linux-sg2042/drivers/spmi/spmi-pmic-arb.c

1185 lines
30 KiB
C
Raw Normal View History

/*
* Copyright (c) 2012-2015, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/bitmap.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/irqchip/chained_irq.h>
#include <linux/irqdomain.h>
#include <linux/irq.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/spmi.h>
/* PMIC Arbiter configuration registers */
#define PMIC_ARB_VERSION 0x0000
#define PMIC_ARB_VERSION_V2_MIN 0x20010000
#define PMIC_ARB_VERSION_V3_MIN 0x30000000
#define PMIC_ARB_INT_EN 0x0004
/* PMIC Arbiter channel registers offsets */
#define PMIC_ARB_CMD 0x00
#define PMIC_ARB_CONFIG 0x04
#define PMIC_ARB_STATUS 0x08
#define PMIC_ARB_WDATA0 0x10
#define PMIC_ARB_WDATA1 0x14
#define PMIC_ARB_RDATA0 0x18
#define PMIC_ARB_RDATA1 0x1C
#define PMIC_ARB_REG_CHNL(N) (0x800 + 0x4 * (N))
/* Mapping Table */
#define SPMI_MAPPING_TABLE_REG(N) (0x0B00 + (4 * (N)))
#define SPMI_MAPPING_BIT_INDEX(X) (((X) >> 18) & 0xF)
#define SPMI_MAPPING_BIT_IS_0_FLAG(X) (((X) >> 17) & 0x1)
#define SPMI_MAPPING_BIT_IS_0_RESULT(X) (((X) >> 9) & 0xFF)
#define SPMI_MAPPING_BIT_IS_1_FLAG(X) (((X) >> 8) & 0x1)
#define SPMI_MAPPING_BIT_IS_1_RESULT(X) (((X) >> 0) & 0xFF)
#define SPMI_MAPPING_TABLE_TREE_DEPTH 16 /* Maximum of 16-bits */
#define PMIC_ARB_MAX_PPID BIT(12) /* PPID is 12bit */
#define PMIC_ARB_CHAN_VALID BIT(15)
/* Ownership Table */
#define SPMI_OWNERSHIP_TABLE_REG(N) (0x0700 + (4 * (N)))
#define SPMI_OWNERSHIP_PERIPH2OWNER(X) ((X) & 0x7)
/* Channel Status fields */
enum pmic_arb_chnl_status {
PMIC_ARB_STATUS_DONE = BIT(0),
PMIC_ARB_STATUS_FAILURE = BIT(1),
PMIC_ARB_STATUS_DENIED = BIT(2),
PMIC_ARB_STATUS_DROPPED = BIT(3),
};
/* Command register fields */
#define PMIC_ARB_CMD_MAX_BYTE_COUNT 8
/* Command Opcodes */
enum pmic_arb_cmd_op_code {
PMIC_ARB_OP_EXT_WRITEL = 0,
PMIC_ARB_OP_EXT_READL = 1,
PMIC_ARB_OP_EXT_WRITE = 2,
PMIC_ARB_OP_RESET = 3,
PMIC_ARB_OP_SLEEP = 4,
PMIC_ARB_OP_SHUTDOWN = 5,
PMIC_ARB_OP_WAKEUP = 6,
PMIC_ARB_OP_AUTHENTICATE = 7,
PMIC_ARB_OP_MSTR_READ = 8,
PMIC_ARB_OP_MSTR_WRITE = 9,
PMIC_ARB_OP_EXT_READ = 13,
PMIC_ARB_OP_WRITE = 14,
PMIC_ARB_OP_READ = 15,
PMIC_ARB_OP_ZERO_WRITE = 16,
};
/* Maximum number of support PMIC peripherals */
#define PMIC_ARB_MAX_PERIPHS 512
#define PMIC_ARB_TIMEOUT_US 100
#define PMIC_ARB_MAX_TRANS_BYTES (8)
#define PMIC_ARB_APID_MASK 0xFF
#define PMIC_ARB_PPID_MASK 0xFFF
/* interrupt enable bit */
#define SPMI_PIC_ACC_ENABLE_BIT BIT(0)
#define HWIRQ(slave_id, periph_id, irq_id, apid) \
((((slave_id) & 0xF) << 28) | \
(((periph_id) & 0xFF) << 20) | \
(((irq_id) & 0x7) << 16) | \
(((apid) & 0x1FF) << 0))
#define HWIRQ_SID(hwirq) (((hwirq) >> 28) & 0xF)
#define HWIRQ_PER(hwirq) (((hwirq) >> 20) & 0xFF)
#define HWIRQ_IRQ(hwirq) (((hwirq) >> 16) & 0x7)
#define HWIRQ_APID(hwirq) (((hwirq) >> 0) & 0x1FF)
struct pmic_arb_ver_ops;
struct apid_data {
u16 ppid;
u8 owner;
};
/**
* spmi_pmic_arb - SPMI PMIC Arbiter object
*
* @rd_base: on v1 "core", on v2 "observer" register base off DT.
* @wr_base: on v1 "core", on v2 "chnls" register base off DT.
* @intr: address of the SPMI interrupt control registers.
* @cnfg: address of the PMIC Arbiter configuration registers.
* @lock: lock to synchronize accesses.
* @channel: execution environment channel to use for accesses.
* @irq: PMIC ARB interrupt.
* @ee: the current Execution Environment
* @min_apid: minimum APID (used for bounding IRQ search)
* @max_apid: maximum APID
* @max_periph: maximum number of PMIC peripherals supported by HW.
* @mapping_table: in-memory copy of PPID -> APID mapping table.
* @domain: irq domain object for PMIC IRQ domain
* @spmic: SPMI controller object
* @ver_ops: version dependent operations.
* @ppid_to_apid in-memory copy of PPID -> channel (APID) mapping table.
