linux-sg2042/arch/x86/kernel/fpu/signal.c

538 lines
15 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 22:07:57 +08:00
// SPDX-License-Identifier: GPL-2.0
/*
* FPU signal frame handling routines.
*/
#include <linux/compat.h>
#include <linux/cpu.h>
x86/fpu: Use fault_in_pages_writeable() for pre-faulting Since commit d9c9ce34ed5c8 ("x86/fpu: Fault-in user stack if copy_fpstate_to_sigframe() fails") get_user_pages_unlocked() pre-faults user's memory if a write generates a page fault while the handler is disabled. This works in general and uncovered a bug as reported by Mike Rapoport¹. It has been pointed out that this function may be fragile and a simple pre-fault as in fault_in_pages_writeable() would be a better solution. Better as in taste and simplicity: that write (as performed by the alternative function) performs exactly the same faulting of memory as before. This was suggested by Hugh Dickins and Andrew Morton. Use fault_in_pages_writeable() for pre-faulting user's stack. [ bigeasy: Write commit message. ] [ bp: Massage some. ] ¹ https://lkml.kernel.org/r/1557844195-18882-1-git-send-email-rppt@linux.ibm.com Fixes: d9c9ce34ed5c8 ("x86/fpu: Fault-in user stack if copy_fpstate_to_sigframe() fails") Suggested-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: Borislav Petkov <bp@suse.de> Tested-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jann Horn <jannh@google.com> Cc: linux-mm <linux-mm@kvack.org> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Pavel Machek <pavel@ucw.cz> Cc: Rik van Riel <riel@surriel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: x86-ml <x86@kernel.org> Link: https://lkml.kernel.org/r/20190529072540.g46j4kfeae37a3iu@linutronix.de Link: https://lkml.kernel.org/r/1557844195-18882-1-git-send-email-rppt@linux.ibm.com
2019-05-29 15:25:40 +08:00
#include <linux/pagemap.h>
#include <asm/fpu/internal.h>
#include <asm/fpu/signal.h>
#include <asm/fpu/regset.h>
#include <asm/fpu/xstate.h>
#include <asm/sigframe.h>
#include <asm/trapnr.h>
x86/fpu: Add tracepoints to dump FPU state at key points I've been carrying this patch around for a bit and it's helped me solve at least a couple FPU-related bugs. In addition to using it for debugging, I also drug it out because using AVX (and AVX2/AVX-512) can have serious power consequences for a modern core. It's very important to be able to figure out who is using it. It's also insanely useful to go out and see who is using a given feature, like MPX or Memory Protection Keys. If you, for instance, want to find all processes using protection keys, you can do: echo 'xfeatures & 0x200' > filter Since 0x200 is the protection keys feature bit. Note that this touches the KVM code. KVM did a CREATE_TRACE_POINTS and then included a bunch of random headers. If anyone one of those included other tracepoints, it would have defined the *OTHER* tracepoints. That's bogus, so move it to the right place. Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Dave Hansen <dave@sr71.net> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Quentin Casasnovas <quentin.casasnovas@oracle.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20160601174220.3CDFB90E@viggo.jf.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-06-02 01:42:20 +08:00
#include <asm/trace/fpu.h>
static struct _fpx_sw_bytes fx_sw_reserved __ro_after_init;
static struct _fpx_sw_bytes fx_sw_reserved_ia32 __ro_after_init;
/*
* Check for the presence of extended state information in the
* user fpstate pointer in the sigcontext.
*/
static inline bool check_xstate_in_sigframe(struct fxregs_state __user *fxbuf,
struct _fpx_sw_bytes *fx_sw)
{
int min_xstate_size = sizeof(struct fxregs_state) +
sizeof(struct xstate_header);
void __user *fpstate = fxbuf;
unsigned int magic2;
if (__copy_from_user(fx_sw, &fxbuf->sw_reserved[0], sizeof(*fx_sw)))
return false;
/* Check for the first magic field and other error scenarios. */
if (fx_sw->magic1 != FP_XSTATE_MAGIC1 ||
fx_sw->xstate_size < min_xstate_size ||
fx_sw->xstate_size > fpu_user_xstate_size ||
fx_sw->xstate_size > fx_sw->extended_size)
goto setfx;
/*
* Check for the presence of second magic word at the end of memory
* layout. This detects the case where the user just copied the legacy
* fpstate layout with out copying the extended state information
* in the memory layout.
*/
if (__get_user(magic2, (__u32 __user *)(fpstate + fx_sw->xstate_size)))
return false;
if (likely(magic2 == FP_XSTATE_MAGIC2))
return true;
setfx:
trace_x86_fpu_xstate_check_failed(&current->thread.fpu);
/* Set the parameters for fx only state */
fx_sw->magic1 = 0;
fx_sw->xstate_size = sizeof(struct fxregs_state);
fx_sw->xfeatures = XFEATURE_MASK_FPSSE;
return true;
}
/*
* Signal frame handlers.
*/
static inline bool save_fsave_header(struct task_struct *tsk, void __user *buf)
{
if (use_fxsr()) {
struct xregs_state *xsave = &tsk->thread.fpu.state.xsave;
struct user_i387_ia32_struct env;
struct _fpstate_32 __user *fp = buf;
fpregs_lock();
if (!test_thread_flag(TIF_NEED_FPU_LOAD))
fxsave(&tsk->thread.fpu.state.fxsave);
fpregs_unlock();
convert_from_fxsr(&env, tsk);
if (__copy_to_user(buf, &env, sizeof(env)) ||
__put_user(xsave->i387.swd, &fp->status) ||
__put_user(X86_FXSR_MAGIC, &fp->magic))
return false;
} else {
struct fregs_state __user *fp = buf;
u32 swd;
if (__get_user(swd, &fp->swd) || __put_user(swd, &fp->status))
return false;
}
return true;
}
static inline bool save_xstate_epilog(void __user *buf, int ia32_frame)
{
struct xregs_state __user *x = buf;
struct _fpx_sw_bytes *sw_bytes;
u32 xfeatures;
int err;
/* Setup the bytes not touched by the [f]xsave and reserved for SW. */
sw_bytes = ia32_frame ? &fx_sw_reserved_ia32 : &fx_sw_reserved;
err = __copy_to_user(&x->i387.sw_reserved, sw_bytes, sizeof(*sw_bytes));
if (!use_xsave())
return err;
err |= __put_user(FP_XSTATE_MAGIC2,
(__u32 __user *)(buf + fpu_user_xstate_size));
/*
* Read the xfeatures which we copied (directly from the cpu or
* from the state in task struct) to the user buffers.
*/
err |= __get_user(xfeatures, (__u32 __user *)&x->header.xfeatures);
/*
* For legacy compatible, we always set FP/SSE bits in the bit
* vector while saving the state to the user context. This will
* enable us capturing any changes(during sigreturn) to
* the FP/SSE bits by the legacy applications which don't touch
* xfeatures in the xsave header.
*
* xsave aware apps can change the xfeatures in the xsave
* header as well as change any contents in the memory layout.
* xrestore as part of sigreturn will capture all the changes.
*/
x86/fpu: Rename XSAVE macros There are two concepts that have some confusing naming: 1. Extended State Component numbers (currently called XFEATURE_BIT_*) 2. Extended State Component masks (currently called XSTATE_*) The numbers are (currently) from 0-9. State component 3 is the bounds registers for MPX, for instance. But when we want to enable "state component 3", we go set a bit in XCR0. The bit we set is 1<<3. We can check to see if a state component feature is enabled by looking at its bit. The current 'xfeature_bit's are at best xfeature bit _numbers_. Calling them bits is at best inconsistent with ending the enum list with 'XFEATURES_NR_MAX'. This patch renames the enum to be 'xfeature'. These also happen to be what the Intel documentation calls a "state component". We also want to differentiate these from the "XSTATE_*" macros. The "XSTATE_*" macros are a mask, and we rename them to match. These macros are reasonably widely used so this patch is a wee bit big, but this really is just a rename. The only non-mechanical part of this is the s/XSTATE_EXTEND_MASK/XFEATURE_MASK_EXTEND/ We need a better name for it, but that's another patch. Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: dave@sr71.net Cc: linux-kernel@vger.kernel.org Link: http://lkml.kernel.org/r/20150902233126.38653250@viggo.jf.intel.com [ Ported to v4.3-rc1. ] Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-09-03 07:31:26 +08:00
xfeatures |= XFEATURE_MASK_FPSSE;
err |= __put_user(xfeatures, (__u32 __user *)&x->header.xfeatures);
return !err;
}
static inline int copy_fpregs_to_sigframe(struct xregs_state __user *buf)
{
if (use_xsave())
return xsave_to_user_sigframe(buf);
if (use_fxsr())
return fxsave_to_user_sigframe((struct fxregs_state __user *) buf);
else
return fnsave_to_user_sigframe((struct fregs_state __user *) buf);
}
/*
* Save the fpu, extended register state to the user signal frame.
*
* 'buf_fx' is the 64-byte aligned pointer at which the [f|fx|x]save
* state is copied.
* 'buf' points to the 'buf_fx' or to the fsave header followed by 'buf_fx'.
