linux-sg2042/fs/jfs/jfs_logmgr.c

2548 lines
59 KiB
C
Raw Normal View History

/*
* Copyright (C) International Business Machines Corp., 2000-2004
* Portions Copyright (C) Christoph Hellwig, 2001-2002
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
* the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/*
* jfs_logmgr.c: log manager
*
* for related information, see transaction manager (jfs_txnmgr.c), and
* recovery manager (jfs_logredo.c).
*
* note: for detail, RTFS.
*
* log buffer manager:
* special purpose buffer manager supporting log i/o requirements.
* per log serial pageout of logpage
* queuing i/o requests and redrive i/o at iodone
* maintain current logpage buffer
* no caching since append only
* appropriate jfs buffer cache buffers as needed
*
* group commit:
* transactions which wrote COMMIT records in the same in-memory
* log page during the pageout of previous/current log page(s) are
* committed together by the pageout of the page.
*
* TBD lazy commit:
* transactions are committed asynchronously when the log page
* containing it COMMIT is paged out when it becomes full;
*
* serialization:
* . a per log lock serialize log write.
* . a per log lock serialize group commit.
* . a per log lock serialize log open/close;
*
* TBD log integrity:
* careful-write (ping-pong) of last logpage to recover from crash
* in overwrite.
* detection of split (out-of-order) write of physical sectors
* of last logpage via timestamp at end of each sector
* with its mirror data array at trailer).
*
* alternatives:
* lsn - 64-bit monotonically increasing integer vs
* 32-bit lspn and page eor.
*/
#include <linux/fs.h>
#include <linux/blkdev.h>
#include <linux/interrupt.h>
#include <linux/completion.h>
#include <linux/kthread.h>
#include <linux/buffer_head.h> /* for sync_blockdev() */
#include <linux/bio.h>
#include <linux/freezer.h>
#include <linux/delay.h>
#include <linux/mutex.h>
#include "jfs_incore.h"
#include "jfs_filsys.h"
#include "jfs_metapage.h"
#include "jfs_superblock.h"
#include "jfs_txnmgr.h"
#include "jfs_debug.h"
/*
* lbuf's ready to be redriven. Protected by log_redrive_lock (jfsIO thread)
*/
static struct lbuf *log_redrive_list;
static DEFINE_SPINLOCK(log_redrive_lock);
/*
* log read/write serialization (per log)
*/
#define LOG_LOCK_INIT(log) mutex_init(&(log)->loglock)
#define LOG_LOCK(log) mutex_lock(&((log)->loglock))
#define LOG_UNLOCK(log) mutex_unlock(&((log)->loglock))
/*
* log group commit serialization (per log)
*/
#define LOGGC_LOCK_INIT(log) spin_lock_init(&(log)->gclock)
#define LOGGC_LOCK(log) spin_lock_irq(&(log)->gclock)
#define LOGGC_UNLOCK(log) spin_unlock_irq(&(log)->gclock)
#define LOGGC_WAKEUP(tblk) wake_up_all(&(tblk)->gcwait)
/*
* log sync serialization (per log)
*/
#define LOGSYNC_DELTA(logsize) min((logsize)/8, 128*LOGPSIZE)
#define LOGSYNC_BARRIER(logsize) ((logsize)/4)
/*
#define LOGSYNC_DELTA(logsize) min((logsize)/4, 256*LOGPSIZE)
#define LOGSYNC_BARRIER(logsize) ((logsize)/2)
*/
/*
* log buffer cache synchronization
*/
static DEFINE_SPINLOCK(jfsLCacheLock);
#define LCACHE_LOCK(flags) spin_lock_irqsave(&jfsLCacheLock, flags)
#define LCACHE_UNLOCK(flags) spin_unlock_irqrestore(&jfsLCacheLock, flags)
/*
* See __SLEEP_COND in jfs_locks.h
*/
#define LCACHE_SLEEP_COND(wq, cond, flags) \
do { \
if (cond) \
break; \
__SLEEP_COND(wq, cond, LCACHE_LOCK(flags), LCACHE_UNLOCK(flags)); \
} while (0)
#define LCACHE_WAKEUP(event) wake_up(event)
/*
* lbuf buffer cache (lCache) control
*/
/* log buffer manager pageout control (cumulative, inclusive) */
#define lbmREAD 0x0001
#define lbmWRITE 0x0002 /* enqueue at tail of write queue;
* init pageout if at head of queue;
*/
#define lbmRELEASE 0x0004 /* remove from write queue
* at completion of pageout;
* do not free/recycle it yet:
* caller will free it;
*/
#define lbmSYNC 0x0008 /* do not return to freelist
* when removed from write queue;
*/
#define lbmFREE 0x0010 /* return to freelist
* at completion of pageout;
* the buffer may be recycled;
*/
#define lbmDONE 0x0020
#define lbmERROR 0x0040
#define lbmGC 0x0080 /* lbmIODone to perform post-GC processing
* of log page
*/
#define lbmDIRECT 0x0100
/*
* Global list of active external journals
*/
static LIST_HEAD(jfs_external_logs);
static struct jfs_log *dummy_log = NULL;
static DEFINE_MUTEX(jfs_log_mutex);
/*
* forward references
*/
static int lmWriteRecord(struct jfs_log * log, struct tblock * tblk,
struct lrd * lrd, struct tlock * tlck);
static int lmNextPage(struct jfs_log * log);
static int lmLogFileSystem(struct jfs_log * log, struct jfs_sb_info *sbi,
int activate);
static int open_inline_log(struct super_block *sb);
static int open_dummy_log(struct super_block *sb);
static int lbmLogInit(struct jfs_log * log);
static void lbmLogShutdown(struct jfs_log * log);
static struct lbuf *lbmAllocate(struct jfs_log * log, int);
static void lbmFree(struct lbuf * bp);
static void lbmfree(struct lbuf * bp);
static int lbmRead(struct jfs_log * log, int pn, struct lbuf ** bpp);
static void lbmWrite(struct jfs_log * log, struct lbuf * bp, int flag, int cant_block);
static void lbmDirectWrite(struct jfs_log * log, struct lbuf * bp, int flag);
static int lbmIOWait(struct lbuf * bp, int flag);
static bio_end_io_t lbmIODone;
static void lbmStartIO(struct lbuf * bp);
static void lmGCwrite(struct jfs_log * log, int cant_block);
static int lmLogSync(struct jfs_log * log, int hard_sync);
/*
* statistics
*/
#ifdef CONFIG_JFS_STATISTICS
static struct lmStat {
uint commit; /* # of commit */
uint pagedone; /* # of page written */
uint submitted; /* # of pages submitted */
uint full_page; /* # of full pages submitted */
uint partial_page; /* # of partial pages submitted */
} lmStat;
#endif
/*
* NAME: lmLog()
*
* FUNCTION: write a log record;
*
* PARAMETER:
*
* RETURN: lsn - offset to the next log record to write (end-of-log);
* -1 - error;
*
* note: todo: log error handler
*/
int lmLog(struct jfs_log * log, struct tblock * tblk, struct lrd * lrd,
struct tlock * tlck)
{
int lsn;
int diffp, difft;
struct metapage *mp = NULL;
unsigned long flags;
jfs_info("lmLog: log:0x%p tblk:0x%p, lrd:0x%p tlck:0x%p",
log, tblk, lrd, tlck);
LOG_LOCK(log);
/* log by (out-of-transaction) JFS ? */
if (tblk == NULL)
goto writeRecord;
/* log from page ? */
if (tlck == NULL ||
tlck->type & tlckBTROOT || (mp = tlck->mp) == NULL)
goto writeRecord;
/*
* initialize/update page/transaction recovery lsn
*/
lsn = log->lsn;
LOGSYNC_LOCK(log, flags);
/*
* initialize page lsn if first log write of the page
*/
if (mp->lsn == 0) {
mp->log = log;
mp->lsn = lsn;
log->count++;
/* insert page at tail of logsynclist */
list_add_tail(&mp->synclist, &log->synclist);
}
/*
* initialize/update lsn of tblock of the page
*
* transaction inherits oldest lsn of pages associated
* with allocation/deallocation of resources (their
* log records are used to reconstruct allocation map
* at recovery time: inode for inode allocation map,
* B+-tree index of extent descriptors for block
* allocation map);
* allocation map pages inherit transaction lsn at
* commit time to allow forwarding log syncpt past log
* records associated with allocation/deallocation of
* resources only after persistent map of these map pages
* have been updated and propagated to home.
