linux-sg2042/arch/x86/kernel/process_64.c

701 lines
18 KiB
C
Raw Normal View History

/*
* Copyright (C) 1995 Linus Torvalds
*
* Pentium III FXSR, SSE support
* Gareth Hughes <gareth@valinux.com>, May 2000
*
* X86-64 port
* Andi Kleen.
*
* CPU hotplug support - ashok.raj@intel.com
*/
/*
* This file handles the architecture-dependent parts of process handling..
*/
#include <linux/cpu.h>
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/sched/task.h>
#include <linux/sched/task_stack.h>
#include <linux/fs.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/elfcore.h>
#include <linux/smp.h>
#include <linux/slab.h>
#include <linux/user.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/export.h>
#include <linux/ptrace.h>
#include <linux/notifier.h>
#include <linux/kprobes.h>
#include <linux/kdebug.h>
#include <linux/prctl.h>
#include <linux/uaccess.h>
#include <linux/io.h>
#include <linux/ftrace.h>
#include <linux/syscalls.h>
#include <asm/pgtable.h>
#include <asm/processor.h>
#include <asm/fpu/internal.h>
#include <asm/mmu_context.h>
#include <asm/prctl.h>
#include <asm/desc.h>
#include <asm/proto.h>
#include <asm/ia32.h>
#include <asm/syscalls.h>
#include <asm/debugreg.h>
#include <asm/switch_to.h>
#include <asm/xen/hypervisor.h>
#include <asm/vdso.h>
#include <asm/intel_rdt_sched.h>
x86/mm: Make in_compat_syscall() work during exec The x86 mmap() code selects the mmap base for an allocation depending on the bitness of the syscall. For 64bit sycalls it select mm->mmap_base and for 32bit mm->mmap_compat_base. On execve the registers of the task invoking exec() are copied to the child pt_regs. So child->pt_regs->orig_ax contains the execve syscall number of the parent. exec() calls mmap() which in turn uses in_compat_syscall() to check whether the mapping is for a 32bit or a 64bit task. The decision is made on the following criteria: ia32 child->thread.status & TS_COMPAT x32 child->pt_regs.orig_ax & __X32_SYSCALL_BIT ia64 !ia32 && !x32 child->thread.status is corretly set up in set_personality_*(), but the syscall number in child->pt_regs.orig_ax is left unmodified. Therefore the parent/child combinations work or fail in the following way: Parent Child Child->thread_status child->pt_regs.orig_ax in_compat() Works ia64 ia64 TS_COMPAT == 0 __X32_SYSCALL_BIT == 0 false Y ia64 ia32 TS_COMPAT == 1 __X32_SYSCALL_BIT == 0 true Y ia64 x32 TS_COMPAT == 0 __X32_SYSCALL_BIT == 0 false N ia32 ia64 TS_COMPAT == 0 __X32_SYSCALL_BIT == 0 false Y ia32 ia32 TS_COMPAT == 1 __X32_SYSCALL_BIT == 0 true Y ia32 x32 TS_COMPAT == 0 __X32_SYSCALL_BIT == 0 false N x32 ia64 TS_COMPAT == 0 __X32_SYSCALL_BIT == 1 true N x32 ia32 TS_COMPAT == 1 __X32_SYSCALL_BIT == 1 true Y x32 x32 TS_COMPAT == 0 __X32_SYSCALL_BIT == 1 true Y Make set_personality_*() store the syscall number incl. __X32_SYSCALL_BIT which corresponds to the newly started ELF executable in the childs pt_regs, i.e. pretend that the exec was invoked from a task with the same executable format. So both thread.status and pt_regs.orig_ax correspond to the new ELF format and in_compat_syscall() returns the correct result. [ tglx: Rewrote changelog ] Fixes: commit 1b028f784e8c ("x86/mm: Introduce mmap_compat_base() for 32-bit mmap()") Reported-by: Adam Borowski <kilobyte@angband.pl> Suggested-by: H. Peter Anvin <hpa@zytor.com> Suggested-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Dmitry Safonov <dsafonov@virtuozzo.com> Cc: 0x7f454c46@gmail.com Cc: linux-mm@kvack.org Cc: Andrei Vagin <avagin@gmail.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Cyrill Gorcunov <gorcunov@openvz.org> Cc: Borislav Petkov <bp@suse.de> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Link: http://lkml.kernel.org/r/20170331111137.28170-1-dsafonov@virtuozzo.com Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2017-03-31 19:11:37 +08:00
#include <asm/unistd.h>
#ifdef CONFIG_IA32_EMULATION
/* Not included via unistd.h */
#include <asm/unistd_32_ia32.h>
#endif
__visible DEFINE_PER_CPU(unsigned long, rsp_scratch);
/* Prints also some state that isn't saved in the pt_regs */
void __show_regs(struct pt_regs *regs, int all)
{
unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L, fs, gs, shadowgs;
unsigned long d0, d1, d2, d3, d6, d7;
unsigned int fsindex, gsindex;
unsigned int ds, cs, es;
printk(KERN_DEFAULT "RIP: %04lx:%pS\n", regs->cs, (void *)regs->ip);
printk(KERN_DEFAULT "RSP: %04lx:%016lx EFLAGS: %08lx", regs->ss,
x86/dumpstack: Remove kernel text addresses from stack dump Printing kernel text addresses in stack dumps is of questionable value, especially now that address randomization is becoming common. It can be a security issue because it leaks kernel addresses. It also affects the usefulness of the stack dump. Linus says: "I actually spend time cleaning up commit messages in logs, because useless data that isn't actually information (random hex numbers) is actively detrimental. It makes commit logs less legible. It also makes it harder to parse dumps. It's not useful. That makes it actively bad. I probably look at more oops reports than most people. I have not found the hex numbers useful for the last five years, because they are just randomized crap. The stack content thing just makes code scroll off the screen etc, for example." The only real downside to removing these addresses is that they can be used to disambiguate duplicate symbol names. However such cases are rare, and the context of the stack dump should be enough to be able to figure it out. There's now a 'faddr2line' script which can be used to convert a function address to a file name and line: $ ./scripts/faddr2line ~/k/vmlinux write_sysrq_trigger+0x51/0x60 write_sysrq_trigger+0x51/0x60: write_sysrq_trigger at drivers/tty/sysrq.c:1098 Or gdb can be used: $ echo "list *write_sysrq_trigger+0x51" |gdb ~/k/vmlinux |grep "is in" (gdb) 0xffffffff815b5d83 is in driver_probe_device (/home/jpoimboe/git/linux/drivers/base/dd.c:378). (But note that when there are duplicate symbol names, gdb will only show the first symbol it finds. faddr2line is recommended over gdb because it handles duplicates and it also does function size checking.) Here's an example of what a stack dump looks like after this change: BUG: unable to handle kernel NULL pointer dereference at (null) IP: sysrq_handle_crash+0x45/0x80 PGD 36bfa067 [ 29.650644] PUD 7aca3067 Oops: 0002 [#1] PREEMPT SMP Modules linked in: ... CPU: 1 PID: 786 Comm: bash Tainted: G E 