linux-sg2042/drivers/net/ethernet/netronome/nfp/nfp_net_main.c

900 lines
21 KiB
C
Raw Normal View History

/*
* Copyright (C) 2015-2017 Netronome Systems, Inc.
*
* This software is dual licensed under the GNU General License Version 2,
* June 1991 as shown in the file COPYING in the top-level directory of this
* source tree or the BSD 2-Clause License provided below. You have the
* option to license this software under the complete terms of either license.
*
* The BSD 2-Clause License:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* 1. Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* 2. Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
/*
* nfp_net_main.c
* Netronome network device driver: Main entry point
* Authors: Jakub Kicinski <jakub.kicinski@netronome.com>
* Alejandro Lucero <alejandro.lucero@netronome.com>
* Jason McMullan <jason.mcmullan@netronome.com>
* Rolf Neugebauer <rolf.neugebauer@netronome.com>
*/
#include <linux/etherdevice.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/lockdep.h>
#include <linux/pci.h>
#include <linux/pci_regs.h>
#include <linux/msi.h>
#include <linux/random.h>
#include <linux/rtnetlink.h>
#include "nfpcore/nfp.h"
#include "nfpcore/nfp_cpp.h"
#include "nfpcore/nfp_nffw.h"
#include "nfpcore/nfp_nsp.h"
#include "nfpcore/nfp6000_pcie.h"
#include "nfp_app.h"
#include "nfp_net_ctrl.h"
#include "nfp_net.h"
#include "nfp_main.h"
#include "nfp_port.h"
#define NFP_PF_CSR_SLICE_SIZE (32 * 1024)
static int nfp_is_ready(struct nfp_pf *pf)
{
const char *cp;
long state;
int err;
cp = nfp_hwinfo_lookup(pf->hwinfo, "board.state");
if (!cp)
return 0;
err = kstrtol(cp, 0, &state);
if (err < 0)
return 0;
return state == 15;
}
/**
* nfp_net_map_area() - Help function to map an area
* @cpp: NFP CPP handler
* @name: Name for the area
* @target: CPP target
* @addr: CPP address
* @size: Size of the area
* @area: Area handle (returned).
*
* This function is primarily to simplify the code in the main probe
* function. To undo the effect of this functions call
* @nfp_cpp_area_release_free(*area);
*
* Return: Pointer to memory mapped area or ERR_PTR
*/
static u8 __iomem *nfp_net_map_area(struct nfp_cpp *cpp,
const char *name, int isl, int target,
unsigned long long addr, unsigned long size,
struct nfp_cpp_area **area)
{
u8 __iomem *res;
u32 dest;
int err;
dest = NFP_CPP_ISLAND_ID(target, NFP_CPP_ACTION_RW, 0, isl);
*area = nfp_cpp_area_alloc_with_name(cpp, dest, name, addr, size);
if (!*area) {
err = -EIO;
goto err_area;
}
err = nfp_cpp_area_acquire(*area);
if (err < 0)
goto err_acquire;
res = nfp_cpp_area_iomem(*area);
if (!res) {
err = -EIO;
goto err_map;
}
return res;
err_map:
nfp_cpp_area_release(*area);
err_acquire:
nfp_cpp_area_free(*area);
err_area:
return (u8 __iomem *)ERR_PTR(err);
}
/**
* nfp_net_get_mac_addr() - Get the MAC address.
* @pf: NFP PF handle
* @port: NFP port structure
* @id: NFP port id
*
* First try to get the MAC address from NSP ETH table. If that
* fails try HWInfo. As a last resort generate a random address.
