004000 [00000000] *pgd=00000000 Internal error: Oops: 5 [#1] SMP ARM Modules linked in: CPU: 0 PID: 1 Comm: swapper/0 Not tainted 3.10.0+ #3 task: 9f860000 ti: 9f862000 task.ti: 9f862000 PC is at wake_up_process+0xc/0x44 LR is at sdhci_irq+0x378/0x93c pc : [<8004f768>] lr : [<803fb698>] psr: 40000193 sp : 9f863ba0 ip : 9f863bb8 fp : 9f863bb4 r10: 9f807900 r9 : 80761fbc r8 : 00000000 r7 : 00000000 r6 : 00000000 r5 : 00000001 r4 : 9fa68000 r3 : 00000001 r2 : 00000002 r1 : 20000193 r0 : 00000000 Flags: nZcv IRQs off FIQs on Mode SVC_32 ISA ARM Segment kernel Control: 10c53c7d Table: 8000404a DAC: 00000017 Process swapper/0 (pid: 1, stack limit = 0x9f862238) Stack: (0x9f863ba0 to 0x9f864000) 3ba0: 00000001 9fa68000 9f863c04 9f863bb8 803fb698 8004f768 8011af00 80265aac 3bc0: 00000000 000003d9 00000000 9fa51880 00000001 00000000 9f863c14 9fa53640 3be0: 00000001 00000000 00000000 00000036 80761fbc 9f807900 9f863c3c 9f863c08 3c00: 80075154 803fb32c 802c2b38 802c63d8 802c63cc 9f807900 00000001 9f862000 3c20: 00000036 00000000 9f807930 60000113 9f863c54 9f863c40 800752ec 8007510c 3c40: 9f807900 00000001 9f863c6c 9f863c58 80078324 800752a8 00000036 8071fd64 3c60: 9f863c84 9f863c70 80074ac0 80078294 00000140 8072ab78 9f863cac 9f863c88 3c80: 8000ee34 80074aa4 00000000 a080e10c 8072acbc 9f863cd0 a080e100 00000036 3ca0: 9f863ccc 9f863cb0 80008600 8000edec 805386a8 60000113 ffffffff 9f863d04 3cc0: 9f863d24 9f863cd0 8000e0c0 800085dc 9f807950 60000113 00000007 00000000 3ce0: 9f807900 9fa53640 9f807950 9fa68240 00000036 9f807930 60000113 9f863d24 3d00: 9f863d28 9f863d18 80076834 805386a8 60000113 ffffffff 9f863d64 9f863d28 3d20: 80076834 80538688 00000000 800bfe4c 00002fac 00000001 9f863d54 9fa53640 3d40: 9f807900 803fb320 9fa68240 00000080 00000000 00000036 9f863d94 9f863d68 3d60: 80076b38 80076674 00000080 9fa68240 9fa68000 04000000 9fa6836c 9fa68380 3d80: 806d620c 80700350 9f863dc4 9f863d98 803fce8c 80076a88 9fa532c0 9fa68240 3da0: 9fa51490 9fa51490 9fa68240 00000000 9f8ae600 9f81d080 9f863df4 9f863dc8 3dc0: 803fea0c 803fc808 9f863de4 9f863dd8 80125850 807b1ed8 807576b8 9f8ae610 3de0: 00000000 807576b8 9f863e04 9f863df8 802ee0d4 803fe798 9f863e2c 9f863e08 3e00: 802ecd1c 802ee0c0 00000000 9f8ae610 807576b8 9f8ae644 00000000 000000a9 3e20: 9f863e4c 9f863e30 802ecec0 802ecc30 9f83355c 807576b8 802ece2c 00000000 3e40: 9f863e74 9f863e50 802eb3d8 802ece38 9f83355c 9f8ac3b4 9f833570 807576b8 3e60: 80746e70 9fa51400 9f863e84 9f863e78 802ec838 802eb388 9f863eb4 9f863e88 3e80: 802ec3d0 802ec824 80692748 807620c0 9f863eb4 807576b8 00000006 807620c0 3ea0: 00000000 000000a9 9f863edc 9f863eb8 802ed3e8 802ec2fc 9f862000 00000006 3ec0: 807620c0 00000000 000000a9 80700350 9f863eec 9f863ee0 802ee2f8 802ed374 3ee0: 9f863efc 9f863ef0 80700364 802ee2b8 9f863f54 9f863f00 8000870c 8070035c 3f00: 9f863f54 9f863f10 9f862000 00000000 00000000 00000006 00000006 806d3aa4 3f20: 00000000 80688b18 9f863f54 80713560 00000006 80713540 807620c0 000000a9 3f40: 806d620c 8071ec24 9f863f94 9f863f58 806d6994 800086dc 00000006 00000006 3f60: 806d620c f6bfffff fb7f5df7 00000000 8052da28 00000000 00000000 00000000 3f80: 00000000 00000000 9f863fac 9f863f98 8052da38 806d689c ffffffff 00000000 3fa0: 00000000 9f863fb0 8000e5d8 8052da34 00000000 00000000 00000000 00000000 3fc0: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 