linux-sg2042/drivers/video/bfin-lq035q1-fb.c

870 lines
21 KiB
C
Raw Normal View History

/*
* Blackfin LCD Framebuffer driver SHARP LQ035Q1DH02
*
* Copyright 2008-2009 Analog Devices Inc.
* Licensed under the GPL-2 or later.
*/
#define DRIVER_NAME "bfin-lq035q1"
#define pr_fmt(fmt) DRIVER_NAME ": " fmt
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/fb.h>
#include <linux/gpio.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/types.h>
#include <linux/interrupt.h>
#include <linux/device.h>
#include <linux/backlight.h>
#include <linux/lcd.h>
#include <linux/dma-mapping.h>
#include <linux/platform_device.h>
#include <linux/spi/spi.h>
#include <asm/blackfin.h>
#include <asm/irq.h>
#include <asm/dma.h>
#include <asm/portmux.h>
#include <asm/gptimers.h>
#include <asm/bfin-lq035q1.h>
#if defined(BF533_FAMILY) || defined(BF538_FAMILY)
#define TIMER_HSYNC_id TIMER1_id
#define TIMER_HSYNCbit TIMER1bit
#define TIMER_HSYNC_STATUS_TRUN TIMER_STATUS_TRUN1
#define TIMER_HSYNC_STATUS_TIMIL TIMER_STATUS_TIMIL1
#define TIMER_HSYNC_STATUS_TOVF TIMER_STATUS_TOVF1
#define TIMER_VSYNC_id TIMER2_id
#define TIMER_VSYNCbit TIMER2bit
#define TIMER_VSYNC_STATUS_TRUN TIMER_STATUS_TRUN2
#define TIMER_VSYNC_STATUS_TIMIL TIMER_STATUS_TIMIL2
#define TIMER_VSYNC_STATUS_TOVF TIMER_STATUS_TOVF2
#else
#define TIMER_HSYNC_id TIMER0_id
#define TIMER_HSYNCbit TIMER0bit
#define TIMER_HSYNC_STATUS_TRUN TIMER_STATUS_TRUN0
#define TIMER_HSYNC_STATUS_TIMIL TIMER_STATUS_TIMIL0
#define TIMER_HSYNC_STATUS_TOVF TIMER_STATUS_TOVF0
#define TIMER_VSYNC_id TIMER1_id
#define TIMER_VSYNCbit TIMER1bit
#define TIMER_VSYNC_STATUS_TRUN TIMER_STATUS_TRUN1
#define TIMER_VSYNC_STATUS_TIMIL TIMER_STATUS_TIMIL1
#define TIMER_VSYNC_STATUS_TOVF TIMER_STATUS_TOVF1
#endif
#define LCD_X_RES 320 /* Horizontal Resolution */
#define LCD_Y_RES 240 /* Vertical Resolution */
#define DMA_BUS_SIZE 16
#define U_LINE 4 /* Blanking Lines */
/* Interface 16/18-bit TFT over an 8-bit wide PPI using a small Programmable Logic Device (CPLD)
* http://blackfin.uclinux.org/gf/project/stamp/frs/?action=FrsReleaseBrowse&frs_package_id=165
*/
#define BFIN_LCD_NBR_PALETTE_ENTRIES 256
#define PPI_TX_MODE 0x2
#define PPI_XFER_TYPE_11 0xC
#define PPI_PORT_CFG_01 0x10
#define PPI_POLS_1 0x8000
#define LQ035_INDEX 0x74
#define LQ035_DATA 0x76
#define LQ035_DRIVER_OUTPUT_CTL 0x1
#define LQ035_SHUT_CTL 0x11
#define LQ035_DRIVER_OUTPUT_MASK (LQ035_LR | LQ035_TB | LQ035_BGR | LQ035_REV)
#define LQ035_DRIVER_OUTPUT_DEFAULT (0x2AEF & ~LQ035_DRIVER_OUTPUT_MASK)
#define LQ035_SHUT (1 << 0) /* Shutdown */
#define LQ035_ON (0 << 0) /* Shutdown */
struct bfin_lq035q1fb_info {
struct fb_info *fb;
struct device *dev;
struct spi_driver spidrv;
struct bfin_lq035q1fb_disp_info *disp_info;
unsigned char *fb_buffer; /* RGB Buffer */
dma_addr_t dma_handle;
int lq035_open_cnt;
int irq;
spinlock_t lock; /* lock */
u32 pseudo_pal[16];
u32 lcd_bpp;