*/
void
nfp_net_get_mac_addr(struct nfp_pf *pf, struct nfp_port *port, unsigned int id)
{
struct nfp_eth_table_port *eth_port;
u8 mac_addr[ETH_ALEN];
const char *mac_str;
char name[32];
eth_port = __nfp_port_get_eth_port(port);
if (eth_port) {
ether_addr_copy(port->netdev->dev_addr, eth_port->mac_addr);
ether_addr_copy(port->netdev->perm_addr, eth_port->mac_addr);
return;
}
snprintf(name, sizeof(name), "eth%d.mac", id);
mac_str = nfp_hwinfo_lookup(pf->hwinfo, name);
if (!mac_str) {
nfp_warn(pf->cpp, "Can't lookup MAC address. Generate\n");
eth_hw_addr_random(port->netdev);
return;
}
if (sscanf(mac_str, "%02hhx:%02hhx:%02hhx:%02hhx:%02hhx:%02hhx",
&mac_addr[0], &mac_addr[1], &mac_addr[2],
&mac_addr[3], &mac_addr[4], &mac_addr[5]) != 6) {
nfp_warn(pf->cpp, "Can't parse MAC address (%s). Generate.\n",
mac_str);
eth_hw_addr_random(port->netdev);
return;
}
ether_addr_copy(port->netdev->dev_addr, mac_addr);
ether_addr_copy(port->netdev->perm_addr, mac_addr);
}
struct nfp_eth_table_port *
nfp_net_find_port(struct nfp_eth_table *eth_tbl, unsigned int id)
{
int i;
for (i = 0; eth_tbl && i < eth_tbl->count; i++)
if (eth_tbl->ports[i].eth_index == id)
return &eth_tbl->ports[i];
return NULL;
}
static int
nfp_net_pf_rtsym_read_optional(struct nfp_pf *pf, const char *format,
unsigned int default_val)
{
char name[256];
int err = 0;
u64 val;
snprintf(name, sizeof(name), format, nfp_cppcore_pcie_unit(pf->cpp));
val = nfp_rtsym_read_le(pf->rtbl, name, &err);
if (err) {
if (err == -ENOENT)
return default_val;
nfp_err(pf->cpp, "Unable to read symbol %s\n", name);
return err;
}
return val;
}
static int nfp_net_pf_get_num_ports(struct nfp_pf *pf)
{
return nfp_net_pf_rtsym_read_optional(pf, "nfd_cfg_pf%u_num_ports", 1);
}
static int nfp_net_pf_get_app_id(struct nfp_pf *pf)
{
return nfp_net_pf_rtsym_read_optional(pf, "_pf%u_net_app_id",
NFP_APP_CORE_NIC);
}
static u8 __iomem *
nfp_net_pf_map_rtsym(struct nfp_pf *pf, const char *name, const char *sym_fmt,
unsigned int min_size, struct nfp_cpp_area **area)
{
const struct nfp_rtsym *sym;
char pf_symbol[256];
u8 __iomem *mem;
snprintf(pf_symbol, sizeof(pf_symbol), sym_fmt,
nfp_cppcore_pcie_unit(pf->cpp));
sym = nfp_rtsym_lookup(pf->rtbl, pf_symbol);
if (!sym)
return (u8 __iomem *)ERR_PTR(-ENOENT);
if (sym->size < min_size) {
nfp_err(pf->cpp, "PF symbol %s too small\n", pf_symbol);
return (u8 __iomem *)ERR_PTR(-EINVAL);
}
mem = nfp_net_map_area(pf->cpp, name, sym->domain, sym->target,
sym->addr, sym->size, area);
if (IS_ERR(mem)) {
nfp_err(pf->cpp, "Failed to map PF symbol %s: %ld\n",
pf_symbol, PTR_ERR(mem));
return mem;
}
return mem;
}
static void nfp_net_pf_free_vnic(struct nfp_pf *pf, struct nfp_net *nn)
{
nfp_port_free(nn->port);
