linux-sg2042/arch/s390/kernel/machine_kexec.c

306 lines
7.1 KiB
C
Raw Normal View History

/*
* Copyright IBM Corp. 2005, 2011
*
* Author(s): Rolf Adelsberger,
* Heiko Carstens <heiko.carstens@de.ibm.com>
* Michael Holzheu <holzheu@linux.vnet.ibm.com>
*/
#include <linux/device.h>
#include <linux/mm.h>
#include <linux/kexec.h>
#include <linux/delay.h>
#include <linux/reboot.h>
#include <linux/ftrace.h>
#include <linux/debug_locks.h>
#include <linux/suspend.h>
#include <asm/cio.h>
#include <asm/setup.h>
#include <asm/pgtable.h>
#include <asm/pgalloc.h>
#include <asm/smp.h>
2006-12-04 22:40:26 +08:00
#include <asm/reset.h>
#include <asm/ipl.h>
#include <asm/diag.h>
#include <asm/elf.h>
#include <asm/asm-offsets.h>
#include <asm/cacheflush.h>
#include <asm/os_info.h>
#include <asm/set_memory.h>
#include <asm/switch_to.h>
s390: add a system call for guarded storage This adds a new system call to enable the use of guarded storage for user space processes. The system call takes two arguments, a command and pointer to a guarded storage control block: s390_guarded_storage(int command, struct gs_cb *gs_cb); The second argument is relevant only for the GS_SET_BC_CB command. The commands in detail: 0 - GS_ENABLE Enable the guarded storage facility for the current task. The initial content of the guarded storage control block will be all zeros. After the enablement the user space code can use load-guarded-storage-controls instruction (LGSC) to load an arbitrary control block. While a task is enabled the kernel will save and restore the current content of the guarded storage registers on context switch. 1 - GS_DISABLE Disables the use of the guarded storage facility for the current task. The kernel will cease to save and restore the content of the guarded storage registers, the task specific content of these registers is lost. 2 - GS_SET_BC_CB Set a broadcast guarded storage control block. This is called per thread and stores a specific guarded storage control block in the task struct of the current task. This control block will be used for the broadcast event GS_BROADCAST. 3 - GS_CLEAR_BC_CB Clears the broadcast guarded storage control block. The guarded- storage control block is removed from the task struct that was established by GS_SET_BC_CB. 4 - GS_BROADCAST Sends a broadcast to all thread siblings of the current task. Every sibling that has established a broadcast guarded storage control block will load this control block and will be enabled for guarded storage. The broadcast guarded storage control block is used up, a second broadcast without a refresh of the stored control block with GS_SET_BC_CB will not have any effect. Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2016-01-26 21:10:34 +08:00
#include <asm/nmi.h>
typedef void (*relocate_kernel_t)(kimage_entry_t *, unsigned long);
extern const unsigned char relocate_kernel[];
extern const unsigned long long relocate_kernel_len;
#ifdef CONFIG_CRASH_DUMP
/*
* PM notifier callback for kdump
*/
static int machine_kdump_pm_cb(struct notifier_block *nb, unsigned long action,
void *ptr)
{
switch (action) {
case PM_SUSPEND_PREPARE:
case PM_HIBERNATION_PREPARE:
if (kexec_crash_image)
arch_kexec_unprotect_crashkres();
break;
case PM_POST_SUSPEND:
case PM_POST_HIBERNATION:
if (kexec_crash_image)
arch_kexec_protect_crashkres();
break;
default:
return NOTIFY_DONE;
}
return NOTIFY_OK;
}
static int __init machine_kdump_pm_init(void)
{
pm_notifier(machine_kdump_pm_cb, 0);
return 0;
}
arch_initcall(machine_kdump_pm_init);
/*
* Reset the system, copy boot CPU registers to absolute zero,
* and jump to the kdump image
*/
static void __do_machine_kdump(void *image)
{
int (*start_kdump)(int);
unsigned long prefix;
/* store_status() saved the prefix register to lowcore */
prefix = (unsigned long) S390_lowcore.prefixreg_save_area;
/* Now do the reset */
s390_reset_system();
/*
* Copy dump CPU store status info to absolute zero.
* This need to be done *after* s390_reset_system set the
* prefix register of this CPU to zero
*/
memcpy((void *) __LC_FPREGS_SAVE_AREA,
(void *)(prefix + __LC_FPREGS_SAVE_AREA), 512);
__load_psw_mask(PSW_MASK_BASE | PSW_DEFAULT_KEY | PSW_MASK_EA | PSW_MASK_BA);
start_kdump = (void *)((struct kimage *) image)->start;
start_kdump(1);
/* Die if start_kdump returns */
disabled_wait((unsigned long) __builtin_return_address(0));
}
/*
* Start kdump: create a LGR log entry, store status of all CPUs and
* branch to __do_machine_kdump.