u32 h_actpix;
u32 h_period;
u32 h_pulse;
u32 h_start;
u32 v_lines;
u32 v_pulse;
u32 v_period;
};
static int nocursor;
module_param(nocursor, int, 0644);
MODULE_PARM_DESC(nocursor, "cursor enable/disable");
struct spi_control {
unsigned short mode;
};
static int lq035q1_control(struct spi_device *spi, unsigned char reg, unsigned short value)
{
int ret;
u8 regs[3] = { LQ035_INDEX, 0, 0 };
u8 dat[3] = { LQ035_DATA, 0, 0 };
if (!spi)
return -ENODEV;
regs[2] = reg;
dat[1] = value >> 8;
dat[2] = value & 0xFF;
ret = spi_write(spi, regs, ARRAY_SIZE(regs));
ret |= spi_write(spi, dat, ARRAY_SIZE(dat));
return ret;
}
static int __devinit lq035q1_spidev_probe(struct spi_device *spi)
{
int ret;
struct spi_control *ctl;
struct bfin_lq035q1fb_info *info = container_of(spi->dev.driver,
struct bfin_lq035q1fb_info,
spidrv.driver);
ctl = kzalloc(sizeof(*ctl), GFP_KERNEL);
if (!ctl)
return -ENOMEM;
ctl->mode = (info->disp_info->mode &
LQ035_DRIVER_OUTPUT_MASK) | LQ035_DRIVER_OUTPUT_DEFAULT;
ret = lq035q1_control(spi, LQ035_SHUT_CTL, LQ035_ON);
ret |= lq035q1_control(spi, LQ035_DRIVER_OUTPUT_CTL, ctl->mode);
if (ret) {
kfree(ctl);
return ret;
}
spi_set_drvdata(spi, ctl);
return 0;
}
static int lq035q1_spidev_remove(struct spi_device *spi)
{
return lq035q1_control(spi, LQ035_SHUT_CTL, LQ035_SHUT);
}
#ifdef CONFIG_PM
static int lq035q1_spidev_suspend(struct spi_device *spi, pm_message_t state)
{
return lq035q1_control(spi, LQ035_SHUT_CTL, LQ035_SHUT);
}
static int lq035q1_spidev_resume(struct spi_device *spi)
{
int ret;
struct spi_control *ctl = spi_get_drvdata(spi);
ret = lq035q1_control(spi, LQ035_DRIVER_OUTPUT_CTL, ctl->mode);
if (ret)
return ret;
return lq035q1_control(spi, LQ035_SHUT_CTL, LQ035_ON);
}
#else
# define lq035q1_spidev_suspend NULL
# define lq035q1_spidev_resume NULL
#endif
/* Power down all displays on reboot, poweroff or halt */
static void lq035q1_spidev_shutdown(struct spi_device *spi)
{
lq035q1_control(spi, LQ035_SHUT_CTL, LQ035_SHUT);
}
static int lq035q1_backlight(struct bfin_lq035q1fb_info *info, unsigned arg)
{
if (info->disp_info->use_bl)
gpio_set_value(info->disp_info->gpio_bl, arg);
return 0;
}
static int bfin_lq035q1_calc_timing(struct bfin_lq035q1fb_info *fbi)
{
unsigned long clocks_per_pix, cpld_pipeline_delay_cor;
/*
* Interface 16/18-bit TFT over an 8-bit wide PPI using a small
* Programmable Logic Device (CPLD)
* http://blackfin.uclinux.org/gf/project/stamp/frs/?action=FrsReleaseBrowse&frs_package_id=165
*/
switch (fbi->disp_info->ppi_mode) {
case USE_RGB565_16_BIT_PPI:
fbi->lcd_bpp = 16;
clocks_per_pix = 1;
cpld_pipeline_delay_cor = 0;
break;
case USE_RGB565_8_BIT_PPI:
fbi->lcd_bpp = 16;
clocks_per_pix = 2;
cpld_pipeline_delay_cor = 3;
break;
case USE_RGB888_8_BIT_PPI:
fbi->lcd_bpp = 24;
clocks_per_pix = 3;
cpld_pipeline_delay_cor = 5;
break;
default:
return -EINVAL;
}
/*
* HS and VS timing parameters (all in number of PPI clk ticks)