list_del(&nn->vnic_list);
pf->num_vnics--;
nfp_net_free(nn);
}
static void nfp_net_pf_free_vnics(struct nfp_pf *pf)
{
struct nfp_net *nn, *next;
list_for_each_entry_safe(nn, next, &pf->vnics, vnic_list)
if (nfp_net_is_data_vnic(nn))
nfp_net_pf_free_vnic(pf, nn);
}
static struct nfp_net *
nfp_net_pf_alloc_vnic(struct nfp_pf *pf, bool needs_netdev,
void __iomem *ctrl_bar, void __iomem *qc_bar,
int stride, unsigned int eth_id)
{
u32 tx_base, rx_base, n_tx_rings, n_rx_rings;
struct nfp_net *nn;
int err;
tx_base = readl(ctrl_bar + NFP_NET_CFG_START_TXQ);
rx_base = readl(ctrl_bar + NFP_NET_CFG_START_RXQ);
n_tx_rings = readl(ctrl_bar + NFP_NET_CFG_MAX_TXRINGS);
n_rx_rings = readl(ctrl_bar + NFP_NET_CFG_MAX_RXRINGS);
/* Allocate and initialise the vNIC */
nn = nfp_net_alloc(pf->pdev, needs_netdev, n_tx_rings, n_rx_rings);
if (IS_ERR(nn))
return nn;
nn->app = pf->app;
nfp_net_get_fw_version(&nn->fw_ver, ctrl_bar);
nn->dp.ctrl_bar = ctrl_bar;
nn->tx_bar = qc_bar + tx_base * NFP_QCP_QUEUE_ADDR_SZ;
nn->rx_bar = qc_bar + rx_base * NFP_QCP_QUEUE_ADDR_SZ;
nn->dp.is_vf = 0;
nn->stride_rx = stride;
nn->stride_tx = stride;
if (needs_netdev) {
err = nfp_app_vnic_init(pf->app, nn, eth_id);
if (err) {
nfp_net_free(nn);
return ERR_PTR(err);
}
}
pf->num_vnics++;
list_add_tail(&nn->vnic_list, &pf->vnics);
return nn;
}
static int
nfp_net_pf_init_vnic(struct nfp_pf *pf, struct nfp_net *nn, unsigned int id)
{
int err;
/* Get ME clock frequency from ctrl BAR
* XXX for now frequency is hardcoded until we figure out how
* to get the value from nfp-hwinfo into ctrl bar
*/
nn->me_freq_mhz = 1200;
err = nfp_net_init(nn);
if (err)
return err;
nfp_net_debugfs_vnic_add(nn, pf->ddir, id);
if (nn->port) {
err = nfp_devlink_port_register(pf->app, nn->port);
if (err)
goto err_dfs_clean;
}
nfp_net_info(nn);
return 0;
err_dfs_clean:
nfp_net_debugfs_dir_clean(&nn->debugfs_dir);
nfp_net_clean(nn);
return err;
}
static int
nfp_net_pf_alloc_vnics(struct nfp_pf *pf, void __iomem *ctrl_bar,
void __iomem *qc_bar, int stride)
{
struct nfp_net *nn;
unsigned int i;
int err;
for (i = 0; i < pf->max_data_vnics; i++) {
nn = nfp_net_pf_alloc_vnic(pf, true, ctrl_bar, qc_bar,
stride, i);
if (IS_ERR(nn)) {
err = PTR_ERR(nn);
goto err_free_prev;
}
ctrl_bar += NFP_PF_CSR_SLICE_SIZE;
/* Kill the vNIC if app init marked it as invalid */
if (nn->port && nn->port->type == NFP_PORT_INVALID) {
nfp_net_pf_free_vnic(pf, nn);
continue;
}
}
if (list_empty(&pf->vnics))
return -ENODEV;
return 0;
err_free_prev:
nfp_net_pf_free_vnics(pf);
return err;
}
static void nfp_net_pf_clean_vnic(struct nfp_pf *pf, struct nfp_net *nn)
{
if (nn->port)
nfp_devlink_port_unregister(nn->port);
nfp_net_debugfs_dir_clean(&nn->debugfs_dir);
