linux-sg2042/include/acpi/acpi_bus.h

528 lines
14 KiB
C
Raw Normal View History

/*
* acpi_bus.h - ACPI Bus Driver ($Revision: 22 $)
*
* Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
* Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*/
#ifndef __ACPI_BUS_H__
#define __ACPI_BUS_H__
#include <linux/device.h>
#include <acpi/acpi.h>
/* TBD: Make dynamic */
#define ACPI_MAX_HANDLES 10
struct acpi_handle_list {
u32 count;
acpi_handle handles[ACPI_MAX_HANDLES];
};
/* acpi_utils.h */
acpi_status
acpi_extract_package(union acpi_object *package,
struct acpi_buffer *format, struct acpi_buffer *buffer);
acpi_status
acpi_evaluate_integer(acpi_handle handle,
acpi_string pathname,
struct acpi_object_list *arguments, unsigned long long *data);
acpi_status
acpi_evaluate_reference(acpi_handle handle,
acpi_string pathname,
struct acpi_object_list *arguments,
struct acpi_handle_list *list);
ACPI: Add an interface to evaluate _OST Added acpi_evaluate_hotplug_opt(). All ACPI hotplug handlers must call this function when evaluating _OST for hotplug operations. If the platform does not support _OST, this function returns AE_NOT_FOUND and has no effect on the platform. ACPI_HOTPLUG_OST is defined when all relevant ACPI hotplug operations, such as CPU, memory and container hotplug, are enabled. This assures consistent behavior among the hotplug operations with regarding the _OST support. When ACPI_HOTPLUG_OST is not defined, this function is a no-op. ACPI PCI hotplug is not enhanced to support _OST at this time since it is a legacy method being replaced by PCIe native hotplug. _OST support for ACPI PCI hotplug may be added in future if necessary. Some platforms may require the OS to support _OST in order to support ACPI hotplug operations. For example, if a platform has the management console where user can request a hotplug operation from, this _OST support would be required for the management console to show the result of the hotplug request to user. Added macro definitions of _OST source events and status codes. Also renamed OSC_SB_CPUHP_OST_SUPPORT to OSC_SB_HOTPLUG_OST_SUPPORT since this _OSC bit is not specific to CPU hotplug. This bit is defined in Table 6-147 of ACPI 5.0 as follows. Bits: 3 Field Name: Insertion / Ejection _OST Processing Support Definition: This bit is set if OSPM will evaluate the _OST object defined under a device when processing insertion and ejection source event codes. Signed-off-by: Toshi Kani <toshi.kani@hp.com> Signed-off-by: Len Brown <len.brown@intel.com>
2012-05-24 10:25:19 +08:00
acpi_status
acpi_evaluate_hotplug_ost(acpi_handle handle, u32 source_event,
u32 status_code, struct acpi_buffer *status_buf);
acpi_status
acpi_get_physical_device_location(acpi_handle handle, struct acpi_pld_info **pld);
bool acpi_has_method(acpi_handle handle, char *name);
acpi_status acpi_execute_simple_method(acpi_handle handle, char *method,
u64 arg);
acpi_status acpi_evaluate_ej0(acpi_handle handle);
acpi_status acpi_evaluate_lck(acpi_handle handle, int lock);
bool acpi_ata_match(acpi_handle handle);
bool acpi_bay_match(acpi_handle handle);
bool acpi_dock_match(acpi_handle handle);
#ifdef CONFIG_ACPI
#include <linux/proc_fs.h>
#define ACPI_BUS_FILE_ROOT "acpi"
extern struct proc_dir_entry *acpi_root_dir;
enum acpi_bus_device_type {
ACPI_BUS_TYPE_DEVICE = 0,
ACPI_BUS_TYPE_POWER,
ACPI_BUS_TYPE_PROCESSOR,
ACPI_BUS_TYPE_THERMAL,
ACPI_BUS_TYPE_POWER_BUTTON,
ACPI_BUS_TYPE_SLEEP_BUTTON,
ACPI_BUS_DEVICE_TYPE_COUNT
};
struct acpi_driver;
struct acpi_device;
/*
* ACPI Scan Handler
* -----------------
*/
enum acpi_hotplug_mode {
AHM_GENERIC = 0,
AHM_CONTAINER,
AHM_COUNT
};
struct acpi_hotplug_profile {
struct kobject kobj;
bool enabled:1;
bool ignore:1;
enum acpi_hotplug_mode mode;
};
static inline struct acpi_hotplug_profile *to_acpi_hotplug_profile(
struct kobject *kobj)
{
return container_of(kobj, struct acpi_hotplug_profile, kobj);
}
struct acpi_scan_handler {
const struct acpi_device_id *ids;
struct list_head list_node;
int (*attach)(struct acpi_device *dev, const struct acpi_device_id *id);
void (*detach)(struct acpi_device *dev);
struct acpi_hotplug_profile hotplug;
};
/*
* ACPI Driver
* -----------
*/
typedef int (*acpi_op_add) (struct acpi_device * device);
