License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 22:07:57 +08:00
|
|
|
/* SPDX-License-Identifier: GPL-2.0 */
|
2005-04-17 06:20:36 +08:00
|
|
|
#ifndef _LINUX__INIT_TASK_H
|
|
|
|
#define _LINUX__INIT_TASK_H
|
|
|
|
|
2005-09-10 04:04:13 +08:00
|
|
|
#include <linux/rcupdate.h>
|
2006-07-03 15:24:42 +08:00
|
|
|
#include <linux/irqflags.h>
|
2006-10-02 17:18:14 +08:00
|
|
|
#include <linux/utsname.h>
|
[PATCH] lockdep: core
Do 'make oldconfig' and accept all the defaults for new config options -
reboot into the kernel and if everything goes well it should boot up fine and
you should have /proc/lockdep and /proc/lockdep_stats files.
Typically if the lock validator finds some problem it will print out
voluminous debug output that begins with "BUG: ..." and which syslog output
can be used by kernel developers to figure out the precise locking scenario.
What does the lock validator do? It "observes" and maps all locking rules as
they occur dynamically (as triggered by the kernel's natural use of spinlocks,
rwlocks, mutexes and rwsems). Whenever the lock validator subsystem detects a
new locking scenario, it validates this new rule against the existing set of
rules. If this new rule is consistent with the existing set of rules then the
new rule is added transparently and the kernel continues as normal. If the
new rule could create a deadlock scenario then this condition is printed out.
When determining validity of locking, all possible "deadlock scenarios" are
considered: assuming arbitrary number of CPUs, arbitrary irq context and task
context constellations, running arbitrary combinations of all the existing
locking scenarios. In a typical system this means millions of separate
scenarios. This is why we call it a "locking correctness" validator - for all
rules that are observed the lock validator proves it with mathematical
certainty that a deadlock could not occur (assuming that the lock validator
implementation itself is correct and its internal data structures are not
corrupted by some other kernel subsystem). [see more details and conditionals
of this statement in include/linux/lockdep.h and
Documentation/lockdep-design.txt]
Furthermore, this "all possible scenarios" property of the validator also
enables the finding of complex, highly unlikely multi-CPU multi-context races
via single single-context rules, increasing the likelyhood of finding bugs
drastically. In practical terms: the lock validator already found a bug in
the upstream kernel that could only occur on systems with 3 or more CPUs, and
which needed 3 very unlikely code sequences to occur at once on the 3 CPUs.
That bug was found and reported on a single-CPU system (!). So in essence a
race will be found "piecemail-wise", triggering all the necessary components
for the race, without having to reproduce the race scenario itself! In its
short existence the lock validator found and reported many bugs before they
actually caused a real deadlock.
To further increase the efficiency of the validator, the mapping is not per
"lock instance", but per "lock-class". For example, all struct inode objects
in the kernel have inode->inotify_mutex. If there are 10,000 inodes cached,
then there are 10,000 lock objects. But ->inotify_mutex is a single "lock
type", and all locking activities that occur against ->inotify_mutex are
"unified" into this single lock-class. The advantage of the lock-class
approach is that all historical ->inotify_mutex uses are mapped into a single
(and as narrow as possible) set of locking rules - regardless of how many
different tasks or inode structures it took to build this set of rules. The
set of rules persist during the lifetime of the kernel.
To see the rough magnitude of checking that the lock validator does, here's a
portion of /proc/lockdep_stats, fresh after bootup:
lock-classes: 694 [max: 2048]
direct dependencies: 1598 [max: 8192]
indirect dependencies: 17896
all direct dependencies: 16206
dependency chains: 1910 [max: 8192]
in-hardirq chains: 17
in-softirq chains: 105
in-process chains: 1065
stack-trace entries: 38761 [max: 131072]
combined max dependencies: 2033928
hardirq-safe locks: 24
hardirq-unsafe locks: 176
softirq-safe locks: 53
softirq-unsafe locks: 137
irq-safe locks: 59
irq-unsafe locks: 176
The lock validator has observed 1598 actual single-thread locking patterns,
and has validated all possible 2033928 distinct locking scenarios.