3fe0: 00000000 00000000 00000000 00000000 00000013 00000000 d9cdf5ff 1fff5ffe Backtrace: [<8004f75c>] (wake_up_process+0x0/0x44) from [<803fb698>] (sdhci_irq+0x378/0x93c) r4:9fa68000 r3:00000001 [<803fb320>] (sdhci_irq+0x0/0x93c) from [<80075154>] (handle_irq_event_percpu+0x54/0x19c) [<80075100>] (handle_irq_event_percpu+0x0/0x19c) from [<800752ec>] (handle_irq_event+0x50/0x70) [<8007529c>] (handle_irq_event+0x0/0x70) from [<80078324>] (handle_fasteoi_irq+0x9c/0x170) r5:00000001 r4:9f807900 [<80078288>] (handle_fasteoi_irq+0x0/0x170) from [<80074ac0>] (generic_handle_irq+0x28/0x38) r5:8071fd64 r4:00000036 [<80074a98>] (generic_handle_irq+0x0/0x38) from [<8000ee34>] (handle_IRQ+0x54/0xb4) r4:8072ab78 r3:00000140 [<8000ede0>] (handle_IRQ+0x0/0xb4) from [<80008600>] (gic_handle_irq+0x30/0x64) r8:00000036 r7:a080e100 r6:9f863cd0 r5:8072acbc r4:a080e10c r3:00000000 [<800085d0>] (gic_handle_irq+0x0/0x64) from [<8000e0c0>] (__irq_svc+0x40/0x54) Exception stack(0x9f863cd0 to 0x9f863d18) 3cc0: 9f807950 60000113 00000007 00000000 3ce0: 9f807900 9fa53640 9f807950 9fa68240 00000036 9f807930 60000113 9f863d24 3d00: 9f863d28 9f863d18 80076834 805386a8 60000113 ffffffff r7:9f863d04 r6:ffffffff r5:60000113 r4:805386a8 [<8053867c>] (_raw_spin_unlock_irqrestore+0x0/0x30) from [<80076834>] (__setup_irq+0x1cc/0x414) [<80076668>] (__setup_irq+0x0/0x414) from [<80076b38>] (request_threaded_irq+0xbc/0x140) [<80076a7c>] (request_threaded_irq+0x0/0x140) from [<803fce8c>] (sdhci_add_host+0x690/0xb88) [<803fc7fc>] (sdhci_add_host+0x0/0xb88) from [<803fea0c>] (sdhci_esdhc_imx_probe+0x280/0x4d4) r8:9f81d080 r7:9f8ae600 r6:00000000 r5:9fa68240 r4:9fa51490 [<803fe78c>] (sdhci_esdhc_imx_probe+0x0/0x4d4) from [<802ee0d4>] (platform_drv_probe+0x20/0x24) r8:807576b8 r7:00000000 r6:9f8ae610 r5:807576b8 r4:807b1ed8 [<802ee0b4>] (platform_drv_probe+0x0/0x24) from [<802ecd1c>] (driver_probe_device+0xf8/0x208) [<802ecc24>] (driver_probe_device+0x0/0x208) from [<802ecec0>] (__driver_attach+0x94/0x98) r8:000000a9 r7:00000000 r6:9f8ae644 r5:807576b8 r4:9f8ae610 r3:00000000 [<802ece2c>] (__driver_attach+0x0/0x98) from [<802eb3d8>] (bus_for_each_dev+0x5c/0x90) r6:00000000 r5:802ece2c r4:807576b8 r3:9f83355c [<802eb37c>] (bus_for_each_dev+0x0/0x90) from [<802ec838>] (driver_attach+0x20/0x28) r6:9fa51400 r5:80746e70 r4:807576b8 [<802ec818>] (driver_attach+0x0/0x28) from [<802ec3d0>] (bus_add_driver+0xe0/0x234) [<802ec2f0>] (bus_add_driver+0x0/0x234) from [<802ed3e8>] (driver_register+0x80/0x14c) r8:000000a9 r7:00000000 r6:807620c0 r5:00000006 r4:807576b8 [<802ed368>] (driver_register+0x0/0x14c) from [<802ee2f8>] (platform_driver_register+0x4c/0x60) [<802ee2ac>] (platform_driver_register+0x0/0x60) from [<80700364>] (sdhci_esdhc_imx_driver_init+0x14/0x1c) [<80700350>] (sdhci_esdhc_imx_driver_init+0x0/0x1c) from [<8000870c>] (do_one_initcall+0x3c/0x164) [<800086d0>] (do_one_initcall+0x0/0x164) from [<806d6994>] (kernel_init_freeable+0x104/0x1d0) [<806d6890>] (kernel_init_freeable+0x0/0x1d0) from [<8052da38>] (kernel_init+0x10/0xec) [<8052da28>] (kernel_init+0x0/0xec) from [<8000e5d8>] (ret_from_fork+0x14/0x3c) r4:00000000 r3:ffffffff Code: e89da800 e1a0c00d e92dd818 e24cb004 (e5903000) ---[ end trace e9af3588936b63f0 ]--- Kernel panic - not syncing: Fatal exception in interrupt Signed-off-by: Shawn Guo <shawn.guo@linaro.org> Signed-off-by: Chris Ball <cjb@laptop.org>