*/
struct spmi_pmic_arb {
void __iomem *rd_base;
void __iomem *wr_base;
void __iomem *intr;
void __iomem *cnfg;
void __iomem *core;
resource_size_t core_size;
raw_spinlock_t lock;
u8 channel;
int irq;
u8 ee;
u16 min_apid;
u16 max_apid;
u16 max_periph;
u32 *mapping_table;
DECLARE_BITMAP(mapping_table_valid, PMIC_ARB_MAX_PERIPHS);
struct irq_domain *domain;
struct spmi_controller *spmic;
const struct pmic_arb_ver_ops *ver_ops;
u16 *ppid_to_apid;
u16 last_apid;
struct apid_data apid_data[PMIC_ARB_MAX_PERIPHS];
};
/**
* pmic_arb_ver: version dependent functionality.
*
* @ver_str: version string.
* @ppid_to_apid: finds the apid for a given ppid.
* @mode: access rights to specified pmic peripheral.
* @non_data_cmd: on v1 issues an spmi non-data command.
* on v2 no HW support, returns -EOPNOTSUPP.
* @offset: on v1 offset of per-ee channel.
* on v2 offset of per-ee and per-ppid channel.
* @fmt_cmd: formats a GENI/SPMI command.
* @owner_acc_status: on v1 offset of PMIC_ARB_SPMI_PIC_OWNERm_ACC_STATUSn
* on v2 offset of SPMI_PIC_OWNERm_ACC_STATUSn.
* @acc_enable: on v1 offset of PMIC_ARB_SPMI_PIC_ACC_ENABLEn
* on v2 offset of SPMI_PIC_ACC_ENABLEn.
* @irq_status: on v1 offset of PMIC_ARB_SPMI_PIC_IRQ_STATUSn
* on v2 offset of SPMI_PIC_IRQ_STATUSn.
* @irq_clear: on v1 offset of PMIC_ARB_SPMI_PIC_IRQ_CLEARn
* on v2 offset of SPMI_PIC_IRQ_CLEARn.
*/
struct pmic_arb_ver_ops {
const char *ver_str;
int (*ppid_to_apid)(struct spmi_pmic_arb *pa, u8 sid, u16 addr,
u16 *apid);
int (*mode)(struct spmi_pmic_arb *dev, u8 sid, u16 addr,
mode_t *mode);
/* spmi commands (read_cmd, write_cmd, cmd) functionality */
int (*offset)(struct spmi_pmic_arb *dev, u8 sid, u16 addr,
u32 *offset);
u32 (*fmt_cmd)(u8 opc, u8 sid, u16 addr, u8 bc);
int (*non_data_cmd)(struct spmi_controller *ctrl, u8 opc, u8 sid);
/* Interrupts controller functionality (offset of PIC registers) */
u32 (*owner_acc_status)(u8 m, u16 n);
u32 (*acc_enable)(u16 n);
u32 (*irq_status)(u16 n);
u32 (*irq_clear)(u16 n);
};
static inline void pmic_arb_base_write(struct spmi_pmic_arb *pa,
u32 offset, u32 val)
{
writel_relaxed(val, pa->wr_base + offset);
}
static inline void pmic_arb_set_rd_cmd(struct spmi_pmic_arb *pa,
u32 offset, u32 val)
{
writel_relaxed(val, pa->rd_base + offset);
}
/**
* pa_read_data: reads pmic-arb's register and copy 1..4 bytes to buf
* @bc: byte count -1. range: 0..3
* @reg: register's address
* @buf: output parameter, length must be bc + 1
*/
static void pa_read_data(struct spmi_pmic_arb *pa, u8 *buf, u32 reg, u8 bc)
{
u32 data = __raw_readl(pa->rd_base + reg);
memcpy(buf, &data, (bc & 3) + 1);
}
/**
* pa_write_data: write 1..4 bytes from buf to pmic-arb's register
* @bc: byte-count -1. range: 0..3.
* @reg: register's address.
* @buf: buffer to write. length must be bc + 1.
*/
static void
pa_write_data(struct spmi_pmic_arb *pa, const u8 *buf, u32 reg, u8 bc)
{
u32 data = 0;
memcpy(&data, buf, (bc & 3) + 1);
pmic_arb_base_write(pa, reg, data);
}
static int pmic_arb_wait_for_done(struct spmi_controller *ctrl,
void __iomem *base, u8 sid, u16 addr)
{
struct spmi_pmic_arb *pa = spmi_controller_get_drvdata(ctrl);
u32 status = 0;
u32 timeout = PMIC_ARB_TIMEOUT_US;
u32 offset;
int rc;
rc = pa->ver_ops->offset(pa, sid, addr, &offset);
if (rc)
return rc;
offset += PMIC_ARB_STATUS;
while (timeout--) {
status = readl_relaxed(base + offset);
if (status & PMIC_ARB_STATUS_DONE) {
if (status & PMIC_ARB_STATUS_DENIED) {
dev_err(&ctrl->dev,
"%s: transaction denied (0x%x)\n",
__func__, status);
return -EPERM;
}
if (status & PMIC_ARB_STATUS_FAILURE) {
dev_err(&ctrl->dev,
"%s: transaction failed (0x%x)\n",
__func__, status);
return -EIO;
}
if (status & PMIC_ARB_STATUS_DROPPED) {
dev_err(&ctrl->dev,
"%s: transaction dropped (0x%x)\n",
__func__, status);
return -EIO;
}
return 0;
}
udelay(1);
}
dev_err(&ctrl->dev,
"%s: timeout, status 0x%x\n",
__func__, status);
return -ETIMEDOUT;
}
static int
pmic_arb_non_data_cmd_v1(struct spmi_controller *ctrl, u8 opc, u8 sid)
{
struct spmi_pmic_arb *pa = spmi_controller_get_drvdata(ctrl);
unsigned long flags;
u32 cmd;
int rc;
u32 offset;
rc = pa->ver_ops->offset(pa, sid, 0, &offset);
if (rc)
return rc;
cmd = ((opc | 0x40) << 27) | ((sid & 0xf) << 20);
raw_spin_lock_irqsave(&pa->lock, flags);
pmic_arb_base_write(pa, offset + PMIC_ARB_CMD, cmd);
rc = pmic_arb_wait_for_done(ctrl, pa->wr_base, sid, 0);
raw_spin_unlock_irqrestore(&pa->lock, flags);
return rc;
}
static int