*
* buf == buf_fx for 64-bit frames and 32-bit fsave frame.
* buf != buf_fx for 32-bit frames with fxstate.
*
* Try to save it directly to the user frame with disabled page fault handler.
* If this fails then do the slow path where the FPU state is first saved to
* task's fpu->state and then copy it to the user frame pointed to by the
* aligned pointer 'buf_fx'.
*
* If this is a 32-bit frame with fxstate, put a fsave header before
* the aligned state at 'buf_fx'.
*
* For [f]xsave state, update the SW reserved fields in the [f]xsave frame
* indicating the absence/presence of the extended state to the user.
*/
bool copy_fpstate_to_sigframe(void __user *buf, void __user *buf_fx, int size)
{
struct task_struct *tsk = current;
int ia32_fxstate = (buf != buf_fx);
x86/fpu: Fault-in user stack if copy_fpstate_to_sigframe() fails In the compacted form, XSAVES may save only the XMM+SSE state but skip FP (x87 state). This is denoted by header->xfeatures = 6. The fastpath (copy_fpregs_to_sigframe()) does that but _also_ initialises the FP state (cwd to 0x37f, mxcsr as we do, remaining fields to 0). The slowpath (copy_xstate_to_user()) leaves most of the FP state untouched. Only mxcsr and mxcsr_flags are set due to xfeatures_mxcsr_quirk(). Now that XFEATURE_MASK_FP is set unconditionally, see 04944b793e18 ("x86: xsave: set FP, SSE bits in the xsave header in the user sigcontext"), on return from the signal, random garbage is loaded as the FP state. Instead of utilizing copy_xstate_to_user(), fault-in the user memory and retry the fast path. Ideally, the fast path succeeds on the second attempt but may be retried again if the memory is swapped out due to memory pressure. If the user memory can not be faulted-in then get_user_pages() returns an error so we don't loop forever. Fault in memory via get_user_pages_unlocked() so copy_fpregs_to_sigframe() succeeds without a fault. Fixes: 69277c98f5eef ("x86/fpu: Always store the registers in copy_fpstate_to_sigframe()") Reported-by: Kurt Kanzenbach <kurt.kanzenbach@linutronix.de> Suggested-by: Dave Hansen <dave.hansen@intel.com> Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Dave Hansen <dave.hansen@intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Jann Horn <jannh@google.com> Cc: "linux-mm@kvack.org" <linux-mm@kvack.org> Cc: Qian Cai <cai@lca.pw> Cc: Rik van Riel <riel@surriel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: x86-ml <x86@kernel.org> Link: https://lkml.kernel.org/r/20190502171139.mqtegctsg35cir2e@linutronix.de
2019-05-03 01:11:39 +08:00
int ret;
tree-wide: replace config_enabled() with IS_ENABLED() The use of config_enabled() against config options is ambiguous. In practical terms, config_enabled() is equivalent to IS_BUILTIN(), but the author might have used it for the meaning of IS_ENABLED(). Using IS_ENABLED(), IS_BUILTIN(), IS_MODULE() etc. makes the intention clearer. This commit replaces config_enabled() with IS_ENABLED() where possible. This commit is only touching bool config options. I noticed two cases where config_enabled() is used against a tristate option: - config_enabled(CONFIG_HWMON) [ drivers/net/wireless/ath/ath10k/thermal.c ] - config_enabled(CONFIG_BACKLIGHT_CLASS_DEVICE) [ drivers/gpu/drm/gma500/opregion.c ] I did not touch them because they should be converted to IS_BUILTIN() in order to keep the logic, but I was not sure it was the authors' intention. Link: http://lkml.kernel.org/r/1465215656-20569-1-git-send-email-yamada.masahiro@socionext.com Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com> Acked-by: Kees Cook <keescook@chromium.org> Cc: Stas Sergeev <stsp@list.ru> Cc: Matt Redfearn <matt.redfearn@imgtec.com> Cc: Joshua Kinard <kumba@gentoo.org> Cc: Jiri Slaby <jslaby@suse.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: Borislav Petkov <bp@suse.de> Cc: Markos Chandras <markos.chandras@imgtec.com> Cc: "Dmitry V. Levin" <ldv@altlinux.org> Cc: yu-cheng yu <yu-cheng.yu@intel.com> Cc: James Hogan <james.hogan@imgtec.com> Cc: Brian Gerst <brgerst@gmail.com> Cc: Johannes Berg <johannes@sipsolutions.net> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Will Drewry <wad@chromium.org> Cc: Nikolay Martynov <mar.kolya@gmail.com> Cc: Huacai Chen <chenhc@lemote.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Leonid Yegoshin <Leonid.Yegoshin@imgtec.com> Cc: Rafal Milecki <zajec5@gmail.com> Cc: James Cowgill <James.Cowgill@imgtec.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Alex Smith <alex.smith@imgtec.com> Cc: Adam Buchbinder <adam.buchbinder@gmail.com> Cc: Qais Yousef <qais.yousef@imgtec.com> Cc: Jiang Liu <jiang.liu@linux.intel.com> Cc: Mikko Rapeli <mikko.rapeli@iki.fi> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Brian Norris <computersforpeace@gmail.com> Cc: Hidehiro Kawai <hidehiro.kawai.ez@hitachi.com> Cc: "Luis R. Rodriguez" <mcgrof@do-not-panic.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Roland McGrath <roland@hack.frob.com> Cc: Paul Burton <paul.burton@imgtec.com> Cc: Kalle Valo <kvalo@qca.qualcomm.com> Cc: Viresh Kumar <viresh.kumar@linaro.org> Cc: Tony Wu <tung7970@gmail.com> Cc: Huaitong Han <huaitong.han@intel.com> Cc: Sumit Semwal <sumit.semwal@linaro.org> Cc: Alexei Starovoitov <ast@kernel.org> Cc: Juergen Gross <jgross@suse.com> Cc: Jason Cooper <jason@lakedaemon.net> Cc: "David S. Miller" <davem@davemloft.net> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Andrea Gelmini <andrea.gelmini@gelma.net> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Marc Zyngier <marc.zyngier@arm.com> Cc: Rabin Vincent <rabin@rab.in> Cc: "Maciej W. Rozycki" <macro@imgtec.com> Cc: David Daney <david.daney@cavium.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-08-04 04:45:50 +08:00
ia32_fxstate &= (IS_ENABLED(CONFIG_X86_32) ||
IS_ENABLED(CONFIG_IA32_EMULATION));
if (!static_cpu_has(X86_FEATURE_FPU)) {
struct user_i387_ia32_struct fp;
fpregs_soft_get(current, NULL, (struct membuf){.p = &fp,
.left = sizeof(fp)});
return !copy_to_user(buf, &fp, sizeof(fp));
}
Remove 'type' argument from access_ok() function Nobody has actually used the type (VERIFY_READ vs VERIFY_WRITE) argument of the user address range verification function since we got rid of the old racy i386-only code to walk page tables by hand. It existed because the original 80386 would not honor the write protect bit when in kernel mode, so you had to do COW by hand before doing any user access. But we haven't supported that in a long time, and these days the 'type' argument is a purely historical artifact. A discussion about extending 'user_access_begin()' to do the range checking resulted this patch, because there is no way we're going to move the old VERIFY_xyz interface to that model. And it's best done at the end of the merge window when I've done most of my merges, so let's just get this done once and for all. This patch was mostly done with a sed-script, with manual fix-ups for the cases that weren't of the trivial 'access_ok(VERIFY_xyz' form. There were a couple of notable cases: - csky still had the old "verify_area()" name as an alias. - the iter_iov code had magical hardcoded knowledge of the actual values of VERIFY_{READ,WRITE} (not that they mattered, since nothing really used it) - microblaze used the type argument for a debug printout but other than those oddities this should be a total no-op patch. I tried to fix up all architectures, did fairly extensive grepping for access_ok() uses, and the changes are trivial, but I may have missed something. Any missed conversion should be trivially fixable, though. Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-01-04 10:57:57 +08:00
if (!access_ok(buf, size))
return false;
if (use_xsave()) {
struct xregs_state __user *xbuf = buf_fx;
/*
* Clear the xsave header first, so that reserved fields are
* initialized to zero.