*/
static noinline void __machine_kdump(void *image)
{
s390: add a system call for guarded storage This adds a new system call to enable the use of guarded storage for user space processes. The system call takes two arguments, a command and pointer to a guarded storage control block: s390_guarded_storage(int command, struct gs_cb *gs_cb); The second argument is relevant only for the GS_SET_BC_CB command. The commands in detail: 0 - GS_ENABLE Enable the guarded storage facility for the current task. The initial content of the guarded storage control block will be all zeros. After the enablement the user space code can use load-guarded-storage-controls instruction (LGSC) to load an arbitrary control block. While a task is enabled the kernel will save and restore the current content of the guarded storage registers on context switch. 1 - GS_DISABLE Disables the use of the guarded storage facility for the current task. The kernel will cease to save and restore the content of the guarded storage registers, the task specific content of these registers is lost. 2 - GS_SET_BC_CB Set a broadcast guarded storage control block. This is called per thread and stores a specific guarded storage control block in the task struct of the current task. This control block will be used for the broadcast event GS_BROADCAST. 3 - GS_CLEAR_BC_CB Clears the broadcast guarded storage control block. The guarded- storage control block is removed from the task struct that was established by GS_SET_BC_CB. 4 - GS_BROADCAST Sends a broadcast to all thread siblings of the current task. Every sibling that has established a broadcast guarded storage control block will load this control block and will be enabled for guarded storage. The broadcast guarded storage control block is used up, a second broadcast without a refresh of the stored control block with GS_SET_BC_CB will not have any effect. Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2016-01-26 21:10:34 +08:00
struct mcesa *mcesa;
unsigned long cr2_old, cr2_new;
int this_cpu, cpu;
lgr_info_log();
/* Get status of the other CPUs */
this_cpu = smp_find_processor_id(stap());
for_each_online_cpu(cpu) {
if (cpu == this_cpu)
continue;
if (smp_store_status(cpu))
continue;
}
/* Store status of the boot CPU */
s390: add a system call for guarded storage This adds a new system call to enable the use of guarded storage for user space processes. The system call takes two arguments, a command and pointer to a guarded storage control block: s390_guarded_storage(int command, struct gs_cb *gs_cb); The second argument is relevant only for the GS_SET_BC_CB command. The commands in detail: 0 - GS_ENABLE Enable the guarded storage facility for the current task. The initial content of the guarded storage control block will be all zeros. After the enablement the user space code can use load-guarded-storage-controls instruction (LGSC) to load an arbitrary control block. While a task is enabled the kernel will save and restore the current content of the guarded storage registers on context switch. 1 - GS_DISABLE Disables the use of the guarded storage facility for the current task. The kernel will cease to save and restore the content of the guarded storage registers, the task specific content of these registers is lost. 2 - GS_SET_BC_CB Set a broadcast guarded storage control block. This is called per thread and stores a specific guarded storage control block in the task struct of the current task. This control block will be used for the broadcast event GS_BROADCAST. 3 - GS_CLEAR_BC_CB Clears the broadcast guarded storage control block. The guarded- storage control block is removed from the task struct that was established by GS_SET_BC_CB. 4 - GS_BROADCAST Sends a broadcast to all thread siblings of the current task. Every sibling that has established a broadcast guarded storage control block will load this control block and will be enabled for guarded storage. The broadcast guarded storage control block is used up, a second broadcast without a refresh of the stored control block with GS_SET_BC_CB will not have any effect. Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2016-01-26 21:10:34 +08:00
mcesa = (struct mcesa *)(S390_lowcore.mcesad & MCESA_ORIGIN_MASK);
if (MACHINE_HAS_VX)
s390: add a system call for guarded storage This adds a new system call to enable the use of guarded storage for user space processes. The system call takes two arguments, a command and pointer to a guarded storage control block: s390_guarded_storage(int command, struct gs_cb *gs_cb); The second argument is relevant only for the GS_SET_BC_CB command. The commands in detail: 0 - GS_ENABLE Enable the guarded storage facility for the current task. The initial content of the guarded storage control block will be all zeros. After the enablement the user space code can use load-guarded-storage-controls instruction (LGSC) to load an arbitrary control block. While a task is enabled the kernel will save and restore the current content of the guarded storage registers on context switch. 1 - GS_DISABLE Disables the use of the guarded storage facility for the current task. The kernel will cease to save and restore the content of the guarded storage registers, the task specific content of these registers is lost. 2 - GS_SET_BC_CB Set a broadcast guarded storage control block. This is called per thread and stores a specific guarded storage control block in the task struct of the current task. This control block will be used for the broadcast event GS_BROADCAST. 3 - GS_CLEAR_BC_CB Clears the broadcast guarded storage control block. The guarded- storage control block is removed from the task struct that was established by GS_SET_BC_CB. 4 - GS_BROADCAST Sends a broadcast to all thread siblings of the current task. Every sibling that has established a broadcast guarded storage control block will load this control block and will be enabled for guarded storage. The broadcast guarded storage control block is used up, a second broadcast without a refresh of the stored control block with GS_SET_BC_CB will not have any effect. Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2016-01-26 21:10:34 +08:00
save_vx_regs((__vector128 *) mcesa->vector_save_area);
if (MACHINE_HAS_GS) {
__ctl_store(cr2_old, 2, 2);
cr2_new = cr2_old | (1UL << 4);
__ctl_load(cr2_new, 2, 2);
save_gs_cb((struct gs_cb *) mcesa->guarded_storage_save_area);
__ctl_load(cr2_old, 2, 2);
}
/*
* To create a good backchain for this CPU in the dump store_status
* is passed the address of a function. The address is saved into
* the PSW save area of the boot CPU and the function is invoked as
* a tail call of store_status. The backchain in the dump will look
* like this:
* restart_int_handler -> __machine_kexec -> __do_machine_kdump
* The call to store_status() will not return.