4.9.0-rc1+ #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.9.1-1.fc24 04/01/2014 task: ffff880078582a40 task.stack: ffffc90000ba8000 RIP: 0010:sysrq_handle_crash+0x45/0x80 RSP: 0018:ffffc90000babdc8 EFLAGS: 00010296 RAX: ffff880078582a40 RBX: 0000000000000063 RCX: 0000000000000001 RDX: 0000000000000001 RSI: 0000000000000000 RDI: 0000000000000292 RBP: ffffc90000babdc8 R08: 0000000b31866061 R09: 0000000000000000 R10: 0000000000000001 R11: 0000000000000000 R12: 0000000000000000 R13: 0000000000000007 R14: ffffffff81ee8680 R15: 0000000000000000 FS: 00007ffb43869700(0000) GS:ffff88007d400000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000000 CR3: 000000007a3e9000 CR4: 00000000001406e0 Stack: ffffc90000babe00 ffffffff81572d08 ffffffff81572bd5 0000000000000002 0000000000000000 ffff880079606600 00007ffb4386e000 ffffc90000babe20 ffffffff81573201 ffff880036a3fd00 fffffffffffffffb ffffc90000babe40 Call Trace: __handle_sysrq+0x138/0x220 ? __handle_sysrq+0x5/0x220 write_sysrq_trigger+0x51/0x60 proc_reg_write+0x42/0x70 __vfs_write+0x37/0x140 ? preempt_count_sub+0xa1/0x100 ? __sb_start_write+0xf5/0x210 ? vfs_write+0x183/0x1a0 vfs_write+0xb8/0x1a0 SyS_write+0x58/0xc0 entry_SYSCALL_64_fastpath+0x1f/0xc2 RIP: 0033:0x7ffb42f55940 RSP: 002b:00007ffd33bb6b18 EFLAGS: 00000246 ORIG_RAX: 0000000000000001 RAX: ffffffffffffffda RBX: 0000000000000046 RCX: 00007ffb42f55940 RDX: 0000000000000002 RSI: 00007ffb4386e000 RDI: 0000000000000001 RBP: 0000000000000011 R08: 00007ffb4321ea40 R09: 00007ffb43869700 R10: 00007ffb43869700 R11: 0000000000000246 R12: 0000000000778a10 R13: 00007ffd33bb5c00 R14: 0000000000000007 R15: 0000000000000010 Code: 34 e8 d0 34 bc ff 48 c7 c2 3b 2b 57 81 be 01 00 00 00 48 c7 c7 e0 dd e5 81 e8 a8 55 ba ff c7 05 0e 3f de 00 01 00 00 00 0f ae f8 <c6> 04 25 00 00 00 00 01 5d c3 e8 4c 49 bc ff 84 c0 75 c3 48 c7 RIP: sysrq_handle_crash+0x45/0x80 RSP: ffffc90000babdc8 CR2: 0000000000000000 Suggested-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/69329cb29b8f324bb5fcea14d61d224807fb6488.1477405374.git.jpoimboe@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-10-25 22:51:12 +08:00
regs->sp, regs->flags);
if (regs->orig_ax != -1)
pr_cont(" ORIG_RAX: %016lx\n", regs->orig_ax);
else
pr_cont("\n");
printk(KERN_DEFAULT "RAX: %016lx RBX: %016lx RCX: %016lx\n",
regs->ax, regs->bx, regs->cx);
printk(KERN_DEFAULT "RDX: %016lx RSI: %016lx RDI: %016lx\n",
regs->dx, regs->si, regs->di);
printk(KERN_DEFAULT "RBP: %016lx R08: %016lx R09: %016lx\n",
regs->bp, regs->r8, regs->r9);
printk(KERN_DEFAULT "R10: %016lx R11: %016lx R12: %016lx\n",
regs->r10, regs->r11, regs->r12);
printk(KERN_DEFAULT "R13: %016lx R14: %016lx R15: %016lx\n",
regs->r13, regs->r14, regs->r15);
asm("movl %%ds,%0" : "=r" (ds));
asm("movl %%cs,%0" : "=r" (cs));
asm("movl %%es,%0" : "=r" (es));
asm("movl %%fs,%0" : "=r" (fsindex));
asm("movl %%gs,%0" : "=r" (gsindex));
rdmsrl(MSR_FS_BASE, fs);
rdmsrl(MSR_GS_BASE, gs);
rdmsrl(MSR_KERNEL_GS_BASE, shadowgs);
if (!all)
return;
cr0 = read_cr0();
cr2 = read_cr2();
cr3 = __read_cr3();
cr4 = __read_cr4();
printk(KERN_DEFAULT "FS: %016lx(%04x) GS:%016lx(%04x) knlGS:%016lx\n",
fs, fsindex, gs, gsindex, shadowgs);
printk(KERN_DEFAULT "CS: %04x DS: %04x ES: %04x CR0: %016lx\n", cs, ds,
es, cr0);
printk(KERN_DEFAULT "CR2: %016lx CR3: %016lx CR4: %016lx\n", cr2, cr3,
cr4);
get_debugreg(d0, 0);
get_debugreg(d1, 1);
get_debugreg(d2, 2);
get_debugreg(d3, 3);
get_debugreg(d6, 6);
get_debugreg(d7, 7);
/* Only print out debug registers if they are in their non-default state. */
if (!((d0 == 0) && (d1 == 0) && (d2 == 0) && (d3 == 0) &&
(d6 == DR6_RESERVED) && (d7 == 0x400))) {
printk(KERN_DEFAULT "DR0: %016lx DR1: %016lx DR2: %016lx\n",
d0, d1, d2);
printk(KERN_DEFAULT "DR3: %016lx DR6: %016lx DR7: %016lx\n",
d3, d6, d7);
}
if (boot_cpu_has(X86_FEATURE_OSPKE))
printk(KERN_DEFAULT "PKRU: %08x\n", read_pkru());
}
void release_thread(struct task_struct *dead_task)
{
if (dead_task->mm) {
#ifdef CONFIG_MODIFY_LDT_SYSCALL
if (dead_task->mm->context.ldt) {
pr_warn("WARNING: dead process %s still has LDT? <%p/%d>\n",
dead_task->comm,
dead_task->mm->context.ldt->entries,
dead_task->mm->context.ldt->nr_entries);
BUG();
}
#endif
}
}
enum which_selector {
FS,
GS
};
/*
* Saves the FS or GS base for an outgoing thread if FSGSBASE extensions are
* not available. The goal is to be reasonably fast on non-FSGSBASE systems.
* It's forcibly inlined because it'll generate better code and this function
* is hot.
*/
static __always_inline void save_base_legacy(struct task_struct *prev_p,
unsigned short selector,
enum which_selector which)
{
if (likely(selector == 0)) {
/*
* On Intel (without X86_BUG_NULL_SEG), the segment base could
* be the pre-existing saved base or it could be zero. On AMD
* (with X86_BUG_NULL_SEG), the segment base could be almost
* anything.
*
* This branch is very hot (it's hit twice on almost every
* context switch between 64-bit programs), and avoiding
* the RDMSR helps a lot, so we just assume that whatever
* value is already saved is correct. This matches historical
* Linux behavior, so it won't break existing applications.
*
* To avoid leaking state, on non-X86_BUG_NULL_SEG CPUs, if we
* report that the base is zero, it needs to actually be zero:
* see the corresponding logic in load_seg_legacy.
*/
} else {
/*
* If the selector is 1, 2, or 3, then the base is zero on
* !X86_BUG_NULL_SEG CPUs and could be anything on
* X86_BUG_NULL_SEG CPUs. In the latter case, Linux
* has never attempted to preserve the base across context
* switches.
*
* If selector > 3, then it refers to a real segment, and
* saving the base isn't necessary.
*/
if (which == FS)
prev_p->thread.fsbase = 0;
else
prev_p->thread.gsbase = 0;
}
}
static __always_inline void save_fsgs(struct task_struct *task)
{
savesegment(fs, task->thread.fsindex);
savesegment(gs, task->thread.gsindex);
save_base_legacy(task, task->thread.fsindex, FS);
save_base_legacy(task, task->thread.gsindex, GS);
}
static __always_inline void loadseg(enum which_selector which,
unsigned short sel)
{
if (which == FS)
loadsegment(fs, sel);
else
load_gs_index(sel);
}
static __always_inline void load_seg_legacy(unsigned short prev_index,
unsigned long prev_base,
unsigned short next_index,
unsigned long next_base,
enum which_selector which)
{
if (likely(next_index <= 3)) {
/*
* The next task is using 64-bit TLS, is not using this
* segment at all, or is having fun with arcane CPU features.
