linux-sg2042/drivers/hwtracing/coresight/coresight-etm-perf.c

519 lines
12 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright(C) 2015 Linaro Limited. All rights reserved.
* Author: Mathieu Poirier <mathieu.poirier@linaro.org>
*/
#include <linux/coresight.h>
#include <linux/coresight-pmu.h>
#include <linux/cpumask.h>
#include <linux/device.h>
#include <linux/list.h>
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/perf_event.h>
#include <linux/percpu-defs.h>
#include <linux/slab.h>
#include <linux/types.h>
#include <linux/workqueue.h>
#include "coresight-etm-perf.h"
#include "coresight-priv.h"
static struct pmu etm_pmu;
static bool etm_perf_up;
/**
* struct etm_event_data - Coresight specifics associated to an event
* @work: Handle to free allocated memory outside IRQ context.
* @mask: Hold the CPU(s) this event was set for.
* @snk_config: The sink configuration.
* @path: An array of path, each slot for one CPU.
*/
struct etm_event_data {
struct work_struct work;
cpumask_t mask;
void *snk_config;
struct list_head * __percpu *path;
};
static DEFINE_PER_CPU(struct perf_output_handle, ctx_handle);
static DEFINE_PER_CPU(struct coresight_device *, csdev_src);
/* ETMv3.5/PTM's ETMCR is 'config' */
PMU_FORMAT_ATTR(cycacc, "config:" __stringify(ETM_OPT_CYCACC));
PMU_FORMAT_ATTR(timestamp, "config:" __stringify(ETM_OPT_TS));
PMU_FORMAT_ATTR(retstack, "config:" __stringify(ETM_OPT_RETSTK));
static struct attribute *etm_config_formats_attr[] = {
&format_attr_cycacc.attr,
&format_attr_timestamp.attr,
&format_attr_retstack.attr,
NULL,
};
static const struct attribute_group etm_pmu_format_group = {
.name = "format",
.attrs = etm_config_formats_attr,
};
static const struct attribute_group *etm_pmu_attr_groups[] = {
&etm_pmu_format_group,
NULL,
};
static inline struct list_head **
etm_event_cpu_path_ptr(struct etm_event_data *data, int cpu)
{
return per_cpu_ptr(data->path, cpu);
}
static inline struct list_head *
etm_event_cpu_path(struct etm_event_data *data, int cpu)
{
return *etm_event_cpu_path_ptr(data, cpu);
}
static void etm_event_read(struct perf_event *event) {}
static int etm_addr_filters_alloc(struct perf_event *event)
{
struct etm_filters *filters;
int node = event->cpu == -1 ? -1 : cpu_to_node(event->cpu);
filters = kzalloc_node(sizeof(struct etm_filters), GFP_KERNEL, node);
if (!filters)
return -ENOMEM;
if (event->parent)
memcpy(filters, event->parent->hw.addr_filters,
sizeof(*filters));
event->hw.addr_filters = filters;
return 0;
}
static void etm_event_destroy(struct perf_event *event)
{
kfree(event->hw.addr_filters);
event->hw.addr_filters = NULL;
}
static int etm_event_init(struct perf_event *event)
{
int ret = 0;
if (event->attr.type != etm_pmu.type) {
ret = -ENOENT;
goto out;
}
ret = etm_addr_filters_alloc(event);
if (ret)
goto out;
event->destroy = etm_event_destroy;
out:
return ret;
}
static void free_event_data(struct work_struct *work)
{
int cpu;
cpumask_t *mask;
struct etm_event_data *event_data;
struct coresight_device *sink;
event_data = container_of(work, struct etm_event_data, work);
mask = &event_data->mask;
/*
* First deal with the sink configuration. See comment in
* etm_setup_aux() about why we take the first available path.
*/
if (event_data->snk_config) {
cpu = cpumask_first(mask);
sink = coresight_get_sink(etm_event_cpu_path(event_data, cpu));
if (sink_ops(sink)->free_buffer)
sink_ops(sink)->free_buffer(event_data->snk_config);
}
for_each_cpu(cpu, mask) {
struct list_head **ppath;
ppath = etm_event_cpu_path_ptr(event_data, cpu);
if (!(IS_ERR_OR_NULL(*ppath)))
coresight_release_path(*ppath);
*ppath = NULL;
}
free_percpu(event_data->path);
kfree(event_data);
}
static void *alloc_event_data(int cpu)
{
cpumask_t *mask;
struct etm_event_data *event_data;
/* First get memory for the session's data */
event_data = kzalloc(sizeof(struct etm_event_data), GFP_KERNEL);
if (!event_data)
return NULL;
mask = &event_data->mask;
if (cpu != -1)
cpumask_set_cpu(cpu, mask);
else
cpumask_copy(mask, cpu_online_mask);
/*
* Each CPU has a single path between source and destination. As such
* allocate an array using CPU numbers as indexes. That way a path
* for any CPU can easily be accessed at any given time. We proceed
* the same way for sessions involving a single CPU. The cost of
* unused memory when dealing with single CPU trace scenarios is small
* compared to the cost of searching through an optimized array.