*/
if (__clear_user(&xbuf->header, sizeof(xbuf->header)))
return false;
}
x86/fpu: Fault-in user stack if copy_fpstate_to_sigframe() fails In the compacted form, XSAVES may save only the XMM+SSE state but skip FP (x87 state). This is denoted by header->xfeatures = 6. The fastpath (copy_fpregs_to_sigframe()) does that but _also_ initialises the FP state (cwd to 0x37f, mxcsr as we do, remaining fields to 0). The slowpath (copy_xstate_to_user()) leaves most of the FP state untouched. Only mxcsr and mxcsr_flags are set due to xfeatures_mxcsr_quirk(). Now that XFEATURE_MASK_FP is set unconditionally, see 04944b793e18 ("x86: xsave: set FP, SSE bits in the xsave header in the user sigcontext"), on return from the signal, random garbage is loaded as the FP state. Instead of utilizing copy_xstate_to_user(), fault-in the user memory and retry the fast path. Ideally, the fast path succeeds on the second attempt but may be retried again if the memory is swapped out due to memory pressure. If the user memory can not be faulted-in then get_user_pages() returns an error so we don't loop forever. Fault in memory via get_user_pages_unlocked() so copy_fpregs_to_sigframe() succeeds without a fault. Fixes: 69277c98f5eef ("x86/fpu: Always store the registers in copy_fpstate_to_sigframe()") Reported-by: Kurt Kanzenbach <kurt.kanzenbach@linutronix.de> Suggested-by: Dave Hansen <dave.hansen@intel.com> Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Dave Hansen <dave.hansen@intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Jann Horn <jannh@google.com> Cc: "linux-mm@kvack.org" <linux-mm@kvack.org> Cc: Qian Cai <cai@lca.pw> Cc: Rik van Riel <riel@surriel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: x86-ml <x86@kernel.org> Link: https://lkml.kernel.org/r/20190502171139.mqtegctsg35cir2e@linutronix.de
2019-05-03 01:11:39 +08:00
retry:
/*
x86/fpu: Restore regs in copy_fpstate_to_sigframe() in order to use the fastpath If a task is scheduled out and receives a signal then it won't be able to take the fastpath because the registers aren't available. The slowpath is more expensive compared to XRSTOR + XSAVE which usually succeeds. Here are some clock_gettime() numbers from a bigger box with AVX512 during bootup: - __fpregs_load_activate() takes 140ns - 350ns. If it was the most recent FPU context on the CPU then the optimisation in __fpregs_load_activate() will skip the load (which was disabled during the test). - copy_fpregs_to_sigframe() takes 200ns - 450ns if it succeeds. On a pagefault it is 1.8us - 3us usually in the 2.6us area. - The slowpath takes 1.5us - 6us. Usually in the 2.6us area. My testcases (including lat_sig) take the fastpath without __fpregs_load_activate(). I expect this to be the majority. Since the slowpath is in the >1us area it makes sense to load the registers and attempt to save them directly. The direct save may fail but should only happen on the first invocation or after fork() while the page is read-only. [ bp: Massage a bit. ] Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Dave Hansen <dave.hansen@intel.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jann Horn <jannh@google.com> Cc: "Jason A. Donenfeld" <Jason@zx2c4.com> Cc: kvm ML <kvm@vger.kernel.org> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krčmář <rkrcmar@redhat.com> Cc: Rik van Riel <riel@surriel.com> Cc: x86-ml <x86@kernel.org> Link: https://lkml.kernel.org/r/20190403164156.19645-27-bigeasy@linutronix.de
2019-04-13 02:16:15 +08:00
* Load the FPU registers if they are not valid for the current task.
* With a valid FPU state we can attempt to save the state directly to
x86/fpu: Fault-in user stack if copy_fpstate_to_sigframe() fails In the compacted form, XSAVES may save only the XMM+SSE state but skip FP (x87 state). This is denoted by header->xfeatures = 6. The fastpath (copy_fpregs_to_sigframe()) does that but _also_ initialises the FP state (cwd to 0x37f, mxcsr as we do, remaining fields to 0). The slowpath (copy_xstate_to_user()) leaves most of the FP state untouched. Only mxcsr and mxcsr_flags are set due to xfeatures_mxcsr_quirk(). Now that XFEATURE_MASK_FP is set unconditionally, see 04944b793e18 ("x86: xsave: set FP, SSE bits in the xsave header in the user sigcontext"), on return from the signal, random garbage is loaded as the FP state. Instead of utilizing copy_xstate_to_user(), fault-in the user memory and retry the fast path. Ideally, the fast path succeeds on the second attempt but may be retried again if the memory is swapped out due to memory pressure. If the user memory can not be faulted-in then get_user_pages() returns an error so we don't loop forever. Fault in memory via get_user_pages_unlocked() so copy_fpregs_to_sigframe() succeeds without a fault. Fixes: 69277c98f5eef ("x86/fpu: Always store the registers in copy_fpstate_to_sigframe()") Reported-by: Kurt Kanzenbach <kurt.kanzenbach@linutronix.de> Suggested-by: Dave Hansen <dave.hansen@intel.com> Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Dave Hansen <dave.hansen@intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Jann Horn <jannh@google.com> Cc: "linux-mm@kvack.org" <linux-mm@kvack.org> Cc: Qian Cai <cai@lca.pw> Cc: Rik van Riel <riel@surriel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: x86-ml <x86@kernel.org> Link: https://lkml.kernel.org/r/20190502171139.mqtegctsg35cir2e@linutronix.de
2019-05-03 01:11:39 +08:00
* userland's stack frame which will likely succeed. If it does not,
* resolve the fault in the user memory and try again.
*/
fpregs_lock();
x86/fpu: Restore regs in copy_fpstate_to_sigframe() in order to use the fastpath If a task is scheduled out and receives a signal then it won't be able to take the fastpath because the registers aren't available. The slowpath is more expensive compared to XRSTOR + XSAVE which usually succeeds. Here are some clock_gettime() numbers from a bigger box with AVX512 during bootup: - __fpregs_load_activate() takes 140ns - 350ns. If it was the most recent FPU context on the CPU then the optimisation in __fpregs_load_activate() will skip the load (which was disabled during the test). - copy_fpregs_to_sigframe() takes 200ns - 450ns if it succeeds. On a pagefault it is 1.8us - 3us usually in the 2.6us area. - The slowpath takes 1.5us - 6us. Usually in the 2.6us area. My testcases (including lat_sig) take the fastpath without __fpregs_load_activate(). I expect this to be the majority. Since the slowpath is in the >1us area it makes sense to load the registers and attempt to save them directly. The direct save may fail but should only happen on the first invocation or after fork() while the page is read-only. [ bp: Massage a bit. ] Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Dave Hansen <dave.hansen@intel.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jann Horn <jannh@google.com> Cc: "Jason A. Donenfeld" <Jason@zx2c4.com> Cc: kvm ML <kvm@vger.kernel.org> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krčmář <rkrcmar@redhat.com> Cc: Rik van Riel <riel@surriel.com> Cc: x86-ml <x86@kernel.org> Link: https://lkml.kernel.org/r/20190403164156.19645-27-bigeasy@linutronix.de
2019-04-13 02:16:15 +08:00
if (test_thread_flag(TIF_NEED_FPU_LOAD))
fpregs_restore_userregs();
x86/fpu: Restore regs in copy_fpstate_to_sigframe() in order to use the fastpath If a task is scheduled out and receives a signal then it won't be able to take the fastpath because the registers aren't available. The slowpath is more expensive compared to XRSTOR + XSAVE which usually succeeds. Here are some clock_gettime() numbers from a bigger box with AVX512 during bootup: - __fpregs_load_activate() takes 140ns - 350ns. If it was the most recent FPU context on the CPU then the optimisation in __fpregs_load_activate() will skip the load (which was disabled during the test). - copy_fpregs_to_sigframe() takes 200ns - 450ns if it succeeds. On a pagefault it is 1.8us - 3us usually in the 2.6us area. - The slowpath takes 1.5us - 6us. Usually in the 2.6us area. My testcases (including lat_sig) take the fastpath without __fpregs_load_activate(). I expect this to be the majority. Since the slowpath is in the >1us area it makes sense to load the registers and attempt to save them directly. The direct save may fail but should only happen on the first invocation or after fork() while the page is read-only. [ bp: Massage a bit. ] Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Dave Hansen <dave.hansen@intel.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jann Horn <jannh@google.com> Cc: "Jason A. Donenfeld" <Jason@zx2c4.com> Cc: kvm ML <kvm@vger.kernel.org> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krčmář <rkrcmar@redhat.com> Cc: Rik van Riel <riel@surriel.com> Cc: x86-ml <x86@kernel.org> Link: https://lkml.kernel.org/r/20190403164156.19645-27-bigeasy@linutronix.de
2019-04-13 02:16:15 +08:00
pagefault_disable();
ret = copy_fpregs_to_sigframe(buf_fx);
pagefault_enable();
fpregs_unlock();
if (ret) {
if (!__clear_user(buf_fx, fpu_user_xstate_size))
x86/fpu: Fault-in user stack if copy_fpstate_to_sigframe() fails In the compacted form, XSAVES may save only the XMM+SSE state but skip FP (x87 state). This is denoted by header->xfeatures = 6. The fastpath (copy_fpregs_to_sigframe()) does that but _also_ initialises the FP state (cwd to 0x37f, mxcsr as we do, remaining fields to 0). The slowpath (copy_xstate_to_user()) leaves most of the FP state untouched. Only mxcsr and mxcsr_flags are set due to xfeatures_mxcsr_quirk(). Now that XFEATURE_MASK_FP is set unconditionally, see 04944b793e18 ("x86: xsave: set FP, SSE bits in the xsave header in the user sigcontext"), on return from the signal, random garbage is loaded as the FP state. Instead of utilizing copy_xstate_to_user(), fault-in the user memory and retry the fast path. Ideally, the fast path succeeds on the second attempt but may be retried again if the memory is swapped out due to memory pressure. If the user memory can not be faulted-in then get_user_pages() returns an error so we don't loop forever. Fault in memory via get_user_pages_unlocked() so copy_fpregs_to_sigframe() succeeds without a fault. Fixes: 69277c98f5eef ("x86/fpu: Always store the registers in copy_fpstate_to_sigframe()") Reported-by: Kurt Kanzenbach <kurt.kanzenbach@linutronix.de> Suggested-by: Dave Hansen <dave.hansen@intel.com> Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Dave Hansen <dave.hansen@intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Jann Horn <jannh@google.com> Cc: "linux-mm@kvack.org" <linux-mm@kvack.org> Cc: Qian Cai <cai@lca.pw> Cc: Rik van Riel <riel@surriel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: x86-ml <x86@kernel.org> Link: https://lkml.kernel.org/r/20190502171139.mqtegctsg35cir2e@linutronix.de
2019-05-03 01:11:39 +08:00
goto retry;
return false;
}
/* Save the fsave header for the 32-bit frames. */
if ((ia32_fxstate || !use_fxsr()) && !save_fsave_header(tsk, buf))
return false;
if (use_fxsr() && !save_xstate_epilog(buf_fx, ia32_fxstate))
return false;
return true;
}
static int __restore_fpregs_from_user(void __user *buf, u64 xrestore,
bool fx_only)
{
if (use_xsave()) {
u64 init_bv = xfeatures_mask_uabi() & ~xrestore;
int ret;
if (likely(!fx_only))
ret = xrstor_from_user_sigframe(buf, xrestore);
else
ret = fxrstor_from_user_sigframe(buf);
if (!ret && unlikely(init_bv))
os_xrstor(&init_fpstate.xsave, init_bv);
return ret;
} else if (use_fxsr()) {
return fxrstor_from_user_sigframe(buf);
} else {
return frstor_from_user_sigframe(buf);
}
}
/*
* Attempt to restore the FPU registers directly from user memory.
