linux-sg2042/include/linux/rmap.h

163 lines
4.5 KiB
C
Raw Normal View History

#ifndef _LINUX_RMAP_H
#define _LINUX_RMAP_H
/*
* Declarations for Reverse Mapping functions in mm/rmap.c
*/
#include <linux/list.h>
#include <linux/slab.h>
#include <linux/mm.h>
#include <linux/spinlock.h>
#include <linux/memcontrol.h>
/*
* The anon_vma heads a list of private "related" vmas, to scan if
* an anonymous page pointing to this anon_vma needs to be unmapped:
* the vmas on the list will be related by forking, or by splitting.
*
* Since vmas come and go as they are split and merged (particularly
* in mprotect), the mapping field of an anonymous page cannot point
* directly to a vma: instead it points to an anon_vma, on whose list
* the related vmas can be easily linked or unlinked.
*
* After unlinking the last vma on the list, we must garbage collect
* the anon_vma object itself: we're guaranteed no page can be
* pointing to this anon_vma once its vma list is empty.
*/
struct anon_vma {
spinlock_t lock; /* Serialize access to vma list */
mmu-notifiers: add mm_take_all_locks() operation mm_take_all_locks holds off reclaim from an entire mm_struct. This allows mmu notifiers to register into the mm at any time with the guarantee that no mmu operation is in progress on the mm. This operation locks against the VM for all pte/vma/mm related operations that could ever happen on a certain mm. This includes vmtruncate, try_to_unmap, and all page faults. The caller must take the mmap_sem in write mode before calling mm_take_all_locks(). The caller isn't allowed to release the mmap_sem until mm_drop_all_locks() returns. mmap_sem in write mode is required in order to block all operations that could modify pagetables and free pages without need of altering the vma layout (for example populate_range() with nonlinear vmas). It's also needed in write mode to avoid new anon_vmas to be associated with existing vmas. A single task can't take more than one mm_take_all_locks() in a row or it would deadlock. mm_take_all_locks() and mm_drop_all_locks are expensive operations that may have to take thousand of locks. mm_take_all_locks() can fail if it's interrupted by signals. When mmu_notifier_register returns, we must be sure that the driver is notified if some task is in the middle of a vmtruncate for the 'mm' where the mmu notifier was registered (mmu_notifier_invalidate_range_start/end is run around the vmtruncation but mmu_notifier_register can run after mmu_notifier_invalidate_range_start and before mmu_notifier_invalidate_range_end). Same problem for rmap paths. And we've to remove page pinning to avoid replicating the tlb_gather logic inside KVM (and GRU doesn't work well with page pinning regardless of needing tlb_gather), so without mm_take_all_locks when vmtruncate frees the page, kvm would have no way to notice that it mapped into sptes a page that is going into the freelist without a chance of any further mmu_notifier notification. [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Andrea Arcangeli <andrea@qumranet.com> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Jack Steiner <steiner@sgi.com> Cc: Robin Holt <holt@sgi.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Kanoj Sarcar <kanojsarcar@yahoo.com> Cc: Roland Dreier <rdreier@cisco.com> Cc: Steve Wise <swise@opengridcomputing.com> Cc: Avi Kivity <avi@qumranet.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Anthony Liguori <aliguori@us.ibm.com> Cc: Chris Wright <chrisw@redhat.com> Cc: Marcelo Tosatti <marcelo@kvack.org> Cc: Eric Dumazet <dada1@cosmosbay.com> Cc: "Paul E. McKenney" <paulmck@us.ibm.com> Cc: Izik Eidus <izike@qumranet.com> Cc: Anthony Liguori <aliguori@us.ibm.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-29 06:46:26 +08:00
/*
* NOTE: the LSB of the head.next is set by
* mm_take_all_locks() _after_ taking the above lock. So the
* head must only be read/written after taking the above lock
* to be sure to see a valid next pointer. The LSB bit itself
* is serialized by a system wide lock only visible to
* mm_take_all_locks() (mm_all_locks_mutex).