*/
if (next_base == 0) {
/*
* Nasty case: on AMD CPUs, we need to forcibly zero
* the base.
*/
if (static_cpu_has_bug(X86_BUG_NULL_SEG)) {
loadseg(which, __USER_DS);
loadseg(which, next_index);
} else {
/*
* We could try to exhaustively detect cases
* under which we can skip the segment load,
* but there's really only one case that matters
* for performance: if both the previous and
* next states are fully zeroed, we can skip
* the load.
*
* (This assumes that prev_base == 0 has no
* false positives. This is the case on
* Intel-style CPUs.)
*/
if (likely(prev_index | next_index | prev_base))
loadseg(which, next_index);
}
} else {
if (prev_index != next_index)
loadseg(which, next_index);
wrmsrl(which == FS ? MSR_FS_BASE : MSR_KERNEL_GS_BASE,
next_base);
}
} else {
/*
* The next task is using a real segment. Loading the selector
* is sufficient.
*/
loadseg(which, next_index);
}
}
int copy_thread_tls(unsigned long clone_flags, unsigned long sp,
unsigned long arg, struct task_struct *p, unsigned long tls)
{
int err;
struct pt_regs *childregs;
struct fork_frame *fork_frame;
struct inactive_task_frame *frame;
struct task_struct *me = current;
childregs = task_pt_regs(p);
fork_frame = container_of(childregs, struct fork_frame, regs);
frame = &fork_frame->frame;
frame->bp = 0;
frame->ret_addr = (unsigned long) ret_from_fork;
p->thread.sp = (unsigned long) fork_frame;
p->thread.io_bitmap_ptr = NULL;
savesegment(gs, p->thread.gsindex);
p->thread.gsbase = p->thread.gsindex ? 0 : me->thread.gsbase;
savesegment(fs, p->thread.fsindex);
p->thread.fsbase = p->thread.fsindex ? 0 : me->thread.fsbase;
savesegment(es, p->thread.es);
savesegment(ds, p->thread.ds);
memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
if (unlikely(p->flags & PF_KTHREAD)) {
/* kernel thread */
memset(childregs, 0, sizeof(struct pt_regs));
frame->bx = sp; /* function */
frame->r12 = arg;
return 0;
}
frame->bx = 0;
*childregs = *current_pt_regs();
childregs->ax = 0;
if (sp)
childregs->sp = sp;
err = -ENOMEM;
if (unlikely(test_tsk_thread_flag(me, TIF_IO_BITMAP))) {
p->thread.io_bitmap_ptr = kmemdup(me->thread.io_bitmap_ptr,
IO_BITMAP_BYTES, GFP_KERNEL);
if (!p->thread.io_bitmap_ptr) {
p->thread.io_bitmap_max = 0;
return -ENOMEM;
}
set_tsk_thread_flag(p, TIF_IO_BITMAP);
}
/*
* Set a new TLS for the child thread?
*/
if (clone_flags & CLONE_SETTLS) {
#ifdef CONFIG_IA32_EMULATION
if (in_ia32_syscall())
err = do_set_thread_area(p, -1,
(struct user_desc __user *)tls, 0);
else
#endif
2017-03-20 16:16:22 +08:00
err = do_arch_prctl_64(p, ARCH_SET_FS, tls);
if (err)
goto out;
}
err = 0;
out:
if (err && p->thread.io_bitmap_ptr) {
kfree(p->thread.io_bitmap_ptr);
p->thread.io_bitmap_max = 0;
}
return err;
}
static void
start_thread_common(struct pt_regs *regs, unsigned long new_ip,
unsigned long new_sp,
unsigned int _cs, unsigned int _ss, unsigned int _ds)
{
WARN_ON_ONCE(regs != current_pt_regs());
if (static_cpu_has(X86_BUG_NULL_SEG)) {
/* Loading zero below won't clear the base. */
loadsegment(fs, __USER_DS);
load_gs_index(__USER_DS);
}
loadsegment(fs, 0);
loadsegment(es, _ds);
loadsegment(ds, _ds);
load_gs_index(0);
regs->ip = new_ip;
regs->sp = new_sp;
regs->cs = _cs;
regs->ss = _ss;
regs->flags = X86_EFLAGS_IF;
force_iret();
}
void
start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
{
start_thread_common(regs, new_ip, new_sp,
__USER_CS, __USER_DS, 0);
}
#ifdef CONFIG_COMPAT
void compat_start_thread(struct pt_regs *regs, u32 new_ip, u32 new_sp)
{
start_thread_common(regs, new_ip, new_sp,
test_thread_flag(TIF_X32)
? __USER_CS : __USER32_CS,
__USER_DS, __USER_DS);
}
#endif
/*
* switch_to(x,y) should switch tasks from x to y.
*
* This could still be optimized:
* - fold all the options into a flag word and test it with a single test.
* - could test fs/gs bitsliced
*
* Kprobes not supported here. Set the probe on schedule instead.
* Function graph tracer not supported too.
*/
__visible __notrace_funcgraph struct task_struct *
__switch_to(struct task_struct *prev_p, struct task_struct *next_p)
{
struct thread_struct *prev = &prev_p->thread;
struct thread_struct *next = &next_p->thread;
struct fpu *prev_fpu = &prev->fpu;
struct fpu *next_fpu = &next->fpu;
int cpu = smp_processor_id();
struct tss_struct *tss = &per_cpu(cpu_tss, cpu);
WARN_ON_ONCE(IS_ENABLED(CONFIG_DEBUG_ENTRY) &&
this_cpu_read(irq_count) != -1);
switch_fpu_prepare(prev_fpu, cpu);
/* We must save %fs and %gs before load_TLS() because
* %fs and %gs may be cleared by load_TLS().
