linux-sg2042/fs/xfs/xfs_inode_buf.c

482 lines
14 KiB
C
Raw Normal View History

/*
* Copyright (c) 2000-2006 Silicon Graphics, Inc.
* All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it would be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_format.h"
#include "xfs_log.h"
#include "xfs_trans.h"
#include "xfs_sb.h"
#include "xfs_ag.h"
#include "xfs_mount.h"
#include "xfs_bmap_btree.h"
#include "xfs_ialloc_btree.h"
#include "xfs_dinode.h"
#include "xfs_inode.h"
#include "xfs_error.h"
#include "xfs_cksum.h"
#include "xfs_icache.h"
#include "xfs_ialloc.h"
/*
* Check that none of the inode's in the buffer have a next
* unlinked field of 0.
*/
#if defined(DEBUG)
void
xfs_inobp_check(
xfs_mount_t *mp,
xfs_buf_t *bp)
{
int i;
int j;
xfs_dinode_t *dip;
j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
for (i = 0; i < j; i++) {
dip = (xfs_dinode_t *)xfs_buf_offset(bp,
i * mp->m_sb.sb_inodesize);
if (!dip->di_next_unlinked) {
xfs_alert(mp,
"Detected bogus zero next_unlinked field in inode %d buffer 0x%llx.",
i, (long long)bp->b_bn);
}
}
}
#endif
/*
* If we are doing readahead on an inode buffer, we might be in log recovery
* reading an inode allocation buffer that hasn't yet been replayed, and hence
* has not had the inode cores stamped into it. Hence for readahead, the buffer
* may be potentially invalid.
*
* If the readahead buffer is invalid, we don't want to mark it with an error,
* but we do want to clear the DONE status of the buffer so that a followup read
* will re-read it from disk. This will ensure that we don't get an unnecessary
* warnings during log recovery and we don't get unnecssary panics on debug
* kernels.
*/
static void
xfs_inode_buf_verify(
struct xfs_buf *bp,
bool readahead)
{
struct xfs_mount *mp = bp->b_target->bt_mount;
int i;
int ni;
/*
* Validate the magic number and version of every inode in the buffer
*/
ni = XFS_BB_TO_FSB(mp, bp->b_length) * mp->m_sb.sb_inopblock;
for (i = 0; i < ni; i++) {
int di_ok;
xfs_dinode_t *dip;
dip = (struct xfs_dinode *)xfs_buf_offset(bp,
(i << mp->m_sb.sb_inodelog));
di_ok = dip->di_magic == cpu_to_be16(XFS_DINODE_MAGIC) &&
XFS_DINODE_GOOD_VERSION(dip->di_version);
if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
XFS_ERRTAG_ITOBP_INOTOBP,
XFS_RANDOM_ITOBP_INOTOBP))) {
if (readahead) {
bp->b_flags &= ~XBF_DONE;
return;
}
xfs_buf_ioerror(bp, EFSCORRUPTED);
XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_HIGH,
mp, dip);
#ifdef DEBUG
xfs_alert(mp,
"bad inode magic/vsn daddr %lld #%d (magic=%x)",
(unsigned long long)bp->b_bn, i,
be16_to_cpu(dip->di_magic));
#endif
}
}
xfs_inobp_check(mp, bp);
}
static void
xfs_inode_buf_read_verify(
struct xfs_buf *bp)
{
xfs_inode_buf_verify(bp, false);
}
static void
xfs_inode_buf_readahead_verify(
struct xfs_buf *bp)
{
xfs_inode_buf_verify(bp, true);
}
static void
xfs_inode_buf_write_verify(
struct xfs_buf *bp)
{
xfs_inode_buf_verify(bp, false);
}
const struct xfs_buf_ops xfs_inode_buf_ops = {
.verify_read = xfs_inode_buf_read_verify,
.verify_write = xfs_inode_buf_write_verify,
};
const struct xfs_buf_ops xfs_inode_buf_ra_ops = {
.verify_read = xfs_inode_buf_readahead_verify,
.verify_write = xfs_inode_buf_write_verify,
};
/*
* This routine is called to map an inode to the buffer containing the on-disk
* version of the inode. It returns a pointer to the buffer containing the
* on-disk inode in the bpp parameter, and in the dipp parameter it returns a
* pointer to the on-disk inode within that buffer.
*
* If a non-zero error is returned, then the contents of bpp and dipp are
* undefined.