pmic_arb_non_data_cmd_v2(struct spmi_controller *ctrl, u8 opc, u8 sid)
{
return -EOPNOTSUPP;
}
/* Non-data command */
static int pmic_arb_cmd(struct spmi_controller *ctrl, u8 opc, u8 sid)
{
struct spmi_pmic_arb *pa = spmi_controller_get_drvdata(ctrl);
dev_dbg(&ctrl->dev, "cmd op:0x%x sid:%d\n", opc, sid);
/* Check for valid non-data command */
if (opc < SPMI_CMD_RESET || opc > SPMI_CMD_WAKEUP)
return -EINVAL;
return pa->ver_ops->non_data_cmd(ctrl, opc, sid);
}
static int pmic_arb_read_cmd(struct spmi_controller *ctrl, u8 opc, u8 sid,
u16 addr, u8 *buf, size_t len)
{
struct spmi_pmic_arb *pa = spmi_controller_get_drvdata(ctrl);
unsigned long flags;
u8 bc = len - 1;
u32 cmd;
int rc;
u32 offset;
mode_t mode;
rc = pa->ver_ops->offset(pa, sid, addr, &offset);
if (rc)
return rc;
rc = pa->ver_ops->mode(pa, sid, addr, &mode);
if (rc)
return rc;
if (!(mode & S_IRUSR)) {
dev_err(&pa->spmic->dev,
"error: impermissible read from peripheral sid:%d addr:0x%x\n",
sid, addr);
return -EPERM;
}
if (bc >= PMIC_ARB_MAX_TRANS_BYTES) {
dev_err(&ctrl->dev,
"pmic-arb supports 1..%d bytes per trans, but:%zu requested",
PMIC_ARB_MAX_TRANS_BYTES, len);
return -EINVAL;
}
/* Check the opcode */
if (opc >= 0x60 && opc <= 0x7F)
opc = PMIC_ARB_OP_READ;
else if (opc >= 0x20 && opc <= 0x2F)
opc = PMIC_ARB_OP_EXT_READ;
else if (opc >= 0x38 && opc <= 0x3F)
opc = PMIC_ARB_OP_EXT_READL;
else
return -EINVAL;
cmd = pa->ver_ops->fmt_cmd(opc, sid, addr, bc);
raw_spin_lock_irqsave(&pa->lock, flags);
pmic_arb_set_rd_cmd(pa, offset + PMIC_ARB_CMD, cmd);
rc = pmic_arb_wait_for_done(ctrl, pa->rd_base, sid, addr);
if (rc)
goto done;
pa_read_data(pa, buf, offset + PMIC_ARB_RDATA0,
min_t(u8, bc, 3));
if (bc > 3)
pa_read_data(pa, buf + 4, offset + PMIC_ARB_RDATA1, bc - 4);
done:
raw_spin_unlock_irqrestore(&pa->lock, flags);
return rc;
}
static int pmic_arb_write_cmd(struct spmi_controller *ctrl, u8 opc, u8 sid,
u16 addr, const u8 *buf, size_t len)
{
struct spmi_pmic_arb *pa = spmi_controller_get_drvdata(ctrl);
unsigned long flags;
u8 bc = len - 1;
u32 cmd;
int rc;
u32 offset;
mode_t mode;
rc = pa->ver_ops->offset(pa, sid, addr, &offset);
if (rc)
return rc;
rc = pa->ver_ops->mode(pa, sid, addr, &mode);
if (rc)
return rc;
if (!(mode & S_IWUSR)) {
dev_err(&pa->spmic->dev,
"error: impermissible write to peripheral sid:%d addr:0x%x\n",
sid, addr);
return -EPERM;
}
if (bc >= PMIC_ARB_MAX_TRANS_BYTES) {
dev_err(&ctrl->dev,
"pmic-arb supports 1..%d bytes per trans, but:%zu requested",
PMIC_ARB_MAX_TRANS_BYTES, len);
return -EINVAL;
}
/* Check the opcode */
if (opc >= 0x40 && opc <= 0x5F)
opc = PMIC_ARB_OP_WRITE;
else if (opc >= 0x00 && opc <= 0x0F)
opc = PMIC_ARB_OP_EXT_WRITE;
else if (opc >= 0x30 && opc <= 0x37)
opc = PMIC_ARB_OP_EXT_WRITEL;
else if (opc >= 0x80)
opc = PMIC_ARB_OP_ZERO_WRITE;
else
return -EINVAL;
cmd = pa->ver_ops->fmt_cmd(opc, sid, addr, bc);
/* Write data to FIFOs */
raw_spin_lock_irqsave(&pa->lock, flags);
pa_write_data(pa, buf, offset + PMIC_ARB_WDATA0, min_t(u8, bc, 3));
if (bc > 3)
pa_write_data(pa, buf + 4, offset + PMIC_ARB_WDATA1, bc - 4);
/* Start the transaction */
pmic_arb_base_write(pa, offset + PMIC_ARB_CMD, cmd);
rc = pmic_arb_wait_for_done(ctrl, pa->wr_base, sid, addr);
raw_spin_unlock_irqrestore(&pa->lock, flags);
return rc;
}
enum qpnpint_regs {
QPNPINT_REG_RT_STS = 0x10,
QPNPINT_REG_SET_TYPE = 0x11,
QPNPINT_REG_POLARITY_HIGH = 0x12,
QPNPINT_REG_POLARITY_LOW = 0x13,
QPNPINT_REG_LATCHED_CLR = 0x14,
QPNPINT_REG_EN_SET = 0x15,
QPNPINT_REG_EN_CLR = 0x16,
QPNPINT_REG_LATCHED_STS = 0x18,
};
struct spmi_pmic_arb_qpnpint_type {
u8 type; /* 1 -> edge */
u8 polarity_high;
u8 polarity_low;
} __packed;
/* Simplified accessor functions for irqchip callbacks */
static void qpnpint_spmi_write(struct irq_data *d, u8 reg, void *buf,
size_t len)
{
struct spmi_pmic_arb *pa = irq_data_get_irq_chip_data(d);
u8 sid = HWIRQ_SID(d->hwirq);
u8 per = HWIRQ_PER(d->hwirq);
if (pmic_arb_write_cmd(pa->spmic, SPMI_CMD_EXT_WRITEL, sid,
(per << 8) + reg, buf, len))
dev_err_ratelimited(&pa->spmic->dev,
"failed irqchip transaction on %x\n",
d->irq);
}
static void qpnpint_spmi_read(struct irq_data *d, u8 reg, void *buf, size_t len)
{
struct spmi_pmic_arb *pa = irq_data_get_irq_chip_data(d);
u8 sid = HWIRQ_SID(d->hwirq);
u8 per = HWIRQ_PER(d->hwirq);
if (pmic_arb_read_cmd(pa->spmic, SPMI_CMD_EXT_READL, sid,
(per << 8) + reg, buf, len))
dev_err_ratelimited(&pa->spmic->dev,
"failed irqchip transaction on %x\n",
d->irq);
}