typedef int (*acpi_op_remove) (struct acpi_device * device);
typedef void (*acpi_op_notify) (struct acpi_device * device, u32 event);
struct acpi_device_ops {
acpi_op_add add;
acpi_op_remove remove;
acpi_op_notify notify;
};
#define ACPI_DRIVER_ALL_NOTIFY_EVENTS 0x1 /* system AND device events */
struct acpi_driver {
char name[80];
char class[80];
const struct acpi_device_id *ids; /* Supported Hardware IDs */
unsigned int flags;
struct acpi_device_ops ops;
struct device_driver drv;
struct module *owner;
};
/*
* ACPI Device
* -----------
*/
/* Status (_STA) */
struct acpi_device_status {
u32 present:1;
u32 enabled:1;
u32 show_in_ui:1;
u32 functional:1;
u32 battery_present:1;
u32 reserved:27;
};
/* Flags */
struct acpi_device_flags {
u32 dynamic_status:1;
u32 removable:1;
u32 ejectable:1;
u32 power_manageable:1;
u32 match_driver:1;
ACPI / hotplug: Remove containers synchronously The current protocol for handling hot remove of containers is very fragile and causes acpi_eject_store() to acquire acpi_scan_lock which may deadlock with the removal of the device that it is called for (the reason is that device sysfs attributes cannot be removed while their callbacks are being executed and ACPI device objects are removed under acpi_scan_lock). The problem is related to the fact that containers are handled by acpi_bus_device_eject() in a special way, which is to emit an offline uevent instead of just removing the container. Then, user space is expected to handle that uevent and use the container's "eject" attribute to actually remove it. That is fragile, because user space may fail to complete the ejection (for example, by not using the container's "eject" attribute at all) leaving the BIOS kind of in a limbo. Moreover, if the eject event is not signaled for a container itself, but for its parent device object (or generally, for an ancestor above it in the ACPI namespace), the container will be removed straight away without doing that whole dance. For this reason, modify acpi_bus_device_eject() to remove containers synchronously like any other objects (user space will get its uevent anyway in case it does some other things in response to it) and remove the eject_pending ACPI device flag that is not used any more. This way acpi_eject_store() doesn't have a reason to acquire acpi_scan_lock any more and one possible deadlock scenario goes away (plus the code is simplified a bit). Reported-and-tested-by: Gu Zheng <guz.fnst@cn.fujitsu.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Acked-by: Toshi Kani <toshi.kani@hp.com>
2013-08-29 03:41:07 +08:00
u32 reserved:27;
};
/* File System */
struct acpi_device_dir {
struct proc_dir_entry *entry;
};
#define acpi_device_dir(d) ((d)->dir.entry)
/* Plug and Play */
typedef char acpi_bus_id[8];
typedef unsigned long acpi_bus_address;
typedef char acpi_device_name[40];
typedef char acpi_device_class[20];
struct acpi_hardware_id {
struct list_head list;
char *id;
};
struct acpi_pnp_type {
u32 hardware_id:1;
u32 bus_address:1;
u32 reserved:30;
};
struct acpi_device_pnp {
acpi_bus_id bus_id; /* Object name */
struct acpi_pnp_type type; /* ID type */
acpi_bus_address bus_address; /* _ADR */
char *unique_id; /* _UID */
struct list_head ids; /* _HID and _CIDs */
acpi_device_name device_name; /* Driver-determined */
acpi_device_class device_class; /* " */
ACPI: Add new sysfs interface to export device description Add support to export the device description obtained from the ACPI _STR method, if one exists for a device, to user-space via a sysfs interface. This new interface provides a standard and platform neutral way for users to obtain the description text stored in the ACPI _STR method. If no _STR method exists for the device, no sysfs 'description' file will be created. The 'description' file will be located in the /sys/devices/ directory using the device's path. /sys/device/<bus>/<bridge path>/<device path>.../firmware_node/description Example: /sys/devices/pci0000:00/0000:00.07.0/0000:0e:00.0/firmware_node/description It can also be located using the ACPI device path, for example: /sys/devices/LNXSYSTM:00/device:00/ACPI0004:00/PNP0A08:00/device:13/device:15/description /sys/devices/LNXSYSTM:00/device:00/ACPI0004:00/ACPI0004:01/ACPI0007:02/description Execute the 'cat' command on the 'description' file to obtain the description string for that device. This patch also includes documentation describing how the new sysfs interface works Changes from v1-v2 based on comments by Len Brown and Fengguang Wu * Removed output "No Description" and leaving a NULL attribute if the _STR method failed to evaluate. * In acpi_device_remove_files() removed the redundent check of dev->pnp.str_obj before calling free. This check triggered a message from smatch. Signed-off-by: Lance Ortiz <lance.ortiz@hp.com> Signed-off-by: Len Brown <len.brown@intel.com>
2012-10-03 02:43:23 +08:00
union acpi_object *str_obj; /* unicode string for _STR method */
unsigned long sun; /* _SUN */
};
#define acpi_device_bid(d) ((d)->pnp.bus_id)
#define acpi_device_adr(d) ((d)->pnp.bus_address)
const char *acpi_device_hid(struct acpi_device *device);
#define acpi_device_name(d) ((d)->pnp.device_name)
#define acpi_device_class(d) ((d)->pnp.device_class)
/* Power Management */
struct acpi_device_power_flags {
u32 explicit_get:1; /* _PSC present? */
u32 power_resources:1; /* Power resources */
u32 inrush_current:1; /* Serialize Dx->D0 */
u32 power_removed:1; /* Optimize Dx->D0 */
u32 ignore_parent:1; /* Power is independent of parent power state */
u32 reserved:27;
};
struct acpi_device_power_state {
struct {
u8 valid:1;
u8 os_accessible:1;
u8 explicit_set:1; /* _PSx present? */
u8 reserved:6;
} flags;
int power; /* % Power (compared to D0) */
int latency; /* Dx->D0 time (microseconds) */
struct list_head resources; /* Power resources referenced */
};
struct acpi_device_power {
int state; /* Current state */
struct acpi_device_power_flags flags;
struct acpi_device_power_state states[ACPI_D_STATE_COUNT]; /* Power states (D0-D3Cold) */
};
/* Performance Management */
struct acpi_device_perf_flags {
u8 reserved:8;
};
struct acpi_device_perf_state {
struct {
u8 valid:1;
u8 reserved:7;
} flags;
u8 power; /* % Power (compared to P0) */
u8 performance; /* % Performance ( " ) */
int latency; /* Px->P0 time (microseconds) */
};
struct acpi_device_perf {
int state;
struct acpi_device_perf_flags flags;
int state_count;
struct acpi_device_perf_state *states;
};
/* Wakeup Management */
struct acpi_device_wakeup_flags {
u8 valid:1; /* Can successfully enable wakeup? */
u8 run_wake:1; /* Run-Wake GPE devices */
PCI / ACPI / PM: Platform support for PCI PME wake-up Although the majority of PCI devices can generate PMEs that in principle may be used to wake up devices suspended at run time, platform support is generally necessary to convert PMEs into wake-up events that can be delivered to the kernel. If ACPI is used for this purpose, PME signals generated by a PCI device will trigger the ACPI GPE associated with the device to generate an ACPI wake-up event that we can set up a handler for, provided that everything is configured correctly. Unfortunately, the subset of PCI devices that have GPEs associated with them is quite limited. The devices without dedicated GPEs have to rely on the GPEs associated with other devices (in the majority of cases their upstream bridges and, possibly, the root bridge) to generate ACPI wake-up events in response to PME signals from them. Add ACPI platform support for PCI PME wake-up: o Add a framework making is possible to use ACPI system notify handlers for run-time PM. o Add new PCI platform callback ->run_wake() to struct pci_platform_pm_ops allowing us to enable/disable the platform to generate wake-up events for given device. Implemet this callback for the ACPI platform. o Define ACPI wake-up handlers for PCI devices and PCI root buses and make the PCI-ACPI binding code register wake-up notifiers for all PCI devices present in the ACPI tables. o Add function pci_dev_run_wake() which can be used by PCI drivers to check if given device is capable of generating wake-up events at run time. Developed in cooperation with Matthew Garrett <mjg@redhat.com>. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2010-02-18 06:44:09 +08:00
u8 notifier_present:1; /* Wake-up notify handler has been installed */
};
struct acpi_device_wakeup {
acpi_handle gpe_device;
