linux-sg2042/mm/page_counter.c

195 lines
4.8 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 22:07:57 +08:00
// SPDX-License-Identifier: GPL-2.0
mm: memcontrol: lockless page counters Memory is internally accounted in bytes, using spinlock-protected 64-bit counters, even though the smallest accounting delta is a page. The counter interface is also convoluted and does too many things. Introduce a new lockless word-sized page counter API, then change all memory accounting over to it. The translation from and to bytes then only happens when interfacing with userspace. The removed locking overhead is noticable when scaling beyond the per-cpu charge caches - on a 4-socket machine with 144-threads, the following test shows the performance differences of 288 memcgs concurrently running a page fault benchmark: vanilla: 18631648.500498 task-clock (msec) # 140.643 CPUs utilized ( +- 0.33% ) 1,380,638 context-switches # 0.074 K/sec ( +- 0.75% ) 24,390 cpu-migrations # 0.001 K/sec ( +- 8.44% ) 1,843,305,768 page-faults # 0.099 M/sec ( +- 0.00% ) 50,134,994,088,218 cycles # 2.691 GHz ( +- 0.33% ) <not supported> stalled-cycles-frontend <not supported> stalled-cycles-backend 8,049,712,224,651 instructions # 0.16 insns per cycle ( +- 0.04% ) 1,586,970,584,979 branches # 85.176 M/sec ( +- 0.05% ) 1,724,989,949 branch-misses # 0.11% of all branches ( +- 0.48% ) 132.474343877 seconds time elapsed ( +- 0.21% ) lockless: 12195979.037525 task-clock (msec) # 133.480 CPUs utilized ( +- 0.18% ) 832,850 context-switches # 0.068 K/sec ( +- 0.54% ) 15,624 cpu-migrations # 0.001 K/sec ( +- 10.17% ) 1,843,304,774 page-faults # 0.151 M/sec ( +- 0.00% ) 32,811,216,801,141 cycles # 2.690 GHz ( +- 0.18% ) <not supported> stalled-cycles-frontend <not supported> stalled-cycles-backend 9,999,265,091,727 instructions # 0.30 insns per cycle ( +- 0.10% ) 2,076,759,325,203 branches # 170.282 M/sec ( +- 0.12% ) 1,656,917,214 branch-misses # 0.08% of all branches ( +- 0.55% ) 91.369330729 seconds time elapsed ( +- 0.45% ) On top of improved scalability, this also gets rid of the icky long long types in the very heart of memcg, which is great for 32 bit and also makes the code a lot more readable. Notable differences between the old and new API: - res_counter_charge() and res_counter_charge_nofail() become page_counter_try_charge() and page_counter_charge() resp. to match the more common kernel naming scheme of try_do()/do() - res_counter_uncharge_until() is only ever used to cancel a local counter and never to uncharge bigger segments of a hierarchy, so it's replaced by the simpler page_counter_cancel() - res_counter_set_limit() is replaced by page_counter_limit(), which expects its callers to serialize against themselves - res_counter_memparse_write_strategy() is replaced by page_counter_limit(), which rounds down to the nearest page size - rather than up. This is more reasonable for explicitely requested hard upper limits. - to keep charging light-weight, page_counter_try_charge() charges speculatively, only to roll back if the result exceeds the limit. Because of this, a failing bigger charge can temporarily lock out smaller charges that would otherwise succeed. The error is bounded to the difference between the smallest and the biggest possible charge size, so for memcg, this means that a failing THP charge can send base page charges into reclaim upto 2MB (4MB) before the limit would have been reached. This should be acceptable. [akpm@linux-foundation.org: add includes for WARN_ON_ONCE and memparse] [akpm@linux-foundation.org: add includes for WARN_ON_ONCE, memparse, strncmp, and PAGE_SIZE] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Acked-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Tejun Heo <tj@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-11 07:42:31 +08:00
/*
* Lockless hierarchical page accounting & limiting
*
* Copyright (C) 2014 Red Hat, Inc., Johannes Weiner
*/
#include <linux/page_counter.h>
#include <linux/atomic.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/sched.h>
#include <linux/bug.h>
#include <asm/page.h>
/**
* page_counter_cancel - take pages out of the local counter
* @counter: counter
* @nr_pages: number of pages to cancel
*/
void page_counter_cancel(struct page_counter *counter, unsigned long nr_pages)
mm: memcontrol: lockless page counters Memory is internally accounted in bytes, using spinlock-protected 64-bit counters, even though the smallest accounting delta is a page. The counter interface is also convoluted and does too many things. Introduce a new lockless word-sized page counter API, then change all memory accounting over to it. The translation from and to bytes then only happens when interfacing with userspace. The removed locking overhead is noticable when scaling beyond the per-cpu charge caches - on a 4-socket machine with 144-threads, the following test shows the performance differences of 288 memcgs concurrently running a page fault benchmark: vanilla: 18631648.500498 task-clock (msec) # 140.643 CPUs utilized ( +- 0.33% ) 1,380,638 context-switches # 0.074 K/sec ( +- 0.75% ) 24,390 cpu-migrations # 0.001 K/sec ( +- 8.44% ) 1,843,305,768 page-faults # 0.099 M/sec ( +- 0.00% ) 50,134,994,088,218 cycles # 2.691 GHz ( +- 0.33% ) <not supported> stalled-cycles-frontend <not supported> stalled-cycles-backend 8,049,712,224,651 instructions # 0.16 insns per cycle ( +- 0.04% ) 1,586,970,584,979 branches # 85.176 M/sec ( +- 0.05% ) 1,724,989,949 branch-misses # 0.11% of all branches ( +- 0.48% ) 132.474343877 seconds time elapsed ( +- 0.21% ) lockless: 12195979.037525 task-clock (msec) # 133.480 CPUs utilized ( +- 0.18% ) 832,850 context-switches # 0.068 K/sec ( +- 0.54% ) 15,624 cpu-migrations # 0.001 K/sec ( +- 10.17% ) 1,843,304,774 page-faults # 0.151 M/sec ( +- 0.00% ) 32,811,216,801,141 cycles # 2.690 GHz ( +- 0.18% ) <not supported> stalled-cycles-frontend <not supported> stalled-cycles-backend 9,999,265,091,727 instructions # 0.30 insns per cycle ( +- 0.10% ) 2,076,759,325,203 branches # 170.282 M/sec ( +- 0.12% ) 1,656,917,214 branch-misses # 0.08% of all branches ( +- 0.55% ) 91.369330729 seconds time elapsed ( +- 0.45% ) On top of improved scalability, this also gets rid of the icky long long types in the very heart of memcg, which is great for 32 bit and also makes the code a lot more readable. Notable differences between the old and new API: - res_counter_charge() and res_counter_charge_nofail() become page_counter_try_charge() and page_counter_charge() resp. to match the more common kernel naming scheme of try_do()/do() - res_counter_uncharge_until() is only ever used to cancel a local counter and never to uncharge bigger segments of a hierarchy, so it's replaced by the simpler page_counter_cancel() - res_counter_set_limit() is replaced by page_counter_limit(), which expects its callers to serialize against themselves - res_counter_memparse_write_strategy() is replaced by page_counter_limit(), which rounds down to the nearest page size - rather than up. This is more reasonable for explicitely requested hard upper limits. - to keep charging light-weight, page_counter_try_charge() charges speculatively, only to roll back if the result exceeds the limit. Because of this, a failing bigger charge can temporarily lock out smaller charges that would otherwise succeed. The error is bounded to the difference between the smallest and the biggest possible charge size, so for memcg, this means that a failing THP charge can send base page charges into reclaim upto 2MB (4MB) before the limit would have been reached. This should be acceptable. [akpm@linux-foundation.org: add includes for WARN_ON_ONCE and memparse] [akpm@linux-foundation.org: add includes for WARN_ON_ONCE, memparse, strncmp, and PAGE_SIZE] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Acked-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Tejun Heo <tj@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-11 07:42:31 +08:00
{
long new;
new = atomic_long_sub_return(nr_pages, &counter->usage);
mm: memcontrol: lockless page counters Memory is internally accounted in bytes, using spinlock-protected 64-bit counters, even though the smallest accounting delta is a page. The counter interface is also convoluted and does too many things. Introduce a new lockless word-sized page counter API, then change all memory accounting over to it. The translation from and to bytes then only happens when interfacing with userspace. The removed locking overhead is noticable when scaling beyond the per-cpu charge caches - on a 4-socket machine with 144-threads, the following test shows the performance differences of 288 memcgs concurrently running a page fault benchmark: vanilla: 18631648.500498 task-clock (msec) # 140.643 CPUs utilized ( +- 0.33% ) 1,380,638 context-switches # 0.074 K/sec ( +- 0.75% ) 24,390 cpu-migrations # 0.001 K/sec ( +- 8.44% ) 1,843,305,768 page-faults # 0.099 M/sec ( +- 0.00% ) 50,134,994,088,218 cycles # 2.691 GHz ( +- 0.33% ) <not supported> stalled-cycles-frontend <not supported> stalled-cycles-backend 8,049,712,224,651 instructions # 0.16 insns per cycle ( +- 0.04% ) 1,586,970,584,979 branches # 85.176 M/sec ( +- 0.05% ) 1,724,989,949 branch-misses # 0.11% of all branches ( +- 0.48% ) 132.474343877 seconds time elapsed ( +- 0.21% ) lockless: 12195979.037525 task-clock (msec) # 133.480 CPUs utilized ( +- 0.18% ) 832,850 context-switches # 0.068 K/sec ( +- 0.54% ) 15,624 cpu-migrations # 0.001 K/sec ( +- 10.17% ) 1,843,304,774 page-faults # 0.151 M/sec ( +- 0.00% ) 32,811,216,801,141 cycles # 2.690 GHz ( +- 0.18% ) <not supported> stalled-cycles-frontend <not supported> stalled-cycles-backend 9,999,265,091,727 instructions # 0.30 insns per cycle ( +- 0.10% ) 2,076,759,325,203 branches # 170.282 M/sec ( +- 0.12% ) 1,656,917,214 branch-misses # 0.08% of all branches ( +- 0.55% ) 91.369330729 seconds time elapsed ( +- 0.45% ) On top of improved scalability, this also gets rid of the icky long long types in the very heart of memcg, which is great for 32 bit and also makes the code a lot more readable. Notable differences between the old and new API: - res_counter_charge() and res_counter_charge_nofail() become page_counter_try_charge() and page_counter_charge() resp. to match the more common kernel naming scheme of try_do()/do() - res_counter_uncharge_until() is only ever used to cancel a local counter and never to uncharge bigger segments of a hierarchy, so it's replaced by the simpler page_counter_cancel() - res_counter_set_limit() is replaced by page_counter_limit(), which expects its callers to serialize against themselves - res_counter_memparse_write_strategy() is replaced by page_counter_limit(), which rounds down to the nearest page size - rather than up. This is more reasonable for explicitely requested hard upper limits. - to keep charging light-weight, page_counter_try_charge() charges speculatively, only to roll back if the result exceeds the limit. Because of this, a failing bigger charge can temporarily lock out smaller charges that would otherwise succeed. The error is bounded to the difference between the smallest and the biggest possible charge size, so for memcg, this means that a failing THP charge can send base page charges into reclaim upto 2MB (4MB) before the limit would have been reached. This should be acceptable. [akpm@linux-foundation.org: add includes for WARN_ON_ONCE and memparse] [akpm@linux-foundation.org: add includes for WARN_ON_ONCE, memparse, strncmp, and PAGE_SIZE] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Acked-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Tejun Heo <tj@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-11 07:42:31 +08:00
/* More uncharges than charges? */
WARN_ON_ONCE(new < 0);
}
/**
* page_counter_charge - hierarchically charge pages
* @counter: counter
* @nr_pages: number of pages to charge
*
* NOTE: This does not consider any configured counter limits.
