linux-sg2042/mm/huge_memory.c

2951 lines
82 KiB
C
Raw Normal View History

thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
/*
* Copyright (C) 2009 Red Hat, Inc.
*
* This work is licensed under the terms of the GNU GPL, version 2. See
* the COPYING file in the top-level directory.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
#include <linux/mm.h>
#include <linux/sched.h>
#include <linux/sched/coredump.h>
#include <linux/sched/numa_balancing.h>
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
#include <linux/highmem.h>
#include <linux/hugetlb.h>
#include <linux/mmu_notifier.h>
#include <linux/rmap.h>
#include <linux/swap.h>
#include <linux/shrinker.h>
2011-01-14 07:46:58 +08:00
#include <linux/mm_inline.h>
thp: reintroduce split_huge_page() This patch adds implementation of split_huge_page() for new refcountings. Unlike previous implementation, new split_huge_page() can fail if somebody holds GUP pin on the page. It also means that pin on page would prevent it from bening split under you. It makes situation in many places much cleaner. The basic scheme of split_huge_page(): - Check that sum of mapcounts of all subpage is equal to page_count() plus one (caller pin). Foll off with -EBUSY. This way we can avoid useless PMD-splits. - Freeze the page counters by splitting all PMD and setup migration PTEs. - Re-check sum of mapcounts against page_count(). Page's counts are stable now. -EBUSY if page is pinned. - Split compound page. - Unfreeze the page by removing migration entries. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:10 +08:00
#include <linux/swapops.h>
#include <linux/dax.h>
2011-01-14 07:46:58 +08:00
#include <linux/khugepaged.h>
#include <linux/freezer.h>
#include <linux/pfn_t.h>
#include <linux/mman.h>
#include <linux/memremap.h>
#include <linux/pagemap.h>
#include <linux/debugfs.h>
#include <linux/migrate.h>
#include <linux/hashtable.h>
#include <linux/userfaultfd_k.h>
mm: introduce idle page tracking Knowing the portion of memory that is not used by a certain application or memory cgroup (idle memory) can be useful for partitioning the system efficiently, e.g. by setting memory cgroup limits appropriately. Currently, the only means to estimate the amount of idle memory provided by the kernel is /proc/PID/{clear_refs,smaps}: the user can clear the access bit for all pages mapped to a particular process by writing 1 to clear_refs, wait for some time, and then count smaps:Referenced. However, this method has two serious shortcomings: - it does not count unmapped file pages - it affects the reclaimer logic To overcome these drawbacks, this patch introduces two new page flags, Idle and Young, and a new sysfs file, /sys/kernel/mm/page_idle/bitmap. A page's Idle flag can only be set from userspace by setting bit in /sys/kernel/mm/page_idle/bitmap at the offset corresponding to the page, and it is cleared whenever the page is accessed either through page tables (it is cleared in page_referenced() in this case) or using the read(2) system call (mark_page_accessed()). Thus by setting the Idle flag for pages of a particular workload, which can be found e.g. by reading /proc/PID/pagemap, waiting for some time to let the workload access its working set, and then reading the bitmap file, one can estimate the amount of pages that are not used by the workload. The Young page flag is used to avoid interference with the memory reclaimer. A page's Young flag is set whenever the Access bit of a page table entry pointing to the page is cleared by writing to the bitmap file. If page_referenced() is called on a Young page, it will add 1 to its return value, therefore concealing the fact that the Access bit was cleared. Note, since there is no room for extra page flags on 32 bit, this feature uses extended page flags when compiled on 32 bit. [akpm@linux-foundation.org: fix build] [akpm@linux-foundation.org: kpageidle requires an MMU] [akpm@linux-foundation.org: decouple from page-flags rework] Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Reviewed-by: Andres Lagar-Cavilla <andreslc@google.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Greg Thelen <gthelen@google.com> Cc: Michel Lespinasse <walken@google.com> Cc: David Rientjes <rientjes@google.com> Cc: Pavel Emelyanov <xemul@parallels.com> Cc: Cyrill Gorcunov <gorcunov@openvz.org> Cc: Jonathan Corbet <corbet@lwn.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-10 06:35:45 +08:00
#include <linux/page_idle.h>
#include <linux/shmem_fs.h>
mm, oom: fix potential data corruption when oom_reaper races with writer Wenwei Tao has noticed that our current assumption that the oom victim is dying and never doing any visible changes after it dies, and so the oom_reaper can tear it down, is not entirely true. __task_will_free_mem consider a task dying when SIGNAL_GROUP_EXIT is set but do_group_exit sends SIGKILL to all threads _after_ the flag is set. So there is a race window when some threads won't have fatal_signal_pending while the oom_reaper could start unmapping the address space. Moreover some paths might not check for fatal signals before each PF/g-u-p/copy_from_user. We already have a protection for oom_reaper vs. PF races by checking MMF_UNSTABLE. This has been, however, checked only for kernel threads (use_mm users) which can outlive the oom victim. A simple fix would be to extend the current check in handle_mm_fault for all tasks but that wouldn't be sufficient because the current check assumes that a kernel thread would bail out after EFAULT from get_user*/copy_from_user and never re-read the same address which would succeed because the PF path has established page tables already. This seems to be the case for the only existing use_mm user currently (virtio driver) but it is rather fragile in general. This is even more fragile in general for more complex paths such as generic_perform_write which can re-read the same address more times (e.g. iov_iter_copy_from_user_atomic to fail and then iov_iter_fault_in_readable on retry). Therefore we have to implement MMF_UNSTABLE protection in a robust way and never make a potentially corrupted content visible. That requires to hook deeper into the PF path and check for the flag _every time_ before a pte for anonymous memory is established (that means all !VM_SHARED mappings). The corruption can be triggered artificially (http://lkml.kernel.org/r/201708040646.v746kkhC024636@www262.sakura.ne.jp) but there doesn't seem to be any real life bug report. The race window should be quite tight to trigger most of the time. Link: http://lkml.kernel.org/r/20170807113839.16695-3-mhocko@kernel.org Fixes: aac453635549 ("mm, oom: introduce oom reaper") Signed-off-by: Michal Hocko <mhocko@suse.com> Reported-by: Wenwei Tao <wenwei.tww@alibaba-inc.com> Tested-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Andrea Argangeli <andrea@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-08-19 06:16:15 +08:00
#include <linux/oom.h>
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
#include <asm/tlb.h>
#include <asm/pgalloc.h>
#include "internal.h"
2011-01-14 07:46:58 +08:00
/*
* By default, transparent hugepage support is disabled in order to avoid
* risking an increased memory footprint for applications that are not
* guaranteed to benefit from it. When transparent hugepage support is
* enabled, it is for all mappings, and khugepaged scans all mappings.
* Defrag is invoked by khugepaged hugepage allocations and by page faults
* for all hugepage allocations.
2011-01-14 07:46:58 +08:00
*/
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
unsigned long transparent_hugepage_flags __read_mostly =
#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
2011-01-14 07:46:58 +08:00
(1<<TRANSPARENT_HUGEPAGE_FLAG)|
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
#endif