u64 gpe_number;
u64 sleep_state;
struct list_head resources;
struct acpi_device_wakeup_flags flags;
int prepare_count;
};
struct acpi_device_physical_node {
unsigned int node_id;
struct list_head node;
struct device *dev;
bool put_online:1;
};
/* Device */
struct acpi_device {
int device_type;
acpi_handle handle; /* no handle for fixed hardware */
struct acpi_device *parent;
struct list_head children;
struct list_head node;
struct list_head wakeup_list;
struct acpi_device_status status;
struct acpi_device_flags flags;
struct acpi_device_pnp pnp;
struct acpi_device_power power;
struct acpi_device_wakeup wakeup;
struct acpi_device_perf performance;
struct acpi_device_dir dir;
struct acpi_scan_handler *handler;
struct acpi_driver *driver;
void *driver_data;
struct device dev;
unsigned int physical_node_count;
struct list_head physical_node_list;
struct mutex physical_node_lock;
void (*remove)(struct acpi_device *);
};
static inline void *acpi_driver_data(struct acpi_device *d)
{
return d->driver_data;
}
#define to_acpi_device(d) container_of(d, struct acpi_device, dev)
#define to_acpi_driver(d) container_of(d, struct acpi_driver, drv)
/* acpi_device.dev.bus == &acpi_bus_type */
extern struct bus_type acpi_bus_type;
/*
* Events
* ------
*/
struct acpi_bus_event {
struct list_head node;
acpi_device_class device_class;
acpi_bus_id bus_id;
u32 type;
u32 data;
};
extern struct kobject *acpi_kobj;
extern int acpi_bus_generate_netlink_event(const char*, const char*, u8, int);
void acpi_bus_private_data_handler(acpi_handle, void *);
int acpi_bus_get_private_data(acpi_handle, void **);
extern int acpi_notifier_call_chain(struct acpi_device *, u32, u32);
extern int register_acpi_notifier(struct notifier_block *);
extern int unregister_acpi_notifier(struct notifier_block *);
/*
* External Functions
*/
int acpi_bus_get_device(acpi_handle handle, struct acpi_device **device);
acpi_status acpi_bus_get_status_handle(acpi_handle handle,
unsigned long long *sta);
int acpi_bus_get_status(struct acpi_device *device);
int acpi_bus_set_power(acpi_handle handle, int state);
const char *acpi_power_state_string(int state);
int acpi_device_get_power(struct acpi_device *device, int *state);
int acpi_device_set_power(struct acpi_device *device, int state);
int acpi_bus_init_power(struct acpi_device *device);
int acpi_device_fix_up_power(struct acpi_device *device);
int acpi_bus_update_power(acpi_handle handle, int *state_p);
bool acpi_bus_power_manageable(acpi_handle handle);
#ifdef CONFIG_PM
PCI ACPI: Rework PCI handling of wake-up * Introduce function acpi_pm_device_sleep_wake() for enabling and disabling the system wake-up capability of devices that are power manageable by ACPI. * Introduce function acpi_bus_can_wakeup() allowing other (dependent) subsystems to check if ACPI is able to enable the system wake-up capability of given device. * Introduce callback .sleep_wake() in struct pci_platform_pm_ops and for the ACPI PCI 'driver' make it use acpi_pm_device_sleep_wake(). * Introduce callback .can_wakeup() in struct pci_platform_pm_ops and for the ACPI 'driver' make it use acpi_bus_can_wakeup(). * Move the PME# handlig code out of pci_enable_wake() and split it into two functions, pci_pme_capable() and pci_pme_active(), allowing the caller to check if given device is capable of generating PME# from given power state and to enable/disable the device's PME# functionality, respectively. * Modify pci_enable_wake() to use the new ACPI callbacks and the new PME#-related functions. * Drop the generic .platform_enable_wakeup() callback that is not used any more. * Introduce device_set_wakeup_capable() that will set the power.can_wakeup flag of given device. * Rework PCI device PM initialization so that, if given device is capable of generating wake-up events, either natively through the PME# mechanism, or with the help of the platform, its power.can_wakeup flag is set and its power.should_wakeup flag is unset as appropriate. * Make ACPI set the power.can_wakeup flag for devices found to be wake-up capable by it. * Make the ACPI wake-up code enable/disable GPEs for devices that have the wakeup.flags.prepared flag set (which means that their wake-up power has been enabled). Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-07-07 09:34:48 +08:00