*/
void page_counter_charge(struct page_counter *counter, unsigned long nr_pages)
{
struct page_counter *c;
for (c = counter; c; c = c->parent) {
long new;
new = atomic_long_add_return(nr_pages, &c->usage);
mm: memcontrol: lockless page counters Memory is internally accounted in bytes, using spinlock-protected 64-bit counters, even though the smallest accounting delta is a page. The counter interface is also convoluted and does too many things. Introduce a new lockless word-sized page counter API, then change all memory accounting over to it. The translation from and to bytes then only happens when interfacing with userspace. The removed locking overhead is noticable when scaling beyond the per-cpu charge caches - on a 4-socket machine with 144-threads, the following test shows the performance differences of 288 memcgs concurrently running a page fault benchmark: vanilla: 18631648.500498 task-clock (msec) # 140.643 CPUs utilized ( +- 0.33% ) 1,380,638 context-switches # 0.074 K/sec ( +- 0.75% ) 24,390 cpu-migrations # 0.001 K/sec ( +- 8.44% ) 1,843,305,768 page-faults # 0.099 M/sec ( +- 0.00% ) 50,134,994,088,218 cycles # 2.691 GHz ( +- 0.33% ) <not supported> stalled-cycles-frontend <not supported> stalled-cycles-backend 8,049,712,224,651 instructions # 0.16 insns per cycle ( +- 0.04% ) 1,586,970,584,979 branches # 85.176 M/sec ( +- 0.05% ) 1,724,989,949 branch-misses # 0.11% of all branches ( +- 0.48% ) 132.474343877 seconds time elapsed ( +- 0.21% ) lockless: 12195979.037525 task-clock (msec) # 133.480 CPUs utilized ( +- 0.18% ) 832,850 context-switches # 0.068 K/sec ( +- 0.54% ) 15,624 cpu-migrations # 0.001 K/sec ( +- 10.17% ) 1,843,304,774 page-faults # 0.151 M/sec ( +- 0.00% ) 32,811,216,801,141 cycles # 2.690 GHz ( +- 0.18% ) <not supported> stalled-cycles-frontend <not supported> stalled-cycles-backend 9,999,265,091,727 instructions # 0.30 insns per cycle ( +- 0.10% ) 2,076,759,325,203 branches # 170.282 M/sec ( +- 0.12% ) 1,656,917,214 branch-misses # 0.08% of all branches ( +- 0.55% ) 91.369330729 seconds time elapsed ( +- 0.45% ) On top of improved scalability, this also gets rid of the icky long long types in the very heart of memcg, which is great for 32 bit and also makes the code a lot more readable. Notable differences between the old and new API: - res_counter_charge() and res_counter_charge_nofail() become page_counter_try_charge() and page_counter_charge() resp. to match the more common kernel naming scheme of try_do()/do() - res_counter_uncharge_until() is only ever used to cancel a local counter and never to uncharge bigger segments of a hierarchy, so it's replaced by the simpler page_counter_cancel() - res_counter_set_limit() is replaced by page_counter_limit(), which expects its callers to serialize against themselves - res_counter_memparse_write_strategy() is replaced by page_counter_limit(), which rounds down to the nearest page size - rather than up. This is more reasonable for explicitely requested hard upper limits. - to keep charging light-weight, page_counter_try_charge() charges speculatively, only to roll back if the result exceeds the limit. Because of this, a failing bigger charge can temporarily lock out smaller charges that would otherwise succeed. The error is bounded to the difference between the smallest and the biggest possible charge size, so for memcg, this means that a failing THP charge can send base page charges into reclaim upto 2MB (4MB) before the limit would have been reached. This should be acceptable. [akpm@linux-foundation.org: add includes for WARN_ON_ONCE and memparse] [akpm@linux-foundation.org: add includes for WARN_ON_ONCE, memparse, strncmp, and PAGE_SIZE] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Acked-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Tejun Heo <tj@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-11 07:42:31 +08:00
/*
* This is indeed racy, but we can live with some
* inaccuracy in the watermark.
*/
if (new > c->watermark)
c->watermark = new;
}
}
/**
* page_counter_try_charge - try to hierarchically charge pages
* @counter: counter
* @nr_pages: number of pages to charge
* @fail: points first counter to hit its limit, if any
*
* Returns %true on success, or %false and @fail if the counter or one
* of its ancestors has hit its configured limit.
mm: memcontrol: lockless page counters Memory is internally accounted in bytes, using spinlock-protected 64-bit counters, even though the smallest accounting delta is a page. The counter interface is also convoluted and does too many things. Introduce a new lockless word-sized page counter API, then change all memory accounting over to it. The translation from and to bytes then only happens when interfacing with userspace. The removed locking overhead is noticable when scaling beyond the per-cpu charge caches - on a 4-socket machine with 144-threads, the following test shows the performance differences of 288 memcgs concurrently running a page fault benchmark: vanilla: 18631648.500498 task-clock (msec) # 140.643 CPUs utilized ( +- 0.33% ) 1,380,638 context-switches # 0.074 K/sec ( +- 0.75% ) 24,390 cpu-migrations # 0.001 K/sec ( +- 8.44% ) 1,843,305,768 page-faults # 0.099 M/sec ( +- 0.00% ) 50,134,994,088,218 cycles # 2.691 GHz ( +- 0.33% ) <not supported> stalled-cycles-frontend <not supported> stalled-cycles-backend 8,049,712,224,651 instructions # 0.16 insns per cycle ( +- 0.04% ) 1,586,970,584,979 branches # 85.176 M/sec ( +- 0.05% ) 1,724,989,949 branch-misses # 0.11% of all branches ( +- 0.48% ) 132.474343877 seconds time elapsed ( +- 0.21% ) lockless: 12195979.037525 task-clock (msec) # 133.480 CPUs utilized ( +- 0.18% ) 832,850 context-switches # 0.068 K/sec ( +- 0.54% ) 15,624 cpu-migrations # 0.001 K/sec ( +- 10.17% ) 1,843,304,774 page-faults # 0.151 M/sec ( +- 0.00% ) 32,811,216,801,141 cycles # 2.690 GHz ( +- 0.18% ) <not supported> stalled-cycles-frontend <not supported> stalled-cycles-backend 9,999,265,091,727 instructions # 0.30 insns per cycle ( +- 0.10% ) 2,076,759,325,203 branches # 170.282 M/sec ( +- 0.12% ) 1,656,917,214 branch-misses # 0.08% of all branches ( +- 0.55% ) 91.369330729 seconds time elapsed ( +- 0.45% ) On top of improved scalability, this also gets rid of the icky long long types in the very heart of memcg, which is great for 32 bit and also makes the code a lot more readable. Notable differences between the old and new API: - res_counter_charge() and res_counter_charge_nofail() become page_counter_try_charge() and page_counter_charge() resp. to match the more common kernel naming scheme of try_do()/do() - res_counter_uncharge_until() is only ever used to cancel a local counter and never to uncharge bigger segments of a hierarchy, so it's replaced by the simpler page_counter_cancel() - res_counter_set_limit() is replaced by page_counter_limit(), which expects its callers to serialize against themselves - res_counter_memparse_write_strategy() is replaced by page_counter_limit(), which rounds down to the nearest page size - rather than up. This is more reasonable for explicitely requested hard upper limits. - to keep charging light-weight, page_counter_try_charge() charges speculatively, only to roll back if the result exceeds the limit. Because of this, a failing bigger charge can temporarily lock out smaller charges that would otherwise succeed. The error is bounded to the difference between the smallest and the biggest possible charge size, so for memcg, this means that a failing THP charge can send base page charges into reclaim upto 2MB (4MB) before the limit would have been reached. This should be acceptable. [akpm@linux-foundation.org: add includes for WARN_ON_ONCE and memparse] [akpm@linux-foundation.org: add includes for WARN_ON_ONCE, memparse, strncmp, and PAGE_SIZE] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Acked-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Tejun Heo <tj@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-11 07:42:31 +08:00
*/
bool page_counter_try_charge(struct page_counter *counter,
unsigned long nr_pages,
struct page_counter **fail)
mm: memcontrol: lockless page counters Memory is internally accounted in bytes, using spinlock-protected 64-bit counters, even though the smallest accounting delta is a page. The counter interface is also convoluted and does too many things. Introduce a new lockless word-sized page counter API, then change all memory accounting over to it. The translation from and to bytes then only happens when interfacing with userspace. The removed locking overhead is noticable when scaling beyond the per-cpu charge caches - on a 4-socket machine with 144-threads, the following test shows the performance differences of 288 memcgs concurrently running a page fault benchmark: vanilla: 18631648.500498 task-clock (msec) # 140.643 CPUs utilized ( +- 0.33% ) 1,380,638 context-switches # 0.074 K/sec ( +- 0.75% ) 24,390 cpu-migrations # 0.001 K/sec ( +- 8.44% ) 1,843,305,768 page-faults # 0.099 M/sec ( +- 0.00% ) 50,134,994,088,218 cycles # 2.691 GHz ( +- 0.33% ) <not supported> stalled-cycles-frontend <not supported> stalled-cycles-backend 8,049,712,224,651 instructions # 0.16 insns per cycle ( +- 0.04% ) 1,586,970,584,979 branches # 85.176 M/sec ( +- 0.05% ) 1,724,989,949 branch-misses # 0.11% of all branches ( +- 0.48% ) 132.474343877 seconds time elapsed ( +- 0.21% ) lockless: 12195979.037525 task-clock (msec) # 133.480 CPUs utilized ( +- 0.18% ) 832,850 context-switches # 0.068 K/sec ( +- 0.54% ) 15,624 cpu-migrations # 0.001 K/sec ( +- 10.17% ) 1,843,304,774 page-faults # 0.151 M/sec ( +- 0.00% ) 32,811,216,801,141 cycles # 2.690 GHz ( +- 0.18% ) <not supported> stalled-cycles-frontend <not supported> stalled-cycles-backend 9,999,265,091,727 instructions # 0.30 insns per cycle ( +- 0.10% ) 2,076,759,325,203 branches # 170.282 M/sec ( +- 0.12% ) 1,656,917,214 branch-misses # 0.08% of all branches ( +- 0.55% ) 91.369330729 seconds time elapsed ( +- 0.45% ) On top of improved scalability, this also gets rid of the icky long long types in the very heart of memcg, which is great for 32 bit and also makes the code a lot more readable. Notable differences between the old and new API: - res_counter_charge() and res_counter_charge_nofail() become page_counter_try_charge() and page_counter_charge() resp. to match the more common kernel naming scheme of try_do()/do() - res_counter_uncharge_until() is only ever used to cancel a local counter and never to uncharge bigger segments of a hierarchy, so it's replaced by the simpler page_counter_cancel() - res_counter_set_limit() is replaced by page_counter_limit(), which expects its callers to serialize against themselves - res_counter_memparse_write_strategy() is replaced by page_counter_limit(), which rounds down to the nearest page size - rather than up. This is more reasonable for explicitely requested hard upper limits. - to keep charging light-weight, page_counter_try_charge() charges speculatively, only to roll back if the result exceeds the limit. Because of this, a failing bigger charge can temporarily lock out smaller charges that would otherwise succeed. The error is bounded to the difference between the smallest and the biggest possible charge size, so for memcg, this means that a failing THP charge can send base page charges into reclaim upto 2MB (4MB) before the limit would have been reached. This should be acceptable. [akpm@linux-foundation.org: add includes for WARN_ON_ONCE and memparse] [akpm@linux-foundation.org: add includes for WARN_ON_ONCE, memparse, strncmp, and PAGE_SIZE] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Acked-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Tejun Heo <tj@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-11 07:42:31 +08:00
{
struct page_counter *c;
for (c = counter; c; c = c->parent) {
long new;
/*
* Charge speculatively to avoid an expensive CAS. If
* a bigger charge fails, it might falsely lock out a
* racing smaller charge and send it into reclaim
* early, but the error is limited to the difference
* between the two sizes, which is less than 2M/4M in
* case of a THP locking out a regular page charge.