*/
int
xfs_imap_to_bp(
struct xfs_mount *mp,
struct xfs_trans *tp,
struct xfs_imap *imap,
struct xfs_dinode **dipp,
struct xfs_buf **bpp,
uint buf_flags,
uint iget_flags)
{
struct xfs_buf *bp;
int error;
buf_flags |= XBF_UNMAPPED;
error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
(int)imap->im_len, buf_flags, &bp,
&xfs_inode_buf_ops);
if (error) {
if (error == EAGAIN) {
ASSERT(buf_flags & XBF_TRYLOCK);
return error;
}
if (error == EFSCORRUPTED &&
(iget_flags & XFS_IGET_UNTRUSTED))
return XFS_ERROR(EINVAL);
xfs_warn(mp, "%s: xfs_trans_read_buf() returned error %d.",
__func__, error);
return error;
}
*bpp = bp;
*dipp = (struct xfs_dinode *)xfs_buf_offset(bp, imap->im_boffset);
return 0;
}
xfs: recovery of swap extents operations for CRC filesystems This is the recovery side of the btree block owner change operation performed by swapext on CRC enabled filesystems. We detect that an owner change is needed by the flag that has been placed on the inode log format flag field. Because the inode recovery is being replayed after the buffers that make up the BMBT in the given checkpoint, we can walk all the buffers and directly modify them when we see the flag set on an inode. Because the inode can be relogged and hence present in multiple chekpoints with the "change owner" flag set, we could do multiple passes across the inode to do this change. While this isn't optimal, we can't directly ignore the flag as there may be multiple independent swap extent operations being replayed on the same inode in different checkpoints so we can't ignore them. Further, because the owner change operation uses ordered buffers, we might have buffers that are newer on disk than the current checkpoint and so already have the owner changed in them. Hence we cannot just peek at a buffer in the tree and check that it has the correct owner and assume that the change was completed. So, for the moment just brute force the owner change every time we see an inode with the flag set. Note that we have to be careful here because the owner of the buffers may point to either the old owner or the new owner. Currently the verifier can't verify the owner directly, so there is no failure case here right now. If we verify the owner exactly in future, then we'll have to take this into account. This was tested in terms of normal operation via xfstests - all of the fsr tests now pass without failure. however, we really need to modify xfs/227 to stress v3 inodes correctly to ensure we fully cover this case for v5 filesystems. In terms of recovery testing, I used a hacked version of xfs_fsr that held the temp inode open for a few seconds before exiting so that the filesystem could be shut down with an open owner change recovery flags set on at least the temp inode. fsr leaves the temp inode unlinked and in btree format, so this was necessary for the owner change to be reliably replayed. logprint confirmed the tmp inode in the log had the correct flag set: INO: cnt:3 total:3 a:0x69e9e0 len:56 a:0x69ea20 len:176 a:0x69eae0 len:88 INODE: #regs:3 ino:0x44 flags:0x209 dsize:88 ^^^^^ 0x200 is set, indicating a data fork owner change needed to be replayed on inode 0x44. A printk in the revoery code confirmed that the inode change was recovered: XFS (vdc): Mounting Filesystem XFS (vdc): Starting recovery (logdev: internal) recovering owner change ino 0x44 XFS (vdc): Version 5 superblock detected. This kernel L support enabled! Use of these features in this kernel is at your own risk! XFS (vdc): Ending recovery (logdev: internal) The script used to test this was: $ cat ./recovery-fsr.sh #!/bin/bash dev=/dev/vdc mntpt=/mnt/scratch testfile=$mntpt/testfile umount $mntpt mkfs.xfs -f -m crc=1 $dev mount $dev $mntpt chmod 777 $mntpt for i in `seq 10000 -1 0`; do xfs_io -f -d -c "pwrite $(($i * 4096)) 4096" $testfile > /dev/null 2>&1 done xfs_bmap -vp $testfile |head -20 xfs_fsr -d -v $testfile & sleep 10 /home/dave/src/xfstests-dev/src/godown -f $mntpt wait umount $mntpt xfs_logprint -t $dev |tail -20 time mount $dev $mntpt xfs_bmap -vp $testfile umount $mntpt $ Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2013-08-30 08:23:45 +08:00
void
xfs_dinode_from_disk(
xfs_icdinode_t *to,
xfs_dinode_t *from)
{
to->di_magic = be16_to_cpu(from->di_magic);
to->di_mode = be16_to_cpu(from->di_mode);
to->di_version = from ->di_version;
to->di_format = from->di_format;
to->di_onlink = be16_to_cpu(from->di_onlink);