More details about the design of the lock validator can be found in
Documentation/lockdep-design.txt, which can also found at:
http://redhat.com/~mingo/lockdep-patches/lockdep-design.txt
[bunk@stusta.de: cleanups]
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-07-03 15:24:50 +08:00
|
|
|
#include <linux/lockdep.h>
|
2009-03-26 08:55:00 +08:00
|
|
|
#include <linux/ftrace.h>
|
2006-10-02 17:18:20 +08:00
|
|
|
#include <linux/ipc.h>
|
2006-12-08 18:37:59 +08:00
|
|
|
#include <linux/pid_namespace.h>
|
2007-07-16 14:40:59 +08:00
|
|
|
#include <linux/user_namespace.h>
|
capabilities: implement per-process securebits
Filesystem capability support makes it possible to do away with (set)uid-0
based privilege and use capabilities instead. That is, with filesystem
support for capabilities but without this present patch, it is (conceptually)
possible to manage a system with capabilities alone and never need to obtain
privilege via (set)uid-0.
Of course, conceptually isn't quite the same as currently possible since few
user applications, certainly not enough to run a viable system, are currently
prepared to leverage capabilities to exercise privilege. Further, many
applications exist that may never get upgraded in this way, and the kernel
will continue to want to support their setuid-0 base privilege needs.
Where pure-capability applications evolve and replace setuid-0 binaries, it is
desirable that there be a mechanisms by which they can contain their
privilege. In addition to leveraging the per-process bounding and inheritable
sets, this should include suppressing the privilege of the uid-0 superuser
from the process' tree of children.
The feature added by this patch can be leveraged to suppress the privilege
associated with (set)uid-0. This suppression requires CAP_SETPCAP to
initiate, and only immediately affects the 'current' process (it is inherited
through fork()/exec()). This reimplementation differs significantly from the
historical support for securebits which was system-wide, unwieldy and which
has ultimately withered to a dead relic in the source of the modern kernel.
With this patch applied a process, that is capable(CAP_SETPCAP), can now drop
all legacy privilege (through uid=0) for itself and all subsequently
fork()'d/exec()'d children with:
prctl(PR_SET_SECUREBITS, 0x2f);
This patch represents a no-op unless CONFIG_SECURITY_FILE_CAPABILITIES is
enabled at configure time.
[akpm@linux-foundation.org: fix uninitialised var warning]
[serue@us.ibm.com: capabilities: use cap_task_prctl when !CONFIG_SECURITY]
Signed-off-by: Andrew G. Morgan <morgan@kernel.org>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Reviewed-by: James Morris <jmorris@namei.org>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: Paul Moore <paul.moore@hp.com>
Signed-off-by: Serge E. Hallyn <serue@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:40 +08:00
|
|
|
#include <linux/securebits.h>
|
2012-12-17 03:00:34 +08:00
|
|
|
#include <linux/seqlock.h>
|
rtmutex: Turn the plist into an rb-tree
Turn the pi-chains from plist to rb-tree, in the rt_mutex code,
and provide a proper comparison function for -deadline and
-priority tasks.
This is done mainly because:
- classical prio field of the plist is just an int, which might
not be enough for representing a deadline;
- manipulating such a list would become O(nr_deadline_tasks),
which might be to much, as the number of -deadline task increases.
Therefore, an rb-tree is used, and tasks are queued in it according
to the following logic:
- among two -priority (i.e., SCHED_BATCH/OTHER/RR/FIFO) tasks, the
one with the higher (lower, actually!) prio wins;
- among a -priority and a -deadline task, the latter always wins;
- among two -deadline tasks, the one with the earliest deadline
wins.