*
* The atomic_long_add_return() implies a full memory
* barrier between incrementing the count and reading
* the limit. When racing with page_counter_limit(),
* we either see the new limit or the setter sees the
* counter has changed and retries.
*/
new = atomic_long_add_return(nr_pages, &c->usage);
if (new > c->max) {
atomic_long_sub(nr_pages, &c->usage);
mm: memcontrol: lockless page counters Memory is internally accounted in bytes, using spinlock-protected 64-bit counters, even though the smallest accounting delta is a page. The counter interface is also convoluted and does too many things. Introduce a new lockless word-sized page counter API, then change all memory accounting over to it. The translation from and to bytes then only happens when interfacing with userspace. The removed locking overhead is noticable when scaling beyond the per-cpu charge caches - on a 4-socket machine with 144-threads, the following test shows the performance differences of 288 memcgs concurrently running a page fault benchmark: vanilla: 18631648.500498 task-clock (msec) # 140.643 CPUs utilized ( +- 0.33% ) 1,380,638 context-switches # 0.074 K/sec ( +- 0.75% ) 24,390 cpu-migrations # 0.001 K/sec ( +- 8.44% ) 1,843,305,768 page-faults # 0.099 M/sec ( +- 0.00% ) 50,134,994,088,218 cycles # 2.691 GHz ( +- 0.33% ) <not supported> stalled-cycles-frontend <not supported> stalled-cycles-backend 8,049,712,224,651 instructions # 0.16 insns per cycle ( +- 0.04% ) 1,586,970,584,979 branches # 85.176 M/sec ( +- 0.05% ) 1,724,989,949 branch-misses # 0.11% of all branches ( +- 0.48% ) 132.474343877 seconds time elapsed ( +- 0.21% ) lockless: 12195979.037525 task-clock (msec) # 133.480 CPUs utilized ( +- 0.18% ) 832,850 context-switches # 0.068 K/sec ( +- 0.54% ) 15,624 cpu-migrations # 0.001 K/sec ( +- 10.17% ) 1,843,304,774 page-faults # 0.151 M/sec ( +- 0.00% ) 32,811,216,801,141 cycles # 2.690 GHz ( +- 0.18% ) <not supported> stalled-cycles-frontend <not supported> stalled-cycles-backend 9,999,265,091,727 instructions # 0.30 insns per cycle ( +- 0.10% ) 2,076,759,325,203 branches # 170.282 M/sec ( +- 0.12% ) 1,656,917,214 branch-misses # 0.08% of all branches ( +- 0.55% ) 91.369330729 seconds time elapsed ( +- 0.45% ) On top of improved scalability, this also gets rid of the icky long long types in the very heart of memcg, which is great for 32 bit and also makes the code a lot more readable. Notable differences between the old and new API: - res_counter_charge() and res_counter_charge_nofail() become page_counter_try_charge() and page_counter_charge() resp. to match the more common kernel naming scheme of try_do()/do() - res_counter_uncharge_until() is only ever used to cancel a local counter and never to uncharge bigger segments of a hierarchy, so it's replaced by the simpler page_counter_cancel() - res_counter_set_limit() is replaced by page_counter_limit(), which expects its callers to serialize against themselves - res_counter_memparse_write_strategy() is replaced by page_counter_limit(), which rounds down to the nearest page size - rather than up. This is more reasonable for explicitely requested hard upper limits. - to keep charging light-weight, page_counter_try_charge() charges speculatively, only to roll back if the result exceeds the limit. Because of this, a failing bigger charge can temporarily lock out smaller charges that would otherwise succeed. The error is bounded to the difference between the smallest and the biggest possible charge size, so for memcg, this means that a failing THP charge can send base page charges into reclaim upto 2MB (4MB) before the limit would have been reached. This should be acceptable. [akpm@linux-foundation.org: add includes for WARN_ON_ONCE and memparse] [akpm@linux-foundation.org: add includes for WARN_ON_ONCE, memparse, strncmp, and PAGE_SIZE] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Acked-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Tejun Heo <tj@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-11 07:42:31 +08:00
/*
* This is racy, but we can live with some
* inaccuracy in the failcnt.
*/
c->failcnt++;
*fail = c;
goto failed;
}
/*
* Just like with failcnt, we can live with some
* inaccuracy in the watermark.
*/
if (new > c->watermark)
c->watermark = new;
}
return true;
mm: memcontrol: lockless page counters Memory is internally accounted in bytes, using spinlock-protected 64-bit counters, even though the smallest accounting delta is a page. The counter interface is also convoluted and does too many things. Introduce a new lockless word-sized page counter API, then change all memory accounting over to it. The translation from and to bytes then only happens when interfacing with userspace. The removed locking overhead is noticable when scaling beyond the per-cpu charge caches - on a 4-socket machine with 144-threads, the following test shows the performance differences of 288 memcgs concurrently running a page fault benchmark: vanilla: 18631648.500498 task-clock (msec) # 140.643 CPUs utilized ( +- 0.33% ) 1,380,638 context-switches # 0.074 K/sec ( +- 0.75% ) 24,390 cpu-migrations # 0.001 K/sec ( +- 8.44% ) 1,843,305,768 page-faults # 0.099 M/sec ( +- 0.00% ) 50,134,994,088,218 cycles # 2.691 GHz ( +- 0.33% ) <not supported> stalled-cycles-frontend <not supported> stalled-cycles-backend 8,049,712,224,651 instructions # 0.16 insns per cycle ( +- 0.04% ) 1,586,970,584,979 branches # 85.176 M/sec ( +- 0.05% ) 1,724,989,949 branch-misses # 0.11% of all branches ( +- 0.48% ) 132.474343877 seconds time elapsed ( +- 0.21% ) lockless: 12195979.037525 task-clock (msec) # 133.480 CPUs utilized ( +- 0.18% ) 832,850 context-switches # 0.068 K/sec ( +- 0.54% ) 15,624 cpu-migrations # 0.001 K/sec ( +- 10.17% ) 1,843,304,774 page-faults # 0.151 M/sec ( +- 0.00% ) 32,811,216,801,141 cycles # 2.690 GHz ( +- 0.18% ) <not supported> stalled-cycles-frontend <not supported> stalled-cycles-backend 9,999,265,091,727 instructions # 0.30 insns per cycle ( +- 0.10% ) 2,076,759,325,203 branches # 170.282 M/sec ( +- 0.12% ) 1,656,917,214 branch-misses # 0.08% of all branches ( +- 0.55% ) 91.369330729 seconds time elapsed ( +- 0.45% ) On top of improved scalability, this also gets rid of the icky long long types in the very heart of memcg, which is great for 32 bit and also makes the code a lot more readable. Notable differences between the old and new API: - res_counter_charge() and res_counter_charge_nofail() become page_counter_try_charge() and page_counter_charge() resp. to match the more common kernel naming scheme of try_do()/do() - res_counter_uncharge_until() is only ever used to cancel a local counter and never to uncharge bigger segments of a hierarchy, so it's replaced by the simpler page_counter_cancel() - res_counter_set_limit() is replaced by page_counter_limit(), which expects its callers to serialize against themselves - res_counter_memparse_write_strategy() is replaced by page_counter_limit(), which rounds down to the nearest page size - rather than up. This is more reasonable for explicitely requested hard upper limits. - to keep charging light-weight, page_counter_try_charge() charges speculatively, only to roll back if the result exceeds the limit. Because of this, a failing bigger charge can temporarily lock out smaller charges that would otherwise succeed. The error is bounded to the difference between the smallest and the biggest possible charge size, so for memcg, this means that a failing THP charge can send base page charges into reclaim upto 2MB (4MB) before the limit would have been reached. This should be acceptable. [akpm@linux-foundation.org: add includes for WARN_ON_ONCE and memparse] [akpm@linux-foundation.org: add includes for WARN_ON_ONCE, memparse, strncmp, and PAGE_SIZE] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Acked-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Tejun Heo <tj@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-11 07:42:31 +08:00
failed:
for (c = counter; c != *fail; c = c->parent)
page_counter_cancel(c, nr_pages);
return false;
mm: memcontrol: lockless page counters Memory is internally accounted in bytes, using spinlock-protected 64-bit counters, even though the smallest accounting delta is a page. The counter interface is also convoluted and does too many things. Introduce a new lockless word-sized page counter API, then change all memory accounting over to it. The translation from and to bytes then only happens when interfacing with userspace. The removed locking overhead is noticable when scaling beyond the per-cpu charge caches - on a 4-socket machine with 144-threads, the following test shows the performance differences of 288 memcgs concurrently running a page fault benchmark: vanilla: 18631648.500498 task-clock (msec) # 140.643 CPUs utilized ( +- 0.33% ) 1,380,638 context-switches # 0.074 K/sec ( +- 0.75% ) 24,390 cpu-migrations # 0.001 K/sec ( +- 8.44% ) 1,843,305,768 page-faults # 0.099 M/sec ( +- 0.00% ) 50,134,994,088,218 cycles # 2.691 GHz ( +- 0.33% ) <not supported> stalled-cycles-frontend <not supported> stalled-cycles-backend 8,049,712,224,651 instructions # 0.16 insns per cycle ( +- 0.04% ) 1,586,970,584,979 branches # 85.176 M/sec ( +- 0.05% ) 1,724,989,949 branch-misses # 0.11% of all branches ( +- 0.48% ) 132.474343877 seconds time elapsed ( +- 0.21% ) lockless: 12195979.037525 task-clock (msec) # 133.480 CPUs utilized ( +- 0.18% ) 832,850 context-switches # 0.068 K/sec ( +- 0.54% ) 15,624 cpu-migrations # 0.001 K/sec ( +- 10.17% ) 1,843,304,774 page-faults # 0.151 M/sec ( +- 0.00% ) 32,811,216,801,141 cycles # 2.690 GHz ( +- 0.18% ) <not supported> stalled-cycles-frontend <not supported> stalled-cycles-backend 9,999,265,091,727 instructions # 0.30 insns per cycle ( +- 0.10% ) 2,076,759,325,203 branches # 170.282 M/sec ( +- 0.12% ) 1,656,917,214 branch-misses # 0.08% of all branches ( +- 0.55% ) 91.369330729 seconds time elapsed ( +- 0.45% ) On top of improved scalability, this also gets rid of the icky long long types in the very heart of memcg, which is great for 32 bit and also makes the code a lot more readable. Notable differences between the old and new API: - res_counter_charge() and res_counter_charge_nofail() become page_counter_try_charge() and page_counter_charge() resp. to match the more common kernel naming scheme of try_do()/do() - res_counter_uncharge_until() is only ever used to cancel a local counter and never to uncharge bigger segments of a hierarchy, so it's replaced by the simpler page_counter_cancel() - res_counter_set_limit() is replaced by page_counter_limit(), which expects its callers to serialize against themselves - res_counter_memparse_write_strategy() is replaced by page_counter_limit(), which rounds down to the nearest page size - rather than up. This is more reasonable for explicitely requested hard upper limits. - to keep charging light-weight, page_counter_try_charge() charges speculatively, only to roll back if the result exceeds the limit. Because of this, a failing bigger charge can temporarily lock out smaller charges that would otherwise succeed. The error is bounded to the difference between the smallest and the biggest possible charge size, so for memcg, this means that a failing THP charge can send base page charges into reclaim upto 2MB (4MB) before the limit would have been reached. This should be acceptable. [akpm@linux-foundation.org: add includes for WARN_ON_ONCE and memparse] [akpm@linux-foundation.org: add includes for WARN_ON_ONCE, memparse, strncmp, and PAGE_SIZE] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Acked-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Tejun Heo <tj@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-11 07:42:31 +08:00