static void cleanup_irq(struct spmi_pmic_arb *pa, u16 apid, int id)
{
u16 ppid = pa->apid_data[apid].ppid;
u8 sid = ppid >> 8;
u8 per = ppid & 0xFF;
u8 irq_mask = BIT(id);
writel_relaxed(irq_mask, pa->intr + pa->ver_ops->irq_clear(apid));
if (pmic_arb_write_cmd(pa->spmic, SPMI_CMD_EXT_WRITEL, sid,
(per << 8) + QPNPINT_REG_LATCHED_CLR, &irq_mask, 1))
dev_err_ratelimited(&pa->spmic->dev,
"failed to ack irq_mask = 0x%x for ppid = %x\n",
irq_mask, ppid);
if (pmic_arb_write_cmd(pa->spmic, SPMI_CMD_EXT_WRITEL, sid,
(per << 8) + QPNPINT_REG_EN_CLR, &irq_mask, 1))
dev_err_ratelimited(&pa->spmic->dev,
"failed to ack irq_mask = 0x%x for ppid = %x\n",
irq_mask, ppid);
}
static void periph_interrupt(struct spmi_pmic_arb *pa, u16 apid)
{
unsigned int irq;
u32 status;
int id;
u8 sid = (pa->apid_data[apid].ppid >> 8) & 0xF;
u8 per = pa->apid_data[apid].ppid & 0xFF;
status = readl_relaxed(pa->intr + pa->ver_ops->irq_status(apid));
while (status) {
id = ffs(status) - 1;
status &= ~BIT(id);
irq = irq_find_mapping(pa->domain, HWIRQ(sid, per, id, apid));
if (irq == 0) {
cleanup_irq(pa, apid, id);
continue;
}
generic_handle_irq(irq);
}
}
static void pmic_arb_chained_irq(struct irq_desc *desc)
{
struct spmi_pmic_arb *pa = irq_desc_get_handler_data(desc);
struct irq_chip *chip = irq_desc_get_chip(desc);
void __iomem *intr = pa->intr;
int first = pa->min_apid >> 5;
int last = pa->max_apid >> 5;
u32 status, enable;
int i, id, apid;
chained_irq_enter(chip, desc);
for (i = first; i <= last; ++i) {
status = readl_relaxed(intr +
pa->ver_ops->owner_acc_status(pa->ee, i));
while (status) {
id = ffs(status) - 1;
status &= ~BIT(id);
apid = id + i * 32;
enable = readl_relaxed(intr +
pa->ver_ops->acc_enable(apid));
if (enable & SPMI_PIC_ACC_ENABLE_BIT)
periph_interrupt(pa, apid);
}
}
chained_irq_exit(chip, desc);
}
static void qpnpint_irq_ack(struct irq_data *d)
{
struct spmi_pmic_arb *pa = irq_data_get_irq_chip_data(d);
u8 irq = HWIRQ_IRQ(d->hwirq);
u16 apid = HWIRQ_APID(d->hwirq);
u8 data;
writel_relaxed(BIT(irq), pa->intr + pa->ver_ops->irq_clear(apid));
data = BIT(irq);
qpnpint_spmi_write(d, QPNPINT_REG_LATCHED_CLR, &data, 1);
}
static void qpnpint_irq_mask(struct irq_data *d)
{
u8 irq = HWIRQ_IRQ(d->hwirq);
u8 data = BIT(irq);
qpnpint_spmi_write(d, QPNPINT_REG_EN_CLR, &data, 1);
}
static void qpnpint_irq_unmask(struct irq_data *d)
{
struct spmi_pmic_arb *pa = irq_data_get_irq_chip_data(d);
u8 irq = HWIRQ_IRQ(d->hwirq);
u16 apid = HWIRQ_APID(d->hwirq);
spmi: pmic-arb: clear the latched status of the interrupt PMIC interrupts each have an internal latched status bit which is not visible from any register. This status bit is set as soon as the conditions specified in the interrupt type and polarity registers are met even if the interrupt is not enabled. When it is set, nothing else changes within the PMIC and no interrupt notification packets are sent. If the internal latched status bit is set when an interrupt is enabled, then the value is immediately propagated into the interrupt latched status register and an interrupt notification packet is sent out from the PMIC over SPMI. This PMIC hardware behavior can lead to a situation where the handler for a level triggered interrupt is called immediately after enable_irq() is called even though the interrupt physically triggered while it was disabled within the genirq framework. This situation takes place if the the interrupt fires twice after calling disable_irq(). The first time it fires, the level flow handler will mask and disregard it. Unfortunately, the second time it fires, the internal latched status bit is set within the PMIC and no further notification is received. When enable_irq() is called later, the interrupt is unmasked (enabled in the PMIC) which results in the PMIC immediately sending an interrupt notification packet out over SPMI. This breaks the semantics of level triggered interrupts within the genirq framework since they should be completely ignored while disabled. The PMIC internal latched status behavior also affects how interrupts are treated during suspend. While entering suspend, all interrupts not specified as wakeup mode are masked. Upon resume, these interrupts are unmasked. Thus if any of the non-wakeup PMIC interrupts fired while the system was suspended, then the PMIC will send interrupt notification packets out via SPMI as soon as they are unmasked during resume. This behavior violates genirq semantics as well since non-wakeup interrupts