* Pagefaults are handled and any errors returned are fatal.
*/
static int restore_fpregs_from_user(void __user *buf, u64 xrestore,
bool fx_only, unsigned int size)
{
struct fpu *fpu = &current->thread.fpu;
int ret;
retry:
fpregs_lock();
pagefault_disable();
ret = __restore_fpregs_from_user(buf, xrestore, fx_only);
pagefault_enable();
if (unlikely(ret)) {
/*
* The above did an FPU restore operation, restricted to
* the user portion of the registers, and failed, but the
* microcode might have modified the FPU registers
* nevertheless.
*
* If the FPU registers do not belong to current, then
* invalidate the FPU register state otherwise the task
* might preempt current and return to user space with
* corrupted FPU registers.
*/
if (test_thread_flag(TIF_NEED_FPU_LOAD))
__cpu_invalidate_fpregs_state();
fpregs_unlock();
/* Try to handle #PF, but anything else is fatal. */
if (ret != X86_TRAP_PF)
return -EINVAL;
ret = fault_in_pages_readable(buf, size);
if (!ret)
goto retry;
return ret;
}
/*
* Restore supervisor states: previous context switch etc has done
* XSAVES and saved the supervisor states in the kernel buffer from
* which they can be restored now.
*
* It would be optimal to handle this with a single XRSTORS, but
* this does not work because the rest of the FPU registers have
* been restored from a user buffer directly.
*/
if (test_thread_flag(TIF_NEED_FPU_LOAD) && xfeatures_mask_supervisor())
os_xrstor(&fpu->state.xsave, xfeatures_mask_supervisor());
fpregs_mark_activate();
fpregs_unlock();
return 0;
}
static bool __fpu_restore_sig(void __user *buf, void __user *buf_fx,
bool ia32_fxstate)
{
int state_size = fpu_kernel_xstate_size;
struct task_struct *tsk = current;
struct fpu *fpu = &tsk->thread.fpu;
struct user_i387_ia32_struct env;
u64 user_xfeatures = 0;
bool fx_only = false;
bool success;
if (use_xsave()) {
struct _fpx_sw_bytes fx_sw_user;
if (!check_xstate_in_sigframe(buf_fx, &fx_sw_user))
return false;
fx_only = !fx_sw_user.magic1;
state_size = fx_sw_user.xstate_size;
user_xfeatures = fx_sw_user.xfeatures;
} else {
user_xfeatures = XFEATURE_MASK_FPSSE;
}
if (likely(!ia32_fxstate)) {
/*
* Attempt to restore the FPU registers directly from user
* memory. For that to succeed, the user access cannot cause page
* faults. If it does, fall back to the slow path below, going
* through the kernel buffer with the enabled pagefault handler.
*/
return !restore_fpregs_from_user(buf_fx, user_xfeatures, fx_only,
state_size);
}
/*
* Copy the legacy state because the FP portion of the FX frame has
* to be ignored for histerical raisins. The legacy state is folded
* in once the larger state has been copied.
*/
if (__copy_from_user(&env, buf, sizeof(env)))
return false;
x86/fpu/xstate: Preserve supervisor states for the slow path in __fpu__restore_sig() The signal return code is responsible for taking an XSAVE buffer present in user memory and loading it into the hardware registers. This operation only affects user XSAVE state and never affects supervisor state. The fast path through this code simply points XRSTOR directly at the user buffer. However, since user memory is not guaranteed to be always mapped, this XRSTOR can fail. If it fails, the signal return code falls back to a slow path which can tolerate page faults. That slow path copies the xfeatures one by one out of the user buffer into the task's fpu state area. However, by being in a context where it can handle page faults, the code can also schedule. The lazy-fpu-load code would think it has an up-to-date fpstate and would fail to save the supervisor state when scheduling the task out. When scheduling back in, it would likely restore stale supervisor state. To fix that, preserve supervisor state before the slow path. Modify copy_user_to_fpregs_zeroing() so that if it fails, fpregs are not zeroed, and there is no need for fpregs_deactivate() and supervisor states are preserved. Move set_thread_flag(TIF_NEED_FPU_LOAD) to the slow path. Without doing this, the fast path also needs supervisor states to be saved first. Signed-off-by: Yu-cheng Yu <yu-cheng.yu@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Link: https://lkml.kernel.org/r/20200512145444.15483-10-yu-cheng.yu@intel.com
2020-05-12 22:54:43 +08:00
/*
x86/fpu/xstate: Restore supervisor states for signal return The signal return fast path directly restores user states from the user buffer. Once that succeeds, restore supervisor states (but only when they are not yet restored). For the slow path, save supervisor states to preserve them across context switches, and restore after the user states are restored. The previous version has the overhead of an XSAVES in both the fast and the slow paths. It is addressed as the following: - In the fast path, only do an XRSTORS. - In the slow path, do a supervisor-state-only XSAVES, and relocate the buffer contents. Some thoughts in the implementation: - In the slow path, can any supervisor state become stale between save/restore? Answer: set_thread_flag(TIF_NEED_FPU_LOAD) protects the xstate buffer. - In the slow path, can any code reference a stale supervisor state register between save/restore? Answer: In the current lazy-restore scheme, any reference to xstate registers needs fpregs_lock()/fpregs_unlock() and __fpregs_load_activate(). - Are there other options? One other option is eagerly restoring all supervisor states. Currently, CET user-mode states and ENQCMD's PASID do not need to be eagerly restored. The upcoming CET kernel-mode states (24 bytes) need to be eagerly restored. To me, eagerly restoring all supervisor states adds more overhead then benefit at this point. Signed-off-by: Yu-cheng Yu <yu-cheng.yu@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com> Link: https://lkml.kernel.org/r/20200512145444.15483-11-yu-cheng.yu@intel.com
2020-05-12 22:54:44 +08:00
* By setting TIF_NEED_FPU_LOAD it is ensured that our xstate is
* not modified on context switch and that the xstate is considered
x86/fpu/xstate: Preserve supervisor states for the slow path in __fpu__restore_sig() The signal return code is responsible for taking an XSAVE buffer present in user memory and loading it into the hardware registers. This operation only affects user XSAVE state and never affects supervisor state. The fast path through this code simply points XRSTOR directly at the user buffer. However, since user memory is not guaranteed to be always mapped, this XRSTOR can fail. If it fails, the signal return code falls back to a slow path which can tolerate page faults. That slow path copies the xfeatures one by one out of the user buffer into the task's fpu state area. However, by being in a context where it can handle page faults, the code can also schedule. The lazy-fpu-load code would think it has an up-to-date fpstate and would fail to save the supervisor state when scheduling the task out. When scheduling back in, it would likely restore stale supervisor state. To fix that, preserve supervisor state before the slow path. Modify copy_user_to_fpregs_zeroing() so that if it fails, fpregs are not zeroed, and there is no need for fpregs_deactivate() and supervisor states are preserved. Move set_thread_flag(TIF_NEED_FPU_LOAD) to the slow path. Without doing this, the fast path also needs supervisor states to be saved first. Signed-off-by: Yu-cheng Yu <yu-cheng.yu@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Link: https://lkml.kernel.org/r/20200512145444.15483-10-yu-cheng.yu@intel.com
2020-05-12 22:54:43 +08:00
* to be loaded again on return to userland (overriding last_cpu avoids
* the optimisation).