mm: thp: set THP defrag by default to madvise and add a stall-free defrag option THP defrag is enabled by default to direct reclaim/compact but not wake kswapd in the event of a THP allocation failure. The problem is that THP allocation requests potentially enter reclaim/compaction. This potentially incurs a severe stall that is not guaranteed to be offset by reduced TLB misses. While there has been considerable effort to reduce the impact of reclaim/compaction, it is still a high cost and workloads that should fit in memory fail to do so. Specifically, a simple anon/file streaming workload will enter direct reclaim on NUMA at least even though the working set size is 80% of RAM. It's been years and it's time to throw in the towel. First, this patch defines THP defrag as follows; madvise: A failed allocation will direct reclaim/compact if the application requests it never: Neither reclaim/compact nor wake kswapd defer: A failed allocation will wake kswapd/kcompactd always: A failed allocation will direct reclaim/compact (historical behaviour) khugepaged defrag will enter direct/reclaim but not wake kswapd. Next it sets the default defrag option to be "madvise" to only enter direct reclaim/compaction for applications that specifically requested it. Lastly, it removes a check from the page allocator slowpath that is related to __GFP_THISNODE to allow "defer" to work. The callers that really cares are slub/slab and they are updated accordingly. The slab one may be surprising because it also corrects a comment as kswapd was never woken up by that path. This means that a THP fault will no longer stall for most applications by default and the ideal for most users that get THP if they are immediately available. There are still options for users that prefer a stall at startup of a new application by either restoring historical behaviour with "always" or pick a half-way point with "defer" where kswapd does some of the work in the background and wakes kcompactd if necessary. THP defrag for khugepaged remains enabled and will enter direct/reclaim but no wakeup kswapd or kcompactd. After this patch a THP allocation failure will quickly fallback and rely on khugepaged to recover the situation at some time in the future. In some cases, this will reduce THP usage but the benefit of THP is hard to measure and not a universal win where as a stall to reclaim/compaction is definitely measurable and can be painful. The first test for this is using "usemem" to read a large file and write a large anonymous mapping (to avoid the zero page) multiple times. The total size of the mappings is 80% of RAM and the benchmark simply measures how long it takes to complete. It uses multiple threads to see if that is a factor. On UMA, the performance is almost identical so is not reported but on NUMA, we see this usemem 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 Amean System-1 102.86 ( 0.00%) 46.81 ( 54.50%) Amean System-4 37.85 ( 0.00%) 34.02 ( 10.12%) Amean System-7 48.12 ( 0.00%) 46.89 ( 2.56%) Amean System-12 51.98 ( 0.00%) 56.96 ( -9.57%) Amean System-21 80.16 ( 0.00%) 79.05 ( 1.39%) Amean System-30 110.71 ( 0.00%) 107.17 ( 3.20%) Amean System-48 127.98 ( 0.00%) 124.83 ( 2.46%) Amean Elapsd-1 185.84 ( 0.00%) 105.51 ( 43.23%) Amean Elapsd-4 26.19 ( 0.00%) 25.58 ( 2.33%) Amean Elapsd-7 21.65 ( 0.00%) 21.62 ( 0.16%) Amean Elapsd-12 18.58 ( 0.00%) 17.94 ( 3.43%) Amean Elapsd-21 17.53 ( 0.00%) 16.60 ( 5.33%) Amean Elapsd-30 17.45 ( 0.00%) 17.13 ( 1.84%) Amean Elapsd-48 15.40 ( 0.00%) 15.27 ( 0.82%) For a single thread, the benchmark completes 43.23% faster with this patch applied with smaller benefits as the thread increases. Similar, notice the large reduction in most cases in system CPU usage. The overall CPU time is 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 User 10357.65 10438.33 System 3988.88 3543.94 Elapsed 2203.01 1634.41 Which is substantial. Now, the reclaim figures 4.4.0 4.4.0 kcompactd-v1r1nodefrag-v1r3 Minor Faults 128458477 278352931 Major Faults 2174976 225 Swap Ins 16904701 0 Swap Outs 17359627 0 Allocation stalls 43611 0 DMA allocs 0 0 DMA32 allocs 19832646 19448017 Normal allocs 614488453 580941839 Movable allocs 0 0 Direct pages scanned 24163800 0 Kswapd pages scanned 0 0 Kswapd pages reclaimed 0 0 Direct pages reclaimed 20691346 0 Compaction stalls 42263 0 Compaction success 938 0 Compaction failures 41325 0 This patch eliminates almost all swapping and direct reclaim activity. There is still overhead but it's from NUMA balancing which does not identify that it's pointless trying to do anything with this workload. I also tried the thpscale benchmark which forces a corner case where compaction can be used heavily and measures the latency of whether base or huge pages were used thpscale Fault Latencies 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 Amean fault-base-1 5288.84 ( 0.00%) 2817.12 ( 46.73%) Amean fault-base-3 6365.53 ( 0.00%) 3499.11 ( 45.03%) Amean fault-base-5 6526.19 ( 0.00%) 4363.06 ( 33.15%) Amean fault-base-7 7142.25 ( 0.00%) 4858.08 ( 31.98%) Amean fault-base-12 13827.64 ( 0.00%) 10292.11 ( 25.57%) Amean fault-base-18 18235.07 ( 0.00%) 13788.84 ( 24.38%) Amean fault-base-24 21597.80 ( 0.00%) 24388.03 (-12.92%) Amean fault-base-30 26754.15 ( 0.00%) 19700.55 ( 26.36%) Amean fault-base-32 26784.94 ( 0.00%) 19513.57 ( 27.15%) Amean fault-huge-1 4223.96 ( 0.00%) 2178.57 ( 48.42%) Amean fault-huge-3 2194.77 ( 0.00%) 2149.74 ( 2.05%) Amean fault-huge-5 2569.60 ( 0.00%) 2346.95 ( 8.66%) Amean fault-huge-7 3612.69 ( 0.00%) 2997.70 ( 17.02%) Amean fault-huge-12 3301.75 ( 0.00%) 6727.02 (-103.74%) Amean fault-huge-18 6696.47 ( 0.00%) 6685.72 ( 0.16%) Amean fault-huge-24 8000.72 ( 0.00%) 9311.43 (-16.38%) Amean fault-huge-30 13305.55 ( 0.00%) 9750.45 ( 26.72%) Amean fault-huge-32 9981.71 ( 0.00%) 10316.06 ( -3.35%) The average time to fault pages is substantially reduced in the majority of caseds but with the obvious caveat that fewer THPs are actually used in this adverse workload 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 Percentage huge-1 0.71 ( 0.00%) 14.04 (1865.22%) Percentage huge-3 10.77 ( 0.00%) 33.05 (206.85%) Percentage huge-5 60.39 ( 0.00%) 38.51 (-36.23%) Percentage huge-7 45.97 ( 0.00%) 34.57 (-24.79%) Percentage huge-12 68.12 ( 0.00%) 40.07 (-41.17%) Percentage huge-18 64.93 ( 0.00%) 47.82 (-26.35%) Percentage huge-24 62.69 ( 0.00%) 44.23 (-29.44%) Percentage huge-30 43.49 ( 0.00%) 55.38 ( 27.34%) Percentage huge-32 50.72 ( 0.00%) 51.90 ( 2.35%) 4.4.0 4.4.0 kcompactd-v1r1nodefrag-v1r3 Minor Faults 37429143 47564000 Major Faults 1916 1558 Swap Ins 1466 1079 Swap Outs 2936863 149626 Allocation stalls 62510 3 DMA allocs 0 0 DMA32 allocs 6566458 6401314 Normal allocs 216361697 216538171 Movable allocs 0 0 Direct pages scanned 25977580 17998 Kswapd pages scanned 0 3638931 Kswapd pages reclaimed 0 207236 Direct pages reclaimed 8833714 88 Compaction stalls 103349 5 Compaction success 270 4 Compaction failures 103079 1 Note again that while this does swap as it's an aggressive workload, the direct relcim activity and allocation stalls is substantially reduced. There is some kswapd activity but ftrace showed that the kswapd activity was due to normal wakeups from 4K pages being allocated. Compaction-related stalls and activity are almost eliminated. I also tried the stutter benchmark. For this, I do not have figures for NUMA but it's something that does impact UMA so I'll report what is available stutter 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 Min mmap 7.3571 ( 0.00%) 7.3438 ( 0.18%) 1st-qrtle mmap 7.5278 ( 0.00%) 17.9200 (-138.05%) 2nd-qrtle mmap 7.6818 ( 0.00%) 21.6055 (-181.25%) 3rd-qrtle mmap 11.0889 ( 0.00%) 21.8881 (-97.39%) Max-90% mmap 27.8978 ( 0.00%) 22.1632 ( 20.56%) Max-93% mmap 28.3202 ( 0.00%) 22.3044 ( 21.24%) Max-95% mmap 28.5600 ( 0.00%) 22.4580 ( 21.37%) Max-99% mmap 29.6032 ( 0.00%) 25.5216 ( 13.79%) Max mmap 4109.7289 ( 0.00%) 4813.9832 (-17.14%) Mean mmap 12.4474 ( 0.00%) 19.3027 (-55.07%) This benchmark is trying to fault an anonymous mapping while there is a heavy IO load -- a scenario that desktop users used to complain about frequently. This shows a mix because the ideal case of mapping with THP is not hit as often. However, note that 99% of the mappings complete 13.79% faster. The CPU usage here is particularly interesting 4.4.0 4.4.0 kcompactd-v1r1nodefrag-v1r3 User 67.50 0.99 System 1327.88 91.30 Elapsed 2079.00 2128.98 And once again we look at the reclaim figures 4.4.0 4.4.0 kcompactd-v1r1nodefrag-v1r3 Minor Faults 335241922 1314582827 Major Faults 715 819 Swap Ins 0 0 Swap Outs 0 0 Allocation stalls 532723 0 DMA allocs 0 0 DMA32 allocs 1822364341 1177950222 Normal allocs 1815640808 1517844854 Movable allocs 0 0 Direct pages scanned 21892772 0 Kswapd pages scanned 20015890 41879484 Kswapd pages reclaimed 19961986 41822072 Direct pages reclaimed 21892741 0 Compaction stalls 1065755 0 Compaction success 514 0 Compaction failures 1065241 0 Allocation stalls and all direct reclaim activity is eliminated as well as compaction-related stalls. THP gives impressive gains in some cases but only if they are quickly available. We're not going to reach the point where they are completely free so lets take the costs out of the fast paths finally and defer the cost to kswapd, kcompactd and khugepaged where it belongs. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Rik van Riel <riel@redhat.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-18 05:19:23 +08:00