should be completely ignored during suspend. Modify the qpnpint_irq_unmask() function so that the interrupt latched status clear register is written immediately before the interrupt enable register. This clears the internal latched status bit of the interrupt so that it cannot trigger spuriously immediately upon being enabled. Also, while resuming an irq, an unmask could be called even if it was not previously masked. So, before writing these registers, check if the interrupt is already enabled within the PMIC. If it is, then no further register writes are required. This condition check ensures that a valid latched status register bit is not cleared until it is properly handled. Signed-off-by: Abhijeet Dharmapurikar <adharmap@codeaurora.org> Signed-off-by: Kiran Gunda <kgunda@codeaurora.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-05-10 22:25:37 +08:00
u8 buf[2];
writel_relaxed(SPMI_PIC_ACC_ENABLE_BIT,
pa->intr + pa->ver_ops->acc_enable(apid));
spmi: pmic-arb: clear the latched status of the interrupt PMIC interrupts each have an internal latched status bit which is not visible from any register. This status bit is set as soon as the conditions specified in the interrupt type and polarity registers are met even if the interrupt is not enabled. When it is set, nothing else changes within the PMIC and no interrupt notification packets are sent. If the internal latched status bit is set when an interrupt is enabled, then the value is immediately propagated into the interrupt latched status register and an interrupt notification packet is sent out from the PMIC over SPMI. This PMIC hardware behavior can lead to a situation where the handler for a level triggered interrupt is called immediately after enable_irq() is called even though the interrupt physically triggered while it was disabled within the genirq framework. This situation takes place if the the interrupt fires twice after calling disable_irq(). The first time it fires, the level flow handler will mask and disregard it. Unfortunately, the second time it fires, the internal latched status bit is set within the PMIC and no further notification is received. When enable_irq() is called later, the interrupt is unmasked (enabled in the PMIC) which results in the PMIC immediately sending an interrupt notification packet out over SPMI. This breaks the semantics of level triggered interrupts within the genirq framework since they should be completely ignored while disabled. The PMIC internal latched status behavior also affects how interrupts are treated during suspend. While entering suspend, all interrupts not specified as wakeup mode are masked. Upon resume, these interrupts are unmasked. Thus if any of the non-wakeup PMIC interrupts fired while the system was suspended, then the PMIC will send interrupt notification packets out via SPMI as soon as they are unmasked during resume. This behavior violates genirq semantics as well since non-wakeup interrupts should be completely ignored during suspend. Modify the qpnpint_irq_unmask() function so that the interrupt latched status clear register is written immediately before the interrupt enable register. This clears the internal latched status bit of the interrupt so that it cannot trigger spuriously immediately upon being enabled. Also, while resuming an irq, an unmask could be called even if it was not previously masked. So, before writing these registers, check if the interrupt is already enabled within the PMIC. If it is, then no further register writes are required. This condition check ensures that a valid latched status register bit is not cleared until it is properly handled. Signed-off-by: Abhijeet Dharmapurikar <adharmap@codeaurora.org> Signed-off-by: Kiran Gunda <kgunda@codeaurora.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-05-10 22:25:37 +08:00
qpnpint_spmi_read(d, QPNPINT_REG_EN_SET, &buf[0], 1);
if (!(buf[0] & BIT(irq))) {
/*
* Since the interrupt is currently disabled, write to both the
* LATCHED_CLR and EN_SET registers so that a spurious interrupt
* cannot be triggered when the interrupt is enabled
*/
buf[0] = BIT(irq);
buf[1] = BIT(irq);
qpnpint_spmi_write(d, QPNPINT_REG_LATCHED_CLR, &buf, 2);
}
}
static int qpnpint_irq_set_type(struct irq_data *d, unsigned int flow_type)
{
struct spmi_pmic_arb_qpnpint_type type;
u8 irq = HWIRQ_IRQ(d->hwirq);
u8 bit_mask_irq = BIT(irq);
qpnpint_spmi_read(d, QPNPINT_REG_SET_TYPE, &type, sizeof(type));