*/
x86/fpu/xstate: Restore supervisor states for signal return The signal return fast path directly restores user states from the user buffer. Once that succeeds, restore supervisor states (but only when they are not yet restored). For the slow path, save supervisor states to preserve them across context switches, and restore after the user states are restored. The previous version has the overhead of an XSAVES in both the fast and the slow paths. It is addressed as the following: - In the fast path, only do an XRSTORS. - In the slow path, do a supervisor-state-only XSAVES, and relocate the buffer contents. Some thoughts in the implementation: - In the slow path, can any supervisor state become stale between save/restore? Answer: set_thread_flag(TIF_NEED_FPU_LOAD) protects the xstate buffer. - In the slow path, can any code reference a stale supervisor state register between save/restore? Answer: In the current lazy-restore scheme, any reference to xstate registers needs fpregs_lock()/fpregs_unlock() and __fpregs_load_activate(). - Are there other options? One other option is eagerly restoring all supervisor states. Currently, CET user-mode states and ENQCMD's PASID do not need to be eagerly restored. The upcoming CET kernel-mode states (24 bytes) need to be eagerly restored. To me, eagerly restoring all supervisor states adds more overhead then benefit at this point. Signed-off-by: Yu-cheng Yu <yu-cheng.yu@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com> Link: https://lkml.kernel.org/r/20200512145444.15483-11-yu-cheng.yu@intel.com
2020-05-12 22:54:44 +08:00
fpregs_lock();
if (!test_thread_flag(TIF_NEED_FPU_LOAD)) {
/*
* If supervisor states are available then save the
* hardware state in current's fpstate so that the
* supervisor state is preserved. Save the full state for
* simplicity. There is no point in optimizing this by only
* saving the supervisor states and then shuffle them to
* the right place in memory. It's ia32 mode. Shrug.
x86/fpu/xstate: Restore supervisor states for signal return The signal return fast path directly restores user states from the user buffer. Once that succeeds, restore supervisor states (but only when they are not yet restored). For the slow path, save supervisor states to preserve them across context switches, and restore after the user states are restored. The previous version has the overhead of an XSAVES in both the fast and the slow paths. It is addressed as the following: - In the fast path, only do an XRSTORS. - In the slow path, do a supervisor-state-only XSAVES, and relocate the buffer contents. Some thoughts in the implementation: - In the slow path, can any supervisor state become stale between save/restore? Answer: set_thread_flag(TIF_NEED_FPU_LOAD) protects the xstate buffer. - In the slow path, can any code reference a stale supervisor state register between save/restore? Answer: In the current lazy-restore scheme, any reference to xstate registers needs fpregs_lock()/fpregs_unlock() and __fpregs_load_activate(). - Are there other options? One other option is eagerly restoring all supervisor states. Currently, CET user-mode states and ENQCMD's PASID do not need to be eagerly restored. The upcoming CET kernel-mode states (24 bytes) need to be eagerly restored. To me, eagerly restoring all supervisor states adds more overhead then benefit at this point. Signed-off-by: Yu-cheng Yu <yu-cheng.yu@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com> Link: https://lkml.kernel.org/r/20200512145444.15483-11-yu-cheng.yu@intel.com
2020-05-12 22:54:44 +08:00
*/
if (xfeatures_mask_supervisor())
os_xsave(&fpu->state.xsave);
x86/fpu/xstate: Restore supervisor states for signal return The signal return fast path directly restores user states from the user buffer. Once that succeeds, restore supervisor states (but only when they are not yet restored). For the slow path, save supervisor states to preserve them across context switches, and restore after the user states are restored. The previous version has the overhead of an XSAVES in both the fast and the slow paths. It is addressed as the following: - In the fast path, only do an XRSTORS. - In the slow path, do a supervisor-state-only XSAVES, and relocate the buffer contents. Some thoughts in the implementation: - In the slow path, can any supervisor state become stale between save/restore? Answer: set_thread_flag(TIF_NEED_FPU_LOAD) protects the xstate buffer. - In the slow path, can any code reference a stale supervisor state register between save/restore? Answer: In the current lazy-restore scheme, any reference to xstate registers needs fpregs_lock()/fpregs_unlock() and __fpregs_load_activate(). - Are there other options? One other option is eagerly restoring all supervisor states. Currently, CET user-mode states and ENQCMD's PASID do not need to be eagerly restored. The upcoming CET kernel-mode states (24 bytes) need to be eagerly restored. To me, eagerly restoring all supervisor states adds more overhead then benefit at this point. Signed-off-by: Yu-cheng Yu <yu-cheng.yu@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com> Link: https://lkml.kernel.org/r/20200512145444.15483-11-yu-cheng.yu@intel.com
2020-05-12 22:54:44 +08:00
set_thread_flag(TIF_NEED_FPU_LOAD);
}
x86/fpu/xstate: Preserve supervisor states for the slow path in __fpu__restore_sig() The signal return code is responsible for taking an XSAVE buffer present in user memory and loading it into the hardware registers. This operation only affects user XSAVE state and never affects supervisor state. The fast path through this code simply points XRSTOR directly at the user buffer. However, since user memory is not guaranteed to be always mapped, this XRSTOR can fail. If it fails, the signal return code falls back to a slow path which can tolerate page faults. That slow path copies the xfeatures one by one out of the user buffer into the task's fpu state area. However, by being in a context where it can handle page faults, the code can also schedule. The lazy-fpu-load code would think it has an up-to-date fpstate and would fail to save the supervisor state when scheduling the task out. When scheduling back in, it would likely restore stale supervisor state. To fix that, preserve supervisor state before the slow path. Modify copy_user_to_fpregs_zeroing() so that if it fails, fpregs are not zeroed, and there is no need for fpregs_deactivate() and supervisor states are preserved. Move set_thread_flag(TIF_NEED_FPU_LOAD) to the slow path. Without doing this, the fast path also needs supervisor states to be saved first. Signed-off-by: Yu-cheng Yu <yu-cheng.yu@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Link: https://lkml.kernel.org/r/20200512145444.15483-10-yu-cheng.yu@intel.com
2020-05-12 22:54:43 +08:00
__fpu_invalidate_fpregs_state(fpu);
__cpu_invalidate_fpregs_state();
x86/fpu/xstate: Restore supervisor states for signal return The signal return fast path directly restores user states from the user buffer. Once that succeeds, restore supervisor states (but only when they are not yet restored). For the slow path, save supervisor states to preserve them across context switches, and restore after the user states are restored. The previous version has the overhead of an XSAVES in both the fast and the slow paths. It is addressed as the following: - In the fast path, only do an XRSTORS. - In the slow path, do a supervisor-state-only XSAVES, and relocate the buffer contents. Some thoughts in the implementation: - In the slow path, can any supervisor state become stale between save/restore? Answer: set_thread_flag(TIF_NEED_FPU_LOAD) protects the xstate buffer. - In the slow path, can any code reference a stale supervisor state register between save/restore? Answer: In the current lazy-restore scheme, any reference to xstate registers needs fpregs_lock()/fpregs_unlock() and __fpregs_load_activate(). - Are there other options? One other option is eagerly restoring all supervisor states. Currently, CET user-mode states and ENQCMD's PASID do not need to be eagerly restored. The upcoming CET kernel-mode states (24 bytes) need to be eagerly restored. To me, eagerly restoring all supervisor states adds more overhead then benefit at this point. Signed-off-by: Yu-cheng Yu <yu-cheng.yu@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com> Link: https://lkml.kernel.org/r/20200512145444.15483-11-yu-cheng.yu@intel.com
2020-05-12 22:54:44 +08:00
fpregs_unlock();
if (use_xsave() && !fx_only) {
if (copy_sigframe_from_user_to_xstate(&fpu->state.xsave, buf_fx))
return false;
} else {
if (__copy_from_user(&fpu->state.fxsave, buf_fx,
sizeof(fpu->state.fxsave)))
return false;