(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
2011-01-14 07:46:58 +08:00
thp: introduce deferred_split_huge_page() Currently we don't split huge page on partial unmap. It's not an ideal situation. It can lead to memory overhead. Furtunately, we can detect partial unmap on page_remove_rmap(). But we cannot call split_huge_page() from there due to locking context. It's also counterproductive to do directly from munmap() codepath: in many cases we will hit this from exit(2) and splitting the huge page just to free it up in small pages is not what we really want. The patch introduce deferred_split_huge_page() which put the huge page into queue for splitting. The splitting itself will happen when we get memory pressure via shrinker interface. The page will be dropped from list on freeing through compound page destructor. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:17 +08:00
static struct shrinker deferred_split_shrinker;
static atomic_t huge_zero_refcount;
struct page *huge_zero_page __read_mostly;
thp: huge zero page: basic preparation During testing I noticed big (up to 2.5 times) memory consumption overhead on some workloads (e.g. ft.A from NPB) if THP is enabled. The main reason for that big difference is lacking zero page in THP case. We have to allocate a real page on read page fault. A program to demonstrate the issue: #include <assert.h> #include <stdlib.h> #include <unistd.h> #define MB 1024*1024 int main(int argc, char **argv) { char *p; int i; posix_memalign((void **)&p, 2 * MB, 200 * MB); for (i = 0; i < 200 * MB; i+= 4096) assert(p[i] == 0); pause(); return 0; } With thp-never RSS is about 400k, but with thp-always it's 200M. After the patcheset thp-always RSS is 400k too. Design overview. Huge zero page (hzp) is a non-movable huge page (2M on x86-64) filled with zeros. The way how we allocate it changes in the patchset: - [01/10] simplest way: hzp allocated on boot time in hugepage_init(); - [09/10] lazy allocation on first use; - [10/10] lockless refcounting + shrinker-reclaimable hzp; We setup it in do_huge_pmd_anonymous_page() if area around fault address is suitable for THP and we've got read page fault. If we fail to setup hzp (ENOMEM) we fallback to handle_pte_fault() as we normally do in THP. On wp fault to hzp we allocate real memory for the huge page and clear it. If ENOMEM, graceful fallback: we create a new pmd table and set pte around fault address to newly allocated normal (4k) page. All other ptes in the pmd set to normal zero page. We cannot split hzp (and it's bug if we try), but we can split the pmd which points to it. On splitting the pmd we create a table with all ptes set to normal zero page. === By hpa's request I've tried alternative approach for hzp implementation (see Virtual huge zero page patchset): pmd table with all entries set to zero page. This way should be more cache friendly, but it increases TLB pressure. The problem with virtual huge zero page: it requires per-arch enabling. We need a way to mark that pmd table has all ptes set to zero page. Some numbers to compare two implementations (on 4s Westmere-EX): Mirobenchmark1 ============== test: posix_memalign((void **)&p, 2 * MB, 8 * GB); for (i = 0; i < 100; i++) { assert(memcmp(p, p + 4*GB, 4*GB) == 0); asm volatile ("": : :"memory"); } hzp: Performance counter stats for './test_memcmp' (5 runs): 32356.272845 task-clock # 0.998 CPUs utilized ( +- 0.13% ) 40 context-switches # 0.001 K/sec ( +- 0.94% ) 0 CPU-migrations # 0.000 K/sec 4,218 page-faults # 0.130 K/sec ( +- 0.00% ) 76,712,481,765 cycles # 2.371 GHz ( +- 0.13% ) [83.31%] 36,279,577,636 stalled-cycles-frontend # 47.29% frontend cycles idle ( +- 0.28% ) [83.35%] 1,684,049,110 stalled-cycles-backend # 2.20% backend cycles idle ( +- 2.96% ) [66.67%] 134,355,715,816 instructions # 1.75 insns per cycle # 0.27 stalled cycles per insn ( +- 0.10% ) [83.35%] 13,526,169,702 branches # 418.039 M/sec ( +- 0.10% ) [83.31%] 1,058,230 branch-misses # 0.01% of all branches ( +- 0.91% ) [83.36%] 32.413866442 seconds time elapsed ( +- 0.13% ) vhzp: Performance counter stats for './test_memcmp' (5 runs): 30327.183829 task-clock # 0.998 CPUs utilized ( +- 0.13% ) 38 context-switches # 0.001 K/sec ( +- 1.53% ) 0 CPU-migrations # 0.000 K/sec 4,218 page-faults # 0.139 K/sec ( +- 0.01% ) 71,964,773,660 cycles # 2.373 GHz ( +- 0.13% ) [83.35%] 31,191,284,231 stalled-cycles-frontend # 43.34% frontend cycles idle ( +- 0.40% ) [83.32%] 773,484,474 stalled-cycles-backend # 1.07% backend cycles idle ( +- 6.61% ) [66.67%] 134,982,215,437 instructions # 1.88 insns per cycle # 0.23 stalled cycles per insn ( +- 0.11% ) [83.32%] 13,509,150,683 branches # 445.447 M/sec ( +- 0.11% ) [83.34%] 1,017,667 branch-misses # 0.01% of all branches ( +- 1.07% ) [83.32%] 30.381324695 seconds time elapsed ( +- 0.13% ) Mirobenchmark2 ============== test: posix_memalign((void **)&p, 2 * MB, 8 * GB); for (i = 0; i < 1000; i++) { char *_p = p; while (_p < p+4*GB) { assert(*_p == *(_p+4*GB)); _p += 4096; asm volatile ("": : :"memory"); } } hzp: Performance counter stats for 'taskset -c 0 ./test_memcmp2' (5 runs): 3505.727639 task-clock # 0.998 CPUs utilized ( +- 0.26% ) 9 context-switches # 0.003 K/sec ( +- 4.97% ) 4,384 page-faults # 0.001 M/sec ( +- 0.00% ) 8,318,482,466 cycles # 2.373 GHz ( +- 0.26% ) [33.31%] 5,134,318,786 stalled-cycles-frontend # 61.72% frontend cycles idle ( +- 0.42% ) [33.32%] 2,193,266,208 stalled-cycles-backend # 26.37% backend cycles idle ( +- 5.51% ) [33.33%] 9,494,670,537 instructions # 1.14 insns per cycle # 0.54 stalled cycles per insn ( +- 0.13% ) [41.68%] 2,108,522,738 branches # 601.451 M/sec ( +- 0.09% ) [41.68%] 158,746 branch-misses # 0.01% of all branches ( +- 1.60% ) [41.71%] 3,168,102,115 L1-dcache-loads # 903.693 M/sec ( +- 0.11% ) [41.70%] 1,048,710,998 L1-dcache-misses # 33.10% of all L1-dcache hits ( +- 0.11% ) [41.72%] 1,047,699,685 LLC-load # 298.854 M/sec ( +- 0.03% ) [33.38%] 2,287 LLC-misses # 0.00% of all LL-cache hits ( +- 8.27% ) [33.37%] 3,166,187,367 dTLB-loads # 903.147 M/sec ( +- 0.02% ) [33.35%] 4,266,538 dTLB-misses # 0.13% of all dTLB cache hits ( +- 0.03% ) [33.33%] 3.513339813 seconds time elapsed ( +- 0.26% ) vhzp: Performance counter stats for 'taskset -c 0 ./test_memcmp2' (5 runs): 27313.891128 task-clock # 0.998 CPUs utilized ( +- 0.24% ) 62 context-switches # 0.002 K/sec ( +- 0.61% ) 4,384 page-faults # 0.160 K/sec ( +- 0.01% ) 64,747,374,606 cycles # 2.370 GHz ( +- 0.24% ) [33.33%] 61,341,580,278 stalled-cycles-frontend # 94.74% frontend cycles idle ( +- 0.26% ) [33.33%] 56,702,237,511 stalled-cycles-backend # 87.57% backend cycles idle ( +- 0.07% ) [33.33%] 10,033,724,846 instructions # 0.15 insns per cycle # 6.11 stalled cycles per insn ( +- 0.09% ) [41.65%] 2,190,424,932 branches # 80.195 M/sec ( +- 0.12% ) [41.66%] 1,028,630 branch-misses # 0.05% of all branches ( +- 1.50% ) [41.66%] 3,302,006,540 L1-dcache-loads # 120.891 M/sec ( +- 0.11% ) [41.68%] 271,374,358 L1-dcache-misses # 8.22% of all L1-dcache hits ( +- 0.04% ) [41.66%] 20,385,476 LLC-load # 0.746 M/sec ( +- 1.64% ) [33.34%] 76,754 LLC-misses # 0.38% of all LL-cache hits ( +- 2.35% ) [33.34%] 3,309,927,290 dTLB-loads # 121.181 M/sec ( +- 0.03% ) [33.34%] 2,098,967,427 dTLB-misses # 63.41% of all dTLB cache hits ( +- 0.03% ) [33.34%] 27.364448741 seconds time elapsed ( +- 0.24% ) === I personally prefer implementation present in this patchset. It doesn't touch arch-specific code. This patch: Huge zero page (hzp) is a non-movable huge page (2M on x86-64) filled with zeros. For now let's allocate the page on hugepage_init(). We'll switch to lazy allocation later. We are not going to map the huge zero page until we can handle it properly on all code paths. is_huge_zero_{pfn,pmd}() functions will be used by following patches to check whether the pfn/pmd is huge zero page. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: "H. Peter Anvin" <hpa@linux.intel.com> Cc: Mel Gorman <mel@csn.ul.ie> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-13 05:50:47 +08:00