*
* (e.g. xen_load_tls())
*/
save_fsgs(prev_p);
x86_64, switch_to(): Load TLS descriptors before switching DS and ES Otherwise, if buggy user code points DS or ES into the TLS array, they would be corrupted after a context switch. This also significantly improves the comments and documents some gotchas in the code. Before this patch, the both tests below failed. With this patch, the es test passes, although the gsbase test still fails. ----- begin es test ----- /* * Copyright (c) 2014 Andy Lutomirski * GPL v2 */ static unsigned short GDT3(int idx) { return (idx << 3) | 3; } static int create_tls(int idx, unsigned int base) { struct user_desc desc = { .entry_number = idx, .base_addr = base, .limit = 0xfffff, .seg_32bit = 1, .contents = 0, /* Data, grow-up */ .read_exec_only = 0, .limit_in_pages = 1, .seg_not_present = 0, .useable = 0, }; if (syscall(SYS_set_thread_area, &desc) != 0) err(1, "set_thread_area"); return desc.entry_number; } int main() { int idx = create_tls(-1, 0); printf("Allocated GDT index %d\n", idx); unsigned short orig_es; asm volatile ("mov %%es,%0" : "=rm" (orig_es)); int errors = 0; int total = 1000; for (int i = 0; i < total; i++) { asm volatile ("mov %0,%%es" : : "rm" (GDT3(idx))); usleep(100); unsigned short es; asm volatile ("mov %%es,%0" : "=rm" (es)); asm volatile ("mov %0,%%es" : : "rm" (orig_es)); if (es != GDT3(idx)) { if (errors == 0) printf("[FAIL]\tES changed from 0x%hx to 0x%hx\n", GDT3(idx), es); errors++; } } if (errors) { printf("[FAIL]\tES was corrupted %d/%d times\n", errors, total); return 1; } else { printf("[OK]\tES was preserved\n"); return 0; } } ----- end es test ----- ----- begin gsbase test ----- /* * gsbase.c, a gsbase test * Copyright (c) 2014 Andy Lutomirski * GPL v2 */ static unsigned char *testptr, *testptr2; static unsigned char read_gs_testvals(void) { unsigned char ret; asm volatile ("movb %%gs:%1, %0" : "=r" (ret) : "m" (*testptr)); return ret; } int main() { int errors = 0; testptr = mmap((void *)0x200000000UL, 1, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_FIXED | MAP_ANONYMOUS, -1, 0); if (testptr == MAP_FAILED) err(1, "mmap"); testptr2 = mmap((void *)0x300000000UL, 1, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_FIXED | MAP_ANONYMOUS, -1, 0); if (testptr2 == MAP_FAILED) err(1, "mmap"); *testptr = 0; *testptr2 = 1; if (syscall(SYS_arch_prctl, ARCH_SET_GS, (unsigned long)testptr2 - (unsigned long)testptr) != 0) err(1, "ARCH_SET_GS"); usleep(100); if (read_gs_testvals() == 1) { printf("[OK]\tARCH_SET_GS worked\n"); } else { printf("[FAIL]\tARCH_SET_GS failed\n"); errors++; } asm volatile ("mov %0,%%gs" : : "r" (0)); if (read_gs_testvals() == 0) { printf("[OK]\tWriting 0 to gs worked\n"); } else { printf("[FAIL]\tWriting 0 to gs failed\n"); errors++; } usleep(100); if (read_gs_testvals() == 0) { printf("[OK]\tgsbase is still zero\n"); } else { printf("[FAIL]\tgsbase was corrupted\n"); errors++; } return errors == 0 ? 0 : 1; } ----- end gsbase test ----- Signed-off-by: Andy Lutomirski <luto@amacapital.net> Cc: <stable@vger.kernel.org> Cc: Andi Kleen <andi@firstfloor.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: http://lkml.kernel.org/r/509d27c9fec78217691c3dad91cec87e1006b34a.1418075657.git.luto@amacapital.net Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-12-09 05:55:20 +08:00
/*
* Load TLS before restoring any segments so that segment loads
* reference the correct GDT entries.
*/
load_TLS(next, cpu);
/*
x86_64, switch_to(): Load TLS descriptors before switching DS and ES Otherwise, if buggy user code points DS or ES into the TLS array, they would be corrupted after a context switch. This also significantly improves the comments and documents some gotchas in the code. Before this patch, the both tests below failed. With this patch, the es test passes, although the gsbase test still fails. ----- begin es test ----- /* * Copyright (c) 2014 Andy Lutomirski * GPL v2 */ static unsigned short GDT3(int idx) { return (idx << 3) | 3; } static int create_tls(int idx, unsigned int base) { struct user_desc desc = { .entry_number = idx, .base_addr = base, .limit = 0xfffff, .seg_32bit = 1, .contents = 0, /* Data, grow-up */ .read_exec_only = 0, .limit_in_pages = 1, .seg_not_present = 0, .useable = 0, }; if (syscall(SYS_set_thread_area, &desc) != 0) err(1, "set_thread_area"); return desc.entry_number; } int main() { int idx = create_tls(-1, 0); printf("Allocated GDT index %d\n", idx); unsigned short orig_es; asm volatile ("mov %%es,%0" : "=rm" (orig_es)); int errors = 0; int total = 1000; for (int i = 0; i < total; i++) { asm volatile ("mov %0,%%es" : : "rm" (GDT3(idx))); usleep(100); unsigned short es; asm volatile ("mov %%es,%0" : "=rm" (es)); asm volatile ("mov %0,%%es" : : "rm" (orig_es)); if (es != GDT3(idx)) { if (errors == 0) printf("[FAIL]\tES changed from 0x%hx to 0x%hx\n", GDT3(idx), es); errors++; } } if (errors) { printf("[FAIL]\tES was corrupted %d/%d times\n", errors, total); return 1; } else { printf("[OK]\tES was preserved\n"); return 0; } } ----- end es test ----- ----- begin gsbase test ----- /* * gsbase.c, a gsbase test * Copyright (c) 2014 Andy Lutomirski * GPL v2 */ static unsigned char *testptr, *testptr2; static unsigned char read_gs_testvals(void) { unsigned char ret; asm volatile ("movb %%gs:%1, %0" : "=r" (ret) : "m" (*testptr)); return ret; } int main() { int errors = 0; testptr = mmap((void *)0x200000000UL, 1, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_FIXED | MAP_ANONYMOUS, -1, 0); if (testptr == MAP_FAILED) err(1, "mmap"); testptr2 = mmap((void *)0x300000000UL, 1, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_FIXED | MAP_ANONYMOUS, -1, 0); if (testptr2 == MAP_FAILED) err(1, "mmap"); *testptr = 0; *testptr2 = 1; if (syscall(SYS_arch_prctl, ARCH_SET_GS, (unsigned long)testptr2 - (unsigned long)testptr) != 0) err(1, "ARCH_SET_GS"); usleep(100); if (read_gs_testvals() == 1) { printf("[OK]\tARCH_SET_GS worked\n"); } else { printf("[FAIL]\tARCH_SET_GS failed\n"); errors++; } asm volatile ("mov %0,%%gs" : : "r" (0)); if (read_gs_testvals() == 0) { printf("[OK]\tWriting 0 to gs worked\n"); } else { printf("[FAIL]\tWriting 0 to gs failed\n"); errors++; } usleep(100); if (read_gs_testvals() == 0) { printf("[OK]\tgsbase is still zero\n"); } else { printf("[FAIL]\tgsbase was corrupted\n"); errors++; } return errors == 0 ? 0 : 1; } ----- end gsbase test ----- Signed-off-by: Andy Lutomirski <luto@amacapital.net> Cc: <stable@vger.kernel.org> Cc: Andi Kleen <andi@firstfloor.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: http://lkml.kernel.org/r/509d27c9fec78217691c3dad91cec87e1006b34a.1418075657.git.luto@amacapital.net Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-12-09 05:55:20 +08:00
* Leave lazy mode, flushing any hypercalls made here. This
* must be done after loading TLS entries in the GDT but before
* loading segments that might reference them, and and it must
* be done before fpu__restore(), so the TS bit is up to