to->di_uid = be32_to_cpu(from->di_uid);
to->di_gid = be32_to_cpu(from->di_gid);
to->di_nlink = be32_to_cpu(from->di_nlink);
to->di_projid_lo = be16_to_cpu(from->di_projid_lo);
to->di_projid_hi = be16_to_cpu(from->di_projid_hi);
memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
to->di_flushiter = be16_to_cpu(from->di_flushiter);
to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
to->di_size = be64_to_cpu(from->di_size);
to->di_nblocks = be64_to_cpu(from->di_nblocks);
to->di_extsize = be32_to_cpu(from->di_extsize);
to->di_nextents = be32_to_cpu(from->di_nextents);
to->di_anextents = be16_to_cpu(from->di_anextents);
to->di_forkoff = from->di_forkoff;
to->di_aformat = from->di_aformat;
to->di_dmevmask = be32_to_cpu(from->di_dmevmask);
to->di_dmstate = be16_to_cpu(from->di_dmstate);
to->di_flags = be16_to_cpu(from->di_flags);
to->di_gen = be32_to_cpu(from->di_gen);
if (to->di_version == 3) {
to->di_changecount = be64_to_cpu(from->di_changecount);
to->di_crtime.t_sec = be32_to_cpu(from->di_crtime.t_sec);
to->di_crtime.t_nsec = be32_to_cpu(from->di_crtime.t_nsec);
to->di_flags2 = be64_to_cpu(from->di_flags2);
to->di_ino = be64_to_cpu(from->di_ino);
to->di_lsn = be64_to_cpu(from->di_lsn);
memcpy(to->di_pad2, from->di_pad2, sizeof(to->di_pad2));
uuid_copy(&to->di_uuid, &from->di_uuid);
}
}
void
xfs_dinode_to_disk(
xfs_dinode_t *to,
xfs_icdinode_t *from)
{
to->di_magic = cpu_to_be16(from->di_magic);
to->di_mode = cpu_to_be16(from->di_mode);
to->di_version = from ->di_version;
to->di_format = from->di_format;
to->di_onlink = cpu_to_be16(from->di_onlink);
to->di_uid = cpu_to_be32(from->di_uid);
to->di_gid = cpu_to_be32(from->di_gid);
to->di_nlink = cpu_to_be32(from->di_nlink);
to->di_projid_lo = cpu_to_be16(from->di_projid_lo);
to->di_projid_hi = cpu_to_be16(from->di_projid_hi);
memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
to->di_size = cpu_to_be64(from->di_size);
to->di_nblocks = cpu_to_be64(from->di_nblocks);
to->di_extsize = cpu_to_be32(from->di_extsize);
to->di_nextents = cpu_to_be32(from->di_nextents);
to->di_anextents = cpu_to_be16(from->di_anextents);
to->di_forkoff = from->di_forkoff;
to->di_aformat = from->di_aformat;
to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
to->di_dmstate = cpu_to_be16(from->di_dmstate);
to->di_flags = cpu_to_be16(from->di_flags);
to->di_gen = cpu_to_be32(from->di_gen);
if (from->di_version == 3) {
to->di_changecount = cpu_to_be64(from->di_changecount);
to->di_crtime.t_sec = cpu_to_be32(from->di_crtime.t_sec);
to->di_crtime.t_nsec = cpu_to_be32(from->di_crtime.t_nsec);
to->di_flags2 = cpu_to_be64(from->di_flags2);
to->di_ino = cpu_to_be64(from->di_ino);
to->di_lsn = cpu_to_be64(from->di_lsn);
memcpy(to->di_pad2, from->di_pad2, sizeof(to->di_pad2));
uuid_copy(&to->di_uuid, &from->di_uuid);
to->di_flushiter = 0;
} else {
to->di_flushiter = cpu_to_be16(from->di_flushiter);
}
}
static bool
xfs_dinode_verify(
struct xfs_mount *mp,
struct xfs_inode *ip,
struct xfs_dinode *dip)
{
if (dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))
return false;
/* only version 3 or greater inodes are extensively verified here */
if (dip->di_version < 3)
return true;
if (!xfs_sb_version_hascrc(&mp->m_sb))
return false;
if (!xfs_verify_cksum((char *)dip, mp->m_sb.sb_inodesize,
offsetof(struct xfs_dinode, di_crc)))
return false;
if (be64_to_cpu(dip->di_ino) != ip->i_ino)
return false;
if (!uuid_equal(&dip->di_uuid, &mp->m_sb.sb_uuid))
return false;
return true;
}
void
xfs_dinode_calc_crc(
struct xfs_mount *mp,
struct xfs_dinode *dip)
{
__uint32_t crc;
if (dip->di_version < 3)
return;
ASSERT(xfs_sb_version_hascrc(&mp->m_sb));
crc = xfs_start_cksum((char *)dip, mp->m_sb.sb_inodesize,
offsetof(struct xfs_dinode, di_crc));
dip->di_crc = xfs_end_cksum(crc);
}
/*
* Read the disk inode attributes into the in-core inode structure.
*
* For version 5 superblocks, if we are initialising a new inode and we are not
* utilising the XFS_MOUNT_IKEEP inode cluster mode, we can simple build the new
* inode core with a random generation number. If we are keeping inodes around,
* we need to read the inode cluster to get the existing generation number off
* disk. Further, if we are using version 4 superblocks (i.e. v1/v2 inode
* format) then log recovery is dependent on the di_flushiter field being
* initialised from the current on-disk value and hence we must also read the
* inode off disk.