*/
fbi->h_actpix = (LCD_X_RES * clocks_per_pix); /* active horizontal pixel */
fbi->h_period = (336 * clocks_per_pix); /* HS period */
fbi->h_pulse = (2 * clocks_per_pix); /* HS pulse width */
fbi->h_start = (7 * clocks_per_pix + cpld_pipeline_delay_cor); /* first valid pixel */
fbi->v_lines = (LCD_Y_RES + U_LINE); /* total vertical lines */
fbi->v_pulse = (2 * clocks_per_pix); /* VS pulse width (1-5 H_PERIODs) */
fbi->v_period = (fbi->h_period * fbi->v_lines); /* VS period */
return 0;
}
static void bfin_lq035q1_config_ppi(struct bfin_lq035q1fb_info *fbi)
{
unsigned ppi_pmode;
if (fbi->disp_info->ppi_mode == USE_RGB565_16_BIT_PPI)
ppi_pmode = DLEN_16;
else
ppi_pmode = (DLEN_8 | PACK_EN);
bfin_write_PPI_DELAY(fbi->h_start);
bfin_write_PPI_COUNT(fbi->h_actpix - 1);
bfin_write_PPI_FRAME(fbi->v_lines);
bfin_write_PPI_CONTROL(PPI_TX_MODE | /* output mode , PORT_DIR */
PPI_XFER_TYPE_11 | /* sync mode XFR_TYPE */
PPI_PORT_CFG_01 | /* two frame sync PORT_CFG */
ppi_pmode | /* 8/16 bit data length / PACK_EN? */
PPI_POLS_1); /* faling edge syncs POLS */
}
static inline void bfin_lq035q1_disable_ppi(void)
{
bfin_write_PPI_CONTROL(bfin_read_PPI_CONTROL() & ~PORT_EN);
}
static inline void bfin_lq035q1_enable_ppi(void)
{
bfin_write_PPI_CONTROL(bfin_read_PPI_CONTROL() | PORT_EN);
}
static void bfin_lq035q1_start_timers(void)
{
enable_gptimers(TIMER_VSYNCbit | TIMER_HSYNCbit);
}
static void bfin_lq035q1_stop_timers(void)
{
disable_gptimers(TIMER_HSYNCbit | TIMER_VSYNCbit);
set_gptimer_status(0, TIMER_HSYNC_STATUS_TRUN | TIMER_VSYNC_STATUS_TRUN |
TIMER_HSYNC_STATUS_TIMIL | TIMER_VSYNC_STATUS_TIMIL |
TIMER_HSYNC_STATUS_TOVF | TIMER_VSYNC_STATUS_TOVF);
}
static void bfin_lq035q1_init_timers(struct bfin_lq035q1fb_info *fbi)
{
bfin_lq035q1_stop_timers();
set_gptimer_period(TIMER_HSYNC_id, fbi->h_period);
set_gptimer_pwidth(TIMER_HSYNC_id, fbi->h_pulse);
set_gptimer_config(TIMER_HSYNC_id, TIMER_MODE_PWM | TIMER_PERIOD_CNT |
TIMER_TIN_SEL | TIMER_CLK_SEL|
TIMER_EMU_RUN);
set_gptimer_period(TIMER_VSYNC_id, fbi->v_period);
set_gptimer_pwidth(TIMER_VSYNC_id, fbi->v_pulse);
set_gptimer_config(TIMER_VSYNC_id, TIMER_MODE_PWM | TIMER_PERIOD_CNT |
TIMER_TIN_SEL | TIMER_CLK_SEL |
TIMER_EMU_RUN);
}
static void bfin_lq035q1_config_dma(struct bfin_lq035q1fb_info *fbi)
{
set_dma_config(CH_PPI,
set_bfin_dma_config(DIR_READ, DMA_FLOW_AUTO,
INTR_DISABLE, DIMENSION_2D,
DATA_SIZE_16,
DMA_NOSYNC_KEEP_DMA_BUF));
set_dma_x_count(CH_PPI, (LCD_X_RES * fbi->lcd_bpp) / DMA_BUS_SIZE);
set_dma_x_modify(CH_PPI, DMA_BUS_SIZE / 8);
set_dma_y_count(CH_PPI, fbi->v_lines);
set_dma_y_modify(CH_PPI, DMA_BUS_SIZE / 8);
set_dma_start_addr(CH_PPI, (unsigned long)fbi->fb_buffer);
}
static const u16 ppi0_req_16[] = {P_PPI0_CLK, P_PPI0_FS1, P_PPI0_FS2,
P_PPI0_D0, P_PPI0_D1, P_PPI0_D2,
P_PPI0_D3, P_PPI0_D4, P_PPI0_D5,
P_PPI0_D6, P_PPI0_D7, P_PPI0_D8,
P_PPI0_D9, P_PPI0_D10, P_PPI0_D11,