if (flow_type & (IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING)) {
type.type |= bit_mask_irq;
if (flow_type & IRQF_TRIGGER_RISING)
type.polarity_high |= bit_mask_irq;
if (flow_type & IRQF_TRIGGER_FALLING)
type.polarity_low |= bit_mask_irq;
} else {
if ((flow_type & (IRQF_TRIGGER_HIGH)) &&
(flow_type & (IRQF_TRIGGER_LOW)))
return -EINVAL;
type.type &= ~bit_mask_irq; /* level trig */
if (flow_type & IRQF_TRIGGER_HIGH)
type.polarity_high |= bit_mask_irq;
else
type.polarity_low |= bit_mask_irq;
}
qpnpint_spmi_write(d, QPNPINT_REG_SET_TYPE, &type, sizeof(type));
if (flow_type & IRQ_TYPE_EDGE_BOTH)
irq_set_handler_locked(d, handle_edge_irq);
else
irq_set_handler_locked(d, handle_level_irq);
return 0;
}
static int qpnpint_get_irqchip_state(struct irq_data *d,
enum irqchip_irq_state which,
bool *state)
{
u8 irq = HWIRQ_IRQ(d->hwirq);
u8 status = 0;
if (which != IRQCHIP_STATE_LINE_LEVEL)
return -EINVAL;
qpnpint_spmi_read(d, QPNPINT_REG_RT_STS, &status, 1);
*state = !!(status & BIT(irq));
return 0;
}
static struct irq_chip pmic_arb_irqchip = {
.name = "pmic_arb",
.irq_ack = qpnpint_irq_ack,
.irq_mask = qpnpint_irq_mask,
.irq_unmask = qpnpint_irq_unmask,
.irq_set_type = qpnpint_irq_set_type,
.irq_get_irqchip_state = qpnpint_get_irqchip_state,
.flags = IRQCHIP_MASK_ON_SUSPEND
| IRQCHIP_SKIP_SET_WAKE,
};
static int qpnpint_irq_domain_dt_translate(struct irq_domain *d,
struct device_node *controller,
const u32 *intspec,
unsigned int intsize,
unsigned long *out_hwirq,
unsigned int *out_type)
{
struct spmi_pmic_arb *pa = d->host_data;
int rc;
u16 apid;
dev_dbg(&pa->spmic->dev,
"intspec[0] 0x%1x intspec[1] 0x%02x intspec[2] 0x%02x\n",
intspec[0], intspec[1], intspec[2]);
if (irq_domain_get_of_node(d) != controller)
return -EINVAL;
if (intsize != 4)
return -EINVAL;
if (intspec[0] > 0xF || intspec[1] > 0xFF || intspec[2] > 0x7)
return -EINVAL;
rc = pa->ver_ops->ppid_to_apid(pa, intspec[0],
(intspec[1] << 8), &apid);
if (rc < 0) {
dev_err(&pa->spmic->dev,
"failed to xlate sid = 0x%x, periph = 0x%x, irq = %x rc = %d\n",
intspec[0], intspec[1], intspec[2], rc);
return rc;
}
/* Keep track of {max,min}_apid for bounding search during interrupt */
if (apid > pa->max_apid)
pa->max_apid = apid;
if (apid < pa->min_apid)
pa->min_apid = apid;
*out_hwirq = HWIRQ(intspec[0], intspec[1], intspec[2], apid);
*out_type = intspec[3] & IRQ_TYPE_SENSE_MASK;
dev_dbg(&pa->spmic->dev, "out_hwirq = %lu\n", *out_hwirq);
return 0;
}
static int qpnpint_irq_domain_map(struct irq_domain *d,
unsigned int virq,
irq_hw_number_t hwirq)
{
struct spmi_pmic_arb *pa = d->host_data;
dev_dbg(&pa->spmic->dev, "virq = %u, hwirq = %lu\n", virq, hwirq);
irq_set_chip_and_handler(virq, &pmic_arb_irqchip, handle_level_irq);
irq_set_chip_data(virq, d->host_data);
irq_set_noprobe(virq);
return 0;
}
static int
pmic_arb_ppid_to_apid_v1(struct spmi_pmic_arb *pa, u8 sid, u16 addr, u16 *apid)
{
u16 ppid = sid << 8 | ((addr >> 8) & 0xFF);
u32 *mapping_table = pa->mapping_table;
int index = 0, i;
u16 apid_valid;
u32 data;
apid_valid = pa->ppid_to_apid[ppid];
if (apid_valid & PMIC_ARB_CHAN_VALID) {
*apid = (apid_valid & ~PMIC_ARB_CHAN_VALID);
return 0;
}
for (i = 0; i < SPMI_MAPPING_TABLE_TREE_DEPTH; ++i) {
if (!test_and_set_bit(index, pa->mapping_table_valid))
mapping_table[index] = readl_relaxed(pa->cnfg +
SPMI_MAPPING_TABLE_REG(index));
data = mapping_table[index];
if (ppid & BIT(SPMI_MAPPING_BIT_INDEX(data))) {
if (SPMI_MAPPING_BIT_IS_1_FLAG(data)) {
index = SPMI_MAPPING_BIT_IS_1_RESULT(data);
} else {
*apid = SPMI_MAPPING_BIT_IS_1_RESULT(data);
pa->ppid_to_apid[ppid]
= *apid | PMIC_ARB_CHAN_VALID;
pa->apid_data[*apid].ppid = ppid;
return 0;
}
} else {
if (SPMI_MAPPING_BIT_IS_0_FLAG(data)) {
index = SPMI_MAPPING_BIT_IS_0_RESULT(data);
} else {
*apid = SPMI_MAPPING_BIT_IS_0_RESULT(data);
pa->ppid_to_apid[ppid]
= *apid | PMIC_ARB_CHAN_VALID;
pa->apid_data[*apid].ppid = ppid;
return 0;
}
}
}
return -ENODEV;
}
static int
pmic_arb_mode_v1_v3(struct spmi_pmic_arb *pa, u8 sid, u16 addr, mode_t *mode)
{
*mode = S_IRUSR | S_IWUSR;
return 0;
}
/* v1 offset per ee */
static int
pmic_arb_offset_v1(struct spmi_pmic_arb *pa, u8 sid, u16 addr, u32 *offset)
{
*offset = 0x800 + 0x80 * pa->channel;
return 0;
}
static u16 pmic_arb_find_apid(struct spmi_pmic_arb *pa, u16 ppid)
{
u32 regval, offset;
u16 apid;
u16 id;
/*
* PMIC_ARB_REG_CHNL is a table in HW mapping channel to ppid.
* ppid_to_apid is an in-memory invert of that table.