bool acpi_bus_can_wakeup(acpi_handle handle);
#else
static inline bool acpi_bus_can_wakeup(acpi_handle handle) { return false; }
#endif
ACPI / hotplug: Fix concurrency issues and memory leaks This changeset is aimed at fixing a few different but related problems in the ACPI hotplug infrastructure. First of all, since notify handlers may be run in parallel with acpi_bus_scan(), acpi_bus_trim() and acpi_bus_hot_remove_device() and some of them are installed for ACPI handles that have no struct acpi_device objects attached (i.e. before those objects are created), those notify handlers have to take acpi_scan_lock to prevent races from taking place (e.g. a struct acpi_device is found to be present for the given ACPI handle, but right after that it is removed by acpi_bus_trim() running in parallel to the given notify handler). Moreover, since some of them call acpi_bus_scan() and acpi_bus_trim(), this leads to the conclusion that acpi_scan_lock should be acquired by the callers of these two funtions rather by these functions themselves. For these reasons, make all notify handlers that can handle device addition and eject events take acpi_scan_lock and remove the acpi_scan_lock locking from acpi_bus_scan() and acpi_bus_trim(). Accordingly, update all of their users to make sure that they are always called under acpi_scan_lock. Furthermore, since eject operations are carried out asynchronously with respect to the notify events that trigger them, with the help of acpi_bus_hot_remove_device(), even if notify handlers take the ACPI scan lock, it still is possible that, for example, acpi_bus_trim() will run between acpi_bus_hot_remove_device() and the notify handler that scheduled its execution and that acpi_bus_trim() will remove the device node passed to acpi_bus_hot_remove_device() for ejection. In that case, the struct acpi_device object obtained by acpi_bus_hot_remove_device() will be invalid and not-so-funny things will ensue. To protect agaist that, make the users of acpi_bus_hot_remove_device() run get_device() on ACPI device node objects that are about to be passed to it and make acpi_bus_hot_remove_device() run put_device() on them and check if their ACPI handles are not NULL (make acpi_device_unregister() clear the device nodes' ACPI handles for that check to work). Finally, observe that acpi_os_hotplug_execute() actually can fail, in which case its caller ought to free memory allocated for the context object to prevent leaks from happening. It also needs to run put_device() on the device node that it ran get_device() on previously in that case. Modify the code accordingly. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Yinghai Lu <yinghai@kernel.org>
2013-02-13 21:36:47 +08:00
void acpi_scan_lock_acquire(void);
void acpi_scan_lock_release(void);
int acpi_scan_add_handler(struct acpi_scan_handler *handler);
int acpi_bus_register_driver(struct acpi_driver *driver);
void acpi_bus_unregister_driver(struct acpi_driver *driver);
int acpi_bus_scan(acpi_handle handle);
void acpi_bus_trim(struct acpi_device *start);
acpi_status acpi_bus_get_ejd(acpi_handle handle, acpi_handle * ejd);
int acpi_match_device_ids(struct acpi_device *device,
const struct acpi_device_id *ids);
int acpi_create_dir(struct acpi_device *);
void acpi_remove_dir(struct acpi_device *);
ACPI / hotplug: Consolidate deferred execution of ACPI hotplug routines There are two different interfaces for queuing up work items on the ACPI hotplug workqueue, alloc_acpi_hp_work() used by PCI and PCI host bridge hotplug code and acpi_os_hotplug_execute() used by the common ACPI hotplug code and docking stations. They both are somewhat cumbersome to use and work slightly differently. The users of alloc_acpi_hp_work() have to submit a work function that will extract the necessary data items from a struct acpi_hp_work object allocated by alloc_acpi_hp_work() and then will free that object, while it would be more straightforward to simply use a work function with one more argument and let the interface take care of the execution details. The users of acpi_os_hotplug_execute() also have to deal with the fact that it takes