*/
store_status(__do_machine_kdump, image);
}
#endif
/*
* Check if kdump checksums are valid: We call purgatory with parameter "0"
*/
static int kdump_csum_valid(struct kimage *image)
{
#ifdef CONFIG_CRASH_DUMP
int (*start_kdump)(int) = (void *)image->start;
int rc;
__arch_local_irq_stnsm(0xfb); /* disable DAT */
rc = start_kdump(0);
__arch_local_irq_stosm(0x04); /* enable DAT */
return rc ? 0 : -EINVAL;
#else
return -EINVAL;
#endif
}
#ifdef CONFIG_CRASH_DUMP
void crash_free_reserved_phys_range(unsigned long begin, unsigned long end)
{
unsigned long addr, size;
for (addr = begin; addr < end; addr += PAGE_SIZE)
free_reserved_page(pfn_to_page(addr >> PAGE_SHIFT));
size = begin - crashk_res.start;
if (size)
os_info_crashkernel_add(crashk_res.start, size);
else
os_info_crashkernel_add(0, 0);
}
static void crash_protect_pages(int protect)
{
unsigned long size;
if (!crashk_res.end)
return;
size = resource_size(&crashk_res);
if (protect)
set_memory_ro(crashk_res.start, size >> PAGE_SHIFT);
else
set_memory_rw(crashk_res.start, size >> PAGE_SHIFT);
}
void arch_kexec_protect_crashkres(void)
{
crash_protect_pages(1);
}
void arch_kexec_unprotect_crashkres(void)
{
crash_protect_pages(0);
}
#endif
/*
* Give back memory to hypervisor before new kdump is loaded
*/
static int machine_kexec_prepare_kdump(void)
{
#ifdef CONFIG_CRASH_DUMP
if (MACHINE_IS_VM)
diag10_range(PFN_DOWN(crashk_res.start),
PFN_DOWN(crashk_res.end - crashk_res.start + 1));
return 0;
#else
return -EINVAL;
#endif
}
int machine_kexec_prepare(struct kimage *image)
{
void *reboot_code_buffer;
/* Can't replace kernel image since it is read-only. */
if (ipl_flags & IPL_NSS_VALID)
return -EOPNOTSUPP;
if (image->type == KEXEC_TYPE_CRASH)
return machine_kexec_prepare_kdump();
/* We don't support anything but the default image type for now. */
if (image->type != KEXEC_TYPE_DEFAULT)
return -EINVAL;
/* Get the destination where the assembler code should be copied to.*/
reboot_code_buffer = (void *) page_to_phys(image->control_code_page);
/* Then copy it */
memcpy(reboot_code_buffer, relocate_kernel, relocate_kernel_len);
return 0;
}
void machine_kexec_cleanup(struct kimage *image)
{
}
void arch_crash_save_vmcoreinfo(void)
{
VMCOREINFO_SYMBOL(lowcore_ptr);
VMCOREINFO_SYMBOL(high_memory);
VMCOREINFO_LENGTH(lowcore_ptr, NR_CPUS);
mem_assign_absolute(S390_lowcore.vmcore_info, paddr_vmcoreinfo_note());
}
void machine_shutdown(void)
{
}
void machine_crash_shutdown(struct pt_regs *regs)
{
}
/*
* Do normal kexec
*/
static void __do_machine_kexec(void *data)
{
relocate_kernel_t data_mover;
struct kimage *image = data;
s390_reset_system();
data_mover = (relocate_kernel_t) page_to_phys(image->control_code_page);
/* Call the moving routine */
(*data_mover)(&image->head, image->start);
/* Die if kexec returns */
disabled_wait((unsigned long) __builtin_return_address(0));
}
/*
* Reset system and call either kdump or normal kexec
*/
static void __machine_kexec(void *data)
{
__arch_local_irq_stosm(0x04); /* enable DAT */
pfault_fini();
tracing_off();
debug_locks_off();
#ifdef CONFIG_CRASH_DUMP
if (((struct kimage *) data)->type == KEXEC_TYPE_CRASH)
__machine_kdump(data);
#endif
__do_machine_kexec(data);
}
/*
* Do either kdump or normal kexec. In case of kdump we first ask
* purgatory, if kdump checksums are valid.
*/
void machine_kexec(struct kimage *image)
{
if (image->type == KEXEC_TYPE_CRASH && !kdump_csum_valid(image))
return;
tracer_disable();
smp_send_stop();
smp_call_ipl_cpu(__machine_kexec, image);
}