*/
/*
* initialize transaction lsn:
*/
if (tblk->lsn == 0) {
/* inherit lsn of its first page logged */
tblk->lsn = mp->lsn;
log->count++;
/* insert tblock after the page on logsynclist */
list_add(&tblk->synclist, &mp->synclist);
}
/*
* update transaction lsn:
*/
else {
/* inherit oldest/smallest lsn of page */
logdiff(diffp, mp->lsn, log);
logdiff(difft, tblk->lsn, log);
if (diffp < difft) {
/* update tblock lsn with page lsn */
tblk->lsn = mp->lsn;
/* move tblock after page on logsynclist */
list_move(&tblk->synclist, &mp->synclist);
}
}
LOGSYNC_UNLOCK(log, flags);
/*
* write the log record
*/
writeRecord:
lsn = lmWriteRecord(log, tblk, lrd, tlck);
/*
* forward log syncpt if log reached next syncpt trigger
*/
logdiff(diffp, lsn, log);
if (diffp >= log->nextsync)
lsn = lmLogSync(log, 0);
/* update end-of-log lsn */
log->lsn = lsn;
LOG_UNLOCK(log);
/* return end-of-log address */
return lsn;
}
/*
* NAME: lmWriteRecord()
*
* FUNCTION: move the log record to current log page
*
* PARAMETER: cd - commit descriptor
*
* RETURN: end-of-log address
*
* serialization: LOG_LOCK() held on entry/exit
*/
static int
lmWriteRecord(struct jfs_log * log, struct tblock * tblk, struct lrd * lrd,
struct tlock * tlck)
{
int lsn = 0; /* end-of-log address */
struct lbuf *bp; /* dst log page buffer */
struct logpage *lp; /* dst log page */
caddr_t dst; /* destination address in log page */
int dstoffset; /* end-of-log offset in log page */
int freespace; /* free space in log page */
caddr_t p; /* src meta-data page */
caddr_t src;
int srclen;
int nbytes; /* number of bytes to move */
int i;
int len;
struct linelock *linelock;
struct lv *lv;
struct lvd *lvd;
int l2linesize;
len = 0;
/* retrieve destination log page to write */
bp = (struct lbuf *) log->bp;
lp = (struct logpage *) bp->l_ldata;
dstoffset = log->eor;
/* any log data to write ? */
if (tlck == NULL)
goto moveLrd;
/*
* move log record data
*/
/* retrieve source meta-data page to log */
if (tlck->flag & tlckPAGELOCK) {
p = (caddr_t) (tlck->mp->data);
linelock = (struct linelock *) & tlck->lock;
}
/* retrieve source in-memory inode to log */
else if (tlck->flag & tlckINODELOCK) {
if (tlck->type & tlckDTREE)
p = (caddr_t) &JFS_IP(tlck->ip)->i_dtroot;
else
p = (caddr_t) &JFS_IP(tlck->ip)->i_xtroot;
linelock = (struct linelock *) & tlck->lock;
}
#ifdef _JFS_WIP
else if (tlck->flag & tlckINLINELOCK) {
inlinelock = (struct inlinelock *) & tlck;
p = (caddr_t) & inlinelock->pxd;
linelock = (struct linelock *) & tlck;
}
#endif /* _JFS_WIP */
else {
jfs_err("lmWriteRecord: UFO tlck:0x%p", tlck);
return 0; /* Probably should trap */
}
l2linesize = linelock->l2linesize;
moveData:
ASSERT(linelock->index <= linelock->maxcnt);
lv = linelock->lv;
for (i = 0; i < linelock->index; i++, lv++) {
if (lv->length == 0)
continue;
/* is page full ? */
if (dstoffset >= LOGPSIZE - LOGPTLRSIZE) {
/* page become full: move on to next page */
lmNextPage(log);
bp = log->bp;
lp = (struct logpage *) bp->l_ldata;
dstoffset = LOGPHDRSIZE;
}
/*
* move log vector data
*/
src = (u8 *) p + (lv->offset << l2linesize);
srclen = lv->length << l2linesize;
len += srclen;
while (srclen > 0) {
freespace = (LOGPSIZE - LOGPTLRSIZE) - dstoffset;
nbytes = min(freespace, srclen);
dst = (caddr_t) lp + dstoffset;
memcpy(dst, src, nbytes);
dstoffset += nbytes;
/* is page not full ? */
if (dstoffset < LOGPSIZE - LOGPTLRSIZE)
break;
/* page become full: move on to next page */
lmNextPage(log);
bp = (struct lbuf *) log->bp;
lp = (struct logpage *) bp->l_ldata;
dstoffset = LOGPHDRSIZE;
srclen -= nbytes;
src += nbytes;
}
/*
* move log vector descriptor
*/
len += 4;
lvd = (struct lvd *) ((caddr_t) lp + dstoffset);
lvd->offset = cpu_to_le16(lv->offset);
lvd->length = cpu_to_le16(lv->length);
dstoffset += 4;
jfs_info("lmWriteRecord: lv offset:%d length:%d",
lv->offset, lv->length);
}
if ((i = linelock->next)) {
linelock = (struct linelock *) lid_to_tlock(i);
goto moveData;
}
/*
* move log record descriptor
*/
moveLrd:
lrd->length = cpu_to_le16(len);
src = (caddr_t) lrd;
srclen = LOGRDSIZE;
while (srclen > 0) {
freespace = (LOGPSIZE - LOGPTLRSIZE) - dstoffset;
nbytes = min(freespace, srclen);
dst = (caddr_t) lp + dstoffset;
memcpy(dst, src, nbytes);
dstoffset += nbytes;
srclen -= nbytes;
/* are there more to move than freespace of page ? */
if (srclen)
goto pageFull;
/*
* end of log record descriptor
*/
/* update last log record eor */
log->eor = dstoffset;
bp->l_eor = dstoffset;
lsn = (log->page << L2LOGPSIZE) + dstoffset;
if (lrd->type & cpu_to_le16(LOG_COMMIT)) {
tblk->clsn = lsn;
jfs_info("wr: tclsn:0x%x, beor:0x%x", tblk->clsn,
bp->l_eor);
INCREMENT(lmStat.commit); /* # of commit */
/*
* enqueue tblock for group commit:
*
* enqueue tblock of non-trivial/synchronous COMMIT
* at tail of group commit queue
* (trivial/asynchronous COMMITs are ignored by
* group commit.)
*/
LOGGC_LOCK(log);
/* init tblock gc state */
tblk->flag = tblkGC_QUEUE;
tblk->bp = log->bp;
tblk->pn = log->page;
tblk->eor = log->eor;
/* enqueue transaction to commit queue */
list_add_tail(&tblk->cqueue, &log->cqueue);
LOGGC_UNLOCK(log);
}
jfs_info("lmWriteRecord: lrd:0x%04x bp:0x%p pn:%d eor:0x%x",
le16_to_cpu(lrd->type), log->bp, log->page, dstoffset);
/* page not full ? */
if (dstoffset < LOGPSIZE - LOGPTLRSIZE)
return lsn;
pageFull:
/* page become full: move on to next page */
lmNextPage(log);
bp = (struct lbuf *) log->bp;
lp = (struct logpage *) bp->l_ldata;
dstoffset = LOGPHDRSIZE;
src += nbytes;
}
return lsn;
}
/*
* NAME: lmNextPage()
*
* FUNCTION: write current page and allocate next page.
*
* PARAMETER: log
*
* RETURN: 0
*
* serialization: LOG_LOCK() held on entry/exit
*/
static int lmNextPage(struct jfs_log * log)
{
struct logpage *lp;
int lspn; /* log sequence page number */
int pn; /* current page number */
struct lbuf *bp;
struct lbuf *nextbp;
struct tblock *tblk;
/* get current log page number and log sequence page number */
pn = log->page;
bp = log->bp;
lp = (struct logpage *) bp->l_ldata;
lspn = le32_to_cpu(lp->h.page);
LOGGC_LOCK(log);
/*
* write or queue the full page at the tail of write queue
*/
/* get the tail tblk on commit queue */
if (list_empty(&log->cqueue))
tblk = NULL;
else
tblk = list_entry(log->cqueue.prev, struct tblock, cqueue);
/* every tblk who has COMMIT record on the current page,
* and has not been committed, must be on commit queue
* since tblk is queued at commit queueu at the time
* of writing its COMMIT record on the page before
* page becomes full (even though the tblk thread
* who wrote COMMIT record may have been suspended
* currently);
*/
/* is page bound with outstanding tail tblk ? */
if (tblk && tblk->pn == pn) {
/* mark tblk for end-of-page */
tblk->flag |= tblkGC_EOP;
if (log->cflag & logGC_PAGEOUT) {
/* if page is not already on write queue,
* just enqueue (no lbmWRITE to prevent redrive)
* buffer to wqueue to ensure correct serial order
* of the pages since log pages will be added
* continuously
*/
if (bp->l_wqnext == NULL)
lbmWrite(log, bp, 0, 0);
} else {
/*
* No current GC leader, initiate group commit
*/
log->cflag |= logGC_PAGEOUT;
lmGCwrite(log, 0);
}
}
/* page is not bound with outstanding tblk:
* init write or mark it to be redriven (lbmWRITE)
*/
else {
/* finalize the page */
bp->l_ceor = bp->l_eor;
lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_ceor);
lbmWrite(log, bp, lbmWRITE | lbmRELEASE | lbmFREE, 0);
}
LOGGC_UNLOCK(log);
/*
* allocate/initialize next page
*/
/* if log wraps, the first data page of log is 2
* (0 never used, 1 is superblock).