P_PPI0_D12, P_PPI0_D13, P_PPI0_D14,
P_PPI0_D15, 0};
static const u16 ppi0_req_8[] = {P_PPI0_CLK, P_PPI0_FS1, P_PPI0_FS2,
P_PPI0_D0, P_PPI0_D1, P_PPI0_D2,
P_PPI0_D3, P_PPI0_D4, P_PPI0_D5,
P_PPI0_D6, P_PPI0_D7, 0};
static inline void bfin_lq035q1_free_ports(unsigned ppi16)
{
if (ppi16)
peripheral_free_list(ppi0_req_16);
else
peripheral_free_list(ppi0_req_8);
if (ANOMALY_05000400)
gpio_free(P_IDENT(P_PPI0_FS3));
}
static int __devinit bfin_lq035q1_request_ports(struct platform_device *pdev,
unsigned ppi16)
{
int ret;
/* ANOMALY_05000400 - PPI Does Not Start Properly In Specific Mode:
* Drive PPI_FS3 Low
*/
if (ANOMALY_05000400) {
int ret = gpio_request_one(P_IDENT(P_PPI0_FS3),
GPIOF_OUT_INIT_LOW, "PPI_FS3");
if (ret)
return ret;
}
if (ppi16)
ret = peripheral_request_list(ppi0_req_16, DRIVER_NAME);
else
ret = peripheral_request_list(ppi0_req_8, DRIVER_NAME);
if (ret) {
dev_err(&pdev->dev, "requesting peripherals failed\n");
return -EFAULT;
}
return 0;
}
static int bfin_lq035q1_fb_open(struct fb_info *info, int user)
{
struct bfin_lq035q1fb_info *fbi = info->par;
spin_lock(&fbi->lock);
fbi->lq035_open_cnt++;
if (fbi->lq035_open_cnt <= 1) {
bfin_lq035q1_disable_ppi();
SSYNC();
bfin_lq035q1_config_dma(fbi);
bfin_lq035q1_config_ppi(fbi);
bfin_lq035q1_init_timers(fbi);
/* start dma */
enable_dma(CH_PPI);
bfin_lq035q1_enable_ppi();
bfin_lq035q1_start_timers();
lq035q1_backlight(fbi, 1);
}
spin_unlock(&fbi->lock);
return 0;
}
static int bfin_lq035q1_fb_release(struct fb_info *info, int user)
{
struct bfin_lq035q1fb_info *fbi = info->par;
spin_lock(&fbi->lock);
fbi->lq035_open_cnt--;
if (fbi->lq035_open_cnt <= 0) {
lq035q1_backlight(fbi, 0);
bfin_lq035q1_disable_ppi();
SSYNC();
disable_dma(CH_PPI);
bfin_lq035q1_stop_timers();
}
spin_unlock(&fbi->lock);
return 0;
}
static int bfin_lq035q1_fb_check_var(struct fb_var_screeninfo *var,
struct fb_info *info)
{
struct bfin_lq035q1fb_info *fbi = info->par;
if (var->bits_per_pixel == fbi->lcd_bpp) {
var->red.offset = info->var.red.offset;
var->green.offset = info->var.green.offset;
var->blue.offset = info->var.blue.offset;
var->red.length = info->var.red.length;
var->green.length = info->var.green.length;
var->blue.length = info->var.blue.length;
var->transp.offset = 0;
var->transp.length = 0;
var->transp.msb_right = 0;
var->red.msb_right = 0;
var->green.msb_right = 0;
var->blue.msb_right = 0;
} else {
pr_debug("%s: depth not supported: %u BPP\n", __func__,
var->bits_per_pixel);
return -EINVAL;
}
if (info->var.xres != var->xres || info->var.yres != var->yres ||
info->var.xres_virtual != var->xres_virtual ||
info->var.yres_virtual != var->yres_virtual) {
pr_debug("%s: Resolution not supported: X%u x Y%u \n",
__func__, var->xres, var->yres);
return -EINVAL;
}
/*
* Memory limit
*/
if ((info->fix.line_length * var->yres_virtual) > info->fix.smem_len) {
pr_debug("%s: Memory Limit requested yres_virtual = %u\n",
