367 lines
9.1 KiB
C
367 lines
9.1 KiB
C
|
/*
|
||
|
* Process number limiting controller for cgroups.
|
||
|
*
|
||
|
* Used to allow a cgroup hierarchy to stop any new processes from fork()ing
|
||
|
* after a certain limit is reached.
|
||
|
*
|
||
|
* Since it is trivial to hit the task limit without hitting any kmemcg limits
|
||
|
* in place, PIDs are a fundamental resource. As such, PID exhaustion must be
|
||
|
* preventable in the scope of a cgroup hierarchy by allowing resource limiting
|
||
|
* of the number of tasks in a cgroup.
|
||
|
*
|
||
|
* In order to use the `pids` controller, set the maximum number of tasks in
|
||
|
* pids.max (this is not available in the root cgroup for obvious reasons). The
|
||
|
* number of processes currently in the cgroup is given by pids.current.
|
||
|
* Organisational operations are not blocked by cgroup policies, so it is
|
||
|
* possible to have pids.current > pids.max. However, it is not possible to
|
||
|
* violate a cgroup policy through fork(). fork() will return -EAGAIN if forking
|
||
|
* would cause a cgroup policy to be violated.
|
||
|
*
|
||
|
* To set a cgroup to have no limit, set pids.max to "max". This is the default
|
||
|
* for all new cgroups (N.B. that PID limits are hierarchical, so the most
|
||
|
* stringent limit in the hierarchy is followed).
|
||
|
*
|
||
|
* pids.current tracks all child cgroup hierarchies, so parent/pids.current is
|
||
|
* a superset of parent/child/pids.current.
|
||
|
*
|
||
|
* Copyright (C) 2015 Aleksa Sarai <cyphar@cyphar.com>
|
||
|
*
|
||
|
* This file is subject to the terms and conditions of version 2 of the GNU
|
||
|
* General Public License. See the file COPYING in the main directory of the
|
||
|
* Linux distribution for more details.
|
||
|
*/
|
||
|
|
||
|
#include <linux/kernel.h>
|
||
|
#include <linux/threads.h>
|
||
|
#include <linux/atomic.h>
|
||
|
#include <linux/cgroup.h>
|
||
|
#include <linux/slab.h>
|
||
|
|
||
|
#define PIDS_MAX (PID_MAX_LIMIT + 1ULL)
|
||
|
#define PIDS_MAX_STR "max"
|
||
|
|
||
|
struct pids_cgroup {
|
||
|
struct cgroup_subsys_state css;
|
||
|
|
||
|
/*
|
||
|
* Use 64-bit types so that we can safely represent "max" as
|
||
|
* %PIDS_MAX = (%PID_MAX_LIMIT + 1).
|
||
|
*/
|
||
|
atomic64_t counter;
|
||
|
int64_t limit;
|
||
|
};
|
||
|
|
||
|
static struct pids_cgroup *css_pids(struct cgroup_subsys_state *css)
|
||
|
{
|
||
|
return container_of(css, struct pids_cgroup, css);
|
||
|
}
|
||
|
|
||
|
static struct pids_cgroup *parent_pids(struct pids_cgroup *pids)
|
||
|
{
|
||
|
return css_pids(pids->css.parent);
|
||
|
}
|
||
|
|
||
|
static struct cgroup_subsys_state *
|
||
|
pids_css_alloc(struct cgroup_subsys_state *parent)
|
||
|
{
|
||
|
struct pids_cgroup *pids;
|
||
|
|
||
|
pids = kzalloc(sizeof(struct pids_cgroup), GFP_KERNEL);
|
||
|
if (!pids)
|
||
|
return ERR_PTR(-ENOMEM);
|
||
|
|
||
|
pids->limit = PIDS_MAX;
|
||
|
atomic64_set(&pids->counter, 0);
|
||
|
return &pids->css;
|
||
|
}
|
||
|
|
||
|
static void pids_css_free(struct cgroup_subsys_state *css)
|
||
|
{
|
||
|
kfree(css_pids(css));
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* pids_cancel - uncharge the local pid count
|
||
|
* @pids: the pid cgroup state
|
||
|
* @num: the number of pids to cancel
|
||
|
*
|
||
|
* This function will WARN if the pid count goes under 0, because such a case is
|
||
|
* a bug in the pids controller proper.
|
||
|
*/
|
||
|
static void pids_cancel(struct pids_cgroup *pids, int num)
|
||
|
{
|
||
|
/*
|
||
|
* A negative count (or overflow for that matter) is invalid,
|
||
|
* and indicates a bug in the `pids` controller proper.
|
||
|
*/
|
||
|
WARN_ON_ONCE(atomic64_add_negative(-num, &pids->counter));
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* pids_uncharge - hierarchically uncharge the pid count
|
||
|
* @pids: the pid cgroup state
|
||
|
* @num: the number of pids to uncharge
|
||
|
*/
|
||
|
static void pids_uncharge(struct pids_cgroup *pids, int num)
|
||
|
{
|
||
|
struct pids_cgroup *p;
|
||
|
|
||
|
for (p = pids; p; p = parent_pids(p))
|
||
|
pids_cancel(p, num);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* pids_charge - hierarchically charge the pid count
|
||
|
* @pids: the pid cgroup state
|
||
|
* @num: the number of pids to charge
|
||
|
*
|
||
|
* This function does *not* follow the pid limit set. It cannot fail and the new
|
||
|
* pid count may exceed the limit. This is only used for reverting failed
|
||
|
* attaches, where there is no other way out than violating the limit.