x86/fpu: Don't let userspace set bogus xcomp_bv On x86, userspace can use the ptrace() or rt_sigreturn() system calls to set a task's extended state (xstate) or "FPU" registers. ptrace() can set them for another task using the PTRACE_SETREGSET request with NT_X86_XSTATE, while rt_sigreturn() can set them for the current task. In either case, registers can be set to any value, but the kernel assumes that the XSAVE area itself remains valid in the sense that the CPU can restore it. However, in the case where the kernel is using the uncompacted xstate format (which it does whenever the XSAVES instruction is unavailable), it was possible for userspace to set the xcomp_bv field in the xstate_header to an arbitrary value. However, all bits in that field are reserved in the uncompacted case, so when switching to a task with nonzero xcomp_bv, the XRSTOR instruction failed with a #GP fault. This caused the WARN_ON_FPU(err) in copy_kernel_to_xregs() to be hit. In addition, since the error is otherwise ignored, the FPU registers from the task previously executing on the CPU were leaked. Fix the bug by checking that the user-supplied value of xcomp_bv is 0 in the uncompacted case, and returning an error otherwise. The reason for validating xcomp_bv rather than simply overwriting it with 0 is that we want userspace to see an error if it (incorrectly) provides an XSAVE area in compacted format rather than in uncompacted format. Note that as before, in case of error we clear the task's FPU state. This is perhaps non-ideal, especially for PTRACE_SETREGSET; it might be better to return an error before changing anything. But it seems the "clear on error" behavior is fine for now, and it's a little tricky to do otherwise because it would mean we couldn't simply copy the full userspace state into kernel memory in one __copy_from_user(). This bug was found by syzkaller, which hit the above-mentioned WARN_ON_FPU(): WARNING: CPU: 1 PID: 0 at ./arch/x86/include/asm/fpu/internal.h:373 __switch_to+0x5b5/0x5d0 CPU: 1 PID: 0 Comm: swapper/1 Not tainted 4.13.0 #453 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Bochs 01/01/2011 task: ffff9ba2bc8e42c0 task.stack: ffffa78cc036c000 RIP: 0010:__switch_to+0x5b5/0x5d0 RSP: 0000:ffffa78cc08bbb88 EFLAGS: 00010082 RAX: 00000000fffffffe RBX: ffff9ba2b8bf2180 RCX: 00000000c0000100 RDX: 00000000ffffffff RSI: 000000005cb10700 RDI: ffff9ba2b8bf36c0 RBP: ffffa78cc08bbbd0 R08: 00000000929fdf46 R09: 0000000000000001 R10: 0000000000000000 R11: 0000000000000000 R12: ffff9ba2bc8e42c0 R13: 0000000000000000 R14: ffff9ba2b8bf3680 R15: ffff9ba2bf5d7b40 FS: 00007f7e5cb10700(0000) GS:ffff9ba2bf400000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00000000004005cc CR3: 0000000079fd5000 CR4: 00000000001406e0 Call Trace: Code: 84 00 00 00 00 00 e9 11 fd ff ff 0f ff 66 0f 1f 84 00 00 00 00 00 e9 e7 fa ff ff 0f ff 66 0f 1f 84 00 00 00 00 00 e9 c2 fa ff ff <0f> ff 66 0f 1f 84 00 00 00 00 00 e9 d4 fc ff ff 66 66 2e 0f 1f Here is a C reproducer. The expected behavior is that the program spin forever with no output. However, on a buggy kernel running on a processor with the "xsave" feature but without the "xsaves" feature (e.g. Sandy Bridge through Broadwell for Intel), within a second or two the program reports that the xmm registers were corrupted, i.e. were not restored correctly. With CONFIG_X86_DEBUG_FPU=y it also hits the above kernel warning. #define _GNU_SOURCE #include <stdbool.h> #include <inttypes.h> #include <linux/elf.h> #include <stdio.h> #include <sys/ptrace.h> #include <sys/uio.h> #include <sys/wait.h> #include <unistd.h> int main(void) { int pid = fork(); uint64_t xstate[512]; struct iovec iov = { .iov_base = xstate, .iov_len = sizeof(xstate) }; if (pid == 0) { bool tracee = true; for (int i = 0; i < sysconf(_SC_NPROCESSORS_ONLN) && tracee; i++) tracee = (fork() != 0); uint32_t xmm0[4] = { [0 ... 3] = tracee ? 0x00000000 : 0xDEADBEEF }; asm volatile(" movdqu %0, %%xmm0\n" " mov %0, %%rbx\n" "1: movdqu %%xmm0, %0\n" " mov %0, %%rax\n" " cmp %%rax, %%rbx\n" " je 1b\n" : "+m" (xmm0) : : "rax", "rbx", "xmm0"); printf("BUG: xmm registers corrupted! tracee=%d, xmm0=%08X%08X%08X%08X\n", tracee, xmm0[0], xmm0[1], xmm0[2], xmm0[3]); } else { usleep(100000); ptrace(PTRACE_ATTACH, pid, 0, 0); wait(NULL); ptrace(PTRACE_GETREGSET, pid, NT_X86_XSTATE, &iov); xstate[65] = -1; ptrace(PTRACE_SETREGSET, pid, NT_X86_XSTATE, &iov); ptrace(PTRACE_CONT, pid, 0, 0); wait(NULL); } return 1; } Note: the program only tests for the bug using the ptrace() system call. The bug can also be reproduced using the rt_sigreturn() system call, but only when called from a 32-bit program, since for 64-bit programs the kernel restores the FPU state from the signal frame by doing XRSTOR directly from userspace memory (with proper error checking). Reported-by: Dmitry Vyukov <dvyukov@google.com> Signed-off-by: Eric Biggers <ebiggers@google.com> Reviewed-by: Kees Cook <keescook@chromium.org> Reviewed-by: Rik van Riel <riel@redhat.com> Acked-by: Dave Hansen <dave.hansen@linux.intel.com> Cc: <stable@vger.kernel.org> [v3.17+] Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Eric Biggers <ebiggers3@gmail.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Kevin Hao <haokexin@gmail.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Michael Halcrow <mhalcrow@google.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Wanpeng Li <wanpeng.li@hotmail.com> Cc: Yu-cheng Yu <yu-cheng.yu@intel.com> Cc: kernel-hardening@lists.openwall.com Fixes: 0b29643a5843 ("x86/xsaves: Change compacted format xsave area header") Link: http://lkml.kernel.org/r/20170922174156.16780-2-ebiggers3@gmail.com Link: http://lkml.kernel.org/r/20170923130016.21448-25-mingo@kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-09-23 21:00:07 +08:00
/* Reject invalid MXCSR values. */
if (fpu->state.fxsave.mxcsr & ~mxcsr_feature_mask)
return false;
x86/fpu: Restore from kernel memory on the 64-bit path too The 64-bit case (both 64-bit and 32-bit frames) loads the new state from user memory. However, doing this is not desired if the FPU state is going to be restored on return to userland: it would be required to disable preemption in order to avoid a context switch which would set TIF_NEED_FPU_LOAD. If this happens before the restore operation then the loaded registers would become volatile. Furthermore, disabling preemption while accessing user memory requires to disable the pagefault handler. An error during FXRSTOR would then mean that either a page fault occurred (and it would have to be retried with enabled page fault handler) or a #GP occurred because the xstate is bogus (after all, the signal handler can modify it). In order to avoid that mess, copy the FPU state from userland, validate it and then load it. The copy_kernel_…() helpers are basically just like the old helpers except that they operate on kernel memory and the fault handler just sets the error value and the caller handles it. copy_user_to_fpregs_zeroing() and its helpers remain and will be used later for a fastpath optimisation. [ bp: Clarify commit message. ] Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Dave Hansen <dave.hansen@intel.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: Aubrey Li <aubrey.li@intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jann Horn <jannh@google.com> Cc: "Jason A. Donenfeld" <Jason@zx2c4.com> Cc: kvm ML <kvm@vger.kernel.org> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krčmář <rkrcmar@redhat.com> Cc: Rik van Riel <riel@surriel.com> Cc: x86-ml <x86@kernel.org> Link: https://lkml.kernel.org/r/20190403164156.19645-22-bigeasy@linutronix.de
2019-04-04 00:41:50 +08:00
/* Enforce XFEATURE_MASK_FPSSE when XSAVE is enabled */
if (use_xsave())
fpu->state.xsave.header.xfeatures |= XFEATURE_MASK_FPSSE;
}
/* Fold the legacy FP storage */
convert_to_fxsr(&fpu->state.fxsave, &env);
x86/fpu/xstate: Restore supervisor states for signal return The signal return fast path directly restores user states from the user buffer. Once that succeeds, restore supervisor states (but only when they are not yet restored). For the slow path, save supervisor states to preserve them across context switches, and restore after the user states are restored. The previous version has the overhead of an XSAVES in both the fast and the slow paths. It is addressed as the following: - In the fast path, only do an XRSTORS. - In the slow path, do a supervisor-state-only XSAVES, and relocate the buffer contents. Some thoughts in the implementation: - In the slow path, can any supervisor state become stale between save/restore? Answer: set_thread_flag(TIF_NEED_FPU_LOAD) protects the xstate buffer. - In the slow path, can any code reference a stale supervisor state register between save/restore? Answer: In the current lazy-restore scheme, any reference to xstate registers needs fpregs_lock()/fpregs_unlock() and __fpregs_load_activate(). - Are there other options? One other option is eagerly restoring all supervisor states. Currently, CET user-mode states and ENQCMD's PASID do not need to be eagerly restored. The upcoming CET kernel-mode states (24 bytes) need to be eagerly restored. To me, eagerly restoring all supervisor states adds more overhead then benefit at this point. Signed-off-by: Yu-cheng Yu <yu-cheng.yu@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com> Link: https://lkml.kernel.org/r/20200512145444.15483-11-yu-cheng.yu@intel.com
2020-05-12 22:54:44 +08:00
fpregs_lock();
if (use_xsave()) {
x86/fpu/xstate: Restore supervisor states for signal return The signal return fast path directly restores user states from the user buffer. Once that succeeds, restore supervisor states (but only when they are not yet restored). For the slow path, save supervisor states to preserve them across context switches, and restore after the user states are restored. The previous version has the overhead of an XSAVES in both the fast and the slow paths. It is addressed as the following: - In the fast path, only do an XRSTORS. - In the slow path, do a supervisor-state-only XSAVES, and relocate the buffer contents. Some thoughts in the implementation: - In the slow path, can any supervisor state become stale between save/restore? Answer: set_thread_flag(TIF_NEED_FPU_LOAD) protects the xstate buffer. - In the slow path, can any code reference a stale supervisor state register between save/restore? Answer: In the current lazy-restore scheme, any reference to xstate registers needs fpregs_lock()/fpregs_unlock() and __fpregs_load_activate(). - Are there other options? One other option is eagerly restoring all supervisor states. Currently, CET user-mode states and ENQCMD's PASID do not need to be eagerly restored. The upcoming CET kernel-mode states (24 bytes) need to be eagerly restored. To me, eagerly restoring all supervisor states adds more overhead then benefit at this point. Signed-off-by: Yu-cheng Yu <yu-cheng.yu@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com> Link: https://lkml.kernel.org/r/20200512145444.15483-11-yu-cheng.yu@intel.com
2020-05-12 22:54:44 +08:00
/*
* Remove all UABI feature bits not set in user_xfeatures
* from the memory xstate header which makes the full
* restore below bring them into init state. This works for
* fx_only mode as well because that has only FP and SSE
* set in user_xfeatures.