*/
event_data->path = alloc_percpu(struct list_head *);
if (!event_data->path) {
kfree(event_data);
return NULL;
}
return event_data;
}
static void etm_free_aux(void *data)
{
struct etm_event_data *event_data = data;
schedule_work(&event_data->work);
}
static void *etm_setup_aux(int event_cpu, void **pages,
int nr_pages, bool overwrite)
{
int cpu;
cpumask_t *mask;
struct coresight_device *sink;
struct etm_event_data *event_data = NULL;
event_data = alloc_event_data(event_cpu);
if (!event_data)
return NULL;
coresight: etm_perf: Fix using uninitialised work With 4.11-rc4, the following command triggers a WARN_ON, when a sink is not enabled. perf record -e cs_etm/@20010000.etf/ [88286.547741] ------------[ cut here ]------------ [88286.552332] WARNING: CPU: 3 PID: 2156 at kernel/workqueue.c:1442 __queue_work+0x29c/0x3b8 [88286.560427] Modules linked in: [88286.563451] [88286.564928] CPU: 3 PID: 2156 Comm: perf_v4.11 Not tainted 4.11.0-rc4 #217 [88286.573453] Hardware name: ARM LTD ARM Juno Development Platform/ARM Juno Development Platform, BIOS EDK II Aug 15 2016 [88286.584128] task: ffff80097597c200 task.stack: ffff8009768b0000 [88286.589990] PC is at __queue_work+0x29c/0x3b8 [88286.594303] LR is at __queue_work+0x104/0x3b8 [88286.598614] pc : [<ffff0000080d8c7c>] lr : [<ffff0000080d8ae4>] pstate: a00001c5 [88286.605934] sp : ffff8009768b3aa0 [88286.609212] x29: ffff8009768b3aa0 x28: ffff80097ff3da00 [88286.614477] x27: ffff80097ff89c00 x26: ffff8009751b0e00 [88286.619741] x25: ffff000008c9f000 x24: 0000000000000003 [88286.625004] x23: 0000000000000040 x22: ffff000008d3dab8 [88286.630268] x21: ffff800977804400 x20: 0000000000000007 [88286.635532] x19: ffff000008c54000 x18: 0000fffff9185160 [88286.640795] x17: 0000ffffb33d9a38 x16: ffff000008088270 [88286.646059] x15: 0000ffffb345b590 x14: 0000000000000000 [88286.651322] x13: 0000000000000004 x12: 0000000000000040 [88286.656586] x11: 0000000000000068 x10: 0000000000000000 [88286.661849] x9 : ffff800977400028 x8 : 0000000000000000 [88286.667113] x7 : 0000000000000000 x6 : ffff0000080d8ae4 [88286.672376] x5 : 0000000000000000 x4 : 0000000000000080 [88286.677639] x3 : 0000000000000000 x2 : 0000000000000000 [88286.682903] x1 : 0000000000000000 x0 : ffff8009751b0e08 [88286.688166] [88286.689638] ---[ end trace 31633f18fd33d4cb ]--- [88286.694206] Call trace: [88286.696627] Exception stack(0xffff8009768b38d0 to 0xffff8009768b3a00) [88286.703004] 38c0: ffff000008c54000 0001000000000000 [88286.710757] 38e0: ffff8009768b3aa0 ffff0000080d8c7c ffff8009768b3b50 ffff80097ff8a5b0 [88286.718511] 3900: 0000800977325000 0000000000000000 0000000000000040 ffff80097ffc6180 [88286.726264] 3920: ffff8009768b3940 ffff0000088a8694 ffff80097ffc5800 0000000000000000 [88286.734017] 3940: ffff8009768b3960 ffff0000081919c0 ffff80097ffc5280 0000000000000001 [88286.741771] 3960: ffff8009768b3a50 ffff00000819206c ffff8009751b0e08 0000000000000000 [88286.749523] 3980: 0000000000000000 0000000000000000 0000000000000080 0000000000000000 [88286.757277] 39a0: ffff0000080d8ae4 0000000000000000 0000000000000000 ffff800977400028 [88286.765029] 39c0: 0000000000000000 0000000000000068 0000000000000040 0000000000000004 [88286.772783] 39e0: 0000000000000000 0000ffffb345b590 ffff000008088270 0000ffffb33d9a38 [88286.780537] [<ffff0000080d8c7c>] __queue_work+0x29c/0x3b8 [88286.785883] [<ffff0000080d8df8>] queue_work_on+0x60/0x78 [88286.791146] [<ffff000008764c68>] etm_setup_aux+0x178/0x238 [88286.796578] [<ffff000008183600>] rb_alloc_aux+0x228/0x310 [88286.801925] [<ffff00000817e564>] perf_mmap+0x404/0x5a8 [88286.807015] [<ffff0000081c60cc>] mmap_region+0x394/0x5c0 [88286.812276] [<ffff0000081c654c>] do_mmap+0x254/0x388 [88286.817191] [<ffff0000081a989c>] vm_mmap_pgoff+0xbc/0xe0 [88286.822452] [<ffff0000081c3ffc>] SyS_mmap_pgoff+0xac/0x228 [88286.827884] [<ffff000008088288>] sys_mmap+0x18/0x28 [88286.832714] [<ffff000008082f30>] el0_svc_naked+0x24/0x28 The patch makes sure that the event_data->work is initialised properly before we could possibly use it. Cc: Mathieu Poirier <mathieu.poirier@linaro.org> Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com> Tested-by: Mike Leach <mike.leach@linaro.org> Signed-off-by: Mathieu Poirier <mathieu.poirier@linaro.