__func__, var->yres_virtual);
return -ENOMEM;
}
return 0;
}
int bfin_lq035q1_fb_cursor(struct fb_info *info, struct fb_cursor *cursor)
{
if (nocursor)
return 0;
else
return -EINVAL; /* just to force soft_cursor() call */
}
static int bfin_lq035q1_fb_setcolreg(u_int regno, u_int red, u_int green,
u_int blue, u_int transp,
struct fb_info *info)
{
if (regno >= BFIN_LCD_NBR_PALETTE_ENTRIES)
return -EINVAL;
if (info->var.grayscale) {
/* grayscale = 0.30*R + 0.59*G + 0.11*B */
red = green = blue = (red * 77 + green * 151 + blue * 28) >> 8;
}
if (info->fix.visual == FB_VISUAL_TRUECOLOR) {
u32 value;
/* Place color in the pseudopalette */
if (regno > 16)
return -EINVAL;
red >>= (16 - info->var.red.length);
green >>= (16 - info->var.green.length);
blue >>= (16 - info->var.blue.length);
value = (red << info->var.red.offset) |
(green << info->var.green.offset) |
(blue << info->var.blue.offset);
value &= 0xFFFFFF;
((u32 *) (info->pseudo_palette))[regno] = value;
}
return 0;
}
static struct fb_ops bfin_lq035q1_fb_ops = {
.owner = THIS_MODULE,
.fb_open = bfin_lq035q1_fb_open,
.fb_release = bfin_lq035q1_fb_release,
.fb_check_var = bfin_lq035q1_fb_check_var,
.fb_fillrect = cfb_fillrect,
.fb_copyarea = cfb_copyarea,
.fb_imageblit = cfb_imageblit,
.fb_cursor = bfin_lq035q1_fb_cursor,
.fb_setcolreg = bfin_lq035q1_fb_setcolreg,
};
static irqreturn_t bfin_lq035q1_irq_error(int irq, void *dev_id)
{
/*struct bfin_lq035q1fb_info *info = (struct bfin_lq035q1fb_info *)dev_id;*/
u16 status = bfin_read_PPI_STATUS();
bfin_write_PPI_STATUS(-1);
if (status) {
bfin_lq035q1_disable_ppi();
disable_dma(CH_PPI);
/* start dma */
enable_dma(CH_PPI);
bfin_lq035q1_enable_ppi();
bfin_write_PPI_STATUS(-1);
}
return IRQ_HANDLED;
}
static int __devinit bfin_lq035q1_probe(struct platform_device *pdev)
{
struct bfin_lq035q1fb_info *info;
struct fb_info *fbinfo;
u32 active_video_mem_offset;
int ret;
ret = request_dma(CH_PPI, DRIVER_NAME"_CH_PPI");
if (ret < 0) {
dev_err(&pdev->dev, "PPI DMA unavailable\n");
goto out1;
}
fbinfo = framebuffer_alloc(sizeof(*info), &pdev->dev);
if (!fbinfo) {
ret = -ENOMEM;
goto out2;
}
info = fbinfo->par;
info->fb = fbinfo;
info->dev = &pdev->dev;
info->disp_info = pdev->dev.platform_data;
platform_set_drvdata(pdev, fbinfo);
ret = bfin_lq035q1_calc_timing(info);
if (ret < 0) {
dev_err(&pdev->dev, "Failed PPI Mode\n");
goto out3;
}
strcpy(fbinfo->fix.id, DRIVER_NAME);
fbinfo->fix.type = FB_TYPE_PACKED_PIXELS;
fbinfo->fix.type_aux = 0;
fbinfo->fix.xpanstep = 0;
fbinfo->fix.ypanstep = 0;
fbinfo->fix.ywrapstep = 0;
fbinfo->fix.accel = FB_ACCEL_NONE;
fbinfo->fix.visual = FB_VISUAL_TRUECOLOR;
fbinfo->var.nonstd = 0;
fbinfo->var.activate = FB_ACTIVATE_NOW;
fbinfo->var.height = -1;
fbinfo->var.width = -1;
fbinfo->var.accel_flags = 0;
fbinfo->var.vmode = FB_VMODE_NONINTERLACED;
fbinfo->var.xres = LCD_X_RES;
fbinfo->var.xres_virtual = LCD_X_RES;
fbinfo->var.yres = LCD_Y_RES;