*/
log->page = (pn == log->size - 1) ? 2 : pn + 1;
log->eor = LOGPHDRSIZE; /* ? valid page empty/full at logRedo() */
/* allocate/initialize next log page buffer */
nextbp = lbmAllocate(log, log->page);
nextbp->l_eor = log->eor;
log->bp = nextbp;
/* initialize next log page */
lp = (struct logpage *) nextbp->l_ldata;
lp->h.page = lp->t.page = cpu_to_le32(lspn + 1);
lp->h.eor = lp->t.eor = cpu_to_le16(LOGPHDRSIZE);
return 0;
}
/*
* NAME: lmGroupCommit()
*
* FUNCTION: group commit
* initiate pageout of the pages with COMMIT in the order of
* page number - redrive pageout of the page at the head of
* pageout queue until full page has been written.
*
* RETURN:
*
* NOTE:
* LOGGC_LOCK serializes log group commit queue, and
* transaction blocks on the commit queue.
* N.B. LOG_LOCK is NOT held during lmGroupCommit().
*/
int lmGroupCommit(struct jfs_log * log, struct tblock * tblk)
{
int rc = 0;
LOGGC_LOCK(log);
/* group committed already ? */
if (tblk->flag & tblkGC_COMMITTED) {
if (tblk->flag & tblkGC_ERROR)
rc = -EIO;
LOGGC_UNLOCK(log);
return rc;
}
jfs_info("lmGroup Commit: tblk = 0x%p, gcrtc = %d", tblk, log->gcrtc);
if (tblk->xflag & COMMIT_LAZY)
tblk->flag |= tblkGC_LAZY;
if ((!(log->cflag & logGC_PAGEOUT)) && (!list_empty(&log->cqueue)) &&
(!(tblk->xflag & COMMIT_LAZY) || test_bit(log_FLUSH, &log->flag)
|| jfs_tlocks_low)) {
/*
* No pageout in progress
*
* start group commit as its group leader.
*/
log->cflag |= logGC_PAGEOUT;
lmGCwrite(log, 0);
}
if (tblk->xflag & COMMIT_LAZY) {
/*
* Lazy transactions can leave now
*/
LOGGC_UNLOCK(log);
return 0;
}
/* lmGCwrite gives up LOGGC_LOCK, check again */
if (tblk->flag & tblkGC_COMMITTED) {
if (tblk->flag & tblkGC_ERROR)
rc = -EIO;
LOGGC_UNLOCK(log);
return rc;
}
/* upcount transaction waiting for completion
*/
log->gcrtc++;
tblk->flag |= tblkGC_READY;
__SLEEP_COND(tblk->gcwait, (tblk->flag & tblkGC_COMMITTED),
LOGGC_LOCK(log), LOGGC_UNLOCK(log));
/* removed from commit queue */
if (tblk->flag & tblkGC_ERROR)
rc = -EIO;
LOGGC_UNLOCK(log);
return rc;
}
/*
* NAME: lmGCwrite()
*
* FUNCTION: group commit write
* initiate write of log page, building a group of all transactions
* with commit records on that page.
*
* RETURN: None
*
* NOTE:
* LOGGC_LOCK must be held by caller.
* N.B. LOG_LOCK is NOT held during lmGroupCommit().
*/
static void lmGCwrite(struct jfs_log * log, int cant_write)
{
struct lbuf *bp;
struct logpage *lp;
int gcpn; /* group commit page number */
struct tblock *tblk;
struct tblock *xtblk = NULL;
/*
* build the commit group of a log page
*
* scan commit queue and make a commit group of all
* transactions with COMMIT records on the same log page.
*/
/* get the head tblk on the commit queue */
gcpn = list_entry(log->cqueue.next, struct tblock, cqueue)->pn;
list_for_each_entry(tblk, &log->cqueue, cqueue) {
if (tblk->pn != gcpn)
break;
xtblk = tblk;
/* state transition: (QUEUE, READY) -> COMMIT */
tblk->flag |= tblkGC_COMMIT;
}
tblk = xtblk; /* last tblk of the page */
/*
* pageout to commit transactions on the log page.
*/
bp = (struct lbuf *) tblk->bp;
lp = (struct logpage *) bp->l_ldata;
/* is page already full ? */
if (tblk->flag & tblkGC_EOP) {
/* mark page to free at end of group commit of the page */
tblk->flag &= ~tblkGC_EOP;
tblk->flag |= tblkGC_FREE;
bp->l_ceor = bp->l_eor;
lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_ceor);
lbmWrite(log, bp, lbmWRITE | lbmRELEASE | lbmGC,
cant_write);
INCREMENT(lmStat.full_page);
}
/* page is not yet full */
else {
bp->l_ceor = tblk->eor; /* ? bp->l_ceor = bp->l_eor; */
lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_ceor);
lbmWrite(log, bp, lbmWRITE | lbmGC, cant_write);
INCREMENT(lmStat.partial_page);
}
}
/*
* NAME: lmPostGC()
*
* FUNCTION: group commit post-processing
* Processes transactions after their commit records have been written
* to disk, redriving log I/O if necessary.
*
* RETURN: None
*
* NOTE:
* This routine is called a interrupt time by lbmIODone
*/
static void lmPostGC(struct lbuf * bp)
{
unsigned long flags;
struct jfs_log *log = bp->l_log;
struct logpage *lp;
struct tblock *tblk, *temp;
//LOGGC_LOCK(log);
spin_lock_irqsave(&log->gclock, flags);
/*
* current pageout of group commit completed.
*
* remove/wakeup transactions from commit queue who were
* group committed with the current log page
*/
list_for_each_entry_safe(tblk, temp, &log->cqueue, cqueue) {
if (!(tblk->flag & tblkGC_COMMIT))
break;
/* if transaction was marked GC_COMMIT then
* it has been shipped in the current pageout
* and made it to disk - it is committed.
*/
if (bp->l_flag & lbmERROR)
tblk->flag |= tblkGC_ERROR;
/* remove it from the commit queue */
list_del(&tblk->cqueue);
tblk->flag &= ~tblkGC_QUEUE;
if (tblk == log->flush_tblk) {
/* we can stop flushing the log now */
clear_bit(log_FLUSH, &log->flag);
log->flush_tblk = NULL;
}
jfs_info("lmPostGC: tblk = 0x%p, flag = 0x%x", tblk,
tblk->flag);
if (!(tblk->xflag & COMMIT_FORCE))
/*
* Hand tblk over to lazy commit thread
*/
txLazyUnlock(tblk);
else {
/* state transition: COMMIT -> COMMITTED */
tblk->flag |= tblkGC_COMMITTED;
if (tblk->flag & tblkGC_READY)
log->gcrtc--;
LOGGC_WAKEUP(tblk);
}
/* was page full before pageout ?
* (and this is the last tblk bound with the page)
*/
if (tblk->flag & tblkGC_FREE)
lbmFree(bp);
/* did page become full after pageout ?
* (and this is the last tblk bound with the page)
*/
else if (tblk->flag & tblkGC_EOP) {
/* finalize the page */
lp = (struct logpage *) bp->l_ldata;
bp->l_ceor = bp->l_eor;
lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_eor);
jfs_info("lmPostGC: calling lbmWrite");
lbmWrite(log, bp, lbmWRITE | lbmRELEASE | lbmFREE,
1);
}
}
/* are there any transactions who have entered lnGroupCommit()
* (whose COMMITs are after that of the last log page written.
* They are waiting for new group commit (above at (SLEEP 1))
* or lazy transactions are on a full (queued) log page,
* select the latest ready transaction as new group leader and
* wake her up to lead her group.
*/
if ((!list_empty(&log->cqueue)) &&
((log->gcrtc > 0) || (tblk->bp->l_wqnext != NULL) ||
test_bit(log_FLUSH, &log->flag) || jfs_tlocks_low))
/*
* Call lmGCwrite with new group leader
*/
lmGCwrite(log, 1);
/* no transaction are ready yet (transactions are only just
* queued (GC_QUEUE) and not entered for group commit yet).
* the first transaction entering group commit
* will elect herself as new group leader.
*/
else
log->cflag &= ~logGC_PAGEOUT;
//LOGGC_UNLOCK(log);
spin_unlock_irqrestore(&log->gclock, flags);
return;
}
/*
* NAME: lmLogSync()
*
* FUNCTION: write log SYNCPT record for specified log
* if new sync address is available
* (normally the case if sync() is executed by back-ground
* process).
* calculate new value of i_nextsync which determines when
* this code is called again.