x86_64, switch_to(): Load TLS descriptors before switching DS and ES Otherwise, if buggy user code points DS or ES into the TLS array, they would be corrupted after a context switch. This also significantly improves the comments and documents some gotchas in the code. Before this patch, the both tests below failed. With this patch, the es test passes, although the gsbase test still fails. ----- begin es test ----- /* * Copyright (c) 2014 Andy Lutomirski * GPL v2 */ static unsigned short GDT3(int idx) { return (idx << 3) | 3; } static int create_tls(int idx, unsigned int base) { struct user_desc desc = { .entry_number = idx, .base_addr = base, .limit = 0xfffff, .seg_32bit = 1, .contents = 0, /* Data, grow-up */ .read_exec_only = 0, .limit_in_pages = 1, .seg_not_present = 0, .useable = 0, }; if (syscall(SYS_set_thread_area, &desc) != 0) err(1, "set_thread_area"); return desc.entry_number; } int main() { int idx = create_tls(-1, 0); printf("Allocated GDT index %d\n", idx); unsigned short orig_es; asm volatile ("mov %%es,%0" : "=rm" (orig_es)); int errors = 0; int total = 1000; for (int i = 0; i < total; i++) { asm volatile ("mov %0,%%es" : : "rm" (GDT3(idx))); usleep(100); unsigned short es; asm volatile ("mov %%es,%0" : "=rm" (es)); asm volatile ("mov %0,%%es" : : "rm" (orig_es)); if (es != GDT3(idx)) { if (errors == 0) printf("[FAIL]\tES changed from 0x%hx to 0x%hx\n", GDT3(idx), es); errors++; } } if (errors) { printf("[FAIL]\tES was corrupted %d/%d times\n", errors, total); return 1; } else { printf("[OK]\tES was preserved\n"); return 0; } } ----- end es test ----- ----- begin gsbase test ----- /* * gsbase.c, a gsbase test * Copyright (c) 2014 Andy Lutomirski * GPL v2 */ static unsigned char *testptr, *testptr2; static unsigned char read_gs_testvals(void) { unsigned char ret; asm volatile ("movb %%gs:%1, %0" : "=r" (ret) : "m" (*testptr)); return ret; } int main() { int errors = 0; testptr = mmap((void *)0x200000000UL, 1, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_FIXED | MAP_ANONYMOUS, -1, 0); if (testptr == MAP_FAILED) err(1, "mmap"); testptr2 = mmap((void *)0x300000000UL, 1, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_FIXED | MAP_ANONYMOUS, -1, 0); if (testptr2 == MAP_FAILED) err(1, "mmap"); *testptr = 0; *testptr2 = 1; if (syscall(SYS_arch_prctl, ARCH_SET_GS, (unsigned long)testptr2 - (unsigned long)testptr) != 0) err(1, "ARCH_SET_GS"); usleep(100); if (read_gs_testvals() == 1) { printf("[OK]\tARCH_SET_GS worked\n"); } else { printf("[FAIL]\tARCH_SET_GS failed\n"); errors++; } asm volatile ("mov %0,%%gs" : : "r" (0)); if (read_gs_testvals() == 0) { printf("[OK]\tWriting 0 to gs worked\n"); } else { printf("[FAIL]\tWriting 0 to gs failed\n"); errors++; } usleep(100); if (read_gs_testvals() == 0) { printf("[OK]\tgsbase is still zero\n"); } else { printf("[FAIL]\tgsbase was corrupted\n"); errors++; } return errors == 0 ? 0 : 1; } ----- end gsbase test ----- Signed-off-by: Andy Lutomirski <luto@amacapital.net> Cc: <stable@vger.kernel.org> Cc: Andi Kleen <andi@firstfloor.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: http://lkml.kernel.org/r/509d27c9fec78217691c3dad91cec87e1006b34a.1418075657.git.luto@amacapital.net Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-12-09 05:55:20 +08:00
* date.
*/
arch_end_context_switch(next_p);
x86_64, switch_to(): Load TLS descriptors before switching DS and ES Otherwise, if buggy user code points DS or ES into the TLS array, they would be corrupted after a context switch. This also significantly improves the comments and documents some gotchas in the code. Before this patch, the both tests below failed. With this patch, the es test passes, although the gsbase test still fails. ----- begin es test ----- /* * Copyright (c) 2014 Andy Lutomirski * GPL v2 */ static unsigned short GDT3(int idx) { return (idx << 3) | 3; } static int create_tls(int idx, unsigned int base) { struct user_desc desc = { .entry_number = idx, .base_addr = base, .limit = 0xfffff, .seg_32bit = 1, .contents = 0, /* Data, grow-up */ .read_exec_only = 0, .limit_in_pages = 1, .seg_not_present = 0, .useable = 0, }; if (syscall(SYS_set_thread_area, &desc) != 0) err(1, "set_thread_area"); return desc.entry_number; } int main() { int idx = create_tls(-1, 0); printf("Allocated GDT index %d\n", idx); unsigned short orig_es; asm volatile ("mov %%es,%0" : "=rm" (orig_es)); int errors = 0; int total = 1000; for (int i = 0; i < total; i++) { asm volatile ("mov %0,%%es" : : "rm" (GDT3(idx))); usleep(100); unsigned short es; asm volatile ("mov %%es,%0" : "=rm" (es)); asm volatile ("mov %0,%%es" : : "rm" (orig_es)); if (es != GDT3(idx)) { if (errors == 0) printf("[FAIL]\tES changed from 0x%hx to 0x%hx\n", GDT3(idx), es); errors++; } } if (errors) { printf("[FAIL]\tES was corrupted %d/%d times\n", errors, total); return 1; } else { printf("[OK]\tES was preserved\n"); return 0; } } ----- end es test ----- ----- begin gsbase test ----- /* * gsbase.c, a gsbase test * Copyright (c) 2014 Andy Lutomirski * GPL v2 */ static unsigned char *testptr, *testptr2; static unsigned char read_gs_testvals(void) { unsigned char ret; asm volatile ("movb %%gs:%1, %0" : "=r" (ret) : "m" (*testptr)); return ret; } int main() { int errors = 0; testptr = mmap((void *)0x200000000UL, 1, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_FIXED | MAP_ANONYMOUS, -1, 0); if (testptr == MAP_FAILED) err(1, "mmap"); testptr2 = mmap((void *)0x300000000UL, 1, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_FIXED | MAP_ANONYMOUS, -1, 0); if (testptr2 == MAP_FAILED) err(1, "mmap"); *testptr = 0; *testptr2 = 1; if (syscall(SYS_arch_prctl, ARCH_SET_GS, (unsigned long)testptr2 - (unsigned long)testptr) != 0) err(1, "ARCH_SET_GS"); usleep(100); if (read_gs_testvals() == 1) { printf("[OK]\tARCH_SET_GS worked\n"); } else { printf("[FAIL]\tARCH_SET_GS failed\n"); errors++; } asm volatile ("mov %0,%%gs" : : "r" (0)); if (read_gs_testvals() == 0) { printf("[OK]\tWriting 0 to gs worked\n"); } else { printf("[FAIL]\tWriting 0 to gs failed\n"); errors++; } usleep(100); if (read_gs_testvals() == 0) { printf("[OK]\tgsbase is still zero\n"); } else { printf("[FAIL]\tgsbase was corrupted\n"); errors++; } return errors == 0 ? 0 : 1; } ----- end gsbase test ----- Signed-off-by: Andy Lutomirski <luto@amacapital.net> Cc: <stable@vger.kernel.org> Cc: Andi Kleen <andi@firstfloor.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: http://lkml.kernel.org/r/509d27c9fec78217691c3dad91cec87e1006b34a.1418075657.git.luto@amacapital.net Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-12-09 05:55:20 +08:00
/* Switch DS and ES.
*
* Reading them only returns the selectors, but writing them (if
* nonzero) loads the full descriptor from the GDT or LDT. The
* LDT for next is loaded in switch_mm, and the GDT is loaded
* above.
*
* We therefore need to write new values to the segment
* registers on every context switch unless both the new and old
* values are zero.
*
* Note that we don't need to do anything for CS and SS, as
* those are saved and restored as part of pt_regs.