*/
for (apid = pa->last_apid; apid < pa->max_periph; apid++) {
regval = readl_relaxed(pa->cnfg +
SPMI_OWNERSHIP_TABLE_REG(apid));
pa->apid_data[apid].owner = SPMI_OWNERSHIP_PERIPH2OWNER(regval);
offset = PMIC_ARB_REG_CHNL(apid);
if (offset >= pa->core_size)
break;
regval = readl_relaxed(pa->core + offset);
if (!regval)
continue;
id = (regval >> 8) & PMIC_ARB_PPID_MASK;
pa->ppid_to_apid[id] = apid | PMIC_ARB_CHAN_VALID;
pa->apid_data[apid].ppid = id;
if (id == ppid) {
apid |= PMIC_ARB_CHAN_VALID;
break;
}
}
pa->last_apid = apid & ~PMIC_ARB_CHAN_VALID;
return apid;
}
static int
pmic_arb_ppid_to_apid_v2(struct spmi_pmic_arb *pa, u8 sid, u16 addr, u16 *apid)
{
u16 ppid = (sid << 8) | (addr >> 8);
u16 apid_valid;
apid_valid = pa->ppid_to_apid[ppid];
if (!(apid_valid & PMIC_ARB_CHAN_VALID))
apid_valid = pmic_arb_find_apid(pa, ppid);
if (!(apid_valid & PMIC_ARB_CHAN_VALID))
return -ENODEV;
*apid = (apid_valid & ~PMIC_ARB_CHAN_VALID);
return 0;
}
static int
pmic_arb_mode_v2(struct spmi_pmic_arb *pa, u8 sid, u16 addr, mode_t *mode)
{
u16 apid;
int rc;
rc = pmic_arb_ppid_to_apid_v2(pa, sid, addr, &apid);
if (rc < 0)
return rc;
*mode = 0;
*mode |= S_IRUSR;
if (pa->ee == pa->apid_data[apid].owner)
*mode |= S_IWUSR;
return 0;
}
/* v2 offset per ppid and per ee */
static int
pmic_arb_offset_v2(struct spmi_pmic_arb *pa, u8 sid, u16 addr, u32 *offset)
{
u16 apid;
int rc;
rc = pmic_arb_ppid_to_apid_v2(pa, sid, addr, &apid);
if (rc < 0)
return rc;
*offset = 0x1000 * pa->ee + 0x8000 * apid;
return 0;
}
static u32 pmic_arb_fmt_cmd_v1(u8 opc, u8 sid, u16 addr, u8 bc)
{
return (opc << 27) | ((sid & 0xf) << 20) | (addr << 4) | (bc & 0x7);
}
static u32 pmic_arb_fmt_cmd_v2(u8 opc, u8 sid, u16 addr, u8 bc)
{
return (opc << 27) | ((addr & 0xff) << 4) | (bc & 0x7);
}
static u32 pmic_arb_owner_acc_status_v1(u8 m, u16 n)
{
return 0x20 * m + 0x4 * n;
}
static u32 pmic_arb_owner_acc_status_v2(u8 m, u16 n)
{
return 0x100000 + 0x1000 * m + 0x4 * n;
}
static u32 pmic_arb_owner_acc_status_v3(u8 m, u16 n)
{
return 0x200000 + 0x1000 * m + 0x4 * n;
}
static u32 pmic_arb_acc_enable_v1(u16 n)
{
return 0x200 + 0x4 * n;
}
static u32 pmic_arb_acc_enable_v2(u16 n)
{
return 0x1000 * n;
}
static u32 pmic_arb_irq_status_v1(u16 n)
{
return 0x600 + 0x4 * n;
}
static u32 pmic_arb_irq_status_v2(u16 n)
{
return 0x4 + 0x1000 * n;
}
static u32 pmic_arb_irq_clear_v1(u16 n)
{
return 0xA00 + 0x4 * n;
}
static u32 pmic_arb_irq_clear_v2(u16 n)
{
return 0x8 + 0x1000 * n;
}
static const struct pmic_arb_ver_ops pmic_arb_v1 = {
.ver_str = "v1",
.ppid_to_apid = pmic_arb_ppid_to_apid_v1,
.mode = pmic_arb_mode_v1_v3,
.non_data_cmd = pmic_arb_non_data_cmd_v1,
.offset = pmic_arb_offset_v1,
.fmt_cmd = pmic_arb_fmt_cmd_v1,
.owner_acc_status = pmic_arb_owner_acc_status_v1,
.acc_enable = pmic_arb_acc_enable_v1,
.irq_status = pmic_arb_irq_status_v1,
.irq_clear = pmic_arb_irq_clear_v1,
};
static const struct pmic_arb_ver_ops pmic_arb_v2 = {
.ver_str = "v2",
.ppid_to_apid = pmic_arb_ppid_to_apid_v2,
.mode = pmic_arb_mode_v2,
.non_data_cmd = pmic_arb_non_data_cmd_v2,
.offset = pmic_arb_offset_v2,
.fmt_cmd = pmic_arb_fmt_cmd_v2,
.owner_acc_status = pmic_arb_owner_acc_status_v2,
.acc_enable = pmic_arb_acc_enable_v2,
.irq_status = pmic_arb_irq_status_v2,
.irq_clear = pmic_arb_irq_clear_v2,
};
static const struct pmic_arb_ver_ops pmic_arb_v3 = {
.ver_str = "v3",
.ppid_to_apid = pmic_arb_ppid_to_apid_v2,
.mode = pmic_arb_mode_v1_v3,
.non_data_cmd = pmic_arb_non_data_cmd_v2,
.offset = pmic_arb_offset_v2,
.fmt_cmd = pmic_arb_fmt_cmd_v2,
.owner_acc_status = pmic_arb_owner_acc_status_v3,
.acc_enable = pmic_arb_acc_enable_v2,
.irq_status = pmic_arb_irq_status_v2,
.irq_clear = pmic_arb_irq_clear_v2,
};
static const struct irq_domain_ops pmic_arb_irq_domain_ops = {
.map = qpnpint_irq_domain_map,
.xlate = qpnpint_irq_domain_dt_translate,
};
static int spmi_pmic_arb_probe(struct platform_device *pdev)
{
struct spmi_pmic_arb *pa;
struct spmi_controller *ctrl;
struct resource *res;
void __iomem *core;
u32 channel, ee, hw_ver;
int err;
ctrl = spmi_controller_alloc(&pdev->dev, sizeof(*pa));
if (!ctrl)
return -ENOMEM;
pa = spmi_controller_get_drvdata(ctrl);
pa->spmic = ctrl;
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "core");
pa->core_size = resource_size(res);