*
* Preserve supervisor states!
x86/fpu/xstate: Restore supervisor states for signal return The signal return fast path directly restores user states from the user buffer. Once that succeeds, restore supervisor states (but only when they are not yet restored). For the slow path, save supervisor states to preserve them across context switches, and restore after the user states are restored. The previous version has the overhead of an XSAVES in both the fast and the slow paths. It is addressed as the following: - In the fast path, only do an XRSTORS. - In the slow path, do a supervisor-state-only XSAVES, and relocate the buffer contents. Some thoughts in the implementation: - In the slow path, can any supervisor state become stale between save/restore? Answer: set_thread_flag(TIF_NEED_FPU_LOAD) protects the xstate buffer. - In the slow path, can any code reference a stale supervisor state register between save/restore? Answer: In the current lazy-restore scheme, any reference to xstate registers needs fpregs_lock()/fpregs_unlock() and __fpregs_load_activate(). - Are there other options? One other option is eagerly restoring all supervisor states. Currently, CET user-mode states and ENQCMD's PASID do not need to be eagerly restored. The upcoming CET kernel-mode states (24 bytes) need to be eagerly restored. To me, eagerly restoring all supervisor states adds more overhead then benefit at this point. Signed-off-by: Yu-cheng Yu <yu-cheng.yu@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com> Link: https://lkml.kernel.org/r/20200512145444.15483-11-yu-cheng.yu@intel.com
2020-05-12 22:54:44 +08:00
*/
u64 mask = user_xfeatures | xfeatures_mask_supervisor();
fpu->state.xsave.header.xfeatures &= mask;
success = !os_xrstor_safe(&fpu->state.xsave, xfeatures_mask_all);
} else {
success = !fxrstor_safe(&fpu->state.fxsave);
}
if (likely(success))
x86/fpu: Defer FPU state load until return to userspace Defer loading of FPU state until return to userspace. This gives the kernel the potential to skip loading FPU state for tasks that stay in kernel mode, or for tasks that end up with repeated invocations of kernel_fpu_begin() & kernel_fpu_end(). The fpregs_lock/unlock() section ensures that the registers remain unchanged. Otherwise a context switch or a bottom half could save the registers to its FPU context and the processor's FPU registers would became random if modified at the same time. KVM swaps the host/guest registers on entry/exit path. This flow has been kept as is. First it ensures that the registers are loaded and then saves the current (host) state before it loads the guest's registers. The swap is done at the very end with disabled interrupts so it should not change anymore before theg guest is entered. The read/save version seems to be cheaper compared to memcpy() in a micro benchmark. Each thread gets TIF_NEED_FPU_LOAD set as part of fork() / fpu__copy(). For kernel threads, this flag gets never cleared which avoids saving / restoring the FPU state for kernel threads and during in-kernel usage of the FPU registers. [ bp: Correct and update commit message and fix checkpatch warnings. s/register/registers/ where it is used in plural. minor comment corrections. remove unused trace_x86_fpu_activate_state() TP. ] Signed-off-by: Rik van Riel <riel@surriel.com> Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Dave Hansen <dave.hansen@intel.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: Aubrey Li <aubrey.li@intel.com> Cc: Babu Moger <Babu.Moger@amd.com> Cc: "Chang S. Bae" <chang.seok.bae@intel.com> Cc: Dmitry Safonov <dima@arista.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jann Horn <jannh@google.com> Cc: "Jason A. Donenfeld" <Jason@zx2c4.com> Cc: Joerg Roedel <jroedel@suse.de> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: kvm ML <kvm@vger.kernel.org> Cc: Nicolai Stange <nstange@suse.de> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: "Radim Krčmář" <rkrcmar@redhat.com> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Waiman Long <longman@redhat.com> Cc: x86-ml <x86@kernel.org> Cc: Yi Wang <wang.yi59@zte.com.cn> Link: https://lkml.kernel.org/r/20190403164156.19645-24-bigeasy@linutronix.de
2019-04-04 00:41:52 +08:00
fpregs_mark_activate();
x86/fpu: Defer FPU state load until return to userspace Defer loading of FPU state until return to userspace. This gives the kernel the potential to skip loading FPU state for tasks that stay in kernel mode, or for tasks that end up with repeated invocations of kernel_fpu_begin() & kernel_fpu_end(). The fpregs_lock/unlock() section ensures that the registers remain unchanged. Otherwise a context switch or a bottom half could save the registers to its FPU context and the processor's FPU registers would became random if modified at the same time. KVM swaps the host/guest registers on entry/exit path. This flow has been kept as is. First it ensures that the registers are loaded and then saves the current (host) state before it loads the guest's registers. The swap is done at the very end with disabled interrupts so it should not change anymore before theg guest is entered. The read/save version seems to be cheaper compared to memcpy() in a micro benchmark. Each thread gets TIF_NEED_FPU_LOAD set as part of fork() / fpu__copy(). For kernel threads, this flag gets never cleared which avoids saving / restoring the FPU state for kernel threads and during in-kernel usage of the FPU registers. [ bp: Correct and update commit message and fix checkpatch warnings. s/register/registers/ where it is used in plural. minor comment corrections. remove unused trace_x86_fpu_activate_state() TP. ] Signed-off-by: Rik van Riel <riel@surriel.com> Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Dave Hansen <dave.hansen@intel.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: Aubrey Li <aubrey.li@intel.com> Cc: Babu Moger <Babu.Moger@amd.com> Cc: "Chang S. Bae" <chang.seok.bae@intel.com> Cc: Dmitry Safonov <dima@arista.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jann Horn <jannh@google.com> Cc: "Jason A. Donenfeld" <Jason@zx2c4.com> Cc: Joerg Roedel <jroedel@suse.de> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: kvm ML <kvm@vger.kernel.org> Cc: Nicolai Stange <nstange@suse.de> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: "Radim Krčmář" <rkrcmar@redhat.com> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Waiman Long <longman@redhat.com> Cc: x86-ml <x86@kernel.org> Cc: Yi Wang <wang.yi59@zte.com.cn> Link: https://lkml.kernel.org/r/20190403164156.19645-24-bigeasy@linutronix.de
2019-04-04 00:41:52 +08:00
fpregs_unlock();
return success;
}
static inline int xstate_sigframe_size(void)
{
return use_xsave() ? fpu_user_xstate_size + FP_XSTATE_MAGIC2_SIZE :
fpu_user_xstate_size;
}
/*
* Restore FPU state from a sigframe:
*/
bool fpu__restore_sig(void __user *buf, int ia32_frame)
{
unsigned int size = xstate_sigframe_size();
struct fpu *fpu = &current->thread.fpu;
void __user *buf_fx = buf;
bool ia32_fxstate = false;
bool success = false;
if (unlikely(!buf)) {
fpu__clear_user_states(fpu);
return true;
}
ia32_frame &= (IS_ENABLED(CONFIG_X86_32) ||
IS_ENABLED(CONFIG_IA32_EMULATION));
/*
* Only FXSR enabled systems need the FX state quirk.
* FRSTOR does not need it and can use the fast path.
*/
if (ia32_frame && use_fxsr()) {
buf_fx = buf + sizeof(struct fregs_state);
size += sizeof(struct fregs_state);
ia32_fxstate = true;
}
if (!access_ok(buf, size))
goto out;
if (!IS_ENABLED(CONFIG_X86_64) && !cpu_feature_enabled(X86_FEATURE_FPU)) {
success = !fpregs_soft_set(current, NULL, 0,
sizeof(struct user_i387_ia32_struct),
NULL, buf);
} else {
success = __fpu_restore_sig(buf, buf_fx, ia32_fxstate);
}
out:
if (unlikely(!success))
fpu__clear_user_states(fpu);
return success;
}
unsigned long
fpu__alloc_mathframe(unsigned long sp, int ia32_frame,
unsigned long *buf_fx, unsigned long *size)
{
unsigned long frame_size = xstate_sigframe_size();
*buf_fx = sp = round_down(sp - frame_size, 64);
if (ia32_frame && use_fxsr()) {
frame_size += sizeof(struct fregs_state);
sp -= sizeof(struct fregs_state);
}
*size = frame_size;
return sp;
}
unsigned long fpu__get_fpstate_size(void)
{
unsigned long ret = xstate_sigframe_size();
/*
* This space is needed on (most) 32-bit kernels, or when a 32-bit
* app is running on a 64-bit kernel. To keep things simple, just
* assume the worst case and always include space for 'freg_state',
* even for 64-bit apps on 64-bit kernels. This wastes a bit of
* space, but keeps the code simple.