}
/**
* page_counter_uncharge - hierarchically uncharge pages
* @counter: counter
* @nr_pages: number of pages to uncharge
*/
void page_counter_uncharge(struct page_counter *counter, unsigned long nr_pages)
mm: memcontrol: lockless page counters Memory is internally accounted in bytes, using spinlock-protected 64-bit counters, even though the smallest accounting delta is a page. The counter interface is also convoluted and does too many things. Introduce a new lockless word-sized page counter API, then change all memory accounting over to it. The translation from and to bytes then only happens when interfacing with userspace. The removed locking overhead is noticable when scaling beyond the per-cpu charge caches - on a 4-socket machine with 144-threads, the following test shows the performance differences of 288 memcgs concurrently running a page fault benchmark: vanilla: 18631648.500498 task-clock (msec) # 140.643 CPUs utilized ( +- 0.33% ) 1,380,638 context-switches # 0.074 K/sec ( +- 0.75% ) 24,390 cpu-migrations # 0.001 K/sec ( +- 8.44% ) 1,843,305,768 page-faults # 0.099 M/sec ( +- 0.00% ) 50,134,994,088,218 cycles # 2.691 GHz ( +- 0.33% ) <not supported> stalled-cycles-frontend <not supported> stalled-cycles-backend 8,049,712,224,651 instructions # 0.16 insns per cycle ( +- 0.04% ) 1,586,970,584,979 branches # 85.176 M/sec ( +- 0.05% ) 1,724,989,949 branch-misses # 0.11% of all branches ( +- 0.48% ) 132.474343877 seconds time elapsed ( +- 0.21% ) lockless: 12195979.037525 task-clock (msec) # 133.480 CPUs utilized ( +- 0.18% ) 832,850 context-switches # 0.068 K/sec ( +- 0.54% ) 15,624 cpu-migrations # 0.001 K/sec ( +- 10.17% ) 1,843,304,774 page-faults # 0.151 M/sec ( +- 0.00% ) 32,811,216,801,141 cycles # 2.690 GHz ( +- 0.18% ) <not supported> stalled-cycles-frontend <not supported> stalled-cycles-backend 9,999,265,091,727 instructions # 0.30 insns per cycle ( +- 0.10% ) 2,076,759,325,203 branches # 170.282 M/sec ( +- 0.12% ) 1,656,917,214 branch-misses # 0.08% of all branches ( +- 0.55% ) 91.369330729 seconds time elapsed ( +- 0.45% ) On top of improved scalability, this also gets rid of the icky long long types in the very heart of memcg, which is great for 32 bit and also makes the code a lot more readable. Notable differences between the old and new API: - res_counter_charge() and res_counter_charge_nofail() become page_counter_try_charge() and page_counter_charge() resp. to match the more common kernel naming scheme of try_do()/do() - res_counter_uncharge_until() is only ever used to cancel a local counter and never to uncharge bigger segments of a hierarchy, so it's replaced by the simpler page_counter_cancel() - res_counter_set_limit() is replaced by page_counter_limit(), which expects its callers to serialize against themselves - res_counter_memparse_write_strategy() is replaced by page_counter_limit(), which rounds down to the nearest page size - rather than up. This is more reasonable for explicitely requested hard upper limits. - to keep charging light-weight, page_counter_try_charge() charges speculatively, only to roll back if the result exceeds the limit. Because of this, a failing bigger charge can temporarily lock out smaller charges that would otherwise succeed. The error is bounded to the difference between the smallest and the biggest possible charge size, so for memcg, this means that a failing THP charge can send base page charges into reclaim upto 2MB (4MB) before the limit would have been reached. This should be acceptable. [akpm@linux-foundation.org: add includes for WARN_ON_ONCE and memparse] [akpm@linux-foundation.org: add includes for WARN_ON_ONCE, memparse, strncmp, and PAGE_SIZE] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Acked-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Tejun Heo <tj@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-11 07:42:31 +08:00
{
struct page_counter *c;
for (c = counter; c; c = c->parent)
page_counter_cancel(c, nr_pages);
mm: memcontrol: lockless page counters Memory is internally accounted in bytes, using spinlock-protected 64-bit counters, even though the smallest accounting delta is a page. The counter interface is also convoluted and does too many things. Introduce a new lockless word-sized page counter API, then change all memory accounting over to it. The translation from and to bytes then only happens when interfacing with userspace. The removed locking overhead is noticable when scaling beyond the per-cpu charge caches - on a 4-socket machine with 144-threads, the following test shows the performance differences of 288 memcgs concurrently running a page fault benchmark: vanilla: 18631648.500498 task-clock (msec) # 140.643 CPUs utilized ( +- 0.33% ) 1,380,638 context-switches # 0.074 K/sec ( +- 0.75% ) 24,390 cpu-migrations # 0.001 K/sec ( +- 8.44% ) 1,843,305,768 page-faults # 0.099 M/sec ( +- 0.00% ) 50,134,994,088,218 cycles # 2.691 GHz ( +- 0.33% ) <not supported> stalled-cycles-frontend <not supported> stalled-cycles-backend 8,049,712,224,651 instructions # 0.16 insns per cycle ( +- 0.04% ) 1,586,970,584,979 branches # 85.176 M/sec ( +- 0.05% ) 1,724,989,949 branch-misses # 0.11% of all branches ( +- 0.48% ) 132.474343877 seconds time elapsed ( +- 0.21% ) lockless: 12195979.037525 task-clock (msec) # 133.480 CPUs utilized ( +- 0.18% ) 832,850 context-switches # 0.068 K/sec ( +- 0.54% ) 15,624 cpu-migrations # 0.001 K/sec ( +- 10.17% ) 1,843,304,774 page-faults # 0.151 M/sec ( +- 0.00% ) 32,811,216,801,141 cycles # 2.690 GHz ( +- 0.18% ) <not supported> stalled-cycles-frontend <not supported> stalled-cycles-backend 9,999,265,091,727 instructions # 0.30 insns per cycle ( +- 0.10% ) 2,076,759,325,203 branches # 170.282 M/sec ( +- 0.12% ) 1,656,917,214 branch-misses # 0.08% of all branches ( +- 0.55% ) 91.369330729 seconds time elapsed ( +- 0.45% ) On top of improved scalability, this also gets rid of the icky long long types in the very heart of memcg, which is great for 32 bit and also makes the code a lot more readable. Notable differences between the old and new API: - res_counter_charge() and res_counter_charge_nofail() become page_counter_try_charge() and page_counter_charge() resp. to match the more common kernel naming scheme of try_do()/do() - res_counter_uncharge_until() is only ever used to cancel a local counter and never to uncharge bigger segments of a hierarchy, so it's replaced by the simpler page_counter_cancel() - res_counter_set_limit() is replaced by page_counter_limit(), which expects its callers to serialize against themselves - res_counter_memparse_write_strategy() is replaced by page_counter_limit(), which rounds down to the nearest page size - rather than up. This is more reasonable for explicitely requested hard upper limits. - to keep charging light-weight, page_counter_try_charge() charges speculatively, only to roll back if the result exceeds the limit. Because of this, a failing bigger charge can temporarily lock out smaller charges that would otherwise succeed. The error is bounded to the difference between the smallest and the biggest possible charge size, so for memcg, this means that a failing THP charge can send base page charges into reclaim upto 2MB (4MB) before the limit would have been reached. This should be acceptable. [akpm@linux-foundation.org: add includes for WARN_ON_ONCE and memparse] [akpm@linux-foundation.org: add includes for WARN_ON_ONCE, memparse, strncmp, and PAGE_SIZE] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Acked-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Tejun Heo <tj@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-11 07:42:31 +08:00
}
/**
* page_counter_set_max - set the maximum number of pages allowed
mm: memcontrol: lockless page counters Memory is internally accounted in bytes, using spinlock-protected 64-bit counters, even though the smallest accounting delta is a page. The counter interface is also convoluted and does too many things. Introduce a new lockless word-sized page counter API, then change all memory accounting over to it. The translation from and to bytes then only happens when interfacing with userspace. The removed locking overhead is noticable when scaling beyond the per-cpu charge caches - on a 4-socket machine with 144-threads, the following test shows the performance differences of 288 memcgs concurrently running a page fault benchmark: vanilla: 18631648.500498 task-clock (msec) # 140.643 CPUs utilized ( +- 0.33% ) 1,380,638 context-switches # 0.074 K/sec ( +- 0.75% ) 24,390 cpu-migrations # 0.001 K/sec ( +- 8.44% ) 1,843,305,768 page-faults # 0.099 M/sec ( +- 0.00% ) 50,134,994,088,218 cycles # 2.691 GHz ( +- 0.33% ) <not supported> stalled-cycles-frontend <not supported> stalled-cycles-backend 8,049,712,224,651 instructions # 0.16 insns per cycle ( +- 0.04% ) 1,586,970,584,979 branches # 85.176 M/sec ( +- 0.05% ) 1,724,989,949 branch-misses # 0.11% of all branches ( +- 0.48% ) 132.474343877 seconds time elapsed ( +- 0.21% ) lockless: 12195979.037525 task-clock (msec) # 133.480 CPUs utilized ( +- 0.18% ) 832,850 context-switches # 0.068 K/sec ( +- 0.54% ) 15,624 cpu-migrations # 0.001 K/sec ( +- 10.17% ) 1,843,304,774 page-faults # 0.151 M/sec ( +- 0.00% ) 32,811,216,801,141 cycles # 2.690 GHz ( +- 0.18% ) <not supported> stalled-cycles-frontend <not supported> stalled-cycles-backend 9,999,265,091,727 instructions # 0.30 insns per cycle ( +- 0.10% ) 2,076,759,325,203 branches # 170.282 M/sec ( +- 0.12% ) 1,656,917,214 branch-misses # 0.08% of all branches ( +- 0.55% ) 91.369330729 seconds time elapsed ( +- 0.45% ) On top of improved scalability, this also gets rid of the icky long long types in the very heart of memcg, which is great for 32 bit and also makes the code a lot more readable. Notable differences between the old and new API: - res_counter_charge() and res_counter_charge_nofail() become page_counter_try_charge() and page_counter_charge() resp. to match the more common kernel naming scheme of try_do()/do() - res_counter_uncharge_until() is only ever used to cancel a local counter and never to uncharge bigger segments of a hierarchy, so it's replaced by the simpler page_counter_cancel() - res_counter_set_limit() is replaced by page_counter_limit(), which expects its callers to serialize against themselves - res_counter_memparse_write_strategy() is replaced by page_counter_limit(), which rounds down to the nearest page size - rather than up. This is more reasonable for explicitely requested hard upper limits. - to keep charging light-weight, page_counter_try_charge() charges speculatively, only to roll back if the result exceeds the limit. Because of this, a failing bigger charge can temporarily lock out smaller charges that would otherwise succeed. The error is bounded to the difference between the smallest and the biggest possible charge size, so for memcg, this means that a failing THP charge can send base page charges into reclaim upto 2MB (4MB) before the limit would have been reached. This should be acceptable. [akpm@linux-foundation.org: add includes for WARN_ON_ONCE and memparse] [akpm@linux-foundation.org: add includes for WARN_ON_ONCE, memparse, strncmp, and PAGE_SIZE] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Acked-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Tejun Heo <tj@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-11 07:42:31 +08:00