thp: reduce usage of huge zero page's atomic counter The global zero page is used to satisfy an anonymous read fault. If THP(Transparent HugePage) is enabled then the global huge zero page is used. The global huge zero page uses an atomic counter for reference counting and is allocated/freed dynamically according to its counter value. CPU time spent on that counter will greatly increase if there are a lot of processes doing anonymous read faults. This patch proposes a way to reduce the access to the global counter so that the CPU load can be reduced accordingly. To do this, a new flag of the mm_struct is introduced: MMF_USED_HUGE_ZERO_PAGE. With this flag, the process only need to touch the global counter in two cases: 1 The first time it uses the global huge zero page; 2 The time when mm_user of its mm_struct reaches zero. Note that right now, the huge zero page is eligible to be freed as soon as its last use goes away. With this patch, the page will not be eligible to be freed until the exit of the last process from which it was ever used. And with the use of mm_user, the kthread is not eligible to use huge zero page either. Since no kthread is using huge zero page today, there is no difference after applying this patch. But if that is not desired, I can change it to when mm_count reaches zero. Case used for test on Haswell EP: usemem -n 72 --readonly -j 0x200000 100G Which spawns 72 processes and each will mmap 100G anonymous space and then do read only access to that space sequentially with a step of 2MB. CPU cycles from perf report for base commit: 54.03% usemem [kernel.kallsyms] [k] get_huge_zero_page CPU cycles from perf report for this commit: 0.11% usemem [kernel.kallsyms] [k] mm_get_huge_zero_page Performance(throughput) of the workload for base commit: 1784430792 Performance(throughput) of the workload for this commit: 4726928591 164% increase. Runtime of the workload for base commit: 707592 us Runtime of the workload for this commit: 303970 us 50% drop. Link: http://lkml.kernel.org/r/fe51a88f-446a-4622-1363-ad1282d71385@intel.com Signed-off-by: Aaron Lu <aaron.lu@intel.com> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Huang Ying <ying.huang@intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Ebru Akagunduz <ebru.akagunduz@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-08 08:00:08 +08:00
static struct page *get_huge_zero_page(void)
{
struct page *zero_page;
retry:
if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
return READ_ONCE(huge_zero_page);
zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
thp: huge zero page: basic preparation During testing I noticed big (up to 2.5 times) memory consumption overhead on some workloads (e.g. ft.A from NPB) if THP is enabled. The main reason for that big difference is lacking zero page in THP case. We have to allocate a real page on read page fault. A program to demonstrate the issue: #include <assert.h> #include <stdlib.h> #include <unistd.h> #define MB 1024*1024 int main(int argc, char **argv) { char *p; int i; posix_memalign((void **)&p, 2 * MB, 200 * MB); for (i = 0; i < 200 * MB; i+= 4096) assert(p[i] == 0); pause(); return 0; } With thp-never RSS is about 400k, but with thp-always it's 200M. After the patcheset thp-always RSS is 400k too. Design overview. Huge zero page (hzp) is a non-movable huge page (2M on x86-64) filled with zeros. The way how we allocate it changes in the patchset: - [01/10] simplest way: hzp allocated on boot time in hugepage_init(); - [09/10] lazy allocation on first use; - [10/10] lockless refcounting + shrinker-reclaimable hzp; We setup it in do_huge_pmd_anonymous_page() if area around fault address is suitable for THP and we've got read page fault. If we fail to setup hzp (ENOMEM) we fallback to handle_pte_fault() as we normally do in THP. On wp fault to hzp we allocate real memory for the huge page and clear it. If ENOMEM, graceful fallback: we create a new pmd table and set pte around fault address to newly allocated normal (4k) page. All other ptes in the pmd set to normal zero page. We cannot split hzp (and it's bug if we try), but we can split the pmd which points to it. On splitting the pmd we create a table with all ptes set to normal zero page. === By hpa's request I've tried alternative approach for hzp implementation (see Virtual huge zero page patchset): pmd table with all entries set to zero page. This way should be more cache friendly, but it increases TLB pressure. The problem with virtual huge zero page: it requires per-arch enabling. We need a way to mark that pmd table has all ptes set to zero page. Some numbers to compare two implementations (on 4s Westmere-EX): Mirobenchmark1 ============== test: posix_memalign((void **)&p, 2 * MB, 8 * GB); for (i = 0; i < 100; i++) { assert(memcmp(p, p + 4*GB, 4*GB) == 0); asm volatile ("": : :"memory"); } hzp: Performance counter stats for './test_memcmp' (5 runs): 32356.272845 task-clock # 0.998 CPUs utilized ( +- 0.13% ) 40 context-switches # 0.001 K/sec ( +- 0.94% ) 0 CPU-migrations # 0.000 K/sec 4,218 page-faults # 0.130 K/sec ( +- 0.00% ) 76,712,481,765 cycles # 2.371 GHz ( +- 0.13% ) [83.31%] 36,279,577,636 stalled-cycles-frontend # 47.29% frontend cycles idle ( +- 0.28% ) [83.35%] 1,684,049,110 stalled-cycles-backend # 2.20% backend cycles idle ( +- 2.96% ) [66.67%] 134,355,715,816 instructions # 1.75 insns per cycle # 0.27 stalled cycles per insn ( +- 0.10% ) [83.35%] 13,526,169,702 branches # 418.039 M/sec ( +- 0.10% ) [83.31%] 1,058,230 branch-misses # 0.01% of all branches ( +- 0.91% ) [83.36%] 32.413866442 seconds time elapsed ( +- 0.13% ) vhzp: Performance counter stats for './test_memcmp' (5 runs): 30327.183829 task-clock # 0.998 CPUs utilized ( +- 0.13% ) 38 context-switches # 0.001 K/sec ( +- 1.53% ) 0 CPU-migrations # 0.000 K/sec 4,218 page-faults # 0.139 K/sec ( +- 0.01% ) 71,964,773,660 cycles # 2.373 GHz ( +- 0.13% ) [83.35%] 31,191,284,231 stalled-cycles-frontend # 43.34% frontend cycles idle ( +- 0.40% ) [83.32%] 773,484,474 stalled-cycles-backend # 1.07% backend cycles idle ( +- 6.61% ) [66.67%] 134,982,215,437 instructions # 1.88 insns per cycle # 0.23 stalled cycles per insn ( +- 0.11% ) [83.32%] 13,509,150,683 branches # 445.447 M/sec ( +- 0.11% ) [83.34%] 1,017,667 branch-misses # 0.01% of all branches ( +- 1.07% ) [83.32%] 30.381324695 seconds time elapsed ( +- 0.13% ) Mirobenchmark2 ============== test: posix_memalign((void **)&p, 2 * MB, 8 * GB); for (i = 0; i < 1000; i++) { char *_p = p; while (_p < p+4*GB) { assert(*_p == *(_p+4*GB)); _p += 4096; asm volatile ("": : :"memory"); } } hzp: Performance counter stats for 'taskset -c 0 ./test_memcmp2' (5 runs): 3505.727639 task-clock # 0.998 CPUs utilized ( +- 0.26% ) 9 context-switches # 0.003 K/sec ( +- 4.97% ) 4,384 page-faults # 0.001 M/sec ( +- 0.00% ) 8,318,482,466 cycles # 2.373 GHz ( +- 0.26% ) [33.31%] 5,134,318,786 stalled-cycles-frontend # 61.72% frontend cycles idle ( +- 0.42% ) [33.32%] 2,193,266,208 stalled-cycles-backend # 26.37% backend cycles idle ( +- 5.51% ) [33.33%] 9,494,670,537 instructions # 1.14 insns per cycle # 0.54 stalled cycles per insn ( +- 0.13% ) [41.68%] 2,108,522,738 branches # 601.451 M/sec ( +- 0.09% ) [41.68%] 158,746 branch-misses # 0.01% of all branches ( +- 1.60% ) [41.71%] 3,168,102,115 L1-dcache-loads # 903.693 M/sec ( +- 0.11% ) [41.70%] 1,048,710,998 L1-dcache-misses # 33.10% of all L1-dcache hits ( +- 0.11% ) [41.72%] 1,047,699,685 LLC-load # 298.854 M/sec ( +- 0.03% ) [33.38%] 2,287 LLC-misses # 0.00% of all LL-cache hits ( +- 8.27% ) [33.37%] 3,166,187,367 dTLB-loads # 903.147 M/sec ( +- 0.02% ) [33.35%] 4,266,538 dTLB-misses # 0.13% of all dTLB cache hits ( +- 0.03% ) [33.33%] 3.513339813 seconds time elapsed ( +- 0.26% ) vhzp: Performance counter stats for 'taskset -c 0 ./test_memcmp2' (5 runs): 27313.891128 task-clock # 0.998 CPUs utilized ( +- 0.24% ) 62 context-switches # 0.002 K/sec ( +- 0.61% ) 4,384 page-faults # 0.160 K/sec ( +- 0.01% ) 64,747,374,606 cycles # 2.370 GHz ( +- 0.24% ) [33.33%] 61,341,580,278 stalled-cycles-frontend # 94.74% frontend cycles idle ( +- 0.26% ) [33.33%] 56,702,237,511 stalled-cycles-backend # 87.57% backend cycles idle ( +- 0.07% ) [33.33%] 10,033,724,846 instructions # 0.15 insns per cycle # 6.11 stalled cycles per insn ( +- 0.09% ) [41.65%] 2,190,424,932 branches # 80.195 M/sec ( +- 0.12% ) [41.66%] 1,028,630 branch-misses # 0.05% of all branches ( +- 1.50% ) [41.66%] 3,302,006,540 L1-dcache-loads # 120.891 M/sec ( +- 0.11% ) [41.68%] 271,374,358 L1-dcache-misses # 8.22% of all L1-dcache hits ( +- 0.04% ) [41.66%] 20,385,476 LLC-load # 0.746 M/sec ( +- 1.64% ) [33.34%] 76,754 LLC-misses # 0.38% of all LL-cache hits ( +- 2.35% ) [33.34%] 3,309,927,290 dTLB-loads # 121.181 M/sec ( +- 0.03% ) [33.34%] 2,098,967,427 dTLB-misses # 63.41% of all dTLB cache hits ( +- 0.03% ) [33.34%] 27.364448741 seconds time elapsed ( +- 0.24% ) === I personally prefer implementation present in this patchset. It doesn't touch arch-specific code. This patch: Huge zero page (hzp) is a non-movable huge page (2M on x86-64) filled with zeros. For now let's allocate the page on hugepage_init(). We'll switch to lazy allocation later. We are not going to map the huge zero page until we can handle it properly on all code paths. is_huge_zero_{pfn,pmd}() functions will be used by following patches to check whether the pfn/pmd is huge zero page. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: "H. Peter Anvin" <hpa@linux.intel.com> Cc: Mel Gorman <mel@csn.ul.ie> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-13 05:50:47 +08:00