Queueing and dequeueing functions are changed accordingly, for both
the list of a task's pi-waiters and the list of tasks blocked on
a pi-lock.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Dario Faggioli <raistlin@linux.it>
Signed-off-by: Juri Lelli <juri.lelli@gmail.com>
Signed-off-again-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1383831828-15501-10-git-send-email-juri.lelli@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-11-07 21:43:43 +08:00
|
|
|
#include <linux/rbtree.h>
|
2017-02-04 06:15:21 +08:00
|
|
|
#include <linux/sched/autogroup.h>
|
2007-09-12 17:55:17 +08:00
|
|
|
#include <net/net_namespace.h>
|
2013-02-16 16:46:48 +08:00
|
|
|
#include <linux/sched/rt.h>
|
livepatch: change to a per-task consistency model
Change livepatch to use a basic per-task consistency model. This is the
foundation which will eventually enable us to patch those ~10% of
security patches which change function or data semantics. This is the
biggest remaining piece needed to make livepatch more generally useful.
This code stems from the design proposal made by Vojtech [1] in November
2014. It's a hybrid of kGraft and kpatch: it uses kGraft's per-task
consistency and syscall barrier switching combined with kpatch's stack
trace switching. There are also a number of fallback options which make
it quite flexible.
Patches are applied on a per-task basis, when the task is deemed safe to
switch over. When a patch is enabled, livepatch enters into a
transition state where tasks are converging to the patched state.
Usually this transition state can complete in a few seconds. The same
sequence occurs when a patch is disabled, except the tasks converge from
the patched state to the unpatched state.
An interrupt handler inherits the patched state of the task it
interrupts. The same is true for forked tasks: the child inherits the
patched state of the parent.
Livepatch uses several complementary approaches to determine when it's
safe to patch tasks:
1. The first and most effective approach is stack checking of sleeping
tasks. If no affected functions are on the stack of a given task,
the task is patched. In most cases this will patch most or all of
the tasks on the first try. Otherwise it'll keep trying
periodically. This option is only available if the architecture has
reliable stacks (HAVE_RELIABLE_STACKTRACE).
2. The second approach, if needed, is kernel exit switching. A
task is switched when it returns to user space from a system call, a
user space IRQ, or a signal. It's useful in the following cases:
a) Patching I/O-bound user tasks which are sleeping on an affected
function. In this case you have to send SIGSTOP and SIGCONT to
force it to exit the kernel and be patched.
b) Patching CPU-bound user tasks. If the task is highly CPU-bound
then it will get patched the next time it gets interrupted by an
IRQ.
c) In the future it could be useful for applying patches for
architectures which don't yet have HAVE_RELIABLE_STACKTRACE. In
this case you would have to signal most of the tasks on the
system. However this isn't supported yet because there's
currently no way to patch kthreads without
HAVE_RELIABLE_STACKTRACE.
3. For idle "swapper" tasks, since they don't ever exit the kernel, they
instead have a klp_update_patch_state() call in the idle loop which
allows them to be patched before the CPU enters the idle state.
(Note there's not yet such an approach for kthreads.)
All the above approaches may be skipped by setting the 'immediate' flag
in the 'klp_patch' struct, which will disable per-task consistency and
patch all tasks immediately. This can be useful if the patch doesn't
change any function or data semantics. Note that, even with this flag
set, it's possible that some tasks may still be running with an old
version of the function, until that function returns.
There's also an 'immediate' flag in the 'klp_func' struct which allows
you to specify that certain functions in the patch can be applied
without per-task consistency. This might be useful if you want to patch
a common function like schedule(), and the function change doesn't need
consistency but the rest of the patch does.
For architectures which don't have HAVE_RELIABLE_STACKTRACE, the user
must set patch->immediate which causes all tasks to be patched
immediately. This option should be used with care, only when the patch
doesn't change any function or data semantics.