* @counter: counter
* @nr_pages: limit to set
mm: memcontrol: lockless page counters Memory is internally accounted in bytes, using spinlock-protected 64-bit counters, even though the smallest accounting delta is a page. The counter interface is also convoluted and does too many things. Introduce a new lockless word-sized page counter API, then change all memory accounting over to it. The translation from and to bytes then only happens when interfacing with userspace. The removed locking overhead is noticable when scaling beyond the per-cpu charge caches - on a 4-socket machine with 144-threads, the following test shows the performance differences of 288 memcgs concurrently running a page fault benchmark: vanilla: 18631648.500498 task-clock (msec) # 140.643 CPUs utilized ( +- 0.33% ) 1,380,638 context-switches # 0.074 K/sec ( +- 0.75% ) 24,390 cpu-migrations # 0.001 K/sec ( +- 8.44% ) 1,843,305,768 page-faults # 0.099 M/sec ( +- 0.00% ) 50,134,994,088,218 cycles # 2.691 GHz ( +- 0.33% ) <not supported> stalled-cycles-frontend <not supported> stalled-cycles-backend 8,049,712,224,651 instructions # 0.16 insns per cycle ( +- 0.04% ) 1,586,970,584,979 branches # 85.176 M/sec ( +- 0.05% ) 1,724,989,949 branch-misses # 0.11% of all branches ( +- 0.48% ) 132.474343877 seconds time elapsed ( +- 0.21% ) lockless: 12195979.037525 task-clock (msec) # 133.480 CPUs utilized ( +- 0.18% ) 832,850 context-switches # 0.068 K/sec ( +- 0.54% ) 15,624 cpu-migrations # 0.001 K/sec ( +- 10.17% ) 1,843,304,774 page-faults # 0.151 M/sec ( +- 0.00% ) 32,811,216,801,141 cycles # 2.690 GHz ( +- 0.18% ) <not supported> stalled-cycles-frontend <not supported> stalled-cycles-backend 9,999,265,091,727 instructions # 0.30 insns per cycle ( +- 0.10% ) 2,076,759,325,203 branches # 170.282 M/sec ( +- 0.12% ) 1,656,917,214 branch-misses # 0.08% of all branches ( +- 0.55% ) 91.369330729 seconds time elapsed ( +- 0.45% ) On top of improved scalability, this also gets rid of the icky long long types in the very heart of memcg, which is great for 32 bit and also makes the code a lot more readable. Notable differences between the old and new API: - res_counter_charge() and res_counter_charge_nofail() become page_counter_try_charge() and page_counter_charge() resp. to match the more common kernel naming scheme of try_do()/do() - res_counter_uncharge_until() is only ever used to cancel a local counter and never to uncharge bigger segments of a hierarchy, so it's replaced by the simpler page_counter_cancel() - res_counter_set_limit() is replaced by page_counter_limit(), which expects its callers to serialize against themselves - res_counter_memparse_write_strategy() is replaced by page_counter_limit(), which rounds down to the nearest page size - rather than up. This is more reasonable for explicitely requested hard upper limits. - to keep charging light-weight, page_counter_try_charge() charges speculatively, only to roll back if the result exceeds the limit. Because of this, a failing bigger charge can temporarily lock out smaller charges that would otherwise succeed. The error is bounded to the difference between the smallest and the biggest possible charge size, so for memcg, this means that a failing THP charge can send base page charges into reclaim upto 2MB (4MB) before the limit would have been reached. This should be acceptable. [akpm@linux-foundation.org: add includes for WARN_ON_ONCE and memparse] [akpm@linux-foundation.org: add includes for WARN_ON_ONCE, memparse, strncmp, and PAGE_SIZE] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Acked-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Tejun Heo <tj@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-11 07:42:31 +08:00
*
* Returns 0 on success, -EBUSY if the current number of pages on the
* counter already exceeds the specified limit.
*
* The caller must serialize invocations on the same counter.
*/
int page_counter_set_max(struct page_counter *counter, unsigned long nr_pages)
mm: memcontrol: lockless page counters Memory is internally accounted in bytes, using spinlock-protected 64-bit counters, even though the smallest accounting delta is a page. The counter interface is also convoluted and does too many things. Introduce a new lockless word-sized page counter API, then change all memory accounting over to it. The translation from and to bytes then only happens when interfacing with userspace. The removed locking overhead is noticable when scaling beyond the per-cpu charge caches - on a 4-socket machine with 144-threads, the following test shows the performance differences of 288 memcgs concurrently running a page fault benchmark: vanilla: 18631648.500498 task-clock (msec) # 140.643 CPUs utilized ( +- 0.33% ) 1,380,638 context-switches # 0.074 K/sec ( +- 0.75% ) 24,390 cpu-migrations # 0.001 K/sec ( +- 8.44% ) 1,843,305,768 page-faults # 0.099 M/sec ( +- 0.00% ) 50,134,994,088,218 cycles # 2.691 GHz ( +- 0.33% ) <not supported> stalled-cycles-frontend <not supported> stalled-cycles-backend 8,049,712,224,651 instructions # 0.16 insns per cycle ( +- 0.04% ) 1,586,970,584,979 branches # 85.176 M/sec ( +- 0.05% ) 1,724,989,949 branch-misses # 0.11% of all branches ( +- 0.48% ) 132.474343877 seconds time elapsed ( +- 0.21% ) lockless: 12195979.037525 task-clock (msec) # 133.480 CPUs utilized ( +- 0.18% ) 832,850 context-switches # 0.068 K/sec ( +- 0.54% ) 15,624 cpu-migrations # 0.001 K/sec ( +- 10.17% ) 1,843,304,774 page-faults # 0.151 M/sec ( +- 0.00% ) 32,811,216,801,141 cycles # 2.690 GHz ( +- 0.18% ) <not supported> stalled-cycles-frontend <not supported> stalled-cycles-backend 9,999,265,091,727 instructions # 0.30 insns per cycle ( +- 0.10% ) 2,076,759,325,203 branches # 170.282 M/sec ( +- 0.12% ) 1,656,917,214 branch-misses # 0.08% of all branches ( +- 0.55% ) 91.369330729 seconds time elapsed ( +- 0.45% ) On top of improved scalability, this also gets rid of the icky long long types in the very heart of memcg, which is great for 32 bit and also makes the code a lot more readable. Notable differences between the old and new API: - res_counter_charge() and res_counter_charge_nofail() become page_counter_try_charge() and page_counter_charge() resp. to match the more common kernel naming scheme of try_do()/do() - res_counter_uncharge_until() is only ever used to cancel a local counter and never to uncharge bigger segments of a hierarchy, so it's replaced by the simpler page_counter_cancel() - res_counter_set_limit() is replaced by page_counter_limit(), which expects its callers to serialize against themselves - res_counter_memparse_write_strategy() is replaced by page_counter_limit(), which rounds down to the nearest page size - rather than up. This is more reasonable for explicitely requested hard upper limits. - to keep charging light-weight, page_counter_try_charge() charges speculatively, only to roll back if the result exceeds the limit. Because of this, a failing bigger charge can temporarily lock out smaller charges that would otherwise succeed. The error is bounded to the difference between the smallest and the biggest possible charge size, so for memcg, this means that a failing THP charge can send base page charges into reclaim upto 2MB (4MB) before the limit would have been reached. This should be acceptable. [akpm@linux-foundation.org: add includes for WARN_ON_ONCE and memparse] [akpm@linux-foundation.org: add includes for WARN_ON_ONCE, memparse, strncmp, and PAGE_SIZE] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Acked-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Tejun Heo <tj@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-11 07:42:31 +08:00
{
for (;;) {
unsigned long old;
long usage;
mm: memcontrol: lockless page counters Memory is internally accounted in bytes, using spinlock-protected 64-bit counters, even though the smallest accounting delta is a page. The counter interface is also convoluted and does too many things. Introduce a new lockless word-sized page counter API, then change all memory accounting over to it. The translation from and to bytes then only happens when interfacing with userspace. The removed locking overhead is noticable when scaling beyond the per-cpu charge caches - on a 4-socket machine with 144-threads, the following test shows the performance differences of 288 memcgs concurrently running a page fault benchmark: vanilla: 18631648.500498 task-clock (msec) # 140.643 CPUs utilized ( +- 0.33% ) 1,380,638 context-switches # 0.074 K/sec ( +- 0.75% ) 24,390 cpu-migrations # 0.001 K/sec ( +- 8.44% ) 1,843,305,768 page-faults # 0.099 M/sec ( +- 0.00% ) 50,134,994,088,218 cycles # 2.691 GHz ( +- 0.33% ) <not supported> stalled-cycles-frontend <not supported> stalled-cycles-backend 8,049,712,224,651 instructions # 0.16 insns per cycle ( +- 0.04% ) 1,586,970,584,979 branches # 85.176 M/sec ( +- 0.05% ) 1,724,989,949 branch-misses # 0.11% of all branches ( +- 0.48% ) 132.474343877 seconds time elapsed ( +- 0.21% ) lockless: 12195979.037525 task-clock (msec) # 133.480 CPUs utilized ( +- 0.18% ) 832,850 context-switches # 0.068 K/sec ( +- 0.54% ) 15,624 cpu-migrations # 0.001 K/sec ( +- 10.17% ) 1,843,304,774 page-faults # 0.151 M/sec ( +- 0.00% ) 32,811,216,801,141 cycles # 2.690 GHz ( +- 0.18% ) <not supported> stalled-cycles-frontend <not supported> stalled-cycles-backend 9,999,265,091,727 instructions # 0.30 insns per cycle ( +- 0.10% ) 2,076,759,325,203 branches # 170.282 M/sec ( +- 0.12% ) 1,656,917,214 branch-misses # 0.08% of all branches ( +- 0.55% ) 91.369330729 seconds time elapsed ( +- 0.45% ) On top of improved scalability, this also gets rid of the icky long long types in the very heart of memcg, which is great for 32 bit and also makes the code a lot more readable. Notable differences between the old and new API: - res_counter_charge() and res_counter_charge_nofail() become page_counter_try_charge() and page_counter_charge() resp. to match the more common kernel naming scheme of try_do()/do() - res_counter_uncharge_until() is only ever used to cancel a local counter and never to uncharge bigger segments of a hierarchy, so it's replaced by the simpler page_counter_cancel() - res_counter_set_limit() is replaced by page_counter_limit(), which expects its callers to serialize against themselves - res_counter_memparse_write_strategy() is replaced by page_counter_limit(), which rounds down to the nearest page size - rather than up. This is more reasonable for explicitely requested hard upper limits. - to keep charging light-weight, page_counter_try_charge() charges speculatively, only to roll back if the result exceeds the limit. Because of this, a failing bigger charge can temporarily lock out smaller charges that would otherwise succeed. The error is bounded to the difference between the smallest and the biggest possible charge size, so for memcg, this means that a failing THP charge can send base page charges into reclaim upto 2MB (4MB) before the limit would have been reached. This should be acceptable. [akpm@linux-foundation.org: add includes for WARN_ON_ONCE and memparse] [akpm@linux-foundation.org: add includes for WARN_ON_ONCE, memparse, strncmp, and PAGE_SIZE] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Acked-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Tejun Heo <tj@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-11 07:42:31 +08:00
/*
* Update the limit while making sure that it's not
* below the concurrently-changing counter value.