*
* PARAMETERS: log - log structure
* hard_sync - 1 to force all metadata to be written
*
* RETURN: 0
*
* serialization: LOG_LOCK() held on entry/exit
*/
static int lmLogSync(struct jfs_log * log, int hard_sync)
{
int logsize;
int written; /* written since last syncpt */
int free; /* free space left available */
int delta; /* additional delta to write normally */
int more; /* additional write granted */
struct lrd lrd;
int lsn;
struct logsyncblk *lp;
struct jfs_sb_info *sbi;
unsigned long flags;
/* push dirty metapages out to disk */
if (hard_sync)
list_for_each_entry(sbi, &log->sb_list, log_list) {
filemap_fdatawrite(sbi->ipbmap->i_mapping);
filemap_fdatawrite(sbi->ipimap->i_mapping);
filemap_fdatawrite(sbi->direct_inode->i_mapping);
}
else
list_for_each_entry(sbi, &log->sb_list, log_list) {
filemap_flush(sbi->ipbmap->i_mapping);
filemap_flush(sbi->ipimap->i_mapping);
filemap_flush(sbi->direct_inode->i_mapping);
}
/*
* forward syncpt
*/
/* if last sync is same as last syncpt,
* invoke sync point forward processing to update sync.
*/
if (log->sync == log->syncpt) {
LOGSYNC_LOCK(log, flags);
if (list_empty(&log->synclist))
log->sync = log->lsn;
else {
lp = list_entry(log->synclist.next,
struct logsyncblk, synclist);
log->sync = lp->lsn;
}
LOGSYNC_UNLOCK(log, flags);
}
/* if sync is different from last syncpt,
* write a SYNCPT record with syncpt = sync.
* reset syncpt = sync
*/
if (log->sync != log->syncpt) {
lrd.logtid = 0;
lrd.backchain = 0;
lrd.type = cpu_to_le16(LOG_SYNCPT);
lrd.length = 0;
lrd.log.syncpt.sync = cpu_to_le32(log->sync);
lsn = lmWriteRecord(log, NULL, &lrd, NULL);
log->syncpt = log->sync;
} else
lsn = log->lsn;
/*
* setup next syncpt trigger (SWAG)
*/
logsize = log->logsize;
logdiff(written, lsn, log);
free = logsize - written;
delta = LOGSYNC_DELTA(logsize);
more = min(free / 2, delta);
if (more < 2 * LOGPSIZE) {
jfs_warn("\n ... Log Wrap ... Log Wrap ... Log Wrap ...\n");
/*
* log wrapping
*
* option 1 - panic ? No.!
* option 2 - shutdown file systems
* associated with log ?
* option 3 - extend log ?
*/
/*
* option 4 - second chance
*
* mark log wrapped, and continue.
* when all active transactions are completed,
* mark log vaild for recovery.
* if crashed during invalid state, log state
* implies invald log, forcing fsck().
*/
/* mark log state log wrap in log superblock */
/* log->state = LOGWRAP; */
/* reset sync point computation */
log->syncpt = log->sync = lsn;
log->nextsync = delta;
} else
/* next syncpt trigger = written + more */
log->nextsync = written + more;
/* if number of bytes written from last sync point is more
* than 1/4 of the log size, stop new transactions from
* starting until all current transactions are completed
* by setting syncbarrier flag.
*/
if (!test_bit(log_SYNCBARRIER, &log->flag) &&
(written > LOGSYNC_BARRIER(logsize)) && log->active) {
set_bit(log_SYNCBARRIER, &log->flag);
jfs_info("log barrier on: lsn=0x%x syncpt=0x%x", lsn,
log->syncpt);
/*
* We may have to initiate group commit
*/
jfs_flush_journal(log, 0);
}
return lsn;
}
/*
* NAME: jfs_syncpt
*
* FUNCTION: write log SYNCPT record for specified log
*
* PARAMETERS: log - log structure
* hard_sync - set to 1 to force metadata to be written
*/
void jfs_syncpt(struct jfs_log *log, int hard_sync)
{ LOG_LOCK(log);
lmLogSync(log, hard_sync);
LOG_UNLOCK(log);
}
/*
* NAME: lmLogOpen()
*
* FUNCTION: open the log on first open;
* insert filesystem in the active list of the log.
*
* PARAMETER: ipmnt - file system mount inode
* iplog - log inode (out)
*
* RETURN:
*
* serialization:
*/
int lmLogOpen(struct super_block *sb)
{
int rc;
struct block_device *bdev;
struct jfs_log *log;
struct jfs_sb_info *sbi = JFS_SBI(sb);
if (sbi->flag & JFS_NOINTEGRITY)
return open_dummy_log(sb);
if (sbi->mntflag & JFS_INLINELOG)
return open_inline_log(sb);
mutex_lock(&jfs_log_mutex);
list_for_each_entry(log, &jfs_external_logs, journal_list) {
if (log->bdev->bd_dev == sbi->logdev) {
if (memcmp(log->uuid, sbi->loguuid,
sizeof(log->uuid))) {
jfs_warn("wrong uuid on JFS journal\n");
mutex_unlock(&jfs_log_mutex);
return -EINVAL;
}
/*
* add file system to log active file system list
*/
if ((rc = lmLogFileSystem(log, sbi, 1))) {
mutex_unlock(&jfs_log_mutex);
return rc;
}
goto journal_found;
}
}
if (!(log = kzalloc(sizeof(struct jfs_log), GFP_KERNEL))) {
mutex_unlock(&jfs_log_mutex);
return -ENOMEM;
}
INIT_LIST_HEAD(&log->sb_list);
init_waitqueue_head(&log->syncwait);
/*
* external log as separate logical volume
*
* file systems to log may have n-to-1 relationship;
*/
bdev = open_by_devnum(sbi->logdev, FMODE_READ|FMODE_WRITE);
if (IS_ERR(bdev)) {
rc = -PTR_ERR(bdev);
goto free;
}
if ((rc = bd_claim(bdev, log))) {
goto close;
}
log->bdev = bdev;
memcpy(log->uuid, sbi->loguuid, sizeof(log->uuid));
/*
* initialize log:
*/
if ((rc = lmLogInit(log)))
goto unclaim;
list_add(&log->journal_list, &jfs_external_logs);
/*
* add file system to log active file system list
*/
if ((rc = lmLogFileSystem(log, sbi, 1)))
goto shutdown;
journal_found:
LOG_LOCK(log);
list_add(&sbi->log_list, &log->sb_list);
sbi->log = log;
LOG_UNLOCK(log);
mutex_unlock(&jfs_log_mutex);
return 0;
/*
* unwind on error
*/
shutdown: /* unwind lbmLogInit() */
list_del(&log->journal_list);
lbmLogShutdown(log);
unclaim:
bd_release(bdev);
close: /* close external log device */
blkdev_put(bdev);
free: /* free log descriptor */
mutex_unlock(&jfs_log_mutex);
kfree(log);
jfs_warn("lmLogOpen: exit(%d)", rc);
return rc;
}
static int open_inline_log(struct super_block *sb)
{
struct jfs_log *log;
int rc;
if (!(log = kzalloc(sizeof(struct jfs_log), GFP_KERNEL)))
return -ENOMEM;
INIT_LIST_HEAD(&log->sb_list);
init_waitqueue_head(&log->syncwait);
set_bit(log_INLINELOG, &log->flag);
log->bdev = sb->s_bdev;
log->base = addressPXD(&JFS_SBI(sb)->logpxd);
log->size = lengthPXD(&JFS_SBI(sb)->logpxd) >>
(L2LOGPSIZE - sb->s_blocksize_bits);
log->l2bsize = sb->s_blocksize_bits;
ASSERT(L2LOGPSIZE >= sb->s_blocksize_bits);
/*
* initialize log.
*/
if ((rc = lmLogInit(log))) {
kfree(log);
jfs_warn("lmLogOpen: exit(%d)", rc);
return rc;
}
list_add(&JFS_SBI(sb)->log_list, &log->sb_list);
JFS_SBI(sb)->log = log;
return rc;
}
static int open_dummy_log(struct super_block *sb)
{
int rc;
mutex_lock(&jfs_log_mutex);
if (!dummy_log) {
dummy_log = kzalloc(sizeof(struct jfs_log), GFP_KERNEL);
if (!dummy_log) {
mutex_unlock(&jfs_log_mutex);
return -ENOMEM;
}
INIT_LIST_HEAD(&dummy_log->sb_list);
init_waitqueue_head(&dummy_log->syncwait);
dummy_log->no_integrity = 1;
/* Make up some stuff */
dummy_log->base = 0;
dummy_log->size = 1024;
rc = lmLogInit(dummy_log);
if (rc) {
kfree(dummy_log);
dummy_log = NULL;
mutex_unlock(&jfs_log_mutex);
return rc;
}
}
LOG_LOCK(dummy_log);
list_add(&JFS_SBI(sb)->log_list, &dummy_log->sb_list);
JFS_SBI(sb)->log = dummy_log;
LOG_UNLOCK(dummy_log);
mutex_unlock(&jfs_log_mutex);
return 0;
}
/*
* NAME: lmLogInit()
*
* FUNCTION: log initialization at first log open.
*
* logredo() (or logformat()) should have been run previously.
* initialize the log from log superblock.
* set the log state in the superblock to LOGMOUNT and
* write SYNCPT log record.