2013-07-05 14:38:55 +08:00
sdhci_init(host, 0);
ret = request_irq(host->irq, sdhci_irq, IRQF_SHARED,
mmc_hostname(mmc), host);
if (ret) {
pr_err("%s: Failed to request IRQ %d: %d\n",
mmc_hostname(mmc), host->irq, ret);
goto untasklet;
}
#ifdef CONFIG_MMC_DEBUG
sdhci_dumpregs(host);
#endif
#ifdef SDHCI_USE_LEDS_CLASS
snprintf(host->led_name, sizeof(host->led_name),
"%s::", mmc_hostname(mmc));
host->led.name = host->led_name;
host->led.brightness = LED_OFF;
host->led.default_trigger = mmc_hostname(mmc);
host->led.brightness_set = sdhci_led_control;
ret = led_classdev_register(mmc_dev(mmc), &host->led);
if (ret) {
pr_err("%s: Failed to register LED device: %d\n",
mmc_hostname(mmc), ret);
goto reset;
}
#endif
mmiowb();
mmc_add_host(mmc);
pr_info("%s: SDHCI controller on %s [%s] using %s\n",
mmc_hostname(mmc), host->hw_name, dev_name(mmc_dev(mmc)),
(host->flags & SDHCI_USE_ADMA) ? "ADMA" :
(host->flags & SDHCI_USE_SDMA) ? "DMA" : "PIO");
sdhci_enable_card_detection(host);
return 0;
#ifdef SDHCI_USE_LEDS_CLASS
reset:
sdhci_reset(host, SDHCI_RESET_ALL);
sdhci_mask_irqs(host, SDHCI_INT_ALL_MASK);
free_irq(host->irq, host);
#endif
untasklet:
tasklet_kill(&host->card_tasklet);
tasklet_kill(&host->finish_tasklet);
return ret;
}
EXPORT_SYMBOL_GPL(sdhci_add_host);
void sdhci_remove_host(struct sdhci_host *host, int dead)
{
unsigned long flags;
if (dead) {
spin_lock_irqsave(&host->lock, flags);
host->flags |= SDHCI_DEVICE_DEAD;
if (host->mrq) {
pr_err("%s: Controller removed during "
" transfer!\n", mmc_hostname(host->mmc));
host->mrq->cmd->error = -ENOMEDIUM;
tasklet_schedule(&host->finish_tasklet);
}
spin_unlock_irqrestore(&host->lock, flags);
}
sdhci_disable_card_detection(host);
mmc_remove_host(host->mmc);
#ifdef SDHCI_USE_LEDS_CLASS
led_classdev_unregister(&host->led);
#endif
if (!dead)
sdhci_reset(host, SDHCI_RESET_ALL);
sdhci_mask_irqs(host, SDHCI_INT_ALL_MASK);
free_irq(host->irq, host);
del_timer_sync(&host->timer);
tasklet_kill(&host->card_tasklet);
tasklet_kill(&host->finish_tasklet);
if (host->vmmc) {
regulator_disable(host->vmmc);
regulator_put(host->vmmc);
}
if (host->vqmmc) {
regulator_disable(host->vqmmc);
regulator_put(host->vqmmc);
}
kfree(host->adma_desc);
kfree(host->align_buffer);
host->adma_desc = NULL;
host->align_buffer = NULL;
}
EXPORT_SYMBOL_GPL(sdhci_remove_host);
void sdhci_free_host(struct sdhci_host *host)
{
mmc_free_host(host->mmc);
}
EXPORT_SYMBOL_GPL(sdhci_free_host);
/*****************************************************************************\
* *
* Driver init/exit *
* *
\*****************************************************************************/
static int __init sdhci_drv_init(void)
{
pr_info(DRIVER_NAME
": Secure Digital Host Controller Interface driver\n");
pr_info(DRIVER_NAME ": Copyright(c) Pierre Ossman\n");
return 0;
}
static void __exit sdhci_drv_exit(void)
{
}
module_init(sdhci_drv_init);
module_exit(sdhci_drv_exit);
module_param(debug_quirks, uint, 0444);
module_param(debug_quirks2, uint, 0444);
MODULE_AUTHOR("Pierre Ossman <pierre@ossman.eu>");
MODULE_DESCRIPTION("Secure Digital Host Controller Interface core driver");
MODULE_LICENSE("GPL");
MODULE_PARM_DESC(debug_quirks, "Force certain quirks.");
MODULE_PARM_DESC(debug_quirks2, "Force certain other quirks.");