if (pa->core_size <= 0x800) {
dev_err(&pdev->dev, "core_size is smaller than 0x800. Failing Probe\n");
err = -EINVAL;
goto err_put_ctrl;
}
core = devm_ioremap_resource(&ctrl->dev, res);
if (IS_ERR(core)) {
err = PTR_ERR(core);
goto err_put_ctrl;
}
pa->ppid_to_apid = devm_kcalloc(&ctrl->dev, PMIC_ARB_MAX_PPID,
sizeof(*pa->ppid_to_apid), GFP_KERNEL);
if (!pa->ppid_to_apid) {
err = -ENOMEM;
goto err_put_ctrl;
}
hw_ver = readl_relaxed(core + PMIC_ARB_VERSION);
if (hw_ver < PMIC_ARB_VERSION_V2_MIN) {
pa->ver_ops = &pmic_arb_v1;
pa->wr_base = core;
pa->rd_base = core;
} else {
pa->core = core;
if (hw_ver < PMIC_ARB_VERSION_V3_MIN)
pa->ver_ops = &pmic_arb_v2;
else
pa->ver_ops = &pmic_arb_v3;
/* the apid to ppid table starts at PMIC_ARB_REG_CHNL(0) */
pa->max_periph = (pa->core_size - PMIC_ARB_REG_CHNL(0)) / 4;
res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"obsrvr");
pa->rd_base = devm_ioremap_resource(&ctrl->dev, res);
if (IS_ERR(pa->rd_base)) {
err = PTR_ERR(pa->rd_base);
goto err_put_ctrl;
}
res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"chnls");
pa->wr_base = devm_ioremap_resource(&ctrl->dev, res);
if (IS_ERR(pa->wr_base)) {
err = PTR_ERR(pa->wr_base);
goto err_put_ctrl;
}
}
dev_info(&ctrl->dev, "PMIC arbiter version %s (0x%x)\n",
pa->ver_ops->ver_str, hw_ver);
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "intr");
pa->intr = devm_ioremap_resource(&ctrl->dev, res);
if (IS_ERR(pa->intr)) {
err = PTR_ERR(pa->intr);
goto err_put_ctrl;
}
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "cnfg");
pa->cnfg = devm_ioremap_resource(&ctrl->dev, res);
if (IS_ERR(pa->cnfg)) {
err = PTR_ERR(pa->cnfg);
goto err_put_ctrl;
}
pa->irq = platform_get_irq_byname(pdev, "periph_irq");
if (pa->irq < 0) {
err = pa->irq;
goto err_put_ctrl;
}
err = of_property_read_u32(pdev->dev.of_node, "qcom,channel", &channel);
if (err) {
dev_err(&pdev->dev, "channel unspecified.\n");
goto err_put_ctrl;
}
if (channel > 5) {
dev_err(&pdev->dev, "invalid channel (%u) specified.\n",
channel);
err = -EINVAL;
goto err_put_ctrl;
}
pa->channel = channel;
err = of_property_read_u32(pdev->dev.of_node, "qcom,ee", &ee);
if (err) {
dev_err(&pdev->dev, "EE unspecified.\n");
goto err_put_ctrl;
}
if (ee > 5) {
dev_err(&pdev->dev, "invalid EE (%u) specified\n", ee);
err = -EINVAL;
goto err_put_ctrl;
}
pa->ee = ee;
pa->mapping_table = devm_kcalloc(&ctrl->dev, PMIC_ARB_MAX_PERIPHS - 1,
sizeof(*pa->mapping_table), GFP_KERNEL);
if (!pa->mapping_table) {
err = -ENOMEM;
goto err_put_ctrl;
}
/* Initialize max_apid/min_apid to the opposite bounds, during
* the irq domain translation, we are sure to update these */
pa->max_apid = 0;
pa->min_apid = PMIC_ARB_MAX_PERIPHS - 1;
platform_set_drvdata(pdev, ctrl);
raw_spin_lock_init(&pa->lock);
ctrl->cmd = pmic_arb_cmd;
ctrl->read_cmd = pmic_arb_read_cmd;
ctrl->write_cmd = pmic_arb_write_cmd;
dev_dbg(&pdev->dev, "adding irq domain\n");
pa->domain = irq_domain_add_tree(pdev->dev.of_node,
&pmic_arb_irq_domain_ops, pa);
if (!pa->domain) {
dev_err(&pdev->dev, "unable to create irq_domain\n");
err = -ENOMEM;
goto err_put_ctrl;
}
irq_set_chained_handler_and_data(pa->irq, pmic_arb_chained_irq, pa);
enable_irq_wake(pa->irq);
err = spmi_controller_add(ctrl);
if (err)
goto err_domain_remove;
return 0;
err_domain_remove:
irq_set_chained_handler_and_data(pa->irq, NULL, NULL);
irq_domain_remove(pa->domain);
err_put_ctrl:
spmi_controller_put(ctrl);
return err;
}
static int spmi_pmic_arb_remove(struct platform_device *pdev)
{
struct spmi_controller *ctrl = platform_get_drvdata(pdev);
struct spmi_pmic_arb *pa = spmi_controller_get_drvdata(ctrl);
spmi_controller_remove(ctrl);
irq_set_chained_handler_and_data(pa->irq, NULL, NULL);
irq_domain_remove(pa->domain);
spmi_controller_put(ctrl);
return 0;
}
static const struct of_device_id spmi_pmic_arb_match_table[] = {
{ .compatible = "qcom,spmi-pmic-arb", },
{},
};
MODULE_DEVICE_TABLE(of, spmi_pmic_arb_match_table);
static struct platform_driver spmi_pmic_arb_driver = {
.probe = spmi_pmic_arb_probe,
.remove = spmi_pmic_arb_remove,
.driver = {
.name = "spmi_pmic_arb",
.of_match_table = spmi_pmic_arb_match_table,
},
};
module_platform_driver(spmi_pmic_arb_driver);
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:spmi_pmic_arb");