fbinfo->var.yres_virtual = LCD_Y_RES;
fbinfo->var.bits_per_pixel = info->lcd_bpp;
if (info->disp_info->mode & LQ035_BGR) {
if (info->lcd_bpp == 24) {
fbinfo->var.red.offset = 0;
fbinfo->var.green.offset = 8;
fbinfo->var.blue.offset = 16;
} else {
fbinfo->var.red.offset = 0;
fbinfo->var.green.offset = 5;
fbinfo->var.blue.offset = 11;
}
} else {
if (info->lcd_bpp == 24) {
fbinfo->var.red.offset = 16;
fbinfo->var.green.offset = 8;
fbinfo->var.blue.offset = 0;
} else {
fbinfo->var.red.offset = 11;
fbinfo->var.green.offset = 5;
fbinfo->var.blue.offset = 0;
}
}
fbinfo->var.transp.offset = 0;
if (info->lcd_bpp == 24) {
fbinfo->var.red.length = 8;
fbinfo->var.green.length = 8;
fbinfo->var.blue.length = 8;
} else {
fbinfo->var.red.length = 5;
fbinfo->var.green.length = 6;
fbinfo->var.blue.length = 5;
}
fbinfo->var.transp.length = 0;
active_video_mem_offset = ((U_LINE / 2) * LCD_X_RES * (info->lcd_bpp / 8));
fbinfo->fix.smem_len = LCD_X_RES * LCD_Y_RES * info->lcd_bpp / 8
+ active_video_mem_offset;
fbinfo->fix.line_length = fbinfo->var.xres_virtual *
fbinfo->var.bits_per_pixel / 8;
fbinfo->fbops = &bfin_lq035q1_fb_ops;
fbinfo->flags = FBINFO_FLAG_DEFAULT;
info->fb_buffer =
dma_alloc_coherent(NULL, fbinfo->fix.smem_len, &info->dma_handle,
GFP_KERNEL);
if (NULL == info->fb_buffer) {
dev_err(&pdev->dev, "couldn't allocate dma buffer\n");
ret = -ENOMEM;
goto out3;
}
fbinfo->screen_base = (void *)info->fb_buffer + active_video_mem_offset;
fbinfo->fix.smem_start = (int)info->fb_buffer + active_video_mem_offset;
fbinfo->fbops = &bfin_lq035q1_fb_ops;
fbinfo->pseudo_palette = &info->pseudo_pal;
ret = fb_alloc_cmap(&fbinfo->cmap, BFIN_LCD_NBR_PALETTE_ENTRIES, 0);
if (ret < 0) {
dev_err(&pdev->dev, "failed to allocate colormap (%d entries)\n",
BFIN_LCD_NBR_PALETTE_ENTRIES);
goto out4;
}
ret = bfin_lq035q1_request_ports(pdev,
info->disp_info->ppi_mode == USE_RGB565_16_BIT_PPI);
if (ret) {
dev_err(&pdev->dev, "couldn't request gpio port\n");
goto out6;
}
info->irq = platform_get_irq(pdev, 0);
if (info->irq < 0) {
ret = -EINVAL;
goto out7;
}
ret = request_irq(info->irq, bfin_lq035q1_irq_error, 0,
DRIVER_NAME" PPI ERROR", info);
if (ret < 0) {
dev_err(&pdev->dev, "unable to request PPI ERROR IRQ\n");
goto out7;
}
info->spidrv.driver.name = DRIVER_NAME"-spi";
info->spidrv.probe = lq035q1_spidev_probe;
info->spidrv.remove = __devexit_p(lq035q1_spidev_remove);
info->spidrv.shutdown = lq035q1_spidev_shutdown;
info->spidrv.suspend = lq035q1_spidev_suspend;
info->spidrv.resume = lq035q1_spidev_resume;
ret = spi_register_driver(&info->spidrv);
if (ret < 0) {
dev_err(&pdev->dev, "couldn't register SPI Interface\n");
goto out8;
}
if (info->disp_info->use_bl) {
ret = gpio_request_one(info->disp_info->gpio_bl,
GPIOF_OUT_INIT_LOW, "LQ035 Backlight");
if (ret) {
dev_err(&pdev->dev, "failed to request GPIO %d\n",
info->disp_info->gpio_bl);
goto out9;
}
}
ret = register_framebuffer(fbinfo);