*/
struct list_head head; /* List of private "related" vmas */
};
#ifdef CONFIG_MMU
static inline void anon_vma_lock(struct vm_area_struct *vma)
{
struct anon_vma *anon_vma = vma->anon_vma;
if (anon_vma)
spin_lock(&anon_vma->lock);
}
static inline void anon_vma_unlock(struct vm_area_struct *vma)
{
struct anon_vma *anon_vma = vma->anon_vma;
if (anon_vma)
spin_unlock(&anon_vma->lock);
}
/*
* anon_vma helper functions.
*/
void anon_vma_init(void); /* create anon_vma_cachep */
int anon_vma_prepare(struct vm_area_struct *);
void __anon_vma_merge(struct vm_area_struct *, struct vm_area_struct *);
void anon_vma_unlink(struct vm_area_struct *);
void anon_vma_link(struct vm_area_struct *);
void __anon_vma_link(struct vm_area_struct *);
/*
* rmap interfaces called when adding or removing pte of page
*/
void page_add_anon_rmap(struct page *, struct vm_area_struct *, unsigned long);
void page_add_new_anon_rmap(struct page *, struct vm_area_struct *, unsigned long);
void page_add_file_rmap(struct page *);
void page_remove_rmap(struct page *);
static inline void page_dup_rmap(struct page *page)
{
atomic_inc(&page->_mapcount);
}
/*
* Called from mm/vmscan.c to handle paging out
*/
int page_referenced(struct page *, int is_locked,
struct mem_cgroup *cnt, unsigned long *vm_flags);
enum ttu_flags {
TTU_UNMAP = 0, /* unmap mode */
TTU_MIGRATION = 1, /* migration mode */
TTU_MUNLOCK = 2, /* munlock mode */
TTU_ACTION_MASK = 0xff,
TTU_IGNORE_MLOCK = (1 << 8), /* ignore mlock */
TTU_IGNORE_ACCESS = (1 << 9), /* don't age */
TTU_IGNORE_HWPOISON = (1 << 10),/* corrupted page is recoverable */
};
#define TTU_ACTION(x) ((x) & TTU_ACTION_MASK)
int try_to_unmap(struct page *, enum ttu_flags flags);
/*
* Called from mm/filemap_xip.c to unmap empty zero page
*/
pte_t *page_check_address(struct page *, struct mm_struct *,
mm: dirty page tracking race fix There is a race with dirty page accounting where a page may not properly be accounted for. clear_page_dirty_for_io() calls page_mkclean; then TestClearPageDirty. page_mkclean walks the rmaps for that page, and for each one it cleans and write protects the pte if it was dirty. It uses page_check_address to find the pte. That function has a shortcut to avoid the ptl if the pte is not present. Unfortunately, the pte can be switched to not-present then back to present by other code while holding the page table lock -- this should not be a signal for page_mkclean to ignore that pte, because it may be dirty. For example, powerpc64's set_pte_at will clear a previously present pte before setting it to the desired value. There may also be other code in core mm or in arch which do similar things. The consequence of the bug is loss of data integrity due to msync, and loss of dirty page accounting accuracy. XIP's __xip_unmap could easily also be unreliable (depending on the exact XIP locking scheme), which can lead to data corruption. Fix this by having an option to always take ptl to check the pte in page_check_address. It's possible to retain this optimization for page_referenced and try_to_unmap. Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jared Hulbert <jaredeh@gmail.com> Cc: Carsten Otte <cotte@freenet.de> Cc: Hugh Dickins <hugh@veritas.com> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-08-21 05:09:18 +08:00
unsigned long, spinlock_t **, int);
/*
* Used by swapoff to help locate where page is expected in vma.