*
* The xchg implies two full memory barriers before
* and after, so the read-swap-read is ordered and
* ensures coherency with page_counter_try_charge():
* that function modifies the count before checking
* the limit, so if it sees the old limit, we see the
* modified counter and retry.
*/
usage = atomic_long_read(&counter->usage);
mm: memcontrol: lockless page counters Memory is internally accounted in bytes, using spinlock-protected 64-bit counters, even though the smallest accounting delta is a page. The counter interface is also convoluted and does too many things. Introduce a new lockless word-sized page counter API, then change all memory accounting over to it. The translation from and to bytes then only happens when interfacing with userspace. The removed locking overhead is noticable when scaling beyond the per-cpu charge caches - on a 4-socket machine with 144-threads, the following test shows the performance differences of 288 memcgs concurrently running a page fault benchmark: vanilla: 18631648.500498 task-clock (msec) # 140.643 CPUs utilized ( +- 0.33% ) 1,380,638 context-switches # 0.074 K/sec ( +- 0.75% ) 24,390 cpu-migrations # 0.001 K/sec ( +- 8.44% ) 1,843,305,768 page-faults # 0.099 M/sec ( +- 0.00% ) 50,134,994,088,218 cycles # 2.691 GHz ( +- 0.33% ) <not supported> stalled-cycles-frontend <not supported> stalled-cycles-backend 8,049,712,224,651 instructions # 0.16 insns per cycle ( +- 0.04% ) 1,586,970,584,979 branches # 85.176 M/sec ( +- 0.05% ) 1,724,989,949 branch-misses # 0.11% of all branches ( +- 0.48% ) 132.474343877 seconds time elapsed ( +- 0.21% ) lockless: 12195979.037525 task-clock (msec) # 133.480 CPUs utilized ( +- 0.18% ) 832,850 context-switches # 0.068 K/sec ( +- 0.54% ) 15,624 cpu-migrations # 0.001 K/sec ( +- 10.17% ) 1,843,304,774 page-faults # 0.151 M/sec ( +- 0.00% ) 32,811,216,801,141 cycles # 2.690 GHz ( +- 0.18% ) <not supported> stalled-cycles-frontend <not supported> stalled-cycles-backend 9,999,265,091,727 instructions # 0.30 insns per cycle ( +- 0.10% ) 2,076,759,325,203 branches # 170.282 M/sec ( +- 0.12% ) 1,656,917,214 branch-misses # 0.08% of all branches ( +- 0.55% ) 91.369330729 seconds time elapsed ( +- 0.45% ) On top of improved scalability, this also gets rid of the icky long long types in the very heart of memcg, which is great for 32 bit and also makes the code a lot more readable. Notable differences between the old and new API: - res_counter_charge() and res_counter_charge_nofail() become page_counter_try_charge() and page_counter_charge() resp. to match the more common kernel naming scheme of try_do()/do() - res_counter_uncharge_until() is only ever used to cancel a local counter and never to uncharge bigger segments of a hierarchy, so it's replaced by the simpler page_counter_cancel() - res_counter_set_limit() is replaced by page_counter_limit(), which expects its callers to serialize against themselves - res_counter_memparse_write_strategy() is replaced by page_counter_limit(), which rounds down to the nearest page size - rather than up. This is more reasonable for explicitely requested hard upper limits. - to keep charging light-weight, page_counter_try_charge() charges speculatively, only to roll back if the result exceeds the limit. Because of this, a failing bigger charge can temporarily lock out smaller charges that would otherwise succeed. The error is bounded to the difference between the smallest and the biggest possible charge size, so for memcg, this means that a failing THP charge can send base page charges into reclaim upto 2MB (4MB) before the limit would have been reached. This should be acceptable. [akpm@linux-foundation.org: add includes for WARN_ON_ONCE and memparse] [akpm@linux-foundation.org: add includes for WARN_ON_ONCE, memparse, strncmp, and PAGE_SIZE] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Acked-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Tejun Heo <tj@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-11 07:42:31 +08:00
if (usage > nr_pages)
mm: memcontrol: lockless page counters Memory is internally accounted in bytes, using spinlock-protected 64-bit counters, even though the smallest accounting delta is a page. The counter interface is also convoluted and does too many things. Introduce a new lockless word-sized page counter API, then change all memory accounting over to it. The translation from and to bytes then only happens when interfacing with userspace. The removed locking overhead is noticable when scaling beyond the per-cpu charge caches - on a 4-socket machine with 144-threads, the following test shows the performance differences of 288 memcgs concurrently running a page fault benchmark: vanilla: 18631648.500498 task-clock (msec) # 140.643 CPUs utilized ( +- 0.33% ) 1,380,638 context-switches # 0.074 K/sec ( +- 0.75% ) 24,390 cpu-migrations # 0.001 K/sec ( +- 8.44% ) 1,843,305,768 page-faults # 0.099 M/sec ( +- 0.00% ) 50,134,994,088,218 cycles # 2.691 GHz ( +- 0.33% ) <not supported> stalled-cycles-frontend <not supported> stalled-cycles-backend 8,049,712,224,651 instructions # 0.16 insns per cycle ( +- 0.04% ) 1,586,970,584,979 branches # 85.176 M/sec ( +- 0.05% ) 1,724,989,949 branch-misses # 0.11% of all branches ( +- 0.48% ) 132.474343877 seconds time elapsed ( +- 0.21% ) lockless: 12195979.037525 task-clock (msec) # 133.480 CPUs utilized ( +- 0.18% ) 832,850 context-switches # 0.068 K/sec ( +- 0.54% ) 15,624 cpu-migrations # 0.001 K/sec ( +- 10.17% ) 1,843,304,774 page-faults # 0.151 M/sec ( +- 0.00% ) 32,811,216,801,141 cycles # 2.690 GHz ( +- 0.18% ) <not supported> stalled-cycles-frontend <not supported> stalled-cycles-backend 9,999,265,091,727 instructions # 0.30 insns per cycle ( +- 0.10% ) 2,076,759,325,203 branches # 170.282 M/sec ( +- 0.12% ) 1,656,917,214 branch-misses # 0.08% of all branches ( +- 0.55% ) 91.369330729 seconds time elapsed ( +- 0.45% ) On top of improved scalability, this also gets rid of the icky long long types in the very heart of memcg, which is great for 32 bit and also makes the code a lot more readable. Notable differences between the old and new API: - res_counter_charge() and res_counter_charge_nofail() become page_counter_try_charge() and page_counter_charge() resp. to match the more common kernel naming scheme of try_do()/do() - res_counter_uncharge_until() is only ever used to cancel a local counter and never to uncharge bigger segments of a hierarchy, so it's replaced by the simpler page_counter_cancel() - res_counter_set_limit() is replaced by page_counter_limit(), which expects its callers to serialize against themselves - res_counter_memparse_write_strategy() is replaced by page_counter_limit(), which rounds down to the nearest page size - rather than up. This is more reasonable for explicitely requested hard upper limits. - to keep charging light-weight, page_counter_try_charge() charges speculatively, only to roll back if the result exceeds the limit. Because of this, a failing bigger charge can temporarily lock out smaller charges that would otherwise succeed. The error is bounded to the difference between the smallest and the biggest possible charge size, so for memcg, this means that a failing THP charge can send base page charges into reclaim upto 2MB (4MB) before the limit would have been reached. This should be acceptable. [akpm@linux-foundation.org: add includes for WARN_ON_ONCE and memparse] [akpm@linux-foundation.org: add includes for WARN_ON_ONCE, memparse, strncmp, and PAGE_SIZE] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Acked-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Tejun Heo <tj@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-11 07:42:31 +08:00
return -EBUSY;
old = xchg(&counter->max, nr_pages);
mm: memcontrol: lockless page counters Memory is internally accounted in bytes, using spinlock-protected 64-bit counters, even though the smallest accounting delta is a page. The counter interface is also convoluted and does too many things. Introduce a new lockless word-sized page counter API, then change all memory accounting over to it. The translation from and to bytes then only happens when interfacing with userspace. The removed locking overhead is noticable when scaling beyond the per-cpu charge caches - on a 4-socket machine with 144-threads, the following test shows the performance differences of 288 memcgs concurrently running a page fault benchmark: vanilla: 18631648.500498 task-clock (msec) # 140.643 CPUs utilized ( +- 0.33% ) 1,380,638 context-switches # 0.074 K/sec ( +- 0.75% ) 24,390 cpu-migrations # 0.001 K/sec ( +- 8.44% ) 1,843,305,768 page-faults # 0.099 M/sec ( +- 0.00% ) 50,134,994,088,218 cycles # 2.691 GHz ( +- 0.33% ) <not supported> stalled-cycles-frontend <not supported> stalled-cycles-backend 8,049,712,224,651 instructions # 0.16 insns per cycle ( +- 0.04% ) 1,586,970,584,979 branches # 85.176 M/sec ( +- 0.05% ) 1,724,989,949 branch-misses # 0.11% of all branches ( +- 0.48% ) 132.474343877 seconds time elapsed ( +- 0.21% ) lockless: 12195979.037525 task-clock (msec) # 133.480 CPUs utilized ( +- 0.18% ) 832,850 context-switches # 0.068 K/sec ( +- 0.54% ) 15,624 cpu-migrations # 0.001 K/sec ( +- 10.17% ) 1,843,304,774 page-faults # 0.151 M/sec ( +- 0.00% ) 32,811,216,801,141 cycles # 2.690 GHz ( +- 0.18% ) <not supported> stalled-cycles-frontend <not supported> stalled-cycles-backend 9,999,265,091,727 instructions # 0.30 insns per cycle ( +- 0.10% ) 2,076,759,325,203 branches # 170.282 M/sec ( +- 0.12% ) 1,656,917,214 branch-misses # 0.08% of all branches ( +- 0.55% ) 91.369330729 seconds time elapsed ( +- 0.45% ) On top of improved scalability, this also gets rid of the icky long long types in the very heart of memcg, which is great for 32 bit and also makes the code a lot more readable. Notable differences between the old and new API: - res_counter_charge() and res_counter_charge_nofail() become page_counter_try_charge() and page_counter_charge() resp. to match the more common kernel naming scheme of try_do()/do() - res_counter_uncharge_until() is only ever used to cancel a local counter and never to uncharge bigger segments of a hierarchy, so it's replaced by the simpler page_counter_cancel() - res_counter_set_limit() is replaced by page_counter_limit(), which expects its callers to serialize against themselves - res_counter_memparse_write_strategy() is replaced by page_counter_limit(), which rounds down to the nearest page size - rather than up. This is more reasonable for explicitely requested hard upper limits. - to keep charging light-weight, page_counter_try_charge() charges speculatively, only to roll back if the result exceeds the limit. Because of this, a failing bigger charge can temporarily lock out smaller charges that would otherwise succeed. The error is bounded to the difference between the smallest and the biggest possible charge size, so for memcg, this means that a failing THP charge can send base page charges into reclaim upto 2MB (4MB) before the limit would have been reached. This should be acceptable. [akpm@linux-foundation.org: add includes for WARN_ON_ONCE and memparse] [akpm@linux-foundation.org: add includes for WARN_ON_ONCE, memparse, strncmp, and PAGE_SIZE] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Acked-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Tejun Heo <tj@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-11 07:42:31 +08:00