nfp_net_clean(nn);
nfp_app_vnic_clean(pf->app, nn);
}
static int nfp_net_pf_alloc_irqs(struct nfp_pf *pf)
{
unsigned int wanted_irqs, num_irqs, vnics_left, irqs_left;
struct nfp_net *nn;
/* Get MSI-X vectors */
wanted_irqs = 0;
list_for_each_entry(nn, &pf->vnics, vnic_list)
wanted_irqs += NFP_NET_NON_Q_VECTORS + nn->dp.num_r_vecs;
pf->irq_entries = kcalloc(wanted_irqs, sizeof(*pf->irq_entries),
GFP_KERNEL);
if (!pf->irq_entries)
return -ENOMEM;
num_irqs = nfp_net_irqs_alloc(pf->pdev, pf->irq_entries,
NFP_NET_MIN_VNIC_IRQS * pf->num_vnics,
wanted_irqs);
if (!num_irqs) {
nfp_warn(pf->cpp, "Unable to allocate MSI-X vectors\n");
kfree(pf->irq_entries);
return -ENOMEM;
}
/* Distribute IRQs to vNICs */
irqs_left = num_irqs;
vnics_left = pf->num_vnics;
list_for_each_entry(nn, &pf->vnics, vnic_list) {
unsigned int n;
n = min(NFP_NET_NON_Q_VECTORS + nn->dp.num_r_vecs,
DIV_ROUND_UP(irqs_left, vnics_left));
nfp_net_irqs_assign(nn, &pf->irq_entries[num_irqs - irqs_left],
n);
irqs_left -= n;
vnics_left--;
}
return 0;
}
static void nfp_net_pf_free_irqs(struct nfp_pf *pf)
{
nfp_net_irqs_disable(pf->pdev);
kfree(pf->irq_entries);
}
static int nfp_net_pf_init_vnics(struct nfp_pf *pf)
{
struct nfp_net *nn;
unsigned int id;
int err;
/* Finish vNIC init and register */
id = 0;
list_for_each_entry(nn, &pf->vnics, vnic_list) {
if (!nfp_net_is_data_vnic(nn))
continue;
err = nfp_net_pf_init_vnic(pf, nn, id);
if (err)
goto err_prev_deinit;
id++;
}
return 0;
err_prev_deinit:
list_for_each_entry_continue_reverse(nn, &pf->vnics, vnic_list)
if (nfp_net_is_data_vnic(nn))
nfp_net_pf_clean_vnic(pf, nn);
return err;
}
static int
nfp_net_pf_app_init(struct nfp_pf *pf, u8 __iomem *qc_bar, unsigned int stride)
{
u8 __iomem *ctrl_bar;
int err;
pf->app = nfp_app_alloc(pf, nfp_net_pf_get_app_id(pf));
if (IS_ERR(pf->app))
return PTR_ERR(pf->app);
err = nfp_app_init(pf->app);
if (err)
goto err_free;
if (!nfp_app_needs_ctrl_vnic(pf->app))
return 0;
ctrl_bar = nfp_net_pf_map_rtsym(pf, "net.ctrl", "_pf%u_net_ctrl_bar",
NFP_PF_CSR_SLICE_SIZE,
&pf->ctrl_vnic_bar);
if (IS_ERR(ctrl_bar)) {
nfp_err(pf->cpp, "Failed to find data vNIC memory symbol\n");
err = PTR_ERR(ctrl_bar);
goto err_free;
}
pf->ctrl_vnic = nfp_net_pf_alloc_vnic(pf, false, ctrl_bar, qc_bar,
stride, 0);
if (IS_ERR(pf->ctrl_vnic)) {
err = PTR_ERR(pf->ctrl_vnic);
goto err_unmap;
}
return 0;
err_unmap:
nfp_cpp_area_release_free(pf->ctrl_vnic_bar);
err_free:
nfp_app_free(pf->app);
return err;
}
static void nfp_net_pf_app_clean(struct nfp_pf *pf)
{
if (pf->ctrl_vnic) {
nfp_net_pf_free_vnic(pf, pf->ctrl_vnic);
nfp_cpp_area_release_free(pf->ctrl_vnic_bar);
}
nfp_app_free(pf->app);
pf->app = NULL;
}