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 04:15:04 +08:00
INIT_WORK(&event_data->work, free_event_data);
/*
* In theory nothing prevent tracers in a trace session from being
* associated with different sinks, nor having a sink per tracer. But
* until we have HW with this kind of topology we need to assume tracers
* in a trace session are using the same sink. Therefore go through
* the coresight bus and pick the first enabled sink.
*
* When operated from sysFS users are responsible to enable the sink
* while from perf, the perf tools will do it based on the choice made
* on the cmd line. As such the "enable_sink" flag in sysFS is reset.
*/
sink = coresight_get_enabled_sink(true);
if (!sink)
goto err;
mask = &event_data->mask;
/* Setup the path for each CPU in a trace session */
for_each_cpu(cpu, mask) {
struct list_head *path;
struct coresight_device *csdev;
csdev = per_cpu(csdev_src, cpu);
if (!csdev)
goto err;
/*
* Building a path doesn't enable it, it simply builds a
* list of devices from source to sink that can be
* referenced later when the path is actually needed.
*/
path = coresight_build_path(csdev, sink);
if (IS_ERR(path))
goto err;
*etm_event_cpu_path_ptr(event_data, cpu) = path;
}
if (!sink_ops(sink)->alloc_buffer)
goto err;
coresight: fix kernel panic caused by invalid CPU Commit d52c9750f150 ("coresight: reset "enable_sink" flag when need be") caused a kernel panic because of the using of an invalid value: after 'for_each_cpu(cpu, mask)', value of local variable 'cpu' become invalid, causes following 'cpu_to_node' access invalid memory area. This patch brings the deleted 'cpu = cpumask_first(mask)' back. Panic log: $ perf record -e cs_etm// ls Unable to handle kernel paging request at virtual address fffe801804af4f10 pgd = ffff8017ce031600 [fffe801804af4f10] *pgd=0000000000000000, *pud=0000000000000000 Internal error: Oops: 96000004 [#1] SMP Modules linked in: CPU: 33 PID: 1619 Comm: perf Not tainted 4.7.1+ #16 Hardware name: Huawei Taishan 2280 /CH05TEVBA, BIOS 1.10 11/24/2016 task: ffff8017cb0c8400 ti: ffff8017cb154000 task.ti: ffff8017cb154000 PC is at tmc_alloc_etf_buffer+0x60/0xd4 LR is at tmc_alloc_etf_buffer+0x44/0xd4 pc : [<ffff000008633df8>] lr : [<ffff000008633ddc>] pstate: 60000145 sp : ffff8017cb157b40 x29: ffff8017cb157b40 x28: 0000000000000000 ...skip... 7a60: ffff000008c64dc8 0000000000000006 0000000000000253 ffffffffffffffff 7a80: 0000000000000000 0000000000000000 ffff0000080872cc 0000000000000001 [<ffff000008633df8>] tmc_alloc_etf_buffer+0x60/0xd4 [<ffff000008632b9c>] etm_setup_aux+0x1dc/0x1e8 [<ffff00000816eed4>] rb_alloc_aux+0x2b0/0x338 [<ffff00000816a5e4>] perf_mmap+0x414/0x568 [<ffff0000081ab694>] mmap_region+0x324/0x544 [<ffff0000081abbe8>] do_mmap+0x334/0x3e0 [<ffff000008191150>] vm_mmap_pgoff+0xa4/0xc8 [<ffff0000081a9a30>] SyS_mmap_pgoff+0xb0/0x22c [<ffff0000080872e4>] sys_mmap+0x18/0x28 [<ffff0000080843f0>] el0_svc_naked+0x24/0x28 Code: 912040a5 d0001c00 f873d821 911c6000 (b8656822) ---[ end trace 98933da8f92b0c9a ]--- Signed-off-by: Wang Nan <wangnan0@huawei.com> Cc: Xia Kaixu <xiakaixu@huawei.com> Cc: Li Zefan <lizefan@huawei.com> Cc: Mathieu Poirier <mathieu.poirier@linaro.org> Cc: linux-arm-kernel@lists.infradead.org Cc: linux-kernel@vger.kernel.org Fixes: d52c9750f150 ("coresight: reset "enable_sink" flag when need be") Signed-off-by: Mathieu Poirier <mathieu.poirier@linaro.org> Cc: stable <stable@vger.kernel.org> # 4.10 Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-01-24 01:41:22 +08:00