*
* PARAMETER: log - log structure
*
* RETURN: 0 - if ok
* -EINVAL - bad log magic number or superblock dirty
* error returned from logwait()
*
* serialization: single first open thread
*/
int lmLogInit(struct jfs_log * log)
{
int rc = 0;
struct lrd lrd;
struct logsuper *logsuper;
struct lbuf *bpsuper;
struct lbuf *bp;
struct logpage *lp;
int lsn = 0;
jfs_info("lmLogInit: log:0x%p", log);
/* initialize the group commit serialization lock */
LOGGC_LOCK_INIT(log);
/* allocate/initialize the log write serialization lock */
LOG_LOCK_INIT(log);
LOGSYNC_LOCK_INIT(log);
INIT_LIST_HEAD(&log->synclist);
INIT_LIST_HEAD(&log->cqueue);
log->flush_tblk = NULL;
log->count = 0;
/*
* initialize log i/o
*/
if ((rc = lbmLogInit(log)))
return rc;
if (!test_bit(log_INLINELOG, &log->flag))
log->l2bsize = L2LOGPSIZE;
/* check for disabled journaling to disk */
if (log->no_integrity) {
/*
* Journal pages will still be filled. When the time comes
* to actually do the I/O, the write is not done, and the
* endio routine is called directly.
*/
bp = lbmAllocate(log , 0);
log->bp = bp;
bp->l_pn = bp->l_eor = 0;
} else {
/*
* validate log superblock
*/
if ((rc = lbmRead(log, 1, &bpsuper)))
goto errout10;
logsuper = (struct logsuper *) bpsuper->l_ldata;
if (logsuper->magic != cpu_to_le32(LOGMAGIC)) {
jfs_warn("*** Log Format Error ! ***");
rc = -EINVAL;
goto errout20;
}
/* logredo() should have been run successfully. */
if (logsuper->state != cpu_to_le32(LOGREDONE)) {
jfs_warn("*** Log Is Dirty ! ***");
rc = -EINVAL;
goto errout20;
}
/* initialize log from log superblock */
if (test_bit(log_INLINELOG,&log->flag)) {
if (log->size != le32_to_cpu(logsuper->size)) {
rc = -EINVAL;
goto errout20;
}
jfs_info("lmLogInit: inline log:0x%p base:0x%Lx "
"size:0x%x", log,
(unsigned long long) log->base, log->size);
} else {
if (memcmp(logsuper->uuid, log->uuid, 16)) {
jfs_warn("wrong uuid on JFS log device");
goto errout20;
}
log->size = le32_to_cpu(logsuper->size);
log->l2bsize = le32_to_cpu(logsuper->l2bsize);
jfs_info("lmLogInit: external log:0x%p base:0x%Lx "
"size:0x%x", log,
(unsigned long long) log->base, log->size);
}
log->page = le32_to_cpu(logsuper->end) / LOGPSIZE;
log->eor = le32_to_cpu(logsuper->end) - (LOGPSIZE * log->page);
/*
* initialize for log append write mode
*/
/* establish current/end-of-log page/buffer */
if ((rc = lbmRead(log, log->page, &bp)))
goto errout20;
lp = (struct logpage *) bp->l_ldata;
jfs_info("lmLogInit: lsn:0x%x page:%d eor:%d:%d",
le32_to_cpu(logsuper->end), log->page, log->eor,
le16_to_cpu(lp->h.eor));
log->bp = bp;
bp->l_pn = log->page;
bp->l_eor = log->eor;
/* if current page is full, move on to next page */
if (log->eor >= LOGPSIZE - LOGPTLRSIZE)
lmNextPage(log);
/*
* initialize log syncpoint
*/
/*
* write the first SYNCPT record with syncpoint = 0
* (i.e., log redo up to HERE !);
* remove current page from lbm write queue at end of pageout
* (to write log superblock update), but do not release to
* freelist;
*/
lrd.logtid = 0;
lrd.backchain = 0;
lrd.type = cpu_to_le16(LOG_SYNCPT);
lrd.length = 0;
lrd.log.syncpt.sync = 0;
lsn = lmWriteRecord(log, NULL, &lrd, NULL);
bp = log->bp;
bp->l_ceor = bp->l_eor;
lp = (struct logpage *) bp->l_ldata;
lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_eor);
lbmWrite(log, bp, lbmWRITE | lbmSYNC, 0);
if ((rc = lbmIOWait(bp, 0)))
goto errout30;
/*
* update/write superblock
*/
logsuper->state = cpu_to_le32(LOGMOUNT);
log->serial = le32_to_cpu(logsuper->serial) + 1;
logsuper->serial = cpu_to_le32(log->serial);
lbmDirectWrite(log, bpsuper, lbmWRITE | lbmRELEASE | lbmSYNC);
if ((rc = lbmIOWait(bpsuper, lbmFREE)))
goto errout30;
}
/* initialize logsync parameters */
log->logsize = (log->size - 2) << L2LOGPSIZE;
log->lsn = lsn;
log->syncpt = lsn;
log->sync = log->syncpt;
log->nextsync = LOGSYNC_DELTA(log->logsize);
jfs_info("lmLogInit: lsn:0x%x syncpt:0x%x sync:0x%x",
log->lsn, log->syncpt, log->sync);
/*
* initialize for lazy/group commit
*/
log->clsn = lsn;
return 0;
/*
* unwind on error
*/
errout30: /* release log page */
log->wqueue = NULL;
bp->l_wqnext = NULL;
lbmFree(bp);
errout20: /* release log superblock */
lbmFree(bpsuper);
errout10: /* unwind lbmLogInit() */
lbmLogShutdown(log);
jfs_warn("lmLogInit: exit(%d)", rc);
return rc;
}
/*
* NAME: lmLogClose()
*
* FUNCTION: remove file system <ipmnt> from active list of log <iplog>
* and close it on last close.
*
* PARAMETER: sb - superblock
*
* RETURN: errors from subroutines
*
* serialization:
*/
int lmLogClose(struct super_block *sb)
{
struct jfs_sb_info *sbi = JFS_SBI(sb);
struct jfs_log *log = sbi->log;
struct block_device *bdev;
int rc = 0;
jfs_info("lmLogClose: log:0x%p", log);
mutex_lock(&jfs_log_mutex);
LOG_LOCK(log);
list_del(&sbi->log_list);
LOG_UNLOCK(log);
sbi->log = NULL;
/*
* We need to make sure all of the "written" metapages
* actually make it to disk
*/
sync_blockdev(sb->s_bdev);
if (test_bit(log_INLINELOG, &log->flag)) {
/*
* in-line log in host file system
*/
rc = lmLogShutdown(log);
kfree(log);
goto out;
}
if (!log->no_integrity)
lmLogFileSystem(log, sbi, 0);
if (!list_empty(&log->sb_list))
goto out;
/*
* TODO: ensure that the dummy_log is in a state to allow
* lbmLogShutdown to deallocate all the buffers and call
* kfree against dummy_log. For now, leave dummy_log & its
* buffers in memory, and resuse if another no-integrity mount
* is requested.
*/
if (log->no_integrity)
goto out;
/*
* external log as separate logical volume
*/
list_del(&log->journal_list);
bdev = log->bdev;
rc = lmLogShutdown(log);
bd_release(bdev);
blkdev_put(bdev);
kfree(log);
out:
mutex_unlock(&jfs_log_mutex);
jfs_info("lmLogClose: exit(%d)", rc);
return rc;
}
/*
* NAME: jfs_flush_journal()
*
* FUNCTION: initiate write of any outstanding transactions to the journal
* and optionally wait until they are all written to disk
*
* wait == 0 flush until latest txn is committed, don't wait
* wait == 1 flush until latest txn is committed, wait
* wait > 1 flush until all txn's are complete, wait
*/
void jfs_flush_journal(struct jfs_log *log, int wait)
{
int i;
struct tblock *target = NULL;
struct jfs_sb_info *sbi;
/* jfs_write_inode may call us during read-only mount */
if (!log)
return;
jfs_info("jfs_flush_journal: log:0x%p wait=%d", log, wait);
LOGGC_LOCK(log);
if (!list_empty(&log->cqueue)) {
/*
* This ensures that we will keep writing to the journal as long
* as there are unwritten commit records
*/
target = list_entry(log->cqueue.prev, struct tblock, cqueue);
if (test_bit(log_FLUSH, &log->flag)) {
/*
* We're already flushing.