|
||
|
*/
|
||
|
static void pids_charge(struct pids_cgroup *pids, int num)
|
||
|
{
|
||
|
struct pids_cgroup *p;
|
||
|
|
||
|
for (p = pids; p; p = parent_pids(p))
|
||
|
atomic64_add(num, &p->counter);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* pids_try_charge - hierarchically try to charge the pid count
|
||
|
* @pids: the pid cgroup state
|
||
|
* @num: the number of pids to charge
|
||
|
*
|
||
|
* This function follows the set limit. It will fail if the charge would cause
|
||
|
* the new value to exceed the hierarchical limit. Returns 0 if the charge
|
||
|
* succeded, otherwise -EAGAIN.
|
||
|
*/
|
||
|
static int pids_try_charge(struct pids_cgroup *pids, int num)
|
||
|
{
|
||
|
struct pids_cgroup *p, *q;
|
||
|
|
||
|
for (p = pids; p; p = parent_pids(p)) {
|
||
|
int64_t new = atomic64_add_return(num, &p->counter);
|
||
|
|
||
|
/*
|
||
|
* Since new is capped to the maximum number of pid_t, if
|
||
|
* p->limit is %PIDS_MAX then we know that this test will never
|
||
|
* fail.
|
||
|
*/
|
||
|
if (new > p->limit)
|
||
|
goto revert;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
|
||
|
revert:
|
||
|
for (q = pids; q != p; q = parent_pids(q))
|
||
|
pids_cancel(q, num);
|
||
|
pids_cancel(p, num);
|
||
|
|
||
|
return -EAGAIN;
|
||
|
}
|
||
|
|
||
|
static int pids_can_attach(struct cgroup_subsys_state *css,
|
||
|
struct cgroup_taskset *tset)
|
||
|
{
|
||
|
struct pids_cgroup *pids = css_pids(css);
|
||
|
struct task_struct *task;
|
||
|
|
||
|
cgroup_taskset_for_each(task, tset) {
|
||
|
struct cgroup_subsys_state *old_css;
|
||
|
struct pids_cgroup *old_pids;
|
||
|
|
||
|
/*
|
||
|
* Grab a ref to each task's css. We don't drop the ref until
|
||
|
* we either fail and hit ->cancel_attach() or succeed and hit
|
||
|
* ->attach().
|
||
|
*/
|
||
|
old_css = task_get_css(task, pids_cgrp_id);
|
||
|
old_pids = css_pids(old_css);
|
||
|
|
||
|
pids_charge(pids, 1);
|
||
|
pids_uncharge(old_pids, 1);
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void pids_cancel_attach(struct cgroup_subsys_state *css,
|
||
|
struct cgroup_taskset *tset)
|
||
|
{
|
||
|
struct pids_cgroup *pids = css_pids(css);
|
||
|
struct task_struct *task;
|
||
|
|
||
|
cgroup_taskset_for_each(task, tset) {
|
||
|
struct cgroup_subsys_state *old_css;
|
||
|
struct pids_cgroup *old_pids;
|
||
|
|
||
|
old_css = task_css(task, pids_cgrp_id);
|
||
|
old_pids = css_pids(old_css);
|
||
|
|
||
|
pids_charge(old_pids, 1);
|
||
|
pids_uncharge(pids, 1);
|
||
|
css_put(old_css);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void pids_attach(struct cgroup_subsys_state *css,
|
||
|
struct cgroup_taskset *tset)
|
||
|
{
|
||
|
struct task_struct *task;
|
||
|
|
||
|
cgroup_taskset_for_each(task, tset)
|
||
|
css_put(task_css(task, pids_cgrp_id));
|
||
|
}
|
||
|
|
||
|
static int pids_can_fork(struct task_struct *task, void **priv_p)
|
||
|
{
|
||
|
struct cgroup_subsys_state *css;
|
||
|
struct pids_cgroup *pids;
|
||
|
int err;
|
||
|
|
||
|
/*
|
||
|
* Use the "current" task_css for the pids subsystem as the tentative
|
||
|
* css. It is possible we will charge the wrong hierarchy, in which
|
||
|
* case we will forcefully revert/reapply the charge on the right
|
||
|
* hierarchy after it is committed to the task proper.