only one argument in addition to the work function pointer, although acpi_os_execute_deferred() actually takes care of the allocation and freeing of memory, so it would have been able to pass more arguments to the work function if it hadn't been constrained by the connection with acpi_os_execute(). Moreover, while alloc_acpi_hp_work() makes GFP_KERNEL memory allocations, which is correct, because hotplug work items are always queued up from process context, acpi_os_hotplug_execute() uses GFP_ATOMIC, as that is needed by acpi_os_execute(). Also, acpi_os_execute_deferred() queued up by it waits for the ACPI event workqueues to flush before executing the work function, whereas alloc_acpi_hp_work() can't do anything similar. That leads to somewhat arbitrary differences in behavior between various ACPI hotplug code paths and has to be straightened up. For this reason, replace both alloc_acpi_hp_work() and acpi_os_hotplug_execute() with a single interface, acpi_hotplug_execute(), combining their behavior and being more friendly to its users than any of the two. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Tested-by: Mika Westerberg <mika.westerberg@linux.intel.com>
2013-11-07 08:45:40 +08:00
typedef void (*acpi_hp_callback)(void *data, u32 src);
acpi_status acpi_hotplug_execute(acpi_hp_callback func, void *data, u32 src);
/**
* module_acpi_driver(acpi_driver) - Helper macro for registering an ACPI driver
* @__acpi_driver: acpi_driver struct
*
* Helper macro for ACPI drivers which do not do anything special in module
* init/exit. This eliminates a lot of boilerplate. Each module may only
* use this macro once, and calling it replaces module_init() and module_exit()
*/
#define module_acpi_driver(__acpi_driver) \
module_driver(__acpi_driver, acpi_bus_register_driver, \
acpi_bus_unregister_driver)
/*
* Bind physical devices with ACPI devices
*/
struct acpi_bus_type {
struct list_head list;
const char *name;
bool (*match)(struct device *dev);
int (*find_device) (struct device *, acpi_handle *);
void (*setup)(struct device *);
void (*cleanup)(struct device *);
};
int register_acpi_bus_type(struct acpi_bus_type *);
int unregister_acpi_bus_type(struct acpi_bus_type *);
struct acpi_pci_root {
struct acpi_device * device;
struct pci_bus *bus;
u16 segment;
struct resource secondary; /* downstream bus range */
u32 osc_support_set; /* _OSC state of support bits */
u32 osc_control_set; /* _OSC state of control bits */
phys_addr_t mcfg_addr;
};
/* helper */
ACPI: Try harder to resolve _ADR collisions for bridges In theory, under a given ACPI namespace node there should be only one child device object with _ADR whose value matches a given bus address exactly. In practice, however, there are systems in which multiple child device objects under a given parent have _ADR matching exactly the same address. In those cases we use _STA to determine which of the multiple matching devices is enabled, since some systems are known to indicate which ACPI device object to associate with the given physical (usually PCI) device this way. Unfortunately, as it turns out, there are systems in which many device objects under the same parent have _ADR matching exactly the same bus address and none of them has _STA, in which case they all should be regarded as enabled according to the spec. Still, if those device objects are supposed to represent bridges (e.g. this is the case for device objects corresponding to PCIe ports), we can try harder and skip the ones that have no child device objects in the ACPI namespace. With luck, we can avoid using device objects that we are not expected to use this way. Although this only works for bridges whose children also have ACPI namespace representation, it is sufficient to address graphics adapter detection issues on some systems, so rework the code finding a matching device ACPI handle for a given bus address to implement this idea. Introduce a new function, acpi_find_child(), taking three arguments: the ACPI handle of the device's parent, a bus address suitable for the device's bus type and a bool indicating if the device is a bridge and make it work as outlined above. Reimplement the function currently used for this purpose, acpi_get_child(), as