* if flush_tblk is NULL, we are flushing everything,
* so leave it that way. Otherwise, update it to the
* latest transaction
*/
if (log->flush_tblk)
log->flush_tblk = target;
} else {
/* Only flush until latest transaction is committed */
log->flush_tblk = target;
set_bit(log_FLUSH, &log->flag);
/*
* Initiate I/O on outstanding transactions
*/
if (!(log->cflag & logGC_PAGEOUT)) {
log->cflag |= logGC_PAGEOUT;
lmGCwrite(log, 0);
}
}
}
if ((wait > 1) || test_bit(log_SYNCBARRIER, &log->flag)) {
/* Flush until all activity complete */
set_bit(log_FLUSH, &log->flag);
log->flush_tblk = NULL;
}
if (wait && target && !(target->flag & tblkGC_COMMITTED)) {
DECLARE_WAITQUEUE(__wait, current);
add_wait_queue(&target->gcwait, &__wait);
set_current_state(TASK_UNINTERRUPTIBLE);
LOGGC_UNLOCK(log);
schedule();
__set_current_state(TASK_RUNNING);
LOGGC_LOCK(log);
remove_wait_queue(&target->gcwait, &__wait);
}
LOGGC_UNLOCK(log);
if (wait < 2)
return;
list_for_each_entry(sbi, &log->sb_list, log_list) {
filemap_fdatawrite(sbi->ipbmap->i_mapping);
filemap_fdatawrite(sbi->ipimap->i_mapping);
filemap_fdatawrite(sbi->direct_inode->i_mapping);
}
/*
* If there was recent activity, we may need to wait
* for the lazycommit thread to catch up
*/
if ((!list_empty(&log->cqueue)) || !list_empty(&log->synclist)) {
for (i = 0; i < 200; i++) { /* Too much? */
msleep(250);
if (list_empty(&log->cqueue) &&
list_empty(&log->synclist))
break;
}
}
assert(list_empty(&log->cqueue));
#ifdef CONFIG_JFS_DEBUG
if (!list_empty(&log->synclist)) {
struct logsyncblk *lp;
printk(KERN_ERR "jfs_flush_journal: synclist not empty\n");
list_for_each_entry(lp, &log->synclist, synclist) {
if (lp->xflag & COMMIT_PAGE) {
struct metapage *mp = (struct metapage *)lp;
print_hex_dump(KERN_ERR, "metapage: ",
DUMP_PREFIX_ADDRESS, 16, 4,
mp, sizeof(struct metapage), 0);
print_hex_dump(KERN_ERR, "page: ",
DUMP_PREFIX_ADDRESS, 16,
sizeof(long), mp->page,
sizeof(struct page), 0);
} else
print_hex_dump(KERN_ERR, "tblock:",
DUMP_PREFIX_ADDRESS, 16, 4,
lp, sizeof(struct tblock), 0);
}
}
#else
WARN_ON(!list_empty(&log->synclist));
#endif
clear_bit(log_FLUSH, &log->flag);
}
/*
* NAME: lmLogShutdown()
*
* FUNCTION: log shutdown at last LogClose().
*
* write log syncpt record.
* update super block to set redone flag to 0.
*
* PARAMETER: log - log inode
*
* RETURN: 0 - success
*
* serialization: single last close thread
*/
int lmLogShutdown(struct jfs_log * log)
{
int rc;
struct lrd lrd;
int lsn;
struct logsuper *logsuper;
struct lbuf *bpsuper;
struct lbuf *bp;
struct logpage *lp;
jfs_info("lmLogShutdown: log:0x%p", log);
jfs_flush_journal(log, 2);
/*
* write the last SYNCPT record with syncpoint = 0
* (i.e., log redo up to HERE !)
*/
lrd.logtid = 0;
lrd.backchain = 0;
lrd.type = cpu_to_le16(LOG_SYNCPT);
lrd.length = 0;
lrd.log.syncpt.sync = 0;
lsn = lmWriteRecord(log, NULL, &lrd, NULL);
bp = log->bp;
lp = (struct logpage *) bp->l_ldata;
lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_eor);
lbmWrite(log, log->bp, lbmWRITE | lbmRELEASE | lbmSYNC, 0);
lbmIOWait(log->bp, lbmFREE);
log->bp = NULL;
/*
* synchronous update log superblock
* mark log state as shutdown cleanly
* (i.e., Log does not need to be replayed).
*/
if ((rc = lbmRead(log, 1, &bpsuper)))
goto out;
logsuper = (struct logsuper *) bpsuper->l_ldata;
logsuper->state = cpu_to_le32(LOGREDONE);
logsuper->end = cpu_to_le32(lsn);
lbmDirectWrite(log, bpsuper, lbmWRITE | lbmRELEASE | lbmSYNC);
rc = lbmIOWait(bpsuper, lbmFREE);
jfs_info("lmLogShutdown: lsn:0x%x page:%d eor:%d",
lsn, log->page, log->eor);
out:
/*
* shutdown per log i/o
*/
lbmLogShutdown(log);
if (rc) {
jfs_warn("lmLogShutdown: exit(%d)", rc);
}
return rc;
}
/*
* NAME: lmLogFileSystem()
*
* FUNCTION: insert (<activate> = true)/remove (<activate> = false)
* file system into/from log active file system list.
*
* PARAMETE: log - pointer to logs inode.
* fsdev - kdev_t of filesystem.
* serial - pointer to returned log serial number
* activate - insert/remove device from active list.
*
* RETURN: 0 - success
* errors returned by vms_iowait().
*/
static int lmLogFileSystem(struct jfs_log * log, struct jfs_sb_info *sbi,
int activate)
{
int rc = 0;
int i;
struct logsuper *logsuper;
struct lbuf *bpsuper;
char *uuid = sbi->uuid;
/*
* insert/remove file system device to log active file system list.
*/
if ((rc = lbmRead(log, 1, &bpsuper)))
return rc;
logsuper = (struct logsuper *) bpsuper->l_ldata;
if (activate) {
for (i = 0; i < MAX_ACTIVE; i++)
if (!memcmp(logsuper->active[i].uuid, NULL_UUID, 16)) {
memcpy(logsuper->active[i].uuid, uuid, 16);
sbi->aggregate = i;
break;
}
if (i == MAX_ACTIVE) {
jfs_warn("Too many file systems sharing journal!");
lbmFree(bpsuper);
return -EMFILE; /* Is there a better rc? */
}
} else {
for (i = 0; i < MAX_ACTIVE; i++)
if (!memcmp(logsuper->active[i].uuid, uuid, 16)) {
memcpy(logsuper->active[i].uuid, NULL_UUID, 16);
break;
}
if (i == MAX_ACTIVE) {
jfs_warn("Somebody stomped on the journal!");
lbmFree(bpsuper);
return -EIO;
}
}
/*
* synchronous write log superblock:
*
* write sidestream bypassing write queue:
* at file system mount, log super block is updated for
* activation of the file system before any log record
* (MOUNT record) of the file system, and at file system
* unmount, all meta data for the file system has been
* flushed before log super block is updated for deactivation
* of the file system.
*/
lbmDirectWrite(log, bpsuper, lbmWRITE | lbmRELEASE | lbmSYNC);
rc = lbmIOWait(bpsuper, lbmFREE);
return rc;
}
/*
* log buffer manager (lbm)
* ------------------------
*
* special purpose buffer manager supporting log i/o requirements.
*
* per log write queue:
* log pageout occurs in serial order by fifo write queue and
* restricting to a single i/o in pregress at any one time.
* a circular singly-linked list
* (log->wrqueue points to the tail, and buffers are linked via
* bp->wrqueue field), and
* maintains log page in pageout ot waiting for pageout in serial pageout.
*/
/*
* lbmLogInit()
*
* initialize per log I/O setup at lmLogInit()
*/
static int lbmLogInit(struct jfs_log * log)
{ /* log inode */
int i;
struct lbuf *lbuf;
jfs_info("lbmLogInit: log:0x%p", log);
/* initialize current buffer cursor */
log->bp = NULL;
/* initialize log device write queue */
log->wqueue = NULL;
/*
* Each log has its own buffer pages allocated to it. These are
* not managed by the page cache. This ensures that a transaction
* writing to the log does not block trying to allocate a page from
* the page cache (for the log). This would be bad, since page
* allocation waits on the kswapd thread that may be committing inodes
* which would cause log activity. Was that clear? I'm trying to
* avoid deadlock here.