cpu = cpumask_first(mask);
/* Get the AUX specific data from the sink buffer */
event_data->snk_config =
sink_ops(sink)->alloc_buffer(sink, cpu, pages,
nr_pages, overwrite);
if (!event_data->snk_config)
goto err;
out:
return event_data;
err:
etm_free_aux(event_data);
event_data = NULL;
goto out;
}
static void etm_event_start(struct perf_event *event, int flags)
{
int cpu = smp_processor_id();
struct etm_event_data *event_data;
struct perf_output_handle *handle = this_cpu_ptr(&ctx_handle);
struct coresight_device *sink, *csdev = per_cpu(csdev_src, cpu);
struct list_head *path;
if (!csdev)
goto fail;
/*
* Deal with the ring buffer API and get a handle on the
* session's information.
*/
event_data = perf_aux_output_begin(handle, event);
if (!event_data)
goto fail;
path = etm_event_cpu_path(event_data, cpu);
/* We need a sink, no need to continue without one */
sink = coresight_get_sink(path);
if (WARN_ON_ONCE(!sink || !sink_ops(sink)->set_buffer))
goto fail_end_stop;
/* Configure the sink */
if (sink_ops(sink)->set_buffer(sink, handle,
event_data->snk_config))
goto fail_end_stop;
/* Nothing will happen without a path */
if (coresight_enable_path(path, CS_MODE_PERF))
goto fail_end_stop;
/* Tell the perf core the event is alive */
event->hw.state = 0;
/* Finally enable the tracer */
if (source_ops(csdev)->enable(csdev, event, CS_MODE_PERF))
goto fail_end_stop;
out:
return;
fail_end_stop:
perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED);
perf_aux_output_end(handle, 0);
fail:
event->hw.state = PERF_HES_STOPPED;
goto out;
}
static void etm_event_stop(struct perf_event *event, int mode)
{
int cpu = smp_processor_id();
unsigned long size;
struct coresight_device *sink, *csdev = per_cpu(csdev_src, cpu);
struct perf_output_handle *handle = this_cpu_ptr(&ctx_handle);
struct etm_event_data *event_data = perf_get_aux(handle);
struct list_head *path;
if (event->hw.state == PERF_HES_STOPPED)
return;
if (!csdev)
return;
path = etm_event_cpu_path(event_data, cpu);
if (!path)
return;
sink = coresight_get_sink(path);
if (!sink)
return;
/* stop tracer */
source_ops(csdev)->disable(csdev, event);
/* tell the core */
event->hw.state = PERF_HES_STOPPED;
if (mode & PERF_EF_UPDATE) {
if (WARN_ON_ONCE(handle->event != event))
return;
/* update trace information */
if (!sink_ops(sink)->update_buffer)
return;
sink_ops(sink)->update_buffer(sink, handle,
event_data->snk_config);
if (!sink_ops(sink)->reset_buffer)
return;
size = sink_ops(sink)->reset_buffer(sink, handle,
event_data->snk_config);
perf_aux_output_end(handle, size);
}
/* Disabling the path make its elements available to other sessions */
coresight_disable_path(path);
}
static int etm_event_add(struct perf_event *event, int mode)
{
int ret = 0;
struct hw_perf_event *hwc = &event->hw;
if (mode & PERF_EF_START) {
etm_event_start(event, 0);
if (hwc->state & PERF_HES_STOPPED)
ret = -EINVAL;
} else {
hwc->state = PERF_HES_STOPPED;
}
return ret;
}
static void etm_event_del(struct perf_event *event, int mode)
{
etm_event_stop(event, PERF_EF_UPDATE);
}
static int etm_addr_filters_validate(struct list_head *filters)
{
bool range = false, address = false;
int index = 0;
struct perf_addr_filter *filter;
list_for_each_entry(filter, filters, entry) {
/*
* No need to go further if there's no more
* room for filters.