HPAGE_PMD_ORDER);
if (!zero_page) {
count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
return NULL;
}
count_vm_event(THP_ZERO_PAGE_ALLOC);
preempt_disable();
if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
preempt_enable();
__free_pages(zero_page, compound_order(zero_page));
goto retry;
}
/* We take additional reference here. It will be put back by shrinker */
atomic_set(&huge_zero_refcount, 2);
preempt_enable();
return READ_ONCE(huge_zero_page);
thp: huge zero page: basic preparation During testing I noticed big (up to 2.5 times) memory consumption overhead on some workloads (e.g. ft.A from NPB) if THP is enabled. The main reason for that big difference is lacking zero page in THP case. We have to allocate a real page on read page fault. A program to demonstrate the issue: #include <assert.h> #include <stdlib.h> #include <unistd.h> #define MB 1024*1024 int main(int argc, char **argv) { char *p; int i; posix_memalign((void **)&p, 2 * MB, 200 * MB); for (i = 0; i < 200 * MB; i+= 4096) assert(p[i] == 0); pause(); return 0; } With thp-never RSS is about 400k, but with thp-always it's 200M. After the patcheset thp-always RSS is 400k too. Design overview. Huge zero page (hzp) is a non-movable huge page (2M on x86-64) filled with zeros. The way how we allocate it changes in the patchset: - [01/10] simplest way: hzp allocated on boot time in hugepage_init(); - [09/10] lazy allocation on first use; - [10/10] lockless refcounting + shrinker-reclaimable hzp; We setup it in do_huge_pmd_anonymous_page() if area around fault address is suitable for THP and we've got read page fault. If we fail to setup hzp (ENOMEM) we fallback to handle_pte_fault() as we normally do in THP. On wp fault to hzp we allocate real memory for the huge page and clear it. If ENOMEM, graceful fallback: we create a new pmd table and set pte around fault address to newly allocated normal (4k) page. All other ptes in the pmd set to normal zero page. We cannot split hzp (and it's bug if we try), but we can split the pmd which points to it. On splitting the pmd we create a table with all ptes set to normal zero page. === By hpa's request I've tried alternative approach for hzp implementation (see Virtual huge zero page patchset): pmd table with all entries set to zero page. This way should be more cache friendly, but it increases TLB pressure. The problem with virtual huge zero page: it requires per-arch enabling. We need a way to mark that pmd table has all ptes set to zero page. Some numbers to compare two implementations (on 4s Westmere-EX): Mirobenchmark1 ============== test: posix_memalign((void **)&p, 2 * MB, 8 * GB); for (i = 0; i < 100; i++) { assert(memcmp(p, p + 4*GB, 4*GB) == 0); asm volatile ("": : :"memory"); } hzp: Performance counter stats for './test_memcmp' (5 runs): 32356.272845 task-clock # 0.998 CPUs utilized ( +- 0.13% ) 40 context-switches # 0.001 K/sec ( +- 0.94% ) 0 CPU-migrations # 0.000 K/sec 4,218 page-faults # 0.130 K/sec ( +- 0.00% ) 76,712,481,765 cycles # 2.371 GHz ( +- 0.13% ) [83.31%] 36,279,577,636 stalled-cycles-frontend # 47.29% frontend cycles idle ( +- 0.28% ) [83.35%] 1,684,049,110 stalled-cycles-backend # 2.20% backend cycles idle ( +- 2.96% ) [66.67%] 134,355,715,816 instructions # 1.75 insns per cycle # 0.27 stalled cycles per insn ( +- 0.10% ) [83.35%] 13,526,169,702 branches # 418.039 M/sec ( +- 0.10% ) [83.31%] 1,058,230 branch-misses # 0.01% of all branches ( +- 0.91% ) [83.36%] 32.413866442 seconds time elapsed ( +- 0.13% ) vhzp: Performance counter stats for './test_memcmp' (5 runs): 30327.183829 task-clock # 0.998 CPUs utilized ( +- 0.13% ) 38 context-switches # 0.001 K/sec ( +- 1.53% ) 0 CPU-migrations # 0.000 K/sec 4,218 page-faults # 0.139 K/sec ( +- 0.01% ) 71,964,773,660 cycles # 2.373 GHz ( +- 0.13% ) [83.35%] 31,191,284,231 stalled-cycles-frontend # 43.34% frontend cycles idle ( +- 0.40% ) [83.32%] 773,484,474 stalled-cycles-backend # 1.07% backend cycles idle ( +- 6.61% ) [66.67%] 134,982,215,437 instructions # 1.88 insns per cycle # 0.23 stalled cycles per insn ( +- 0.11% ) [83.32%] 13,509,150,683 branches # 445.447 M/sec ( +- 0.11% ) [83.34%] 1,017,667 branch-misses # 0.01% of all branches ( +- 1.07% ) [83.32%] 30.381324695 seconds time elapsed ( +- 0.13% ) Mirobenchmark2 ============== test: posix_memalign((void **)&p, 2 * MB, 8 * GB); for (i = 0; i < 1000; i++) { char *_p = p; while (_p < p+4*GB) { assert(*_p == *(_p+4*GB)); _p += 4096; asm volatile ("": : :"memory"); } } hzp: Performance counter stats for 'taskset -c 0 ./test_memcmp2' (5 runs): 3505.727639 task-clock # 0.998 CPUs utilized ( +- 0.26% ) 9 context-switches # 0.003 K/sec ( +- 4.97% ) 4,384 page-faults # 0.001 M/sec ( +- 0.00% ) 8,318,482,466 cycles # 2.373 GHz ( +- 0.26% ) [33.31%] 5,134,318,786 stalled-cycles-frontend # 61.72% frontend cycles idle ( +- 0.42% ) [33.32%] 2,193,266,208 stalled-cycles-backend # 26.37% backend cycles idle ( +- 5.51% ) [33.33%] 9,494,670,537 instructions # 1.14 insns per cycle # 0.54 stalled cycles per insn ( +- 0.13% ) [41.68%] 2,108,522,738 branches # 601.451 M/sec ( +- 0.09% ) [41.68%] 158,746 branch-misses # 0.01% of all branches ( +- 1.60% ) [41.71%] 3,168,102,115 L1-dcache-loads # 903.693 M/sec ( +- 0.11% ) [41.70%] 1,048,710,998 L1-dcache-misses # 33.10% of all L1-dcache hits ( +- 0.11% ) [41.72%] 1,047,699,685 LLC-load # 298.854 M/sec ( +- 0.03% ) [33.38%] 2,287 LLC-misses # 0.00% of all LL-cache hits ( +- 8.27% ) [33.37%] 3,166,187,367 dTLB-loads # 903.147 M/sec ( +- 0.02% ) [33.35%] 4,266,538 dTLB-misses # 0.13% of all dTLB cache hits ( +- 0.03% ) [33.33%] 3.513339813 seconds time elapsed ( +- 0.26% ) vhzp: Performance counter stats for 'taskset -c 0 ./test_memcmp2' (5 runs): 27313.891128 task-clock # 0.998 CPUs utilized ( +- 0.24% ) 62 context-switches # 0.002 K/sec ( +- 0.61% ) 4,384 page-faults # 0.160 K/sec ( +- 0.01% ) 64,747,374,606 cycles # 2.370 GHz ( +- 0.24% ) [33.33%] 61,341,580,278 stalled-cycles-frontend # 94.74% frontend cycles idle ( +- 0.26% ) [33.33%] 56,702,237,511 stalled-cycles-backend # 87.57% backend cycles idle ( +- 0.07% ) [33.33%] 10,033,724,846 instructions # 0.15 insns per cycle # 6.11 stalled cycles per insn ( +- 0.09% ) [41.65%] 2,190,424,932 branches # 80.195 M/sec ( +- 0.12% ) [41.66%] 1,028,630 branch-misses # 0.05% of all branches ( +- 1.50% ) [41.66%] 3,302,006,540 L1-dcache-loads # 120.891 M/sec ( +- 0.11% ) [41.68%] 271,374,358 L1-dcache-misses # 8.22% of all L1-dcache hits ( +- 0.04% ) [41.66%] 20,385,476 LLC-load # 0.746 M/sec ( +- 1.64% ) [33.34%] 76,754 LLC-misses # 0.38% of all LL-cache hits ( +- 2.35% ) [33.34%] 3,309,927,290 dTLB-loads # 121.181 M/sec ( +- 0.03% ) [33.34%] 2,098,967,427 dTLB-misses # 63.41% of all dTLB cache hits ( +- 0.03% ) [33.34%] 27.364448741 seconds time elapsed ( +- 0.24% ) === I personally prefer implementation present in this patchset. It doesn't touch arch-specific code. This patch: Huge zero page (hzp) is a non-movable huge page (2M on x86-64) filled with zeros. For now let's allocate the page on hugepage_init(). We'll switch to lazy allocation later. We are not going to map the huge zero page until we can handle it properly on all code paths. is_huge_zero_{pfn,pmd}() functions will be used by following patches to check whether the pfn/pmd is huge zero page. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: "H. Peter Anvin" <hpa@linux.intel.com> Cc: Mel Gorman <mel@csn.ul.ie> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-13 05:50:47 +08:00
}