*/
init_waitqueue_head(&log->free_wait);
log->lbuf_free = NULL;
for (i = 0; i < LOGPAGES;) {
char *buffer;
uint offset;
struct page *page;
buffer = (char *) get_zeroed_page(GFP_KERNEL);
if (buffer == NULL)
goto error;
page = virt_to_page(buffer);
for (offset = 0; offset < PAGE_SIZE; offset += LOGPSIZE) {
lbuf = kmalloc(sizeof(struct lbuf), GFP_KERNEL);
if (lbuf == NULL) {
if (offset == 0)
free_page((unsigned long) buffer);
goto error;
}
if (offset) /* we already have one reference */
get_page(page);
lbuf->l_offset = offset;
lbuf->l_ldata = buffer + offset;
lbuf->l_page = page;
lbuf->l_log = log;
init_waitqueue_head(&lbuf->l_ioevent);
lbuf->l_freelist = log->lbuf_free;
log->lbuf_free = lbuf;
i++;
}
}
return (0);
error:
lbmLogShutdown(log);
return -ENOMEM;
}
/*
* lbmLogShutdown()
*
* finalize per log I/O setup at lmLogShutdown()
*/
static void lbmLogShutdown(struct jfs_log * log)
{
struct lbuf *lbuf;
jfs_info("lbmLogShutdown: log:0x%p", log);
lbuf = log->lbuf_free;
while (lbuf) {
struct lbuf *next = lbuf->l_freelist;
__free_page(lbuf->l_page);
kfree(lbuf);
lbuf = next;
}
}
/*
* lbmAllocate()
*
* allocate an empty log buffer
*/
static struct lbuf *lbmAllocate(struct jfs_log * log, int pn)
{
struct lbuf *bp;
unsigned long flags;
/*
* recycle from log buffer freelist if any
*/
LCACHE_LOCK(flags);
LCACHE_SLEEP_COND(log->free_wait, (bp = log->lbuf_free), flags);
log->lbuf_free = bp->l_freelist;
LCACHE_UNLOCK(flags);
bp->l_flag = 0;
bp->l_wqnext = NULL;
bp->l_freelist = NULL;
bp->l_pn = pn;
bp->l_blkno = log->base + (pn << (L2LOGPSIZE - log->l2bsize));
bp->l_ceor = 0;
return bp;
}
/*
* lbmFree()
*
* release a log buffer to freelist
*/
static void lbmFree(struct lbuf * bp)
{
unsigned long flags;
LCACHE_LOCK(flags);
lbmfree(bp);
LCACHE_UNLOCK(flags);
}
static void lbmfree(struct lbuf * bp)
{
struct jfs_log *log = bp->l_log;
assert(bp->l_wqnext == NULL);
/*
* return the buffer to head of freelist
*/
bp->l_freelist = log->lbuf_free;
log->lbuf_free = bp;
wake_up(&log->free_wait);
return;
}
/*
* NAME: lbmRedrive
*
* FUNCTION: add a log buffer to the log redrive list
*
* PARAMETER:
* bp - log buffer
*
* NOTES:
* Takes log_redrive_lock.
*/
static inline void lbmRedrive(struct lbuf *bp)
{
unsigned long flags;
spin_lock_irqsave(&log_redrive_lock, flags);
bp->l_redrive_next = log_redrive_list;
log_redrive_list = bp;
spin_unlock_irqrestore(&log_redrive_lock, flags);
wake_up_process(jfsIOthread);
}
/*
* lbmRead()
*/
static int lbmRead(struct jfs_log * log, int pn, struct lbuf ** bpp)
{
struct bio *bio;
struct lbuf *bp;
/*
* allocate a log buffer
*/
*bpp = bp = lbmAllocate(log, pn);
jfs_info("lbmRead: bp:0x%p pn:0x%x", bp, pn);
bp->l_flag |= lbmREAD;
bio = bio_alloc(GFP_NOFS, 1);
bio->bi_sector = bp->l_blkno << (log->l2bsize - 9);
bio->bi_bdev = log->bdev;
bio->bi_io_vec[0].bv_page = bp->l_page;
bio->bi_io_vec[0].bv_len = LOGPSIZE;
bio->bi_io_vec[0].bv_offset = bp->l_offset;
bio->bi_vcnt = 1;
bio->bi_idx = 0;
bio->bi_size = LOGPSIZE;
bio->bi_end_io = lbmIODone;
bio->bi_private = bp;
submit_bio(READ_SYNC, bio);
wait_event(bp->l_ioevent, (bp->l_flag != lbmREAD));
return 0;
}
/*
* lbmWrite()
*
* buffer at head of pageout queue stays after completion of
* partial-page pageout and redriven by explicit initiation of
* pageout by caller until full-page pageout is completed and
* released.
*
* device driver i/o done redrives pageout of new buffer at
* head of pageout queue when current buffer at head of pageout
* queue is released at the completion of its full-page pageout.
*
* LOGGC_LOCK() serializes lbmWrite() by lmNextPage() and lmGroupCommit().
* LCACHE_LOCK() serializes xflag between lbmWrite() and lbmIODone()
*/
static void lbmWrite(struct jfs_log * log, struct lbuf * bp, int flag,
int cant_block)
{
struct lbuf *tail;
unsigned long flags;
jfs_info("lbmWrite: bp:0x%p flag:0x%x pn:0x%x", bp, flag, bp->l_pn);
/* map the logical block address to physical block address */
bp->l_blkno =
log->base + (bp->l_pn << (L2LOGPSIZE - log->l2bsize));
LCACHE_LOCK(flags); /* disable+lock */
/*
* initialize buffer for device driver
*/
bp->l_flag = flag;
/*
* insert bp at tail of write queue associated with log
*
* (request is either for bp already/currently at head of queue
* or new bp to be inserted at tail)
*/
tail = log->wqueue;
/* is buffer not already on write queue ? */
if (bp->l_wqnext == NULL) {
/* insert at tail of wqueue */
if (tail == NULL) {
log->wqueue = bp;
bp->l_wqnext = bp;
} else {
log->wqueue = bp;
bp->l_wqnext = tail->l_wqnext;
tail->l_wqnext = bp;
}
tail = bp;
}
/* is buffer at head of wqueue and for write ? */
if ((bp != tail->l_wqnext) || !(flag & lbmWRITE)) {
LCACHE_UNLOCK(flags); /* unlock+enable */
return;
}
LCACHE_UNLOCK(flags); /* unlock+enable */
if (cant_block)
lbmRedrive(bp);
else if (flag & lbmSYNC)
lbmStartIO(bp);
else {
LOGGC_UNLOCK(log);
lbmStartIO(bp);
LOGGC_LOCK(log);
}
}
/*
* lbmDirectWrite()
*
* initiate pageout bypassing write queue for sidestream
* (e.g., log superblock) write;
*/
static void lbmDirectWrite(struct jfs_log * log, struct lbuf * bp, int flag)
{
jfs_info("lbmDirectWrite: bp:0x%p flag:0x%x pn:0x%x",
bp, flag, bp->l_pn);
/*
* initialize buffer for device driver
*/
bp->l_flag = flag | lbmDIRECT;
/* map the logical block address to physical block address */
bp->l_blkno =
log->base + (bp->l_pn << (L2LOGPSIZE - log->l2bsize));
/*
* initiate pageout of the page
*/
lbmStartIO(bp);
}
/*
* NAME: lbmStartIO()
*
* FUNCTION: Interface to DD strategy routine
*
* RETURN: none
*
* serialization: LCACHE_LOCK() is NOT held during log i/o;
*/
static void lbmStartIO(struct lbuf * bp)
{
struct bio *bio;
struct jfs_log *log = bp->l_log;
jfs_info("lbmStartIO\n");
bio = bio_alloc(GFP_NOFS, 1);
bio->bi_sector = bp->l_blkno << (log->l2bsize - 9);
bio->bi_bdev = log->bdev;
bio->bi_io_vec[0].bv_page = bp->l_page;
bio->bi_io_vec[0].bv_len = LOGPSIZE;
bio->bi_io_vec[0].bv_offset = bp->l_offset;
bio->bi_vcnt = 1;
bio->bi_idx = 0;
bio->bi_size = LOGPSIZE;
bio->bi_end_io = lbmIODone;
bio->bi_private = bp;
/* check if journaling to disk has been disabled */
if (log->no_integrity) {
bio->bi_size = 0;
lbmIODone(bio, 0, 0);
} else {
submit_bio(WRITE_SYNC, bio);
INCREMENT(lmStat.submitted);
}
}
/*
* lbmIOWait()
*/
static int lbmIOWait(struct lbuf * bp, int flag)
{
unsigned long flags;
int rc = 0;
jfs_info("lbmIOWait1: bp:0x%p flag:0x%x:0x%x", bp, bp->l_flag, flag);
LCACHE_LOCK(flags); /* disable+lock */
LCACHE_SLEEP_COND(bp->l_ioevent, (bp->l_flag & lbmDONE), flags);
rc = (bp->l_flag & lbmERROR) ? -EIO : 0;
if (flag & lbmFREE)
lbmfree(bp);
LCACHE_UNLOCK(flags); /* unlock+enable */
jfs_info("lbmIOWait2: bp:0x%p flag:0x%x:0x%x", bp, bp->l_flag, flag);
return rc;
}
/*
* lbmIODone()
*
* executed at INTIODONE level
*/
static int lbmIODone(struct bio *bio, unsigned int bytes_done, int error)
{
struct lbuf *bp = bio->bi_private;
struct lbuf *nextbp, *tail;
struct jfs_log *log;
unsigned long flags;
if (bio->bi_size)
return 1;
/*
* get back jfs buffer bound to the i/o buffer
*/
jfs_info("lbmIODone: bp:0x%p flag:0x%x", bp, bp->l_flag);
LCACHE_LOCK(flags); /* disable+lock */
bp->l_flag |= lbmDONE;
if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) {
bp->l_flag |= lbmERROR;
jfs_err("lbmIODone: I/O error in JFS log");
}
bio_put(bio);
/*
* pagein completion
*/
if (bp->l_flag & lbmREAD) {
bp->l_flag &= ~lbmREAD;
LCACHE_UNLOCK(flags); /* unlock+enable */
/* wakeup I/O initiator */
LCACHE_WAKEUP(&bp->l_ioevent);
return 0;
}
/*
* pageout completion
*
* the bp at the head of write queue has completed pageout.