*/
if (++index > ETM_ADDR_CMP_MAX)
return -EOPNOTSUPP;
/* filter::size==0 means single address trigger */
if (filter->size) {
/*
* The existing code relies on START/STOP filters
* being address filters.
*/
if (filter->action == PERF_ADDR_FILTER_ACTION_START ||
filter->action == PERF_ADDR_FILTER_ACTION_STOP)
return -EOPNOTSUPP;
range = true;
} else
address = true;
/*
* At this time we don't allow range and start/stop filtering
* to cohabitate, they have to be mutually exclusive.
*/
if (range && address)
return -EOPNOTSUPP;
}
return 0;
}
static void etm_addr_filters_sync(struct perf_event *event)
{
struct perf_addr_filters_head *head = perf_event_addr_filters(event);
unsigned long start, stop, *offs = event->addr_filters_offs;
struct etm_filters *filters = event->hw.addr_filters;
struct etm_filter *etm_filter;
struct perf_addr_filter *filter;
int i = 0;
list_for_each_entry(filter, &head->list, entry) {
start = filter->offset + offs[i];
stop = start + filter->size;
etm_filter = &filters->etm_filter[i];
switch (filter->action) {
case PERF_ADDR_FILTER_ACTION_FILTER:
etm_filter->start_addr = start;
etm_filter->stop_addr = stop;
etm_filter->type = ETM_ADDR_TYPE_RANGE;
break;
case PERF_ADDR_FILTER_ACTION_START:
etm_filter->start_addr = start;
etm_filter->type = ETM_ADDR_TYPE_START;
break;
case PERF_ADDR_FILTER_ACTION_STOP:
etm_filter->stop_addr = stop;
etm_filter->type = ETM_ADDR_TYPE_STOP;
break;
}
i++;
}
filters->nr_filters = i;
}
int etm_perf_symlink(struct coresight_device *csdev, bool link)
{
char entry[sizeof("cpu9999999")];
int ret = 0, cpu = source_ops(csdev)->cpu_id(csdev);
struct device *pmu_dev = etm_pmu.dev;
struct device *cs_dev = &csdev->dev;
sprintf(entry, "cpu%d", cpu);
if (!etm_perf_up)
return -EPROBE_DEFER;
if (link) {
ret = sysfs_create_link(&pmu_dev->kobj, &cs_dev->kobj, entry);
if (ret)
return ret;
per_cpu(csdev_src, cpu) = csdev;
} else {
sysfs_remove_link(&pmu_dev->kobj, entry);
per_cpu(csdev_src, cpu) = NULL;
}
return 0;
}
static int __init etm_perf_init(void)
{
int ret;
etm_pmu.capabilities = PERF_PMU_CAP_EXCLUSIVE;
etm_pmu.attr_groups = etm_pmu_attr_groups;
etm_pmu.task_ctx_nr = perf_sw_context;
etm_pmu.read = etm_event_read;
etm_pmu.event_init = etm_event_init;
etm_pmu.setup_aux = etm_setup_aux;
etm_pmu.free_aux = etm_free_aux;
etm_pmu.start = etm_event_start;
etm_pmu.stop = etm_event_stop;
etm_pmu.add = etm_event_add;
etm_pmu.del = etm_event_del;
etm_pmu.addr_filters_sync = etm_addr_filters_sync;
etm_pmu.addr_filters_validate = etm_addr_filters_validate;
etm_pmu.nr_addr_filters = ETM_ADDR_CMP_MAX;
ret = perf_pmu_register(&etm_pmu, CORESIGHT_ETM_PMU_NAME, -1);
if (ret == 0)
etm_perf_up = true;
return ret;
}
device_initcall(etm_perf_init);