*/
int
xfs_iread(
xfs_mount_t *mp,
xfs_trans_t *tp,
xfs_inode_t *ip,
uint iget_flags)
{
xfs_buf_t *bp;
xfs_dinode_t *dip;
int error;
/*
* Fill in the location information in the in-core inode.
*/
error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, iget_flags);
if (error)
return error;
/* shortcut IO on inode allocation if possible */
if ((iget_flags & XFS_IGET_CREATE) &&
xfs_sb_version_hascrc(&mp->m_sb) &&
!(mp->m_flags & XFS_MOUNT_IKEEP)) {
/* initialise the on-disk inode core */
memset(&ip->i_d, 0, sizeof(ip->i_d));
ip->i_d.di_magic = XFS_DINODE_MAGIC;
ip->i_d.di_gen = prandom_u32();
if (xfs_sb_version_hascrc(&mp->m_sb)) {
ip->i_d.di_version = 3;
ip->i_d.di_ino = ip->i_ino;
uuid_copy(&ip->i_d.di_uuid, &mp->m_sb.sb_uuid);
} else
ip->i_d.di_version = 2;
return 0;
}
/*
* Get pointers to the on-disk inode and the buffer containing it.
*/
error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &bp, 0, iget_flags);
if (error)
return error;
/* even unallocated inodes are verified */
if (!xfs_dinode_verify(mp, ip, dip)) {
xfs_alert(mp, "%s: validation failed for inode %lld failed",
__func__, ip->i_ino);
XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, dip);
error = XFS_ERROR(EFSCORRUPTED);
goto out_brelse;
}
/*
* If the on-disk inode is already linked to a directory
* entry, copy all of the inode into the in-core inode.
* xfs_iformat_fork() handles copying in the inode format
* specific information.
* Otherwise, just get the truly permanent information.
*/
if (dip->di_mode) {
xfs_dinode_from_disk(&ip->i_d, dip);
error = xfs_iformat_fork(ip, dip);
if (error) {
#ifdef DEBUG
xfs_alert(mp, "%s: xfs_iformat() returned error %d",
__func__, error);
#endif /* DEBUG */
goto out_brelse;
}
} else {
/*
* Partial initialisation of the in-core inode. Just the bits
* that xfs_ialloc won't overwrite or relies on being correct.
*/
ip->i_d.di_magic = be16_to_cpu(dip->di_magic);
ip->i_d.di_version = dip->di_version;
ip->i_d.di_gen = be32_to_cpu(dip->di_gen);
ip->i_d.di_flushiter = be16_to_cpu(dip->di_flushiter);
if (dip->di_version == 3) {
ip->i_d.di_ino = be64_to_cpu(dip->di_ino);
uuid_copy(&ip->i_d.di_uuid, &dip->di_uuid);
}
/*
* Make sure to pull in the mode here as well in
* case the inode is released without being used.
* This ensures that xfs_inactive() will see that
* the inode is already free and not try to mess
* with the uninitialized part of it.
*/
ip->i_d.di_mode = 0;
}
/*
* The inode format changed when we moved the link count and
* made it 32 bits long. If this is an old format inode,
* convert it in memory to look like a new one. If it gets
* flushed to disk we will convert back before flushing or
* logging it. We zero out the new projid field and the old link
* count field. We'll handle clearing the pad field (the remains
* of the old uuid field) when we actually convert the inode to
* the new format. We don't change the version number so that we
* can distinguish this from a real new format inode.
*/
if (ip->i_d.di_version == 1) {
ip->i_d.di_nlink = ip->i_d.di_onlink;
ip->i_d.di_onlink = 0;
xfs_set_projid(ip, 0);
}
ip->i_delayed_blks = 0;
/*
* Mark the buffer containing the inode as something to keep
* around for a while. This helps to keep recently accessed
* meta-data in-core longer.
*/
xfs_buf_set_ref(bp, XFS_INO_REF);
/*
* Use xfs_trans_brelse() to release the buffer containing the on-disk
* inode, because it was acquired with xfs_trans_read_buf() in
* xfs_imap_to_bp() above. If tp is NULL, this is just a normal
* brelse(). If we're within a transaction, then xfs_trans_brelse()
* will only release the buffer if it is not dirty within the
* transaction. It will be OK to release the buffer in this case,
* because inodes on disk are never destroyed and we will be locking the
* new in-core inode before putting it in the cache where other
* processes can find it. Thus we don't have to worry about the inode
* being changed just because we released the buffer.
*/
out_brelse:
xfs_trans_brelse(tp, bp);
return error;
}