if (ret < 0) {
dev_err(&pdev->dev, "unable to register framebuffer\n");
goto out10;
}
dev_info(&pdev->dev, "%dx%d %d-bit RGB FrameBuffer initialized\n",
LCD_X_RES, LCD_Y_RES, info->lcd_bpp);
return 0;
out10:
if (info->disp_info->use_bl)
gpio_free(info->disp_info->gpio_bl);
out9:
spi_unregister_driver(&info->spidrv);
out8:
free_irq(info->irq, info);
out7:
bfin_lq035q1_free_ports(info->disp_info->ppi_mode ==
USE_RGB565_16_BIT_PPI);
out6:
fb_dealloc_cmap(&fbinfo->cmap);
out4:
dma_free_coherent(NULL, fbinfo->fix.smem_len, info->fb_buffer,
info->dma_handle);
out3:
framebuffer_release(fbinfo);
out2:
free_dma(CH_PPI);
out1:
platform_set_drvdata(pdev, NULL);
return ret;
}
static int __devexit bfin_lq035q1_remove(struct platform_device *pdev)
{
struct fb_info *fbinfo = platform_get_drvdata(pdev);
struct bfin_lq035q1fb_info *info = fbinfo->par;
if (info->disp_info->use_bl)
gpio_free(info->disp_info->gpio_bl);
spi_unregister_driver(&info->spidrv);
unregister_framebuffer(fbinfo);
free_dma(CH_PPI);
free_irq(info->irq, info);
if (info->fb_buffer != NULL)
dma_free_coherent(NULL, fbinfo->fix.smem_len, info->fb_buffer,
info->dma_handle);
fb_dealloc_cmap(&fbinfo->cmap);
bfin_lq035q1_free_ports(info->disp_info->ppi_mode ==
USE_RGB565_16_BIT_PPI);
platform_set_drvdata(pdev, NULL);
framebuffer_release(fbinfo);
dev_info(&pdev->dev, "unregistered LCD driver\n");
return 0;
}
#ifdef CONFIG_PM
static int bfin_lq035q1_suspend(struct device *dev)
{
struct fb_info *fbinfo = dev_get_drvdata(dev);
struct bfin_lq035q1fb_info *info = fbinfo->par;
if (info->lq035_open_cnt) {
lq035q1_backlight(info, 0);
bfin_lq035q1_disable_ppi();
SSYNC();
disable_dma(CH_PPI);
bfin_lq035q1_stop_timers();
bfin_write_PPI_STATUS(-1);
}
return 0;
}
static int bfin_lq035q1_resume(struct device *dev)
{
struct fb_info *fbinfo = dev_get_drvdata(dev);
struct bfin_lq035q1fb_info *info = fbinfo->par;
if (info->lq035_open_cnt) {
bfin_lq035q1_disable_ppi();
SSYNC();
bfin_lq035q1_config_dma(info);
bfin_lq035q1_config_ppi(info);
bfin_lq035q1_init_timers(info);
/* start dma */
enable_dma(CH_PPI);
bfin_lq035q1_enable_ppi();
bfin_lq035q1_start_timers();
lq035q1_backlight(info, 1);
}
return 0;
}
static struct dev_pm_ops bfin_lq035q1_dev_pm_ops = {
.suspend = bfin_lq035q1_suspend,
.resume = bfin_lq035q1_resume,
};
#endif
static struct platform_driver bfin_lq035q1_driver = {
.probe = bfin_lq035q1_probe,
.remove = __devexit_p(bfin_lq035q1_remove),
.driver = {
.name = DRIVER_NAME,
#ifdef CONFIG_PM
.pm = &bfin_lq035q1_dev_pm_ops,
#endif
},
};
static int __init bfin_lq035q1_driver_init(void)
{
return platform_driver_register(&bfin_lq035q1_driver);
}
module_init(bfin_lq035q1_driver_init);
static void __exit bfin_lq035q1_driver_cleanup(void)
{
platform_driver_unregister(&bfin_lq035q1_driver);
}
module_exit(bfin_lq035q1_driver_cleanup);
MODULE_DESCRIPTION("Blackfin TFT LCD Driver");
MODULE_LICENSE("GPL");