if (atomic_long_read(&counter->usage) <= usage)
mm: memcontrol: lockless page counters Memory is internally accounted in bytes, using spinlock-protected 64-bit counters, even though the smallest accounting delta is a page. The counter interface is also convoluted and does too many things. Introduce a new lockless word-sized page counter API, then change all memory accounting over to it. The translation from and to bytes then only happens when interfacing with userspace. The removed locking overhead is noticable when scaling beyond the per-cpu charge caches - on a 4-socket machine with 144-threads, the following test shows the performance differences of 288 memcgs concurrently running a page fault benchmark: vanilla: 18631648.500498 task-clock (msec) # 140.643 CPUs utilized ( +- 0.33% ) 1,380,638 context-switches # 0.074 K/sec ( +- 0.75% ) 24,390 cpu-migrations # 0.001 K/sec ( +- 8.44% ) 1,843,305,768 page-faults # 0.099 M/sec ( +- 0.00% ) 50,134,994,088,218 cycles # 2.691 GHz ( +- 0.33% ) <not supported> stalled-cycles-frontend <not supported> stalled-cycles-backend 8,049,712,224,651 instructions # 0.16 insns per cycle ( +- 0.04% ) 1,586,970,584,979 branches # 85.176 M/sec ( +- 0.05% ) 1,724,989,949 branch-misses # 0.11% of all branches ( +- 0.48% ) 132.474343877 seconds time elapsed ( +- 0.21% ) lockless: 12195979.037525 task-clock (msec) # 133.480 CPUs utilized ( +- 0.18% ) 832,850 context-switches # 0.068 K/sec ( +- 0.54% ) 15,624 cpu-migrations # 0.001 K/sec ( +- 10.17% ) 1,843,304,774 page-faults # 0.151 M/sec ( +- 0.00% ) 32,811,216,801,141 cycles # 2.690 GHz ( +- 0.18% ) <not supported> stalled-cycles-frontend <not supported> stalled-cycles-backend 9,999,265,091,727 instructions # 0.30 insns per cycle ( +- 0.10% ) 2,076,759,325,203 branches # 170.282 M/sec ( +- 0.12% ) 1,656,917,214 branch-misses # 0.08% of all branches ( +- 0.55% ) 91.369330729 seconds time elapsed ( +- 0.45% ) On top of improved scalability, this also gets rid of the icky long long types in the very heart of memcg, which is great for 32 bit and also makes the code a lot more readable. Notable differences between the old and new API: - res_counter_charge() and res_counter_charge_nofail() become page_counter_try_charge() and page_counter_charge() resp. to match the more common kernel naming scheme of try_do()/do() - res_counter_uncharge_until() is only ever used to cancel a local counter and never to uncharge bigger segments of a hierarchy, so it's replaced by the simpler page_counter_cancel() - res_counter_set_limit() is replaced by page_counter_limit(), which expects its callers to serialize against themselves - res_counter_memparse_write_strategy() is replaced by page_counter_limit(), which rounds down to the nearest page size - rather than up. This is more reasonable for explicitely requested hard upper limits. - to keep charging light-weight, page_counter_try_charge() charges speculatively, only to roll back if the result exceeds the limit. Because of this, a failing bigger charge can temporarily lock out smaller charges that would otherwise succeed. The error is bounded to the difference between the smallest and the biggest possible charge size, so for memcg, this means that a failing THP charge can send base page charges into reclaim upto 2MB (4MB) before the limit would have been reached. This should be acceptable. [akpm@linux-foundation.org: add includes for WARN_ON_ONCE and memparse] [akpm@linux-foundation.org: add includes for WARN_ON_ONCE, memparse, strncmp, and PAGE_SIZE] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Acked-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Tejun Heo <tj@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-11 07:42:31 +08:00
return 0;
counter->max = old;
mm: memcontrol: lockless page counters Memory is internally accounted in bytes, using spinlock-protected 64-bit counters, even though the smallest accounting delta is a page. The counter interface is also convoluted and does too many things. Introduce a new lockless word-sized page counter API, then change all memory accounting over to it. The translation from and to bytes then only happens when interfacing with userspace. The removed locking overhead is noticable when scaling beyond the per-cpu charge caches - on a 4-socket machine with 144-threads, the following test shows the performance differences of 288 memcgs concurrently running a page fault benchmark: vanilla: 18631648.500498 task-clock (msec) # 140.643 CPUs utilized ( +- 0.33% ) 1,380,638 context-switches # 0.074 K/sec ( +- 0.75% ) 24,390 cpu-migrations # 0.001 K/sec ( +- 8.44% ) 1,843,305,768 page-faults # 0.099 M/sec ( +- 0.00% ) 50,134,994,088,218 cycles # 2.691 GHz ( +- 0.33% ) <not supported> stalled-cycles-frontend <not supported> stalled-cycles-backend 8,049,712,224,651 instructions # 0.16 insns per cycle ( +- 0.04% ) 1,586,970,584,979 branches # 85.176 M/sec ( +- 0.05% ) 1,724,989,949 branch-misses # 0.11% of all branches ( +- 0.48% ) 132.474343877 seconds time elapsed ( +- 0.21% ) lockless: 12195979.037525 task-clock (msec) # 133.480 CPUs utilized ( +- 0.18% ) 832,850 context-switches # 0.068 K/sec ( +- 0.54% ) 15,624 cpu-migrations # 0.001 K/sec ( +- 10.17% ) 1,843,304,774 page-faults # 0.151 M/sec ( +- 0.00% ) 32,811,216,801,141 cycles # 2.690 GHz ( +- 0.18% ) <not supported> stalled-cycles-frontend <not supported> stalled-cycles-backend 9,999,265,091,727 instructions # 0.30 insns per cycle ( +- 0.10% ) 2,076,759,325,203 branches # 170.282 M/sec ( +- 0.12% ) 1,656,917,214 branch-misses # 0.08% of all branches ( +- 0.55% ) 91.369330729 seconds time elapsed ( +- 0.45% ) On top of improved scalability, this also gets rid of the icky long long types in the very heart of memcg, which is great for 32 bit and also makes the code a lot more readable. Notable differences between the old and new API: - res_counter_charge() and res_counter_charge_nofail() become page_counter_try_charge() and page_counter_charge() resp. to match the more common kernel naming scheme of try_do()/do() - res_counter_uncharge_until() is only ever used to cancel a local counter and never to uncharge bigger segments of a hierarchy, so it's replaced by the simpler page_counter_cancel() - res_counter_set_limit() is replaced by page_counter_limit(), which expects its callers to serialize against themselves - res_counter_memparse_write_strategy() is replaced by page_counter_limit(), which rounds down to the nearest page size - rather than up. This is more reasonable for explicitely requested hard upper limits. - to keep charging light-weight, page_counter_try_charge() charges speculatively, only to roll back if the result exceeds the limit. Because of this, a failing bigger charge can temporarily lock out smaller charges that would otherwise succeed. The error is bounded to the difference between the smallest and the biggest possible charge size, so for memcg, this means that a failing THP charge can send base page charges into reclaim upto 2MB (4MB) before the limit would have been reached. This should be acceptable. [akpm@linux-foundation.org: add includes for WARN_ON_ONCE and memparse] [akpm@linux-foundation.org: add includes for WARN_ON_ONCE, memparse, strncmp, and PAGE_SIZE] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Acked-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Tejun Heo <tj@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-11 07:42:31 +08:00
cond_resched();
}
}
/**
* page_counter_memparse - memparse() for page counter limits
* @buf: string to parse
* @max: string meaning maximum possible value