a call to acpi_find_child() with the last argument set to 'false' and make the PCI subsystem use acpi_find_child() with the bridge information passed as the last argument to it. [Lan Tianyu notices that it is not sufficient to use pci_is_bridge() for that, because the device's subordinate pointer hasn't been set yet at this point, so use hdr_type instead.] This change fixes a regression introduced inadvertently by commit 33f767d (ACPI: Rework acpi_get_child() to be more efficient) which overlooked the fact that for acpi_walk_namespace() "post-order" means "after all children have been visited" rather than "on the way back", so for device objects without children and for namespace walks of depth 1, as in the acpi_get_child() case, the "post-order" callbacks ordering is actually the same as the ordering of "pre-order" ones. Since that commit changed the namespace walk in acpi_get_child() to terminate after finding the first matching object instead of going through all of them and returning the last one, it effectively changed the result returned by that function in some rare cases and that led to problems (the switch from a "pre-order" to a "post-order" callback was supposed to prevent that from happening, but it was ineffective). As it turns out, the systems where the change made by commit 33f767d actually matters are those where there are multiple ACPI device objects representing the same PCIe port (which effectively is a bridge). Moreover, only one of them, and the one we are expected to use, has child device objects in the ACPI namespace, so the regression can be addressed as described above. References: https://bugzilla.kernel.org/show_bug.cgi?id=60561 Reported-by: Peter Wu <lekensteyn@gmail.com> Tested-by: Vladimir Lalov <mail@vlalov.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Bjorn Helgaas <bhelgaas@google.com> Cc: 3.9+ <stable@vger.kernel.org> # 3.9+
2013-08-08 04:55:00 +08:00
acpi_handle acpi_find_child(acpi_handle, u64, bool);
static inline acpi_handle acpi_get_child(acpi_handle handle, u64 addr)
{
return acpi_find_child(handle, addr, false);
}
ACPI / driver core: Store an ACPI device pointer in struct acpi_dev_node Modify struct acpi_dev_node to contain a pointer to struct acpi_device associated with the given device object (that is, its ACPI companion device) instead of an ACPI handle corresponding to it. Introduce two new macros for manipulating that pointer in a CONFIG_ACPI-safe way, ACPI_COMPANION() and ACPI_COMPANION_SET(), and rework the ACPI_HANDLE() macro to take the above changes into account. Drop the ACPI_HANDLE_SET() macro entirely and rework its users to use ACPI_COMPANION_SET() instead. For some of them who used to pass the result of acpi_get_child() directly to ACPI_HANDLE_SET() introduce a helper routine acpi_preset_companion() doing an equivalent thing. The main motivation for doing this is that there are things represented by struct acpi_device objects that don't have valid ACPI handles (so called fixed ACPI hardware features, such as power and sleep buttons) and we would like to create platform device objects for them and "glue" them to their ACPI companions in the usual way (which currently is impossible due to the lack of valid ACPI handles). However, there are more reasons why it may be useful. First, struct acpi_device pointers allow of much better type checking than void pointers which are ACPI handles, so it should be more difficult to write buggy code using modified struct acpi_dev_node and the new macros. Second, the change should help to reduce (over time) the number of places in which the result of ACPI_HANDLE() is passed to acpi_bus_get_device() in order to obtain a pointer to the struct acpi_device associated with the given "physical" device, because now that pointer is returned by ACPI_COMPANION() directly. Finally, the change should make it easier to write generic code that will build both for CONFIG_ACPI set and unset without adding explicit compiler directives to it. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Tested-by: Mika Westerberg <mika.westerberg@linux.intel.com> # on Haswell Reviewed-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Aaron Lu <aaron.lu@intel.com> # for ATA and SDIO part