*/
unsigned long page_address_in_vma(struct page *, struct vm_area_struct *);
[PATCH] mm: tracking shared dirty pages Tracking of dirty pages in shared writeable mmap()s. The idea is simple: write protect clean shared writeable pages, catch the write-fault, make writeable and set dirty. On page write-back clean all the PTE dirty bits and write protect them once again. The implementation is a tad harder, mainly because the default backing_dev_info capabilities were too loosely maintained. Hence it is not enough to test the backing_dev_info for cap_account_dirty. The current heuristic is as follows, a VMA is eligible when: - its shared writeable (vm_flags & (VM_WRITE|VM_SHARED)) == (VM_WRITE|VM_SHARED) - it is not a 'special' mapping (vm_flags & (VM_PFNMAP|VM_INSERTPAGE)) == 0 - the backing_dev_info is cap_account_dirty mapping_cap_account_dirty(vma->vm_file->f_mapping) - f_op->mmap() didn't change the default page protection Page from remap_pfn_range() are explicitly excluded because their COW semantics are already horrid enough (see vm_normal_page() in do_wp_page()) and because they don't have a backing store anyway. mprotect() is taught about the new behaviour as well. However it overrides the last condition. Cleaning the pages on write-back is done with page_mkclean() a new rmap call. It can be called on any page, but is currently only implemented for mapped pages, if the page is found the be of a VMA that accounts dirty pages it will also wrprotect the PTE. Finally, in fs/buffers.c:try_to_free_buffers(); remove clear_page_dirty() from under ->private_lock. This seems to be safe, since ->private_lock is used to serialize access to the buffers, not the page itself. This is needed because clear_page_dirty() will call into page_mkclean() and would thereby violate locking order. [dhowells@redhat.com: Provide a page_mkclean() implementation for NOMMU] Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Hugh Dickins <hugh@veritas.com> Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-26 14:30:57 +08:00
/*
* Cleans the PTEs of shared mappings.
* (and since clean PTEs should also be readonly, write protects them too)
*
* returns the number of cleaned PTEs.
*/
int page_mkclean(struct page *);
mlock: mlocked pages are unevictable Make sure that mlocked pages also live on the unevictable LRU, so kswapd will not scan them over and over again. This is achieved through various strategies: 1) add yet another page flag--PG_mlocked--to indicate that the page is locked for efficient testing in vmscan and, optionally, fault path. This allows early culling of unevictable pages, preventing them from getting to page_referenced()/try_to_unmap(). Also allows separate accounting of mlock'd pages, as Nick's original patch did. Note: Nick's original mlock patch used a PG_mlocked flag. I had removed this in favor of the PG_unevictable flag + an mlock_count [new page struct member]. I restored the PG_mlocked flag to eliminate the new count field. 2) add the mlock/unevictable infrastructure to mm/mlock.c, with internal APIs in mm/internal.h. This is a rework of Nick's original patch to these files, taking into account that mlocked pages are now kept on unevictable LRU list. 3) update vmscan.c:page_evictable() to check PageMlocked() and, if vma passed in, the vm_flags. Note that the vma will only be passed in for new pages in the fault path; and then only if the "cull unevictable pages in fault path" patch is included. 4) add try_to_unlock() to rmap.c to walk a page's rmap and ClearPageMlocked() if no other vmas have it mlocked. Reuses as much of try_to_unmap() as possible. This effectively replaces the use of one of the lru list links as an mlock count. If this mechanism let's pages in mlocked vmas leak through w/o PG_mlocked set [I don't know that it does], we should catch them later in try_to_unmap(). One hopes this will be rare, as it will be relatively expensive. Original mm/internal.h, mm/rmap.c and mm/mlock.c changes: Signed-off-by: Nick Piggin <npiggin@suse.de> splitlru: introduce __get_user_pages(): New munlock processing need to GUP_FLAGS_IGNORE_VMA_PERMISSIONS. because current get_user_pages() can't grab PROT_NONE pages theresore it cause PROT_NONE pages can't munlock. [akpm@linux-foundation.org: fix this for pagemap-pass-mm-into-pagewalkers.patch] [akpm@linux-foundation.org: untangle patch interdependencies] [akpm@linux-foundation.org: fix things after out-of-order merging] [hugh@veritas.com: fix page-flags mess] [lee.schermerhorn@hp.com: fix munlock page table walk - now requires 'mm'] [kosaki.motohiro@jp.fujitsu.com: build fix] [kosaki.motohiro@jp.fujitsu.com: fix truncate race and sevaral comments] [kosaki.motohiro@jp.fujitsu.com: splitlru: introduce __get_user_pages()] Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Rik van Riel <riel@redhat.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Cc: Matt Mackall <mpm@selenic.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:26:44 +08:00
/*
* called in munlock()/munmap() path to check for other vmas holding
* the page mlocked.