*
* if single-commit/full-page pageout, remove the current buffer
* from head of pageout queue, and redrive pageout with
* the new buffer at head of pageout queue;
* otherwise, the partial-page pageout buffer stays at
* the head of pageout queue to be redriven for pageout
* by lmGroupCommit() until full-page pageout is completed.
*/
bp->l_flag &= ~lbmWRITE;
INCREMENT(lmStat.pagedone);
/* update committed lsn */
log = bp->l_log;
log->clsn = (bp->l_pn << L2LOGPSIZE) + bp->l_ceor;
if (bp->l_flag & lbmDIRECT) {
LCACHE_WAKEUP(&bp->l_ioevent);
LCACHE_UNLOCK(flags);
return 0;
}
tail = log->wqueue;
/* single element queue */
if (bp == tail) {
/* remove head buffer of full-page pageout
* from log device write queue
*/
if (bp->l_flag & lbmRELEASE) {
log->wqueue = NULL;
bp->l_wqnext = NULL;
}
}
/* multi element queue */
else {
/* remove head buffer of full-page pageout
* from log device write queue
*/
if (bp->l_flag & lbmRELEASE) {
nextbp = tail->l_wqnext = bp->l_wqnext;
bp->l_wqnext = NULL;
/*
* redrive pageout of next page at head of write queue:
* redrive next page without any bound tblk
* (i.e., page w/o any COMMIT records), or
* first page of new group commit which has been
* queued after current page (subsequent pageout
* is performed synchronously, except page without
* any COMMITs) by lmGroupCommit() as indicated
* by lbmWRITE flag;
*/
if (nextbp->l_flag & lbmWRITE) {
/*
* We can't do the I/O at interrupt time.
* The jfsIO thread can do it
*/
lbmRedrive(nextbp);
}
}
}
/*
* synchronous pageout:
*
* buffer has not necessarily been removed from write queue
* (e.g., synchronous write of partial-page with COMMIT):
* leave buffer for i/o initiator to dispose
*/
if (bp->l_flag & lbmSYNC) {
LCACHE_UNLOCK(flags); /* unlock+enable */
/* wakeup I/O initiator */
LCACHE_WAKEUP(&bp->l_ioevent);
}
/*
* Group Commit pageout:
*/
else if (bp->l_flag & lbmGC) {
LCACHE_UNLOCK(flags);
lmPostGC(bp);
}
/*
* asynchronous pageout:
*
* buffer must have been removed from write queue:
* insert buffer at head of freelist where it can be recycled
*/
else {
assert(bp->l_flag & lbmRELEASE);
assert(bp->l_flag & lbmFREE);
lbmfree(bp);
LCACHE_UNLOCK(flags); /* unlock+enable */
}
return 0;
}
int jfsIOWait(void *arg)
{
struct lbuf *bp;
do {
spin_lock_irq(&log_redrive_lock);
while ((bp = log_redrive_list) != 0) {
log_redrive_list = bp->l_redrive_next;
bp->l_redrive_next = NULL;
spin_unlock_irq(&log_redrive_lock);
lbmStartIO(bp);
spin_lock_irq(&log_redrive_lock);
}
if (freezing(current)) {
spin_unlock_irq(&log_redrive_lock);
refrigerator();
} else {
set_current_state(TASK_INTERRUPTIBLE);
spin_unlock_irq(&log_redrive_lock);
schedule();
__set_current_state(TASK_RUNNING);
}
} while (!kthread_should_stop());
jfs_info("jfsIOWait being killed!");
return 0;
}
/*
* NAME: lmLogFormat()/jfs_logform()
*
* FUNCTION: format file system log
*
* PARAMETERS:
* log - volume log
* logAddress - start address of log space in FS block
* logSize - length of log space in FS block;
*
* RETURN: 0 - success
* -EIO - i/o error
*
* XXX: We're synchronously writing one page at a time. This needs to
* be improved by writing multiple pages at once.
*/
int lmLogFormat(struct jfs_log *log, s64 logAddress, int logSize)
{
int rc = -EIO;
struct jfs_sb_info *sbi;
struct logsuper *logsuper;
struct logpage *lp;
int lspn; /* log sequence page number */
struct lrd *lrd_ptr;
int npages = 0;
struct lbuf *bp;
jfs_info("lmLogFormat: logAddress:%Ld logSize:%d",
(long long)logAddress, logSize);
sbi = list_entry(log->sb_list.next, struct jfs_sb_info, log_list);
/* allocate a log buffer */
bp = lbmAllocate(log, 1);
npages = logSize >> sbi->l2nbperpage;
/*
* log space:
*
* page 0 - reserved;
* page 1 - log superblock;
* page 2 - log data page: A SYNC log record is written
* into this page at logform time;
* pages 3-N - log data page: set to empty log data pages;
*/
/*
* init log superblock: log page 1
*/
logsuper = (struct logsuper *) bp->l_ldata;
logsuper->magic = cpu_to_le32(LOGMAGIC);
logsuper->version = cpu_to_le32(LOGVERSION);
logsuper->state = cpu_to_le32(LOGREDONE);
logsuper->flag = cpu_to_le32(sbi->mntflag); /* ? */
logsuper->size = cpu_to_le32(npages);
logsuper->bsize = cpu_to_le32(sbi->bsize);
logsuper->l2bsize = cpu_to_le32(sbi->l2bsize);
logsuper->end = cpu_to_le32(2 * LOGPSIZE + LOGPHDRSIZE + LOGRDSIZE);
bp->l_flag = lbmWRITE | lbmSYNC | lbmDIRECT;
bp->l_blkno = logAddress + sbi->nbperpage;
lbmStartIO(bp);
if ((rc = lbmIOWait(bp, 0)))
goto exit;
/*
* init pages 2 to npages-1 as log data pages:
*
* log page sequence number (lpsn) initialization:
*
* pn: 0 1 2 3 n-1
* +-----+-----+=====+=====+===.....===+=====+
* lspn: N-1 0 1 N-2
* <--- N page circular file ---->
*
* the N (= npages-2) data pages of the log is maintained as
* a circular file for the log records;
* lpsn grows by 1 monotonically as each log page is written
* to the circular file of the log;
* and setLogpage() will not reset the page number even if
* the eor is equal to LOGPHDRSIZE. In order for binary search
* still work in find log end process, we have to simulate the
* log wrap situation at the log format time.
* The 1st log page written will have the highest lpsn. Then
* the succeeding log pages will have ascending order of
* the lspn starting from 0, ... (N-2)
*/
lp = (struct logpage *) bp->l_ldata;
/*
* initialize 1st log page to be written: lpsn = N - 1,
* write a SYNCPT log record is written to this page
*/
lp->h.page = lp->t.page = cpu_to_le32(npages - 3);
lp->h.eor = lp->t.eor = cpu_to_le16(LOGPHDRSIZE + LOGRDSIZE);
lrd_ptr = (struct lrd *) &lp->data;
lrd_ptr->logtid = 0;
lrd_ptr->backchain = 0;
lrd_ptr->type = cpu_to_le16(LOG_SYNCPT);
lrd_ptr->length = 0;
lrd_ptr->log.syncpt.sync = 0;
bp->l_blkno += sbi->nbperpage;
bp->l_flag = lbmWRITE | lbmSYNC | lbmDIRECT;
lbmStartIO(bp);
if ((rc = lbmIOWait(bp, 0)))
goto exit;
/*
* initialize succeeding log pages: lpsn = 0, 1, ..., (N-2)
*/
for (lspn = 0; lspn < npages - 3; lspn++) {
lp->h.page = lp->t.page = cpu_to_le32(lspn);
lp->h.eor = lp->t.eor = cpu_to_le16(LOGPHDRSIZE);
bp->l_blkno += sbi->nbperpage;
bp->l_flag = lbmWRITE | lbmSYNC | lbmDIRECT;
lbmStartIO(bp);
if ((rc = lbmIOWait(bp, 0)))
goto exit;
}
rc = 0;
exit:
/*
* finalize log
*/
/* release the buffer */
lbmFree(bp);
return rc;
}
#ifdef CONFIG_JFS_STATISTICS
int jfs_lmstats_read(char *buffer, char **start, off_t offset, int length,
int *eof, void *data)
{
int len = 0;
off_t begin;
len += sprintf(buffer,
"JFS Logmgr stats\n"
"================\n"
"commits = %d\n"
"writes submitted = %d\n"
"writes completed = %d\n"
"full pages submitted = %d\n"
"partial pages submitted = %d\n",
lmStat.commit,
lmStat.submitted,
lmStat.pagedone,
lmStat.full_page,
lmStat.partial_page);
begin = offset;
*start = buffer + begin;
len -= begin;
if (len > length)
len = length;
else
*eof = 1;
if (len < 0)
len = 0;
return len;
}
#endif /* CONFIG_JFS_STATISTICS */