*/
savesegment(es, prev->es);
if (unlikely(next->es | prev->es))
loadsegment(es, next->es);
savesegment(ds, prev->ds);
if (unlikely(next->ds | prev->ds))
loadsegment(ds, next->ds);
load_seg_legacy(prev->fsindex, prev->fsbase,
next->fsindex, next->fsbase, FS);
load_seg_legacy(prev->gsindex, prev->gsbase,
next->gsindex, next->gsbase, GS);
switch_fpu_finish(next_fpu, cpu);
i387: re-introduce FPU state preloading at context switch time After all the FPU state cleanups and finally finding the problem that caused all our FPU save/restore problems, this re-introduces the preloading of FPU state that was removed in commit b3b0870ef3ff ("i387: do not preload FPU state at task switch time"). However, instead of simply reverting the removal, this reimplements preloading with several fixes, most notably - properly abstracted as a true FPU state switch, rather than as open-coded save and restore with various hacks. In particular, implementing it as a proper FPU state switch allows us to optimize the CR0.TS flag accesses: there is no reason to set the TS bit only to then almost immediately clear it again. CR0 accesses are quite slow and expensive, don't flip the bit back and forth for no good reason. - Make sure that the same model works for both x86-32 and x86-64, so that there are no gratuitous differences between the two due to the way they save and restore segment state differently due to architectural differences that really don't matter to the FPU state. - Avoid exposing the "preload" state to the context switch routines, and in particular allow the concept of lazy state restore: if nothing else has used the FPU in the meantime, and the process is still on the same CPU, we can avoid restoring state from memory entirely, just re-expose the state that is still in the FPU unit. That optimized lazy restore isn't actually implemented here, but the infrastructure is set up for it. Of course, older CPU's that use 'fnsave' to save the state cannot take advantage of this, since the state saving also trashes the state. In other words, there is now an actual _design_ to the FPU state saving, rather than just random historical baggage. Hopefully it's easier to follow as a result. Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-02-19 04:56:35 +08:00
/*
* Switch the PDA and FPU contexts.
*/
this_cpu_write(current_task, next_p);
/* Reload sp0. */
update_sp0(next_p);
/*
* Now maybe reload the debug registers and handle I/O bitmaps
*/
if (unlikely(task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT ||
task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV))
__switch_to_xtra(prev_p, next_p, tss);
#ifdef CONFIG_XEN_PV
/*
* On Xen PV, IOPL bits in pt_regs->flags have no effect, and
* current_pt_regs()->flags may not match the current task's
* intended IOPL. We need to switch it manually.
*/
if (unlikely(static_cpu_has(X86_FEATURE_XENPV) &&
prev->iopl != next->iopl))
xen_set_iopl_mask(next->iopl);
#endif
if (static_cpu_has_bug(X86_BUG_SYSRET_SS_ATTRS)) {
/*
* AMD CPUs have a misfeature: SYSRET sets the SS selector but
* does not update the cached descriptor. As a result, if we
* do SYSRET while SS is NULL, we'll end up in user mode with
* SS apparently equal to __USER_DS but actually unusable.
*
* The straightforward workaround would be to fix it up just
* before SYSRET, but that would slow down the system call
* fast paths. Instead, we ensure that SS is never NULL in
* system call context. We do this by replacing NULL SS
* selectors at every context switch. SYSCALL sets up a valid
* SS, so the only way to get NULL is to re-enter the kernel
* from CPL 3 through an interrupt. Since that can't happen
* in the same task as a running syscall, we are guaranteed to
* context switch between every interrupt vector entry and a
* subsequent SYSRET.
*
* We read SS first because SS reads are much faster than
* writes. Out of caution, we force SS to __KERNEL_DS even if
* it previously had a different non-NULL value.
*/
unsigned short ss_sel;
savesegment(ss, ss_sel);
if (ss_sel != __KERNEL_DS)
loadsegment(ss, __KERNEL_DS);
}
/* Load the Intel cache allocation PQR MSR. */
intel_rdt_sched_in();
return prev_p;
}
void set_personality_64bit(void)
{
/* inherit personality from parent */
/* Make sure to be in 64bit mode */
clear_thread_flag(TIF_IA32);
clear_thread_flag(TIF_ADDR32);
clear_thread_flag(TIF_X32);
x86/mm: Make in_compat_syscall() work during exec The x86 mmap() code selects the mmap base for an allocation depending on the bitness of the syscall. For 64bit sycalls it select mm->mmap_base and for 32bit mm->mmap_compat_base. On execve the registers of the task invoking exec() are copied to the child pt_regs. So child->pt_regs->orig_ax contains the execve syscall number of the parent. exec() calls mmap() which in turn uses in_compat_syscall() to check whether the mapping is for a 32bit or a 64bit task. The decision is made on the following criteria: ia32 child->thread.status & TS_COMPAT x32 child->pt_regs.orig_ax & __X32_SYSCALL_BIT ia64 !ia32 && !x32 child->thread.status is corretly set up in set_personality_*(), but the syscall number in child->pt_regs.orig_ax is left unmodified. Therefore the parent/child combinations work or fail in the following way: Parent Child Child->thread_status child->pt_regs.orig_ax in_compat() Works ia64 ia64 TS_COMPAT == 0 __X32_SYSCALL_BIT == 0 false Y ia64 ia32 TS_COMPAT == 1 __X32_SYSCALL_BIT == 0 true Y ia64 x32 TS_COMPAT == 0 __X32_SYSCALL_BIT == 0 false N ia32 ia64 TS_COMPAT == 0 __X32_SYSCALL_BIT == 0 false Y ia32 ia32 TS_COMPAT == 1 __X32_SYSCALL_BIT == 0 true Y ia32 x32 TS_COMPAT == 0 __X32_SYSCALL_BIT == 0 false N x32 ia64 TS_COMPAT == 0 __X32_SYSCALL_BIT == 1 true N x32 ia32 TS_COMPAT == 1 __X32_SYSCALL_BIT == 1 true Y x32 x32 TS_COMPAT == 0 __X32_SYSCALL_BIT == 1 true Y Make set_personality_*() store the syscall number incl. __X32_SYSCALL_BIT which corresponds to the newly started ELF executable in the childs pt_regs, i.e. pretend that the exec was invoked from a task with the same executable format. So both thread.status and pt_regs.orig_ax correspond to the new ELF format and in_compat_syscall() returns the correct result. [ tglx: Rewrote changelog ] Fixes: commit 1b028f784e8c ("x86/mm: Introduce mmap_compat_base() for 32-bit mmap()") Reported-by: Adam Borowski <kilobyte@angband.pl> Suggested-by: H. Peter Anvin <hpa@zytor.com> Suggested-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Dmitry Safonov <dsafonov@virtuozzo.com> Cc: 0x7f454c46@gmail.com Cc: linux-mm@kvack.org Cc: Andrei Vagin <avagin@gmail.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Cyrill Gorcunov <gorcunov@openvz.org> Cc: Borislav Petkov <bp@suse.de> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Link: http://lkml.kernel.org/r/20170331111137.28170-1-dsafonov@virtuozzo.com Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2017-03-31 19:11:37 +08:00
/* Pretend that this comes from a 64bit execve */
task_pt_regs(current)->orig_ax = __NR_execve;
/* Ensure the corresponding mm is not marked. */
if (current->mm)
current->mm->context.ia32_compat = 0;
/* TBD: overwrites user setup. Should have two bits.