*/
int try_to_munlock(struct page *);
/*
* Called by memory-failure.c to kill processes.
*/
struct anon_vma *page_lock_anon_vma(struct page *page);
void page_unlock_anon_vma(struct anon_vma *anon_vma);
HWPOISON: The high level memory error handler in the VM v7 Add the high level memory handler that poisons pages that got corrupted by hardware (typically by a two bit flip in a DIMM or a cache) on the Linux level. The goal is to prevent everyone from accessing these pages in the future. This done at the VM level by marking a page hwpoisoned and doing the appropriate action based on the type of page it is. The code that does this is portable and lives in mm/memory-failure.c To quote the overview comment: High level machine check handler. Handles pages reported by the hardware as being corrupted usually due to a 2bit ECC memory or cache failure. This focuses on pages detected as corrupted in the background. When the current CPU tries to consume corruption the currently running process can just be killed directly instead. This implies that if the error cannot be handled for some reason it's safe to just ignore it because no corruption has been consumed yet. Instead when that happens another machine check will happen. Handles page cache pages in various states. The tricky part here is that we can access any page asynchronous to other VM users, because memory failures could happen anytime and anywhere, possibly violating some of their assumptions. This is why this code has to be extremely careful. Generally it tries to use normal locking rules, as in get the standard locks, even if that means the error handling takes potentially a long time. Some of the operations here are somewhat inefficient and have non linear algorithmic complexity, because the data structures have not been optimized for this case. This is in particular the case for the mapping from a vma to a process. Since this case is expected to be rare we hope we can get away with this. There are in principle two strategies to kill processes on poison: - just unmap the data and wait for an actual reference before killing - kill as soon as corruption is detected. Both have advantages and disadvantages and should be used in different situations. Right now both are implemented and can be switched with a new sysctl vm.memory_failure_early_kill The default is early kill. The patch does some rmap data structure walking on its own to collect processes to kill. This is unusual because normally all rmap data structure knowledge is in rmap.c only. I put it here for now to keep everything together and rmap knowledge has been seeping out anyways Includes contributions from Johannes Weiner, Chris Mason, Fengguang Wu, Nick Piggin (who did a lot of great work) and others. Cc: npiggin@suse.de Cc: riel@redhat.com Signed-off-by: Andi Kleen <ak@linux.intel.com> Acked-by: Rik van Riel <riel@redhat.com> Reviewed-by: Hidehiro Kawai <hidehiro.kawai.ez@hitachi.com>
2009-09-16 17:50:15 +08:00
int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma);
#else /* !CONFIG_MMU */
#define anon_vma_init() do {} while (0)
#define anon_vma_prepare(vma) (0)
#define anon_vma_link(vma) do {} while (0)
static inline int page_referenced(struct page *page, int is_locked,
struct mem_cgroup *cnt,
unsigned long *vm_flags)
{
*vm_flags = 0;
return TestClearPageReferenced(page);
}
#define try_to_unmap(page, refs) SWAP_FAIL
[PATCH] mm: tracking shared dirty pages Tracking of dirty pages in shared writeable mmap()s. The idea is simple: write protect clean shared writeable pages, catch the write-fault, make writeable and set dirty. On page write-back clean all the PTE dirty bits and write protect them once again. The implementation is a tad harder, mainly because the default backing_dev_info capabilities were too loosely maintained. Hence it is not enough to test the backing_dev_info for cap_account_dirty. The current heuristic is as follows, a VMA is eligible when: - its shared writeable (vm_flags & (VM_WRITE|VM_SHARED)) == (VM_WRITE|VM_SHARED) - it is not a 'special' mapping (vm_flags & (VM_PFNMAP|VM_INSERTPAGE)) == 0 - the backing_dev_info is cap_account_dirty