static int nfp_net_pf_app_start_ctrl(struct nfp_pf *pf)
{
int err;
if (!pf->ctrl_vnic)
return 0;
err = nfp_net_pf_init_vnic(pf, pf->ctrl_vnic, 0);
if (err)
return err;
err = nfp_ctrl_open(pf->ctrl_vnic);
if (err)
goto err_clean_ctrl;
return 0;
err_clean_ctrl:
nfp_net_pf_clean_vnic(pf, pf->ctrl_vnic);
return err;
}
static void nfp_net_pf_app_stop_ctrl(struct nfp_pf *pf)
{
if (!pf->ctrl_vnic)
return;
nfp_ctrl_close(pf->ctrl_vnic);
nfp_net_pf_clean_vnic(pf, pf->ctrl_vnic);
}
static int nfp_net_pf_app_start(struct nfp_pf *pf)
{
int err;
err = nfp_net_pf_app_start_ctrl(pf);
if (err)
return err;
err = nfp_app_start(pf->app, pf->ctrl_vnic);
if (err)
goto err_ctrl_stop;
return 0;
err_ctrl_stop:
nfp_net_pf_app_stop_ctrl(pf);
return err;
}
static void nfp_net_pf_app_stop(struct nfp_pf *pf)
{
nfp_app_stop(pf->app);
nfp_net_pf_app_stop_ctrl(pf);
}
static void nfp_net_pci_unmap_mem(struct nfp_pf *pf)
{
if (pf->vf_cfg_bar)
nfp_cpp_area_release_free(pf->vf_cfg_bar);
if (pf->mac_stats_bar)
nfp_cpp_area_release_free(pf->mac_stats_bar);
nfp_cpp_area_release_free(pf->qc_area);
nfp_cpp_area_release_free(pf->data_vnic_bar);
}
static int nfp_net_pci_map_mem(struct nfp_pf *pf)
{
u32 ctrl_bar_sz;
u8 __iomem *mem;
int err;
ctrl_bar_sz = pf->max_data_vnics * NFP_PF_CSR_SLICE_SIZE;
mem = nfp_net_pf_map_rtsym(pf, "net.ctrl", "_pf%d_net_bar0",
ctrl_bar_sz, &pf->data_vnic_bar);
if (IS_ERR(mem)) {
nfp_err(pf->cpp, "Failed to find data vNIC memory symbol\n");
return PTR_ERR(mem);
}
pf->mac_stats_mem = nfp_net_pf_map_rtsym(pf, "net.macstats",
"_mac_stats",
NFP_MAC_STATS_SIZE *
(pf->eth_tbl->max_index + 1),
&pf->mac_stats_bar);
if (IS_ERR(pf->mac_stats_mem)) {
if (PTR_ERR(pf->mac_stats_mem) != -ENOENT) {
err = PTR_ERR(pf->mac_stats_mem);
goto err_unmap_ctrl;
}
pf->mac_stats_mem = NULL;
}
pf->vf_cfg_mem = nfp_net_pf_map_rtsym(pf, "net.vfcfg",
"_pf%d_net_vf_bar",
NFP_NET_CFG_BAR_SZ *
pf->limit_vfs, &pf->vf_cfg_bar);
if (IS_ERR(pf->vf_cfg_mem)) {
if (PTR_ERR(pf->vf_cfg_mem) != -ENOENT) {
err = PTR_ERR(pf->vf_cfg_mem);
goto err_unmap_mac_stats;
}
pf->vf_cfg_mem = NULL;
}
mem = nfp_net_map_area(pf->cpp, "net.qc", 0, 0,
NFP_PCIE_QUEUE(0), NFP_QCP_QUEUE_AREA_SZ,
&pf->qc_area);
if (IS_ERR(mem)) {
nfp_err(pf->cpp, "Failed to map Queue Controller area.\n");
err = PTR_ERR(mem);
goto err_unmap_vf_cfg;
}
return 0;
err_unmap_vf_cfg:
if (pf->vf_cfg_bar)
nfp_cpp_area_release_free(pf->vf_cfg_bar);
err_unmap_mac_stats:
if (pf->mac_stats_bar)
nfp_cpp_area_release_free(pf->mac_stats_bar);
err_unmap_ctrl:
nfp_cpp_area_release_free(pf->data_vnic_bar);
return err;
}
static void nfp_net_pci_remove_finish(struct nfp_pf *pf)
{
nfp_net_pf_app_stop(pf);
/* stop app first, to avoid double free of ctrl vNIC's ddir */