But 64bit processes have always behaved this way,
so it's not too bad. The main problem is just that
32bit childs are affected again. */
current->personality &= ~READ_IMPLIES_EXEC;
}
x86/mm: Make in_compat_syscall() work during exec The x86 mmap() code selects the mmap base for an allocation depending on the bitness of the syscall. For 64bit sycalls it select mm->mmap_base and for 32bit mm->mmap_compat_base. On execve the registers of the task invoking exec() are copied to the child pt_regs. So child->pt_regs->orig_ax contains the execve syscall number of the parent. exec() calls mmap() which in turn uses in_compat_syscall() to check whether the mapping is for a 32bit or a 64bit task. The decision is made on the following criteria: ia32 child->thread.status & TS_COMPAT x32 child->pt_regs.orig_ax & __X32_SYSCALL_BIT ia64 !ia32 && !x32 child->thread.status is corretly set up in set_personality_*(), but the syscall number in child->pt_regs.orig_ax is left unmodified. Therefore the parent/child combinations work or fail in the following way: Parent Child Child->thread_status child->pt_regs.orig_ax in_compat() Works ia64 ia64 TS_COMPAT == 0 __X32_SYSCALL_BIT == 0 false Y ia64 ia32 TS_COMPAT == 1 __X32_SYSCALL_BIT == 0 true Y ia64 x32 TS_COMPAT == 0 __X32_SYSCALL_BIT == 0 false N ia32 ia64 TS_COMPAT == 0 __X32_SYSCALL_BIT == 0 false Y ia32 ia32 TS_COMPAT == 1 __X32_SYSCALL_BIT == 0 true Y ia32 x32 TS_COMPAT == 0 __X32_SYSCALL_BIT == 0 false N x32 ia64 TS_COMPAT == 0 __X32_SYSCALL_BIT == 1 true N x32 ia32 TS_COMPAT == 1 __X32_SYSCALL_BIT == 1 true Y x32 x32 TS_COMPAT == 0 __X32_SYSCALL_BIT == 1 true Y Make set_personality_*() store the syscall number incl. __X32_SYSCALL_BIT which corresponds to the newly started ELF executable in the childs pt_regs, i.e. pretend that the exec was invoked from a task with the same executable format. So both thread.status and pt_regs.orig_ax correspond to the new ELF format and in_compat_syscall() returns the correct result. [ tglx: Rewrote changelog ] Fixes: commit 1b028f784e8c ("x86/mm: Introduce mmap_compat_base() for 32-bit mmap()") Reported-by: Adam Borowski <kilobyte@angband.pl> Suggested-by: H. Peter Anvin <hpa@zytor.com> Suggested-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Dmitry Safonov <dsafonov@virtuozzo.com> Cc: 0x7f454c46@gmail.com Cc: linux-mm@kvack.org Cc: Andrei Vagin <avagin@gmail.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Cyrill Gorcunov <gorcunov@openvz.org> Cc: Borislav Petkov <bp@suse.de> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Link: http://lkml.kernel.org/r/20170331111137.28170-1-dsafonov@virtuozzo.com Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2017-03-31 19:11:37 +08:00
static void __set_personality_x32(void)
{
x86/mm: Make in_compat_syscall() work during exec The x86 mmap() code selects the mmap base for an allocation depending on the bitness of the syscall. For 64bit sycalls it select mm->mmap_base and for 32bit mm->mmap_compat_base. On execve the registers of the task invoking exec() are copied to the child pt_regs. So child->pt_regs->orig_ax contains the execve syscall number of the parent. exec() calls mmap() which in turn uses in_compat_syscall() to check whether the mapping is for a 32bit or a 64bit task. The decision is made on the following criteria: ia32 child->thread.status & TS_COMPAT x32 child->pt_regs.orig_ax & __X32_SYSCALL_BIT ia64 !ia32 && !x32 child->thread.status is corretly set up in set_personality_*(), but the syscall number in child->pt_regs.orig_ax is left unmodified. Therefore the parent/child combinations work or fail in the following way: Parent Child Child->thread_status child->pt_regs.orig_ax in_compat() Works ia64 ia64 TS_COMPAT == 0 __X32_SYSCALL_BIT == 0 false Y ia64 ia32 TS_COMPAT == 1 __X32_SYSCALL_BIT == 0 true Y ia64 x32 TS_COMPAT == 0 __X32_SYSCALL_BIT == 0 false N ia32 ia64 TS_COMPAT == 0 __X32_SYSCALL_BIT == 0 false Y ia32 ia32 TS_COMPAT == 1 __X32_SYSCALL_BIT == 0 true Y ia32 x32 TS_COMPAT == 0 __X32_SYSCALL_BIT == 0 false N x32 ia64 TS_COMPAT == 0 __X32_SYSCALL_BIT == 1 true N x32 ia32 TS_COMPAT == 1 __X32_SYSCALL_BIT == 1 true Y x32 x32 TS_COMPAT == 0 __X32_SYSCALL_BIT == 1 true Y Make set_personality_*() store the syscall number incl. __X32_SYSCALL_BIT which corresponds to the newly started ELF executable in the childs pt_regs, i.e. pretend that the exec was invoked from a task with the same executable format. So both thread.status and pt_regs.orig_ax correspond to the new ELF format and in_compat_syscall() returns the correct result. [ tglx: Rewrote changelog ] Fixes: commit 1b028f784e8c ("x86/mm: Introduce mmap_compat_base() for 32-bit mmap()") Reported-by: Adam Borowski <kilobyte@angband.pl> Suggested-by: H. Peter Anvin <hpa@zytor.com> Suggested-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Dmitry Safonov <dsafonov@virtuozzo.com> Cc: 0x7f454c46@gmail.com Cc: linux-mm@kvack.org Cc: Andrei Vagin <avagin@gmail.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Cyrill Gorcunov <gorcunov@openvz.org> Cc: Borislav Petkov <bp@suse.de> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Link: http://lkml.kernel.org/r/20170331111137.28170-1-dsafonov@virtuozzo.com Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2017-03-31 19:11:37 +08:00
#ifdef CONFIG_X86_X32
clear_thread_flag(TIF_IA32);
set_thread_flag(TIF_X32);
if (current->mm)
current->mm->context.ia32_compat = TIF_X32;
current->personality &= ~READ_IMPLIES_EXEC;
/*
* in_compat_syscall() uses the presence of the x32 syscall bit
* flag to determine compat status. The x86 mmap() code relies on
* the syscall bitness so set x32 syscall bit right here to make
* in_compat_syscall() work during exec().
*
* Pretend to come from a x32 execve.
*/
task_pt_regs(current)->orig_ax = __NR_x32_execve | __X32_SYSCALL_BIT;
current->thread.status &= ~TS_COMPAT;
#endif
}
x86/mm: Make in_compat_syscall() work during exec The x86 mmap() code selects the mmap base for an allocation depending on the bitness of the syscall. For 64bit sycalls it select mm->mmap_base and for 32bit mm->mmap_compat_base. On execve the registers of the task invoking exec() are copied to the child pt_regs. So child->pt_regs->orig_ax contains the execve syscall number of the parent. exec() calls mmap() which in turn uses in_compat_syscall() to check whether the mapping is for a 32bit or a 64bit task. The decision is made on the following criteria: ia32 child->thread.status & TS_COMPAT x32 child->pt_regs.orig_ax & __X32_SYSCALL_BIT ia64 !ia32 && !x32 child->thread.status is corretly set up in set_personality_*(), but the syscall number in child->pt_regs.orig_ax is left unmodified. Therefore the parent/child combinations work or fail in the following way: Parent Child Child->thread_status child->pt_regs.orig_ax in_compat() Works ia64 ia64 TS_COMPAT == 0 __X32_SYSCALL_BIT == 0 false Y ia64 ia32 TS_COMPAT == 1 __X32_SYSCALL_BIT == 0 true Y ia64 x32 TS_COMPAT == 0 __X32_SYSCALL_BIT == 0 false N ia32 ia64 TS_COMPAT == 0 __X32_SYSCALL_BIT == 0 false Y ia32 ia32 TS_COMPAT == 1 __X32_SYSCALL_BIT == 0 true Y ia32 x32 TS_COMPAT == 0 __X32_SYSCALL_BIT == 0 false N x32 ia64 TS_COMPAT == 0 __X32_SYSCALL_BIT == 1 true N x32 ia32 TS_COMPAT == 1 __X32_SYSCALL_BIT == 1 true Y x32 x32 TS_COMPAT == 0 __X32_SYSCALL_BIT == 1 true Y Make set_personality_*() store the syscall number incl. __X32_SYSCALL_BIT which corresponds to the newly started ELF executable in the childs pt_regs, i.e. pretend that the exec was invoked from a task with the same executable format. So both thread.status and pt_regs.orig_ax correspond to the new ELF format and in_compat_syscall() returns the correct result. [ tglx: Rewrote changelog ] Fixes: commit 1b028f784e8c ("x86/mm: Introduce mmap_compat_base() for 32-bit mmap()") Reported-by: Adam Borowski <kilobyte@angband.pl> Suggested-by: H. Peter Anvin <hpa@zytor.com> Suggested-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Dmitry Safonov <dsafonov@virtuozzo.com> Cc: 0x7f454c46@gmail.com Cc: linux-mm@kvack.org Cc: Andrei Vagin <avagin@gmail.