mapping_cap_account_dirty(vma->vm_file->f_mapping) - f_op->mmap() didn't change the default page protection Page from remap_pfn_range() are explicitly excluded because their COW semantics are already horrid enough (see vm_normal_page() in do_wp_page()) and because they don't have a backing store anyway. mprotect() is taught about the new behaviour as well. However it overrides the last condition. Cleaning the pages on write-back is done with page_mkclean() a new rmap call. It can be called on any page, but is currently only implemented for mapped pages, if the page is found the be of a VMA that accounts dirty pages it will also wrprotect the PTE. Finally, in fs/buffers.c:try_to_free_buffers(); remove clear_page_dirty() from under ->private_lock. This seems to be safe, since ->private_lock is used to serialize access to the buffers, not the page itself. This is needed because clear_page_dirty() will call into page_mkclean() and would thereby violate locking order. [dhowells@redhat.com: Provide a page_mkclean() implementation for NOMMU] Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Hugh Dickins <hugh@veritas.com> Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-26 14:30:57 +08:00
static inline int page_mkclean(struct page *page)
{
return 0;
}
#endif /* CONFIG_MMU */
/*
* Return values of try_to_unmap
*/
#define SWAP_SUCCESS 0
#define SWAP_AGAIN 1
#define SWAP_FAIL 2
mlock: mlocked pages are unevictable Make sure that mlocked pages also live on the unevictable LRU, so kswapd will not scan them over and over again. This is achieved through various strategies: 1) add yet another page flag--PG_mlocked--to indicate that the page is locked for efficient testing in vmscan and, optionally, fault path. This allows early culling of unevictable pages, preventing them from getting to page_referenced()/try_to_unmap(). Also allows separate accounting of mlock'd pages, as Nick's original patch did. Note: Nick's original mlock patch used a PG_mlocked flag. I had removed this in favor of the PG_unevictable flag + an mlock_count [new page struct member]. I restored the PG_mlocked flag to eliminate the new count field. 2) add the mlock/unevictable infrastructure to mm/mlock.c, with internal APIs in mm/internal.h. This is a rework of Nick's original patch to these files, taking into account that mlocked pages are now kept on unevictable LRU list. 3) update vmscan.c:page_evictable() to check PageMlocked() and, if vma passed in, the vm_flags. Note that the vma will only be passed in for new pages in the fault path; and then only if the "cull unevictable pages in fault path" patch is included. 4) add try_to_unlock() to rmap.c to walk a page's rmap and ClearPageMlocked() if no other vmas have it mlocked. Reuses as much of try_to_unmap() as possible. This effectively replaces the use of one of the lru list links as an mlock count. If this mechanism let's pages in mlocked vmas leak through w/o PG_mlocked set [I don't know that it does], we should catch them later in try_to_unmap(). One hopes this will be rare, as it will be relatively expensive. Original mm/internal.h, mm/rmap.c and mm/mlock.c changes: Signed-off-by: Nick Piggin <npiggin@suse.de> splitlru: introduce __get_user_pages(): New munlock processing need to GUP_FLAGS_IGNORE_VMA_PERMISSIONS. because current get_user_pages() can't grab PROT_NONE pages theresore it cause PROT_NONE pages can't munlock. [akpm@linux-foundation.org: fix this for pagemap-pass-mm-into-pagewalkers.patch] [akpm@linux-foundation.org: untangle patch interdependencies] [akpm@linux-foundation.org: fix things after out-of-order merging] [hugh@veritas.com: fix page-flags mess] [lee.schermerhorn@hp.com: fix munlock page table walk - now requires 'mm'] [kosaki.motohiro@jp.fujitsu.com: build fix] [kosaki.motohiro@jp.fujitsu.com: fix truncate race and sevaral comments] [kosaki.motohiro@jp.fujitsu.com: splitlru: introduce __get_user_pages()] Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Rik van Riel <riel@redhat.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Cc: Matt Mackall <mpm@selenic.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:26:44 +08:00
#define SWAP_MLOCK 3
#endif /* _LINUX_RMAP_H */