2013-11-12 05:41:56 +08:00
void acpi_preset_companion(struct device *dev, acpi_handle parent, u64 addr);
int acpi_is_root_bridge(acpi_handle);
struct acpi_pci_root *acpi_pci_find_root(acpi_handle handle);
PCI / ACPI / PM: Platform support for PCI PME wake-up Although the majority of PCI devices can generate PMEs that in principle may be used to wake up devices suspended at run time, platform support is generally necessary to convert PMEs into wake-up events that can be delivered to the kernel. If ACPI is used for this purpose, PME signals generated by a PCI device will trigger the ACPI GPE associated with the device to generate an ACPI wake-up event that we can set up a handler for, provided that everything is configured correctly. Unfortunately, the subset of PCI devices that have GPEs associated with them is quite limited. The devices without dedicated GPEs have to rely on the GPEs associated with other devices (in the majority of cases their upstream bridges and, possibly, the root bridge) to generate ACPI wake-up events in response to PME signals from them. Add ACPI platform support for PCI PME wake-up: o Add a framework making is possible to use ACPI system notify handlers for run-time PM. o Add new PCI platform callback ->run_wake() to struct pci_platform_pm_ops allowing us to enable/disable the platform to generate wake-up events for given device. Implemet this callback for the ACPI platform. o Define ACPI wake-up handlers for PCI devices and PCI root buses and make the PCI-ACPI binding code register wake-up notifiers for all PCI devices present in the ACPI tables. o Add function pci_dev_run_wake() which can be used by PCI drivers to check if given device is capable of generating wake-up events at run time. Developed in cooperation with Matthew Garrett <mjg@redhat.com>. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2010-02-18 06:44:09 +08:00
int acpi_enable_wakeup_device_power(struct acpi_device *dev, int state);
int acpi_disable_wakeup_device_power(struct acpi_device *dev);
#ifdef CONFIG_PM
acpi_status acpi_add_pm_notifier(struct acpi_device *adev,
acpi_notify_handler handler, void *context);
acpi_status acpi_remove_pm_notifier(struct acpi_device *adev,
acpi_notify_handler handler);
int acpi_pm_device_sleep_state(struct device *, int *, int);
#else
static inline acpi_status acpi_add_pm_notifier(struct acpi_device *adev,
acpi_notify_handler handler,
void *context)
{
return AE_SUPPORT;
}
static inline acpi_status acpi_remove_pm_notifier(struct acpi_device *adev,
acpi_notify_handler handler)
{
return AE_SUPPORT;
}
static inline int acpi_pm_device_sleep_state(struct device *d, int *p, int m)
{
if (p)
*p = ACPI_STATE_D0;
return (m >= ACPI_STATE_D0 && m <= ACPI_STATE_D3_COLD) ?
m : ACPI_STATE_D0;
}
#endif
#ifdef CONFIG_PM_RUNTIME
int __acpi_device_run_wake(struct acpi_device *, bool);
int acpi_pm_device_run_wake(struct device *, bool);
#else
static inline int __acpi_device_run_wake(struct acpi_device *adev, bool en)
{
return -ENODEV;
}
static inline int acpi_pm_device_run_wake(struct device *dev, bool enable)
{
return -ENODEV;
}
#endif
#ifdef CONFIG_PM_SLEEP
int __acpi_device_sleep_wake(struct acpi_device *, u32, bool);
int acpi_pm_device_sleep_wake(struct device *, bool);
#else
static inline int __acpi_device_sleep_wake(struct acpi_device *adev,
u32 target_state, bool enable)
{
return -ENODEV;
}
static inline int acpi_pm_device_sleep_wake(struct device *dev, bool enable)
{
return -ENODEV;
}
#endif
#ifdef CONFIG_ACPI_SLEEP
u32 acpi_target_system_state(void);
#else
static inline u32 acpi_target_system_state(void) { return ACPI_STATE_S0; }
#endif
static inline bool acpi_device_power_manageable(struct acpi_device *adev)
{
return adev->flags.power_manageable;
}
static inline bool acpi_device_can_wakeup(struct acpi_device *adev)
{
return adev->wakeup.flags.valid;
}
static inline bool acpi_device_can_poweroff(struct acpi_device *adev)
{
return adev->power.states[ACPI_STATE_D3_COLD].flags.os_accessible;
}
#else /* CONFIG_ACPI */
static inline int register_acpi_bus_type(void *bus) { return 0; }
static inline int unregister_acpi_bus_type(void *bus) { return 0; }
#endif /* CONFIG_ACPI */
#endif /*__ACPI_BUS_H__*/