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Cyrill Gorcunov <gorcunov@openvz.org> Cc: Borislav Petkov <bp@suse.de> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Link: http://lkml.kernel.org/r/20170331111137.28170-1-dsafonov@virtuozzo.com Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2017-03-31 19:11:37 +08:00
static void __set_personality_ia32(void)
{
#ifdef CONFIG_IA32_EMULATION
set_thread_flag(TIF_IA32);
clear_thread_flag(TIF_X32);
if (current->mm)
current->mm->context.ia32_compat = TIF_IA32;
current->personality |= force_personality32;
/* Prepare the first "return" to user space */
task_pt_regs(current)->orig_ax = __NR_ia32_execve;
current->thread.status |= TS_COMPAT;
#endif
}
void set_personality_ia32(bool x32)
{
/* Make sure to be in 32bit mode */
set_thread_flag(TIF_ADDR32);
x86/mm: Make in_compat_syscall() work during exec The x86 mmap() code selects the mmap base for an allocation depending on the bitness of the syscall. For 64bit sycalls it select mm->mmap_base and for 32bit mm->mmap_compat_base. On execve the registers of the task invoking exec() are copied to the child pt_regs. So child->pt_regs->orig_ax contains the execve syscall number of the parent. exec() calls mmap() which in turn uses in_compat_syscall() to check whether the mapping is for a 32bit or a 64bit task. The decision is made on the following criteria: ia32 child->thread.status & TS_COMPAT x32 child->pt_regs.orig_ax & __X32_SYSCALL_BIT ia64 !ia32 && !x32 child->thread.status is corretly set up in set_personality_*(), but the syscall number in child->pt_regs.orig_ax is left unmodified. Therefore the parent/child combinations work or fail in the following way: Parent Child Child->thread_status child->pt_regs.orig_ax in_compat() Works ia64 ia64 TS_COMPAT == 0 __X32_SYSCALL_BIT == 0 false Y ia64 ia32 TS_COMPAT == 1 __X32_SYSCALL_BIT == 0 true Y ia64 x32 TS_COMPAT == 0 __X32_SYSCALL_BIT == 0 false N ia32 ia64 TS_COMPAT == 0 __X32_SYSCALL_BIT == 0 false Y ia32 ia32 TS_COMPAT == 1 __X32_SYSCALL_BIT == 0 true Y ia32 x32 TS_COMPAT == 0 __X32_SYSCALL_BIT == 0 false N x32 ia64 TS_COMPAT == 0 __X32_SYSCALL_BIT == 1 true N x32 ia32 TS_COMPAT == 1 __X32_SYSCALL_BIT == 1 true Y x32 x32 TS_COMPAT == 0 __X32_SYSCALL_BIT == 1 true Y Make set_personality_*() store the syscall number incl. __X32_SYSCALL_BIT which corresponds to the newly started ELF executable in the childs pt_regs, i.e. pretend that the exec was invoked from a task with the same executable format. So both thread.status and pt_regs.orig_ax correspond to the new ELF format and in_compat_syscall() returns the correct result. [ tglx: Rewrote changelog ] Fixes: commit 1b028f784e8c ("x86/mm: Introduce mmap_compat_base() for 32-bit mmap()") Reported-by: Adam Borowski <kilobyte@angband.pl> Suggested-by: H. Peter Anvin <hpa@zytor.com> Suggested-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Dmitry Safonov <dsafonov@virtuozzo.com> Cc: 0x7f454c46@gmail.com Cc: linux-mm@kvack.org Cc: Andrei Vagin <avagin@gmail.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Cyrill Gorcunov <gorcunov@openvz.org> Cc: Borislav Petkov <bp@suse.de> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Link: http://lkml.kernel.org/r/20170331111137.28170-1-dsafonov@virtuozzo.com Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2017-03-31 19:11:37 +08:00
if (x32)
__set_personality_x32();
else
__set_personality_ia32();
}
EXPORT_SYMBOL_GPL(set_personality_ia32);
#ifdef CONFIG_CHECKPOINT_RESTORE
static long prctl_map_vdso(const struct vdso_image *image, unsigned long addr)
{
int ret;
ret = map_vdso_once(image, addr);
if (ret)
return ret;
return (long)image->size;
}
#endif
2017-03-20 16:16:22 +08:00
long do_arch_prctl_64(struct task_struct *task, int option, unsigned long arg2)
{
int ret = 0;
int doit = task == current;
int cpu;
switch (option) {
case ARCH_SET_GS:
2017-03-20 16:16:22 +08:00
if (arg2 >= TASK_SIZE_MAX)
return -EPERM;
cpu = get_cpu();
task->thread.gsindex = 0;
2017-03-20 16:16:22 +08:00
task->thread.gsbase = arg2;
if (doit) {
load_gs_index(0);
2017-03-20 16:16:22 +08:00
ret = wrmsrl_safe(MSR_KERNEL_GS_BASE, arg2);
}
put_cpu();
break;
case ARCH_SET_FS:
/* Not strictly needed for fs, but do it for symmetry
with gs */
2017-03-20 16:16:22 +08:00
if (arg2 >= TASK_SIZE_MAX)
return -EPERM;
cpu = get_cpu();
task->thread.fsindex = 0;
2017-03-20 16:16:22 +08:00
task->thread.fsbase = arg2;
if (doit) {
/* set the selector to 0 to not confuse __switch_to */
loadsegment(fs, 0);
2017-03-20 16:16:22 +08:00
ret = wrmsrl_safe(MSR_FS_BASE, arg2);
}
put_cpu();
break;
case ARCH_GET_FS: {
unsigned long base;
2017-03-20 16:16:22 +08:00
if (doit)
rdmsrl(MSR_FS_BASE, base);
else
base = task->thread.fsbase;
2017-03-20 16:16:22 +08:00
ret = put_user(base, (unsigned long __user *)arg2);
break;
}
case ARCH_GET_GS: {
unsigned long base;
2017-03-20 16:16:22 +08:00
if (doit)
rdmsrl(MSR_KERNEL_GS_BASE, base);
else
base = task->thread.gsbase;
2017-03-20 16:16:22 +08:00
ret = put_user(base, (unsigned long __user *)arg2);
break;
}
#ifdef CONFIG_CHECKPOINT_RESTORE
# ifdef CONFIG_X86_X32_ABI
case ARCH_MAP_VDSO_X32:
2017-03-20 16:16:22 +08:00
return prctl_map_vdso(&vdso_image_x32, arg2);
# endif
# if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION
case ARCH_MAP_VDSO_32:
2017-03-20 16:16:22 +08:00
return prctl_map_vdso(&vdso_image_32, arg2);
# endif
case ARCH_MAP_VDSO_64:
2017-03-20 16:16:22 +08:00
return prctl_map_vdso(&vdso_image_64, arg2);
#endif
default:
ret = -EINVAL;
break;
}
return ret;
}
2017-03-20 16:16:22 +08:00
SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2)
{
long ret;
ret = do_arch_prctl_64(current, option, arg2);
if (ret == -EINVAL)
ret = do_arch_prctl_common(current, option, arg2);
return ret;
}
#ifdef CONFIG_IA32_EMULATION
COMPAT_SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2)
{
return do_arch_prctl_common(current, option, arg2);
}
#endif
unsigned long KSTK_ESP(struct task_struct *task)
{
return task_pt_regs(task)->sp;
}