In the future, architectures which don't have HAVE_RELIABLE_STACKTRACE
may be allowed to use per-task consistency if we can come up with
another way to patch kthreads.
The /sys/kernel/livepatch/<patch>/transition file shows whether a patch
is in transition. Only a single patch (the topmost patch on the stack)
can be in transition at a given time. A patch can remain in transition
indefinitely, if any of the tasks are stuck in the initial patch state.
A transition can be reversed and effectively canceled by writing the
opposite value to the /sys/kernel/livepatch/<patch>/enabled file while
the transition is in progress. Then all the tasks will attempt to
converge back to the original patch state.
[1] https://lkml.kernel.org/r/20141107140458.GA21774@suse.cz
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Acked-by: Ingo Molnar <mingo@kernel.org> # for the scheduler changes
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2017-02-14 09:42:40 +08:00
|
|
|
#include <linux/livepatch.h>
|
2017-02-04 07:16:44 +08:00
|
|
|
#include <linux/mm_types.h>
|
2005-04-17 06:20:36 +08:00
|
|
|
|
2016-09-14 05:29:24 +08:00
|
|
|
#include <asm/thread_info.h>
|
|
|
|
|
2008-05-09 06:19:16 +08:00
|
|
|
extern struct files_struct init_files;
|
2008-12-26 13:35:37 +08:00
|
|
|
extern struct fs_struct init_fs;
|
2018-01-02 23:12:01 +08:00
|
|
|
extern struct nsproxy init_nsproxy;
|
|
|
|
extern struct group_info init_groups;
|
|
|
|
extern struct cred init_cred;
|
2005-04-17 06:20:36 +08:00
|
|
|
|
2015-06-30 17:30:54 +08:00
|
|
|
#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
|
|
|
|
#define INIT_PREV_CPUTIME(x) .prev_cputime = { \
|
|
|
|
.lock = __RAW_SPIN_LOCK_UNLOCKED(x.prev_cputime.lock), \
|
|
|
|
},
|
|
|
|
#else
|
|
|
|
#define INIT_PREV_CPUTIME(x)
|
|
|
|
#endif
|
|
|
|
|
2017-01-21 13:09:08 +08:00
|
|
|
#ifdef CONFIG_POSIX_TIMERS
|
|
|
|
#define INIT_CPU_TIMERS(s) \
|
|
|
|
.cpu_timers = { \
|
|
|
|
LIST_HEAD_INIT(s.cpu_timers[0]), \
|
|
|
|
LIST_HEAD_INIT(s.cpu_timers[1]), \
|
2018-01-02 23:12:01 +08:00
|
|
|
LIST_HEAD_INIT(s.cpu_timers[2]), \
|
2017-01-21 13:09:08 +08:00
|
|
|
},
|
|
|
|
#else
|
|
|
|
#define INIT_CPU_TIMERS(s)
|
|
|
|
#endif
|
|
|
|
|
2011-10-27 05:14:16 +08:00
|
|
|
#define INIT_TASK_COMM "swapper"
|
|
|
|
|
2009-06-24 07:59:36 +08:00
|
|
|
/* Attach to the init_task data structure for proper alignment */
|
2018-01-02 23:12:01 +08:00
|
|
|
#ifdef CONFIG_ARCH_TASK_STRUCT_ON_STACK
|
2010-02-20 08:03:35 +08:00
|
|
|
#define __init_task_data __attribute__((__section__(".data..init_task")))
|
2018-01-02 23:12:01 +08:00
|
|
|
#else
|
|
|
|
#define __init_task_data /**/
|
|
|
|
#endif
|
2009-06-24 07:59:36 +08:00
|
|
|
|
2018-01-02 23:12:01 +08:00
|
|
|
/* Attach to the thread_info data structure for proper alignment */
|
|
|
|
#define __init_thread_info __attribute__((__section__(".data..init_thread_info")))
|
|
|
|
|
2005-04-17 06:20:36 +08:00
|
|
|
#endif
|