|
||
|
*/
|
||
|
css = task_get_css(current, pids_cgrp_id);
|
||
|
pids = css_pids(css);
|
||
|
|
||
|
err = pids_try_charge(pids, 1);
|
||
|
if (err)
|
||
|
goto err_css_put;
|
||
|
|
||
|
*priv_p = css;
|
||
|
return 0;
|
||
|
|
||
|
err_css_put:
|
||
|
css_put(css);
|
||
|
return err;
|
||
|
}
|
||
|
|
||
|
static void pids_cancel_fork(struct task_struct *task, void *priv)
|
||
|
{
|
||
|
struct cgroup_subsys_state *css = priv;
|
||
|
struct pids_cgroup *pids = css_pids(css);
|
||
|
|
||
|
pids_uncharge(pids, 1);
|
||
|
css_put(css);
|
||
|
}
|
||
|
|
||
|
static void pids_fork(struct task_struct *task, void *priv)
|
||
|
{
|
||
|
struct cgroup_subsys_state *css;
|
||
|
struct cgroup_subsys_state *old_css = priv;
|
||
|
struct pids_cgroup *pids;
|
||
|
struct pids_cgroup *old_pids = css_pids(old_css);
|
||
|
|
||
|
css = task_get_css(task, pids_cgrp_id);
|
||
|
pids = css_pids(css);
|
||
|
|
||
|
/*
|
||
|
* If the association has changed, we have to revert and reapply the
|
||
|
* charge/uncharge on the wrong hierarchy to the current one. Since
|
||
|
* the association can only change due to an organisation event, its
|
||
|
* okay for us to ignore the limit in this case.
|
||
|
*/
|
||
|
if (pids != old_pids) {
|
||
|
pids_uncharge(old_pids, 1);
|
||
|
pids_charge(pids, 1);
|
||
|
}
|
||
|
|
||
|
css_put(css);
|
||
|
css_put(old_css);
|
||
|
}
|
||
|
|
||
|
static void pids_exit(struct cgroup_subsys_state *css,
|
||
|
struct cgroup_subsys_state *old_css,
|
||
|
struct task_struct *task)
|
||
|
{
|
||
|
struct pids_cgroup *pids = css_pids(old_css);
|
||
|
|
||
|
pids_uncharge(pids, 1);
|
||
|
}
|
||
|
|
||
|
static ssize_t pids_max_write(struct kernfs_open_file *of, char *buf,
|
||
|
size_t nbytes, loff_t off)
|
||
|
{
|
||
|
struct cgroup_subsys_state *css = of_css(of);
|
||
|
struct pids_cgroup *pids = css_pids(css);
|
||
|
int64_t limit;
|
||
|
int err;
|
||
|
|
||
|
buf = strstrip(buf);
|
||
|
if (!strcmp(buf, PIDS_MAX_STR)) {
|
||
|
limit = PIDS_MAX;
|
||
|
goto set_limit;
|
||
|
}
|
||
|
|
||
|
err = kstrtoll(buf, 0, &limit);
|
||
|
if (err)
|
||
|
return err;
|
||
|
|
||
|
if (limit < 0 || limit >= PIDS_MAX)
|
||
|
return -EINVAL;
|
||
|
|
||
|
set_limit:
|
||
|
/*
|
||
|
* Limit updates don't need to be mutex'd, since it isn't
|
||
|
* critical that any racing fork()s follow the new limit.
|
||
|
*/
|
||
|
pids->limit = limit;
|
||
|
return nbytes;
|
||
|
}
|
||
|
|
||
|
static int pids_max_show(struct seq_file *sf, void *v)
|
||
|
{
|
||
|
struct cgroup_subsys_state *css = seq_css(sf);
|
||
|
struct pids_cgroup *pids = css_pids(css);
|
||
|
int64_t limit = pids->limit;
|
||
|
|
||
|
if (limit >= PIDS_MAX)
|
||
|
seq_printf(sf, "%s\n", PIDS_MAX_STR);
|
||
|
else
|
||
|
seq_printf(sf, "%lld\n", limit);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static s64 pids_current_read(struct cgroup_subsys_state *css,
|
||
|
struct cftype *cft)
|
||
|
{
|
||
|
struct pids_cgroup *pids = css_pids(css);
|
||
|
|
||
|
return atomic64_read(&pids->counter);
|
||
|
}
|
||
|
|
||
|
static struct cftype pids_files[] = {
|
||
|
{
|
||
|
.name = "max",
|
||
|
.write = pids_max_write,
|
||
|
.seq_show = pids_max_show,
|
||
|
.flags = CFTYPE_NOT_ON_ROOT,
|
||
|
},
|
||
|
{
|
||
|
.name = "current",
|
||
|
.read_s64 = pids_current_read,
|
||
|
},
|
||
|
{ } /* terminate */
|
||
|
};
|
||
|
|
||
|
struct cgroup_subsys pids_cgrp_subsys = {
|
||
|
.css_alloc = pids_css_alloc,
|
||
|
.css_free = pids_css_free,
|
||
|
.attach = pids_attach,
|
||
|
.can_attach = pids_can_attach,
|
||
|
.cancel_attach = pids_cancel_attach,
|
||
|
.can_fork = pids_can_fork,
|
||
|
.cancel_fork = pids_cancel_fork,
|
||
|
.fork = pids_fork,
|
||
|
.exit = pids_exit,
|
||
|
.legacy_cftypes = pids_files,
|
||
|
.dfl_cftypes = pids_files,
|
||
|
};
|