thp: reduce usage of huge zero page's atomic counter The global zero page is used to satisfy an anonymous read fault. If THP(Transparent HugePage) is enabled then the global huge zero page is used. The global huge zero page uses an atomic counter for reference counting and is allocated/freed dynamically according to its counter value. CPU time spent on that counter will greatly increase if there are a lot of processes doing anonymous read faults. This patch proposes a way to reduce the access to the global counter so that the CPU load can be reduced accordingly. To do this, a new flag of the mm_struct is introduced: MMF_USED_HUGE_ZERO_PAGE. With this flag, the process only need to touch the global counter in two cases: 1 The first time it uses the global huge zero page; 2 The time when mm_user of its mm_struct reaches zero. Note that right now, the huge zero page is eligible to be freed as soon as its last use goes away. With this patch, the page will not be eligible to be freed until the exit of the last process from which it was ever used. And with the use of mm_user, the kthread is not eligible to use huge zero page either. Since no kthread is using huge zero page today, there is no difference after applying this patch. But if that is not desired, I can change it to when mm_count reaches zero. Case used for test on Haswell EP: usemem -n 72 --readonly -j 0x200000 100G Which spawns 72 processes and each will mmap 100G anonymous space and then do read only access to that space sequentially with a step of 2MB. CPU cycles from perf report for base commit: 54.03% usemem [kernel.kallsyms] [k] get_huge_zero_page CPU cycles from perf report for this commit: 0.11% usemem [kernel.kallsyms] [k] mm_get_huge_zero_page Performance(throughput) of the workload for base commit: 1784430792 Performance(throughput) of the workload for this commit: 4726928591 164% increase. Runtime of the workload for base commit: 707592 us Runtime of the workload for this commit: 303970 us 50% drop. Link: http://lkml.kernel.org/r/fe51a88f-446a-4622-1363-ad1282d71385@intel.com Signed-off-by: Aaron Lu <aaron.lu@intel.com> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Huang Ying <ying.huang@intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Ebru Akagunduz <ebru.akagunduz@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-08 08:00:08 +08:00
static void put_huge_zero_page(void)
thp: huge zero page: basic preparation During testing I noticed big (up to 2.5 times) memory consumption overhead on some workloads (e.g. ft.A from NPB) if THP is enabled. The main reason for that big difference is lacking zero page in THP case. We have to allocate a real page on read page fault. A program to demonstrate the issue: #include <assert.h> #include <stdlib.h> #include <unistd.h> #define MB 1024*1024 int main(int argc, char **argv) { char *p; int i; posix_memalign((void **)&p, 2 * MB, 200 * MB); for (i = 0; i < 200 * MB; i+= 4096) assert(p[i] == 0); pause(); return 0; } With thp-never RSS is about 400k, but with thp-always it's 200M. After the patcheset thp-always RSS is 400k too. Design overview. Huge zero page (hzp) is a non-movable huge page (2M on x86-64) filled with zeros. The way how we allocate it changes in the patchset: - [01/10] simplest way: hzp allocated on boot time in hugepage_init(); - [09/10] lazy allocation on first use; - [10/10] lockless refcounting + shrinker-reclaimable hzp; We setup it in do_huge_pmd_anonymous_page() if area around fault address is suitable for THP and we've got read page fault. If we fail to setup hzp (ENOMEM) we fallback to handle_pte_fault() as we normally do in THP. On wp fault to hzp we allocate real memory for the huge page and clear it. If ENOMEM, graceful fallback: we create a new pmd table and set pte around fault address to newly allocated normal (4k) page. All other ptes in the pmd set to normal zero page. We cannot split hzp (and it's bug if we try), but we can split the pmd which points to it. On splitting the pmd we create a table with all ptes set to normal zero page. === By hpa's request I've tried alternative approach for hzp implementation (see Virtual huge zero page patchset): pmd table with all entries set to zero page. This way should be more cache friendly, but it increases TLB pressure. The problem with virtual huge zero page: it requires per-arch enabling. We need a way to mark that pmd table has all ptes set to zero page. Some numbers to compare two implementations (on 4s Westmere-EX): Mirobenchmark1 ============== test: posix_memalign((void **)&p, 2 * MB, 8 * GB); for (i = 0; i < 100; i++) { assert(memcmp(p, p + 4*GB, 4*GB) == 0); asm volatile ("": : :"memory"); } hzp: Performance counter stats for './test_memcmp' (5 runs): 32356.272845 task-clock # 0.998 CPUs utilized ( +- 0.13% ) 40 context-switches # 0.001 K/sec ( +- 0.94% ) 0 CPU-migrations # 0.000 K/sec 4,218 page-faults # 0.130 K/sec ( +- 0.00% ) 76,712,481,765 cycles # 2.371 GHz ( +- 0.13% ) [83.31%] 36,279,577,636 stalled-cycles-frontend # 47.29% frontend cycles idle ( +- 0.28% ) [83.35%] 1,684,049,110 stalled-cycles-backend # 2.20% backend cycles idle ( +- 2.96% ) [66.67%] 134,355,715,816 instructions # 1.75 insns per cycle # 0.27 stalled cycles per insn ( +- 0.10% ) [83.35%] 13,526,169,702 branches # 418.039 M/sec ( +- 0.10% ) [83.31%] 1,058,230 branch-misses # 0.01% of all branches ( +- 0.91% ) [83.36%] 32.413866442 seconds time elapsed ( +- 0.13% ) vhzp: Performance counter stats for './test_memcmp' (5 runs): 30327.183829 task-clock # 0.998 CPUs utilized ( +- 0.13% ) 38 context-switches # 0.001 K/sec ( +- 1.53% ) 0 CPU-migrations # 0.000 K/sec 4,218 page-faults # 0.139 K/sec ( +- 0.01% ) 71,964,773,660 cycles # 2.373 GHz ( +- 0.13% ) [83.35%] 31,191,284,231 stalled-cycles-frontend # 43.34% frontend cycles idle ( +- 0.40% ) [83.32%] 773,484,474 stalled-cycles-backend # 1.07% backend cycles idle ( +- 6.61% ) [66.67%] 134,982,215,437 instructions # 1.88 insns per cycle # 0.23 stalled cycles per insn ( +- 0.11% ) [83.32%] 13,509,150,683 branches # 445.447 M/sec ( +- 0.11% ) [83.34%] 1,017,667 branch-misses # 0.01% of all branches ( +- 1.07% ) [83.32%] 30.381324695 seconds time elapsed ( +- 0.13% ) Mirobenchmark2 ============== test: posix_memalign((void **)&p, 2 * MB, 8 * GB); for (i = 0; i < 1000; i++) { char *_p = p; while (_p < p+4*GB) { assert(*_p == *(_p+4*GB)); _p += 4096; asm volatile ("": : :"memory"); } } hzp: Performance counter stats for 'taskset -c 0 ./test_memcmp2' (5 runs): 3505.727639 task-clock # 0.998 CPUs utilized ( +- 0.26% ) 9 context-switches # 0.003 K/sec ( +- 4.97% ) 4,384 page-faults # 0.001 M/sec ( +- 0.00% ) 8,318,482,466 cycles # 2.373 GHz ( +- 0.26% ) [33.31%] 5,134,318,786 stalled-cycles-frontend # 61.72% frontend cycles idle ( +- 0.42% ) [33.32%] 2,193,266,208 stalled-cycles-backend # 26.37% backend cycles idle ( +- 5.51% ) [33.33%] 9,494,670,537 instructions # 1.14 insns per cycle # 0.54 stalled cycles per insn ( +- 0.13% ) [41.68%] 2,108,522,738 branches # 601.451 M/sec ( +- 0.09% ) [41.68%] 158,746 branch-misses # 0.01% of all branches ( +- 1.60% ) [41.71%] 3,168,102,115 L1-dcache-loads # 903.693 M/sec ( +- 0.11% ) [41.70%] 1,048,710,998 L1-dcache-misses # 33.10% of all L1-dcache hits ( +- 0.11% ) [41.72%] 1,047,699,685 LLC-load # 298.854 M/sec ( +- 0.03% ) [33.38%] 2,287 LLC-misses # 0.00% of all LL-cache hits ( +- 8.27% ) [33.37%] 3,166,187,367 dTLB-loads # 903.147 M/sec ( +- 0.02% ) [33.35%] 4,266,538 dTLB-misses # 0.13% of all dTLB cache hits ( +- 0.03% ) [33.33%] 3.513339813 seconds time elapsed ( +- 0.26% ) vhzp: Performance counter stats for 'taskset -c 0 ./test_memcmp2' (5 runs): 27313.891128 task-clock # 0.998 CPUs utilized ( +- 0.24% ) 62 context-switches # 0.002 K/sec ( +- 0.61% ) 4,384 page-faults # 0.160 K/sec ( +- 0.01% ) 64,747,374,606 cycles # 2.370 GHz ( +- 0.24% ) [33.33%] 61,341,580,278 stalled-cycles-frontend # 94.74% frontend cycles idle ( +- 0.26% ) [33.33%] 56,702,237,511 stalled-cycles-backend # 87.57% backend cycles idle ( +- 0.07% ) [33.33%] 10,033,724,846 instructions # 0.15 insns per cycle # 6.11 stalled cycles per insn ( +- 0.09% ) [41.65%] 2,190,424,932 branches # 80.195 M/sec ( +- 0.12% ) [41.66%] 1,028,630 branch-misses # 0.05% of all branches ( +- 1.50% ) [41.66%] 3,302,006,540 L1-dcache-loads # 120.891 M/sec ( +- 0.11% ) [41.68%] 271,374,358 L1-dcache-misses # 8.22% of all L1-dcache hits ( +- 0.04% ) [41.66%] 20,385,476 LLC-load # 0.746 M/sec ( +- 1.64% ) [33.34%] 76,754 LLC-misses # 0.38% of all LL-cache hits ( +- 2.35% ) [33.34%] 3,309,927,290 dTLB-loads # 121.181 M/sec ( +- 0.03% ) [33.34%] 2,098,967,427 dTLB-misses # 63.41% of all dTLB cache hits ( +- 0.03% ) [33.34%] 27.364448741 seconds time elapsed ( +- 0.24% ) === I personally prefer implementation present in this patchset. It doesn't touch arch-specific code. This patch: Huge zero page (hzp) is a non-movable huge page (2M on x86-64) filled with zeros. For now let's allocate the page on hugepage_init(). We'll switch to lazy allocation later. We are not going to map the huge zero page until we can handle it properly on all code paths. is_huge_zero_{pfn,pmd}() functions will be used by following patches to check whether the pfn/pmd is huge zero page. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: "H. Peter Anvin" <hpa@linux.intel.com> Cc: Mel Gorman <mel@csn.ul.ie> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-13 05:50:47 +08:00
{
/*
* Counter should never go to zero here. Only shrinker can put
* last reference.