nfp_net_debugfs_dir_clean(&pf->ddir);
nfp_net_pf_free_irqs(pf);
nfp_net_pf_app_clean(pf);
nfp_net_pci_unmap_mem(pf);
}
static int
nfp_net_eth_port_update(struct nfp_cpp *cpp, struct nfp_port *port,
struct nfp_eth_table *eth_table)
{
struct nfp_eth_table_port *eth_port;
ASSERT_RTNL();
eth_port = nfp_net_find_port(eth_table, port->eth_id);
if (!eth_port) {
set_bit(NFP_PORT_CHANGED, &port->flags);
nfp_warn(cpp, "Warning: port #%d not present after reconfig\n",
port->eth_id);
return -EIO;
}
if (eth_port->override_changed) {
nfp_warn(cpp, "Port #%d config changed, unregistering. Reboot required before port will be operational again.\n", port->eth_id);
port->type = NFP_PORT_INVALID;
}
memcpy(port->eth_port, eth_port, sizeof(*eth_port));
return 0;
}
int nfp_net_refresh_port_table_sync(struct nfp_pf *pf)
{
struct nfp_eth_table *eth_table;
struct nfp_net *nn, *next;
struct nfp_port *port;
lockdep_assert_held(&pf->lock);
/* Check for nfp_net_pci_remove() racing against us */
if (list_empty(&pf->vnics))
return 0;
/* Update state of all ports */
rtnl_lock();
list_for_each_entry(port, &pf->ports, port_list)
clear_bit(NFP_PORT_CHANGED, &port->flags);
eth_table = nfp_eth_read_ports(pf->cpp);
if (!eth_table) {
list_for_each_entry(port, &pf->ports, port_list)
if (__nfp_port_get_eth_port(port))
set_bit(NFP_PORT_CHANGED, &port->flags);
rtnl_unlock();
nfp_err(pf->cpp, "Error refreshing port config!\n");
return -EIO;
}
list_for_each_entry(port, &pf->ports, port_list)
if (__nfp_port_get_eth_port(port))
nfp_net_eth_port_update(pf->cpp, port, eth_table);
rtnl_unlock();
kfree(eth_table);
/* Shoot off the ports which became invalid */
list_for_each_entry_safe(nn, next, &pf->vnics, vnic_list) {
if (!nn->port || nn->port->type != NFP_PORT_INVALID)
continue;
nfp_net_pf_clean_vnic(pf, nn);
nfp_net_pf_free_vnic(pf, nn);
}
if (list_empty(&pf->vnics))
nfp_net_pci_remove_finish(pf);
return 0;
}
static void nfp_net_refresh_vnics(struct work_struct *work)
{
struct nfp_pf *pf = container_of(work, struct nfp_pf,
port_refresh_work);
mutex_lock(&pf->lock);
nfp_net_refresh_port_table_sync(pf);
mutex_unlock(&pf->lock);
}
void nfp_net_refresh_port_table(struct nfp_port *port)
{
struct nfp_pf *pf = port->app->pf;
set_bit(NFP_PORT_CHANGED, &port->flags);
schedule_work(&pf->port_refresh_work);
}
int nfp_net_refresh_eth_port(struct nfp_port *port)
{
struct nfp_cpp *cpp = port->app->cpp;
struct nfp_eth_table *eth_table;
int ret;
clear_bit(NFP_PORT_CHANGED, &port->flags);
eth_table = nfp_eth_read_ports(cpp);
if (!eth_table) {
set_bit(NFP_PORT_CHANGED, &port->flags);
nfp_err(cpp, "Error refreshing port state table!\n");
return -EIO;
}
ret = nfp_net_eth_port_update(cpp, port, eth_table);
kfree(eth_table);
return ret;