*/
if ((IS_ENABLED(CONFIG_IA32_EMULATION) ||
IS_ENABLED(CONFIG_X86_32)) && use_fxsr())
ret += sizeof(struct fregs_state);
return ret;
}
/*
* Prepare the SW reserved portion of the fxsave memory layout, indicating
* the presence of the extended state information in the memory layout
* pointed by the fpstate pointer in the sigcontext.
* This will be saved when ever the FP and extended state context is
* saved on the user stack during the signal handler delivery to the user.
*/
void fpu__init_prepare_fx_sw_frame(void)
{
int size = fpu_user_xstate_size + FP_XSTATE_MAGIC2_SIZE;
fx_sw_reserved.magic1 = FP_XSTATE_MAGIC1;
fx_sw_reserved.extended_size = size;
fx_sw_reserved.xfeatures = xfeatures_mask_uabi();
fx_sw_reserved.xstate_size = fpu_user_xstate_size;
tree-wide: replace config_enabled() with IS_ENABLED() The use of config_enabled() against config options is ambiguous. In practical terms, config_enabled() is equivalent to IS_BUILTIN(), but the author might have used it for the meaning of IS_ENABLED(). Using IS_ENABLED(), IS_BUILTIN(), IS_MODULE() etc. makes the intention clearer. This commit replaces config_enabled() with IS_ENABLED() where possible. This commit is only touching bool config options. I noticed two cases where config_enabled() is used against a tristate option: - config_enabled(CONFIG_HWMON) [ drivers/net/wireless/ath/ath10k/thermal.c ] - config_enabled(CONFIG_BACKLIGHT_CLASS_DEVICE) [ drivers/gpu/drm/gma500/opregion.c ] I did not touch them because they should be converted to IS_BUILTIN() in order to keep the logic, but I was not sure it was the authors' intention. Link: http://lkml.kernel.org/r/1465215656-20569-1-git-send-email-yamada.masahiro@socionext.com Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com> Acked-by: Kees Cook <keescook@chromium.org> Cc: Stas Sergeev <stsp@list.ru> Cc: Matt Redfearn <matt.redfearn@imgtec.com> Cc: Joshua Kinard <kumba@gentoo.org> Cc: Jiri Slaby <jslaby@suse.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: Borislav Petkov <bp@suse.de> Cc: Markos Chandras <markos.chandras@imgtec.com> Cc: "Dmitry V. Levin" <ldv@altlinux.org> Cc: yu-cheng yu <yu-cheng.yu@intel.com> Cc: James Hogan <james.hogan@imgtec.com> Cc: Brian Gerst <brgerst@gmail.com> Cc: Johannes Berg <johannes@sipsolutions.net> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Will Drewry <wad@chromium.org> Cc: Nikolay Martynov <mar.kolya@gmail.com> Cc: Huacai Chen <chenhc@lemote.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Leonid Yegoshin <Leonid.Yegoshin@imgtec.com> Cc: Rafal Milecki <zajec5@gmail.com> Cc: James Cowgill <James.Cowgill@imgtec.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Alex Smith <alex.smith@imgtec.com> Cc: Adam Buchbinder <adam.buchbinder@gmail.com> Cc: Qais Yousef <qais.yousef@imgtec.com> Cc: Jiang Liu <jiang.liu@linux.intel.com> Cc: Mikko Rapeli <mikko.rapeli@iki.fi> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Brian Norris <computersforpeace@gmail.com> Cc: Hidehiro Kawai <hidehiro.kawai.ez@hitachi.com> Cc: "Luis R. Rodriguez" <mcgrof@do-not-panic.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Roland McGrath <roland@hack.frob.com> Cc: Paul Burton <paul.burton@imgtec.com> Cc: Kalle Valo <kvalo@qca.qualcomm.com> Cc: Viresh Kumar <viresh.kumar@linaro.org> Cc: Tony Wu <tung7970@gmail.com> Cc: Huaitong Han <huaitong.han@intel.com> Cc: Sumit Semwal <sumit.semwal@linaro.org> Cc: Alexei Starovoitov <ast@kernel.org> Cc: Juergen Gross <jgross@suse.com> Cc: Jason Cooper <jason@lakedaemon.net> Cc: "David S. Miller" <davem@davemloft.net> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Andrea Gelmini <andrea.gelmini@gelma.net> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Marc Zyngier <marc.zyngier@arm.com> Cc: Rabin Vincent <rabin@rab.in> Cc: "Maciej W. Rozycki" <macro@imgtec.com> Cc: David Daney <david.daney@cavium.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-08-04 04:45:50 +08:00
if (IS_ENABLED(CONFIG_IA32_EMULATION) ||
IS_ENABLED(CONFIG_X86_32)) {
x86/fpu: Fix 32-bit signal frame handling (This should have gone to LKML originally. Sorry for the extra noise, folks on the cc.) Background: Signal frames on x86 have two formats: 1. For 32-bit executables (whether on a real 32-bit kernel or under 32-bit emulation on a 64-bit kernel) we have a 'fpregset_t' that includes the "FSAVE" registers. 2. For 64-bit executables (on 64-bit kernels obviously), the 'fpregset_t' is smaller and does not contain the "FSAVE" state. When creating the signal frame, we have to be aware of whether we are running a 32 or 64-bit executable so we create the correct format signal frame. Problem: save_xstate_epilog() uses 'fx_sw_reserved_ia32' whenever it is called for a 32-bit executable. This is for real 32-bit and ia32 emulation. But, fpu__init_prepare_fx_sw_frame() only initializes 'fx_sw_reserved_ia32' when emulation is enabled, *NOT* for real 32-bit kernels. This leads to really wierd situations where 32-bit programs lose their extended state when returning from a signal handler. The kernel copies the uninitialized (zero) 'fx_sw_reserved_ia32' out to userspace in save_xstate_epilog(). But when returning from the signal, the kernel errors out in check_for_xstate() when it does not see FP_XSTATE_MAGIC1 present (because it was zeroed). This leads to the FPU/XSAVE state being initialized. For MPX, this leads to the most permissive state and means we silently lose bounds violations. I think this would also mean that we could lose *ANY* FPU/SSE/AVX state. I'm not sure why no one has spotted this bug. I believe this was broken by: 72a671ced66d ("x86, fpu: Unify signal handling code paths for x86 and x86_64 kernels") way back in 2012. Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Cc: <stable@vger.kernel.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: dave@sr71.net Cc: fenghua.yu@intel.com Cc: yu-cheng.yu@intel.com Link: http://lkml.kernel.org/r/20151111002354.A0799571@viggo.jf.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-11-11 08:23:54 +08:00
int fsave_header_size = sizeof(struct fregs_state);
fx_sw_reserved_ia32 = fx_sw_reserved;
x86/fpu: Fix 32-bit signal frame handling (This should have gone to LKML originally. Sorry for the extra noise, folks on the cc.) Background: Signal frames on x86 have two formats: 1. For 32-bit executables (whether on a real 32-bit kernel or under 32-bit emulation on a 64-bit kernel) we have a 'fpregset_t' that includes the "FSAVE" registers. 2. For 64-bit executables (on 64-bit kernels obviously), the 'fpregset_t' is smaller and does not contain the "FSAVE" state. When creating the signal frame, we have to be aware of whether we are running a 32 or 64-bit executable so we create the correct format signal frame. Problem: save_xstate_epilog() uses 'fx_sw_reserved_ia32' whenever it is called for a 32-bit executable. This is for real 32-bit and ia32 emulation. But, fpu__init_prepare_fx_sw_frame() only initializes 'fx_sw_reserved_ia32' when emulation is enabled, *NOT* for real 32-bit kernels. This leads to really wierd situations where 32-bit programs lose their extended state when returning from a signal handler. The kernel copies the uninitialized (zero) 'fx_sw_reserved_ia32' out to userspace in save_xstate_epilog(). But when returning from the signal, the kernel errors out in check_for_xstate() when it does not see FP_XSTATE_MAGIC1 present (because it was zeroed). This leads to the FPU/XSAVE state being initialized. For MPX, this leads to the most permissive state and means we silently lose bounds violations. I think this would also mean that we could lose *ANY* FPU/SSE/AVX state. I'm not sure why no one has spotted this bug. I believe this was broken by: 72a671ced66d ("x86, fpu: Unify signal handling code paths for x86 and x86_64 kernels") way back in 2012. Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Cc: <stable@vger.kernel.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: dave@sr71.net Cc: fenghua.yu@intel.com Cc: yu-cheng.yu@intel.com Link: http://lkml.kernel.org/r/20151111002354.A0799571@viggo.jf.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-11-11 08:23:54 +08:00
fx_sw_reserved_ia32.extended_size = size + fsave_header_size;
}
}