*/
BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
thp: huge zero page: basic preparation During testing I noticed big (up to 2.5 times) memory consumption overhead on some workloads (e.g. ft.A from NPB) if THP is enabled. The main reason for that big difference is lacking zero page in THP case. We have to allocate a real page on read page fault. A program to demonstrate the issue: #include <assert.h> #include <stdlib.h> #include <unistd.h> #define MB 1024*1024 int main(int argc, char **argv) { char *p; int i; posix_memalign((void **)&p, 2 * MB, 200 * MB); for (i = 0; i < 200 * MB; i+= 4096) assert(p[i] == 0); pause(); return 0; } With thp-never RSS is about 400k, but with thp-always it's 200M. After the patcheset thp-always RSS is 400k too. Design overview. Huge zero page (hzp) is a non-movable huge page (2M on x86-64) filled with zeros. The way how we allocate it changes in the patchset: - [01/10] simplest way: hzp allocated on boot time in hugepage_init(); - [09/10] lazy allocation on first use; - [10/10] lockless refcounting + shrinker-reclaimable hzp; We setup it in do_huge_pmd_anonymous_page() if area around fault address is suitable for THP and we've got read page fault. If we fail to setup hzp (ENOMEM) we fallback to handle_pte_fault() as we normally do in THP. On wp fault to hzp we allocate real memory for the huge page and clear it. If ENOMEM, graceful fallback: we create a new pmd table and set pte around fault address to newly allocated normal (4k) page. All other ptes in the pmd set to normal zero page. We cannot split hzp (and it's bug if we try), but we can split the pmd which points to it. On splitting the pmd we create a table with all ptes set to normal zero page. === By hpa's request I've tried alternative approach for hzp implementation (see Virtual huge zero page patchset): pmd table with all entries set to zero page. This way should be more cache friendly, but it increases TLB pressure. The problem with virtual huge zero page: it requires per-arch enabling. We need a way to mark that pmd table has all ptes set to zero page. Some numbers to compare two implementations (on 4s Westmere-EX): Mirobenchmark1 ============== test: posix_memalign((void **)&p, 2 * MB, 8 * GB); for (i = 0; i < 100; i++) { assert(memcmp(p, p + 4*GB, 4*GB) == 0); asm volatile ("": : :"memory"); } hzp: Performance counter stats for './test_memcmp' (5 runs): 32356.272845 task-clock # 0.998 CPUs utilized ( +- 0.13% ) 40 context-switches # 0.001 K/sec ( +- 0.94% ) 0 CPU-migrations # 0.000 K/sec 4,218 page-faults # 0.130 K/sec ( +- 0.00% ) 76,712,481,765 cycles # 2.371 GHz ( +- 0.13% ) [83.31%] 36,279,577,636 stalled-cycles-frontend # 47.29% frontend cycles idle ( +- 0.28% ) [83.35%] 1,684,049,110 stalled-cycles-backend # 2.20% backend cycles idle ( +- 2.96% ) [66.67%] 134,355,715,816 instructions # 1.75 insns per cycle # 0.27 stalled cycles per insn ( +- 0.10% ) [83.35%] 13,526,169,702 branches # 418.039 M/sec ( +- 0.10% ) [83.31%] 1,058,230 branch-misses # 0.01% of all branches ( +- 0.91% ) [83.36%] 32.413866442 seconds time elapsed ( +- 0.13% ) vhzp: Performance counter stats for './test_memcmp' (5 runs): 30327.183829 task-clock # 0.998 CPUs utilized ( +- 0.13% ) 38 context-switches # 0.001 K/sec ( +- 1.53% ) 0 CPU-migrations # 0.000 K/sec 4,218 page-faults # 0.139 K/sec ( +- 0.01% ) 71,964,773,660 cycles # 2.373 GHz ( +- 0.13% ) [83.35%] 31,191,284,231 stalled-cycles-frontend # 43.34% frontend cycles idle ( +- 0.40% ) [83.32%] 773,484,474 stalled-cycles-backend # 1.07% backend cycles idle ( +- 6.61% ) [66.67%] 134,982,215,437 instructions # 1.88 insns per cycle # 0.23 stalled cycles per insn ( +- 0.11% ) [83.32%] 13,509,150,683 branches # 445.447 M/sec ( +- 0.11% ) [83.34%] 1,017,667 branch-misses # 0.01% of all branches ( +- 1.07% ) [83.32%] 30.381324695 seconds time elapsed ( +- 0.13% ) Mirobenchmark2 ============== test: posix_memalign((void **)&p, 2 * MB, 8 * GB); for (i = 0; i < 1000; i++) { char *_p = p; while (_p < p+4*GB) { assert(*_p == *(_p+4*GB)); _p += 4096; asm volatile ("": : :"memory"); } } hzp: Performance counter stats for 'taskset -c 0 ./test_memcmp2' (5 runs): 3505.727639 task-clock # 0.998 CPUs utilized ( +- 0.26% ) 9 context-switches # 0.003 K/sec ( +- 4.97% ) 4,384 page-faults # 0.001 M/sec ( +- 0.00% ) 8,318,482,466 cycles # 2.373 GHz ( +- 0.26% ) [33.31%] 5,134,318,786 stalled-cycles-frontend # 61.72% frontend cycles idle ( +- 0.42% ) [33.32%] 2,193,266,208 stalled-cycles-backend # 26.37% backend cycles idle ( +- 5.51% ) [33.33%] 9,494,670,537 instructions # 1.14 insns per cycle # 0.54 stalled cycles per insn ( +- 0.13% ) [41.68%] 2,108,522,738 branches # 601.451 M/sec ( +- 0.09% ) [41.68%] 158,746 branch-misses # 0.01% of all branches ( +- 1.60% ) [41.71%] 3,168,102,115 L1-dcache-loads # 903.693 M/sec ( +- 0.11% ) [41.70%] 1,048,710,998 L1-dcache-misses # 33.10% of all L1-dcache hits ( +- 0.11% ) [41.72%] 1,047,699,685 LLC-load # 298.854 M/sec ( +- 0.03% ) [33.38%] 2,287 LLC-misses # 0.00% of all LL-cache hits ( +- 8.27% ) [33.37%] 3,166,187,367 dTLB-loads # 903.147 M/sec ( +- 0.02% ) [33.35%] 4,266,538 dTLB-misses # 0.13% of all dTLB cache hits ( +- 0.03% ) [33.33%] 3.513339813 seconds time elapsed ( +- 0.26% ) vhzp: Performance counter stats for 'taskset -c 0 ./test_memcmp2' (5 runs): 27313.891128 task-clock # 0.998 CPUs utilized ( +- 0.24% ) 62 context-switches # 0.002 K/sec ( +- 0.61% ) 4,384 page-faults # 0.160 K/sec ( +- 0.01% ) 64,747,374,606 cycles # 2.370 GHz ( +- 0.24% ) [33.33%] 61,341,580,278 stalled-cycles-frontend # 94.74% frontend cycles idle ( +- 0.26% ) [33.33%] 56,702,237,511 stalled-cycles-backend # 87.57% backend cycles idle ( +- 0.07% ) [33.33%] 10,033,724,846 instructions # 0.15 insns per cycle # 6.11 stalled cycles per insn ( +- 0.09% ) [41.65%] 2,190,424,932 branches # 80.195 M/sec ( +- 0.12% ) [41.66%] 1,028,630 branch-misses # 0.05% of all branches ( +- 1.50% ) [41.66%] 3,302,006,540 L1-dcache-loads # 120.891 M/sec ( +- 0.11% ) [41.68%] 271,374,358 L1-dcache-misses # 8.22% of all L1-dcache hits ( +- 0.04% ) [41.66%] 20,385,476 LLC-load # 0.746 M/sec ( +- 1.64% ) [33.34%] 76,754 LLC-misses # 0.38% of all LL-cache hits ( +- 2.35% ) [33.34%] 3,309,927,290 dTLB-loads # 121.181 M/sec ( +- 0.03% ) [33.34%] 2,098,967,427 dTLB-misses # 63.41% of all dTLB cache hits ( +- 0.03% ) [33.34%] 27.364448741 seconds time elapsed ( +- 0.24% ) === I personally prefer implementation present in this patchset. It doesn't touch arch-specific code. This patch: Huge zero page (hzp) is a non-movable huge page (2M on x86-64) filled with zeros. For now let's allocate the page on hugepage_init(). We'll switch to lazy allocation later. We are not going to map the huge zero page until we can handle it properly on all code paths. is_huge_zero_{pfn,pmd}() functions will be used by following patches to check whether the pfn/pmd is huge zero page. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: "H. Peter Anvin" <hpa@linux.intel.com> Cc: Mel Gorman <mel@csn.ul.ie> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-13 05:50:47 +08:00
}
thp: reduce usage of huge zero page's atomic counter The global zero page is used to satisfy an anonymous read fault. If THP(Transparent HugePage) is enabled then the global huge zero page is used. The global huge zero page uses an atomic counter for reference counting and is allocated/freed dynamically according to its counter value. CPU time spent on that counter will greatly increase if there are a lot of processes doing anonymous read faults. This patch proposes a way to reduce the access to the global counter so that the CPU load can be reduced accordingly. To do this, a new flag of the mm_struct is introduced: MMF_USED_HUGE_ZERO_PAGE. With this flag, the process only need to touch the global counter in two cases: 1 The first time it uses the global huge zero page; 2 The time when mm_user of its mm_struct reaches zero. Note that right now, the huge zero page is eligible to be freed as soon as its last use goes away. With this patch, the page will not be eligible to be freed until the exit of the last process from which it was ever used. And with the use of mm_user, the kthread is not eligible to use huge zero page either. Since no kthread is using huge zero page today, there is no difference after applying this patch. But if that is not desired, I can change it to when mm_count reaches zero. Case used for test on Haswell EP: usemem -n 72 --readonly -j 0x200000 100G Which spawns 72 processes and each will mmap 100G anonymous space and then do read only access to that space sequentially with a step of 2MB. CPU cycles from perf report for base commit: 54.03% usemem [kernel.kallsyms] [k] get_huge_zero_page CPU cycles from perf report for this commit: 0.11% usemem [kernel.kallsyms] [k] mm_get_huge_zero_page Performance(throughput) of the workload for base commit: 1784430792 Performance(throughput) of the workload for this commit: 4726928591 164% increase. Runtime of the workload for base commit: 707592 us Runtime of the workload for this commit: 303970 us 50% drop. Link: http://lkml.kernel.org/r/fe51a88f-446a-4622-1363-ad1282d71385@intel.com Signed-off-by: Aaron Lu <aaron.lu@intel.com> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Huang Ying <ying.huang@intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Ebru Akagunduz <ebru.akagunduz@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-08 08:00:08 +08:00