}
/*
* PCI device functions
*/
int nfp_net_pci_probe(struct nfp_pf *pf)
{
struct nfp_net_fw_version fw_ver;
u8 __iomem *ctrl_bar, *qc_bar;
int stride;
int err;
INIT_WORK(&pf->port_refresh_work, nfp_net_refresh_vnics);
/* Verify that the board has completed initialization */
if (!nfp_is_ready(pf)) {
nfp_err(pf->cpp, "NFP is not ready for NIC operation.\n");
return -EINVAL;
}
if (!pf->rtbl) {
nfp_err(pf->cpp, "No %s, giving up.\n",
pf->fw_loaded ? "symbol table" : "firmware found");
return -EPROBE_DEFER;
}
mutex_lock(&pf->lock);
pf->max_data_vnics = nfp_net_pf_get_num_ports(pf);
if ((int)pf->max_data_vnics < 0) {
err = pf->max_data_vnics;
goto err_unlock;
}
err = nfp_net_pci_map_mem(pf);
if (err)
goto err_unlock;
ctrl_bar = nfp_cpp_area_iomem(pf->data_vnic_bar);
qc_bar = nfp_cpp_area_iomem(pf->qc_area);
if (!ctrl_bar || !qc_bar) {
err = -EIO;
goto err_unmap;
}
nfp_net_get_fw_version(&fw_ver, ctrl_bar);
if (fw_ver.resv || fw_ver.class != NFP_NET_CFG_VERSION_CLASS_GENERIC) {
nfp_err(pf->cpp, "Unknown Firmware ABI %d.%d.%d.%d\n",
fw_ver.resv, fw_ver.class, fw_ver.major, fw_ver.minor);
err = -EINVAL;
goto err_unmap;
}
/* Determine stride */
if (nfp_net_fw_ver_eq(&fw_ver, 0, 0, 0, 1)) {
stride = 2;
nfp_warn(pf->cpp, "OBSOLETE Firmware detected - VF isolation not available\n");
} else {
switch (fw_ver.major) {
case 1 ... 5:
stride = 4;
break;
default:
nfp_err(pf->cpp, "Unsupported Firmware ABI %d.%d.%d.%d\n",
fw_ver.resv, fw_ver.class,
fw_ver.major, fw_ver.minor);
err = -EINVAL;
goto err_unmap;
}
}
err = nfp_net_pf_app_init(pf, qc_bar, stride);
if (err)
goto err_unmap;
pf->ddir = nfp_net_debugfs_device_add(pf->pdev);
/* Allocate the vnics and do basic init */
err = nfp_net_pf_alloc_vnics(pf, ctrl_bar, qc_bar, stride);
if (err)
goto err_clean_ddir;
err = nfp_net_pf_alloc_irqs(pf);
if (err)
goto err_free_vnics;
err = nfp_net_pf_app_start(pf);
if (err)
goto err_free_irqs;
err = nfp_net_pf_init_vnics(pf);
if (err)
goto err_stop_app;
mutex_unlock(&pf->lock);
return 0;
err_stop_app:
nfp_net_pf_app_stop(pf);
err_free_irqs:
nfp_net_pf_free_irqs(pf);
err_free_vnics:
nfp_net_pf_free_vnics(pf);
err_clean_ddir:
nfp_net_debugfs_dir_clean(&pf->ddir);
nfp_net_pf_app_clean(pf);
err_unmap:
nfp_net_pci_unmap_mem(pf);
err_unlock:
mutex_unlock(&pf->lock);
cancel_work_sync(&pf->port_refresh_work);
return err;
}
void nfp_net_pci_remove(struct nfp_pf *pf)
{
struct nfp_net *nn;
mutex_lock(&pf->lock);
if (list_empty(&pf->vnics))
goto out;
list_for_each_entry(nn, &pf->vnics, vnic_list)
if (nfp_net_is_data_vnic(nn))
nfp_net_pf_clean_vnic(pf, nn);
nfp_net_pf_free_vnics(pf);
nfp_net_pci_remove_finish(pf);
out:
mutex_unlock(&pf->lock);
cancel_work_sync(&pf->port_refresh_work);
}