linux-sg2042/drivers/gpu/drm/drm_proc.c

210 lines
5.7 KiB
C
Raw Normal View History

/**
* \file drm_proc.c
* /proc support for DRM
*
* \author Rickard E. (Rik) Faith <faith@valinux.com>
* \author Gareth Hughes <gareth@valinux.com>
*
* \par Acknowledgements:
* Matthew J Sottek <matthew.j.sottek@intel.com> sent in a patch to fix
* the problem with the proc files not outputting all their information.
*/
/*
* Created: Mon Jan 11 09:48:47 1999 by faith@valinux.com
*
* Copyright 1999 Precision Insight, Inc., Cedar Park, Texas.
* Copyright 2000 VA Linux Systems, Inc., Sunnyvale, California.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#include <linux/seq_file.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include <linux/export.h>
#include <drm/drmP.h>
/***************************************************
* Initialization, etc.
**************************************************/
/**
* Proc file list.
*/
static const struct drm_info_list drm_proc_list[] = {
{"name", drm_name_info, 0},
{"vm", drm_vm_info, 0},
{"clients", drm_clients_info, 0},
{"bufs", drm_bufs_info, 0},
{"gem_names", drm_gem_name_info, DRIVER_GEM},
#if DRM_DEBUG_CODE
{"vma", drm_vma_info, 0},
#endif
};
#define DRM_PROC_ENTRIES ARRAY_SIZE(drm_proc_list)
static int drm_proc_open(struct inode *inode, struct file *file)
{
struct drm_info_node* node = PDE_DATA(inode);
return single_open(file, node->info_ent->show, node);
}
static const struct file_operations drm_proc_fops = {
.owner = THIS_MODULE,
.open = drm_proc_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
/**
* Initialize a given set of proc files for a device
*
* \param files The array of files to create
* \param count The number of files given
* \param root DRI proc dir entry.
* \param minor device minor number
* \return Zero on success, non-zero on failure
*
* Create a given set of proc files represented by an array of
* gdm_proc_lists in the given root directory.
*/
static int drm_proc_create_files(const struct drm_info_list *files, int count,
struct proc_dir_entry *root, struct drm_minor *minor)
{
struct drm_device *dev = minor->dev;
struct proc_dir_entry *ent;
struct drm_info_node *tmp;
int i;
for (i = 0; i < count; i++) {
u32 features = files[i].driver_features;
if (features != 0 &&
(dev->driver->driver_features & features) != features)
continue;
tmp = kmalloc(sizeof(struct drm_info_node), GFP_KERNEL);
if (!tmp)
return -1;
tmp->minor = minor;
tmp->info_ent = &files[i];
list_add(&tmp->list, &minor->proc_nodes.list);
ent = proc_create_data(files[i].name, S_IRUGO, root,
&drm_proc_fops, tmp);
if (!ent) {
DRM_ERROR("Cannot create /proc/dri/%u/%s\n",
minor->index, files[i].name);
list_del(&tmp->list);
kfree(tmp);
return -1;
}
}
return 0;
}
/**
* Initialize the DRI proc filesystem for a device
*
* \param dev DRM device
* \param root DRI proc dir entry.
* \param dev_root resulting DRI device proc dir entry.
* \return root entry pointer on success, or NULL on failure.
*
* Create the DRI proc root entry "/proc/dri", the device proc root entry
* "/proc/dri/%minor%/", and each entry in proc_list as
* "/proc/dri/%minor%/%name%".
*/
int drm_proc_init(struct drm_minor *minor, struct proc_dir_entry *root)
{
char name[12];
int ret;
INIT_LIST_HEAD(&minor->proc_nodes.list);
sprintf(name, "%u", minor->index);
minor->proc_root = proc_mkdir(name, root);
if (!minor->proc_root) {
DRM_ERROR("Cannot create /proc/dri/%s\n", name);
return -1;
}
ret = drm_proc_create_files(drm_proc_list, DRM_PROC_ENTRIES,
minor->proc_root, minor);
if (ret) {
remove_proc_subtree(name, root);
minor->proc_root = NULL;
DRM_ERROR("Failed to create core drm proc files\n");
return ret;
}
return 0;
}
static int drm_proc_remove_files(const struct drm_info_list *files, int count,
struct drm_minor *minor)
{
struct list_head *pos, *q;
struct drm_info_node *tmp;
int i;
for (i = 0; i < count; i++) {
list_for_each_safe(pos, q, &minor->proc_nodes.list) {
tmp = list_entry(pos, struct drm_info_node, list);
if (tmp->info_ent == &files[i]) {
remove_proc_entry(files[i].name,
minor->proc_root);
list_del(pos);
kfree(tmp);
}
}
}
return 0;
}
/**
* Cleanup the proc filesystem resources.
*
* \param minor device minor number.
* \param root DRI proc dir entry.
* \param dev_root DRI device proc dir entry.
* \return always zero.
*
* Remove all proc entries created by proc_init().
*/
int drm_proc_cleanup(struct drm_minor *minor, struct proc_dir_entry *root)
{
char name[64];
if (!root || !minor->proc_root)
return 0;
drm_proc_remove_files(drm_proc_list, DRM_PROC_ENTRIES, minor);
sprintf(name, "%d", minor->index);
remove_proc_subtree(name, root);
return 0;
}