mm: memcontrol: lockless page counters Memory is internally accounted in bytes, using spinlock-protected 64-bit counters, even though the smallest accounting delta is a page. The counter interface is also convoluted and does too many things. Introduce a new lockless word-sized page counter API, then change all memory accounting over to it. The translation from and to bytes then only happens when interfacing with userspace. The removed locking overhead is noticable when scaling beyond the per-cpu charge caches - on a 4-socket machine with 144-threads, the following test shows the performance differences of 288 memcgs concurrently running a page fault benchmark: vanilla: 18631648.500498 task-clock (msec) # 140.643 CPUs utilized ( +- 0.33% ) 1,380,638 context-switches # 0.074 K/sec ( +- 0.75% ) 24,390 cpu-migrations # 0.001 K/sec ( +- 8.44% ) 1,843,305,768 page-faults # 0.099 M/sec ( +- 0.00% ) 50,134,994,088,218 cycles # 2.691 GHz ( +- 0.33% ) <not supported> stalled-cycles-frontend <not supported> stalled-cycles-backend 8,049,712,224,651 instructions # 0.16 insns per cycle ( +- 0.04% ) 1,586,970,584,979 branches # 85.176 M/sec ( +- 0.05% ) 1,724,989,949 branch-misses # 0.11% of all branches ( +- 0.48% ) 132.474343877 seconds time elapsed ( +- 0.21% ) lockless: 12195979.037525 task-clock (msec) # 133.480 CPUs utilized ( +- 0.18% ) 832,850 context-switches # 0.068 K/sec ( +- 0.54% ) 15,624 cpu-migrations # 0.001 K/sec ( +- 10.17% ) 1,843,304,774 page-faults # 0.151 M/sec ( +- 0.00% ) 32,811,216,801,141 cycles # 2.690 GHz ( +- 0.18% ) <not supported> stalled-cycles-frontend <not supported> stalled-cycles-backend 9,999,265,091,727 instructions # 0.30 insns per cycle ( +- 0.10% ) 2,076,759,325,203 branches # 170.282 M/sec ( +- 0.12% ) 1,656,917,214 branch-misses # 0.08% of all branches ( +- 0.55% ) 91.369330729 seconds time elapsed ( +- 0.45% ) On top of improved scalability, this also gets rid of the icky long long types in the very heart of memcg, which is great for 32 bit and also makes the code a lot more readable. Notable differences between the old and new API: - res_counter_charge() and res_counter_charge_nofail() become page_counter_try_charge() and page_counter_charge() resp. to match the more common kernel naming scheme of try_do()/do() - res_counter_uncharge_until() is only ever used to cancel a local counter and never to uncharge bigger segments of a hierarchy, so it's replaced by the simpler page_counter_cancel() - res_counter_set_limit() is replaced by page_counter_limit(), which expects its callers to serialize against themselves - res_counter_memparse_write_strategy() is replaced by page_counter_limit(), which rounds down to the nearest page size - rather than up. This is more reasonable for explicitely requested hard upper limits. - to keep charging light-weight, page_counter_try_charge() charges speculatively, only to roll back if the result exceeds the limit. Because of this, a failing bigger charge can temporarily lock out smaller charges that would otherwise succeed. The error is bounded to the difference between the smallest and the biggest possible charge size, so for memcg, this means that a failing THP charge can send base page charges into reclaim upto 2MB (4MB) before the limit would have been reached. This should be acceptable. [akpm@linux-foundation.org: add includes for WARN_ON_ONCE and memparse] [akpm@linux-foundation.org: add includes for WARN_ON_ONCE, memparse, strncmp, and PAGE_SIZE] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Acked-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Tejun Heo <tj@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-11 07:42:31 +08:00
* @nr_pages: returns the result in number of pages
*
* Returns -EINVAL, or 0 and @nr_pages on success. @nr_pages will be
* limited to %PAGE_COUNTER_MAX.
*/
int page_counter_memparse(const char *buf, const char *max,
unsigned long *nr_pages)
mm: memcontrol: lockless page counters Memory is internally accounted in bytes, using spinlock-protected 64-bit counters, even though the smallest accounting delta is a page. The counter interface is also convoluted and does too many things. Introduce a new lockless word-sized page counter API, then change all memory accounting over to it. The translation from and to bytes then only happens when interfacing with userspace. The removed locking overhead is noticable when scaling beyond the per-cpu charge caches - on a 4-socket machine with 144-threads, the following test shows the performance differences of 288 memcgs concurrently running a page fault benchmark: vanilla: 18631648.500498 task-clock (msec) # 140.643 CPUs utilized ( +- 0.33% ) 1,380,638 context-switches # 0.074 K/sec ( +- 0.75% ) 24,390 cpu-migrations # 0.001 K/sec ( +- 8.44% ) 1,843,305,768 page-faults # 0.099 M/sec ( +- 0.00% ) 50,134,994,088,218 cycles # 2.691 GHz ( +- 0.33% ) <not supported> stalled-cycles-frontend <not supported> stalled-cycles-backend 8,049,712,224,651 instructions # 0.16 insns per cycle ( +- 0.04% ) 1,586,970,584,979 branches # 85.176 M/sec ( +- 0.05% ) 1,724,989,949 branch-misses # 0.11% of all branches ( +- 0.48% ) 132.474343877 seconds time elapsed ( +- 0.21% ) lockless: 12195979.037525 task-clock (msec) # 133.480 CPUs utilized ( +- 0.18% ) 832,850 context-switches # 0.068 K/sec ( +- 0.54% ) 15,624 cpu-migrations # 0.001 K/sec ( +- 10.17% ) 1,843,304,774 page-faults # 0.151 M/sec ( +- 0.00% ) 32,811,216,801,141 cycles # 2.690 GHz ( +- 0.18% ) <not supported> stalled-cycles-frontend <not supported> stalled-cycles-backend 9,999,265,091,727 instructions # 0.30 insns per cycle ( +- 0.10% ) 2,076,759,325,203 branches # 170.282 M/sec ( +- 0.12% ) 1,656,917,214 branch-misses # 0.08% of all branches ( +- 0.55% ) 91.369330729 seconds time elapsed ( +- 0.45% ) On top of improved scalability, this also gets rid of the icky long long types in the very heart of memcg, which is great for 32 bit and also makes the code a lot more readable. Notable differences between the old and new API: - res_counter_charge() and res_counter_charge_nofail() become page_counter_try_charge() and page_counter_charge() resp. to match the more common kernel naming scheme of try_do()/do() - res_counter_uncharge_until() is only ever used to cancel a local counter and never to uncharge bigger segments of a hierarchy, so it's replaced by the simpler page_counter_cancel() - res_counter_set_limit() is replaced by page_counter_limit(), which expects its callers to serialize against themselves - res_counter_memparse_write_strategy() is replaced by page_counter_limit(), which rounds down to the nearest page size - rather than up. This is more reasonable for explicitely requested hard upper limits. - to keep charging light-weight, page_counter_try_charge() charges speculatively, only to roll back if the result exceeds the limit. Because of this, a failing bigger charge can temporarily lock out smaller charges that would otherwise succeed. The error is bounded to the difference between the smallest and the biggest possible charge size, so for memcg, this means that a failing THP charge can send base page charges into reclaim upto 2MB (4MB) before the limit would have been reached. This should be acceptable. [akpm@linux-foundation.org: add includes for WARN_ON_ONCE and memparse] [akpm@linux-foundation.org: add includes for WARN_ON_ONCE, memparse, strncmp, and PAGE_SIZE] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Acked-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Tejun Heo <tj@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-11 07:42:31 +08:00
{
char *end;
u64 bytes;
if (!strcmp(buf, max)) {
mm: memcontrol: lockless page counters Memory is internally accounted in bytes, using spinlock-protected 64-bit counters, even though the smallest accounting delta is a page. The counter interface is also convoluted and does too many things. Introduce a new lockless word-sized page counter API, then change all memory accounting over to it. The translation from and to bytes then only happens when interfacing with userspace. The removed locking overhead is noticable when scaling beyond the per-cpu charge caches - on a 4-socket machine with 144-threads, the following test shows the performance differences of 288 memcgs concurrently running a page fault benchmark: vanilla: 18631648.500498 task-clock (msec) # 140.643 CPUs utilized ( +- 0.33% ) 1,380,638 context-switches # 0.074 K/sec ( +- 0.75% ) 24,390 cpu-migrations # 0.001 K/sec ( +- 8.44% ) 1,843,305,768 page-faults # 0.099 M/sec ( +- 0.00% ) 50,134,994,088,218 cycles # 2.691 GHz ( +- 0.33% ) <not supported> stalled-cycles-frontend <not supported> stalled-cycles-backend 8,049,712,224,651 instructions # 0.16 insns per cycle ( +- 0.04% ) 1,586,970,584,979 branches # 85.176 M/sec ( +- 0.05% ) 1,724,989,949 branch-misses # 0.11% of all branches ( +- 0.48% ) 132.474343877 seconds time elapsed ( +- 0.21% ) lockless: 12195979.037525 task-clock (msec) # 133.480 CPUs utilized ( +- 0.18% ) 832,850 context-switches # 0.068 K/sec ( +- 0.54% ) 15,624 cpu-migrations # 0.001 K/sec ( +- 10.17% ) 1,843,304,774 page-faults # 0.151 M/sec ( +- 0.00% ) 32,811,216,801,141 cycles # 2.690 GHz ( +- 0.18% ) <not supported> stalled-cycles-frontend <not supported> stalled-cycles-backend 9,999,265,091,727 instructions # 0.30 insns per cycle ( +- 0.10% ) 2,076,759,325,203 branches # 170.282 M/sec ( +- 0.12% ) 1,656,917,214 branch-misses # 0.08% of all branches ( +- 0.55% ) 91.369330729 seconds time elapsed ( +- 0.45% ) On top of improved scalability, this also gets rid of the icky long long types in the very heart of memcg, which is great for 32 bit and also makes the code a lot more readable. Notable differences between the old and new API: - res_counter_charge() and res_counter_charge_nofail() become page_counter_try_charge() and page_counter_charge() resp. to match the more common kernel naming scheme of try_do()/do() - res_counter_uncharge_until() is only ever used to cancel a local counter and never to uncharge bigger segments of a hierarchy, so it's replaced by the simpler page_counter_cancel() - res_counter_set_limit() is replaced by page_counter_limit(), which expects its callers to serialize against themselves - res_counter_memparse_write_strategy() is replaced by page_counter_limit(), which rounds down to the nearest page size - rather than up. This is more reasonable for explicitely requested hard upper limits. - to keep charging light-weight, page_counter_try_charge() charges speculatively, only to roll back if the result exceeds the limit. Because of this, a failing bigger charge can temporarily lock out smaller charges that would otherwise succeed. The error is bounded to the difference between the smallest and the biggest possible charge size, so for memcg, this means that a failing THP charge can send base page charges into reclaim upto 2MB (4MB) before the limit would have been reached. This should be acceptable. [akpm@linux-foundation.org: add includes for WARN_ON_ONCE and memparse] [akpm@linux-foundation.org: add includes for WARN_ON_ONCE, memparse, strncmp, and PAGE_SIZE] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Acked-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Tejun Heo <tj@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-11 07:42:31 +08:00
*nr_pages = PAGE_COUNTER_MAX;
return 0;
}
bytes = memparse(buf, &end);
if (*end != '\0')
return -EINVAL;
*nr_pages = min(bytes / PAGE_SIZE, (u64)PAGE_COUNTER_MAX);
return 0;
}