struct page *mm_get_huge_zero_page(struct mm_struct *mm)
{
if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
return READ_ONCE(huge_zero_page);
if (!get_huge_zero_page())
return NULL;
if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
put_huge_zero_page();
return READ_ONCE(huge_zero_page);
}
void mm_put_huge_zero_page(struct mm_struct *mm)
{
if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
put_huge_zero_page();
}
hugepage: convert huge zero page shrinker to new shrinker API It consists of: * returning long instead of int * separating count from scan * returning the number of freed entities in scan Signed-off-by: Glauber Costa <glommer@openvz.org> Reviewed-by: Greg Thelen <gthelen@google.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Dave Chinner <dchinner@redhat.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Artem Bityutskiy <artem.bityutskiy@linux.intel.com> Cc: Arve Hjønnevåg <arve@android.com> Cc: Carlos Maiolino <cmaiolino@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Chuck Lever <chuck.lever@oracle.com> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Cc: David Rientjes <rientjes@google.com> Cc: Gleb Natapov <gleb@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: J. Bruce Fields <bfields@redhat.com> Cc: Jan Kara <jack@suse.cz> Cc: Jerome Glisse <jglisse@redhat.com> Cc: John Stultz <john.stultz@linaro.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Kent Overstreet <koverstreet@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Thomas Hellstrom <thellstrom@vmware.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2013-08-28 08:18:15 +08:00
static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
struct shrink_control *sc)
thp: huge zero page: basic preparation During testing I noticed big (up to 2.5 times) memory consumption overhead on some workloads (e.g. ft.A from NPB) if THP is enabled. The main reason for that big difference is lacking zero page in THP case. We have to allocate a real page on read page fault. A program to demonstrate the issue: #include <assert.h> #include <stdlib.h> #include <unistd.h> #define MB 1024*1024 int main(int argc, char **argv) { char *p; int i; posix_memalign((void **)&p, 2 * MB, 200 * MB); for (i = 0; i < 200 * MB; i+= 4096) assert(p[i] == 0); pause(); return 0; } With thp-never RSS is about 400k, but with thp-always it's 200M. After the patcheset thp-always RSS is 400k too. Design overview. Huge zero page (hzp) is a non-movable huge page (2M on x86-64) filled with zeros. The way how we allocate it changes in the patchset: - [01/10] simplest way: hzp allocated on boot time in hugepage_init(); - [09/10] lazy allocation on first use; - [10/10] lockless refcounting + shrinker-reclaimable hzp; We setup it in do_huge_pmd_anonymous_page() if area around fault address is suitable for THP and we've got read page fault. If we fail to setup hzp (ENOMEM) we fallback to handle_pte_fault() as we normally do in THP. On wp fault to hzp we allocate real memory for the huge page and clear it. If ENOMEM, graceful fallback: we create a new pmd table and set pte around fault address to newly allocated normal (4k) page. All other ptes in the pmd set to normal zero page. We cannot split hzp (and it's bug if we try), but we can split the pmd which points to it. On splitting the pmd we create a table with all ptes set to normal zero page. === By hpa's request I've tried alternative approach for hzp implementation (see Virtual huge zero page patchset): pmd table with all entries set to zero page. This way should be more cache friendly, but it increases TLB pressure. The problem with virtual huge zero page: it requires per-arch enabling. We need a way to mark that pmd table has all ptes set to zero page. Some numbers to compare two implementations (on 4s Westmere-EX): Mirobenchmark1 ============== test: posix_memalign((void **)&p, 2 * MB, 8 * GB); for (i = 0; i < 100; i++) { assert(memcmp(p, p + 4*GB, 4*GB) == 0); asm volatile ("": : :"memory"); } hzp: Performance counter stats for './test_memcmp' (5 runs): 32356.272845 task-clock # 0.998 CPUs utilized ( +- 0.13% ) 40 context-switches # 0.001 K/sec ( +- 0.94% ) 0 CPU-migrations # 0.000 K/sec 4,218 page-faults # 0.130 K/sec ( +- 0.00% ) 76,712,481,765 cycles # 2.371 GHz ( +- 0.13% ) [83.31%] 36,279,577,636 stalled-cycles-frontend # 47.29% frontend cycles idle ( +- 0.28% ) [83.35%] 1,684,049,110 stalled-cycles-backend # 2.20% backend cycles idle ( +- 2.96% ) [66.67%] 134,355,715,816 instructions # 1.75 insns per cycle # 0.27 stalled cycles per insn ( +- 0.10% ) [83.35%] 13,526,169,702 branches # 418.039 M/sec ( +- 0.10% ) [83.31%] 1,058,230 branch-misses # 0.01% of all branches ( +- 0.91% ) [83.36%] 32.413866442 seconds time elapsed ( +- 0.13% ) vhzp: Performance counter stats for './test_memcmp' (5 runs): 30327.183829 task-clock # 0.998 CPUs utilized ( +- 0.13% ) 38 context-switches # 0.001 K/sec ( +- 1.53% ) 0 CPU-migrations # 0.000 K/sec 4,218 page-faults # 0.139 K/sec ( +- 0.01% ) 71,964,773,660 cycles # 2.373 GHz ( +- 0.13% ) [83.35%] 31,191,284,231 stalled-cycles-frontend # 43.34% frontend cycles idle ( +- 0.40% ) [83.32%] 773,484,474 stalled-cycles-backend # 1.07% backend cycles idle ( +- 6.61% ) [66.67%] 134,982,215,437 instructions # 1.88 insns per cycle # 0.23 stalled cycles per insn ( +- 0.11% ) [83.32%] 13,509,150,683 branches # 445.447 M/sec ( +- 0.11% ) [83.34%] 1,017,667 branch-misses # 0.01% of all branches ( +- 1.07% ) [83.32%] 30.381324695 seconds time elapsed ( +- 0.13% ) Mirobenchmark2 ============== test: posix_memalign((void **)&p, 2 * MB, 8 * GB); for (i = 0; i < 1000; i++) { char *_p = p; while (_p < p+4*GB) { assert(*_p == *(_p+4*GB)); _p += 4096; asm volatile ("": : :"memory"); } } hzp: Performance counter stats for 'taskset -c 0 ./test_memcmp2' (5 runs): 3505.727639 task-clock # 0.998 CPUs utilized ( +- 0.26% ) 9 context-switches # 0.003 K/sec ( +- 4.97% ) 4,384 page-faults # 0.001 M/sec ( +- 0.00% ) 8,318,482,466 cycles # 2.373 GHz ( +- 0.26% ) [33.31%] 5,134,318,786 stalled-cycles-frontend # 61.72% frontend cycles idle ( +- 0.42% ) [33.32%] 2,193,266,208 stalled-cycles-backend # 26.37% backend cycles idle ( +- 5.51% ) [33.33%] 9,494,670,537 instructions # 1.14 insns per cycle # 0.54 stalled cycles per insn ( +- 0.13% ) [41.68%] 2,108,522,738 branches # 601.451 M/sec ( +- 0.09% ) [41.68%] 158,746 branch-misses # 0.01% of all branches ( +- 1.60% ) [41.71%] 3,168,102,115 L1-dcache-loads # 903.693 M/sec ( +- 0.11% ) [41.70%] 1,048,710,998 L1-dcache-misses # 33.10% of all L1-dcache hits ( +- 0.11% ) [41.72%] 1,047,699,685 LLC-load # 298.854 M/sec ( +- 0.03% ) [33.38%] 2,287 LLC-misses # 0.00% of all LL-cache hits ( +- 8.27% ) [33.37%] 3,166,187,367 dTLB-loads # 903.147 M/sec ( +- 0.02% ) [33.35%] 4,266,538 dTLB-misses # 0.13% of all dTLB cache hits ( +- 0.03% ) [33.33%] 3.513339813 seconds time elapsed ( +- 0.26% ) vhzp: Performance counter stats for 'taskset -c 0 ./test_memcmp2' (5 runs): 27313.891128 task-clock # 0.998 CPUs utilized ( +- 0.24% ) 62 context-switches # 0.002 K/sec ( +- 0.61% ) 4,384 page-faults # 0.160 K/sec ( +- 0.01% ) 64,747,374,606 cycles # 2.370 GHz ( +- 0.24% ) [33.33%] 61,341,580,278 stalled-cycles-frontend # 94.74% frontend cycles idle ( +- 0.26% ) [33.33%] 56,702,237,511 stalled-cycles-backend # 87.57% backend cycles idle ( +- 0.07% ) [33.33%] 10,033,724,846 instructions # 0.15 insns per cycle # 6.11 stalled cycles per insn ( +- 0.09% ) [41.65%] 2,190,424,932 branches # 80.195 M/sec ( +- 0.12% ) [41.66%] 1,028,630 branch-misses # 0.05% of all branches ( +- 1.50% ) [41.66%] 3,302,006,540 L1-dcache-loads # 120.891 M/sec ( +- 0.11% ) [41.68%] 271,374,358 L1-dcache-misses # 8.22% of all L1-dcache hits ( +- 0.04% ) [41.66%] 20,385,476 LLC-load # 0.746 M/sec ( +- 1.64% ) [33.34%] 76,754 LLC-misses # 0.38% of all LL-cache hits ( +- 2.35% ) [33.34%] 3,309,927,290 dTLB-loads # 121.181 M/sec ( +- 0.03% ) [33.34%] 2,098,967,427 dTLB-misses # 63.41% of all dTLB cache hits ( +- 0.03% ) [33.34%] 27.364448741 seconds time elapsed ( +- 0.24% ) === I personally prefer implementation present in this patchset. It doesn't touch arch-specific code. This patch: Huge zero page (hzp) is a non-movable huge page (2M on x86-64) filled with zeros. For now let's allocate the page on hugepage_init(). We'll switch to lazy allocation later. We are not going to map the huge zero page until we can handle it properly on all code paths. is_huge_zero_{pfn,pmd}() functions will be used by following patches to check whether the pfn/pmd is huge zero page. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: "H. Peter Anvin" <hpa@linux.intel.com> Cc: Mel Gorman <mel@csn.ul.ie> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-13 05:50:47 +08:00
{
hugepage: convert huge zero page shrinker to new shrinker API It consists of: * returning long instead of int * separating count from scan * returning the number of freed entities in scan Signed-off-by: Glauber Costa <glommer@openvz.org> Reviewed-by: Greg Thelen <gthelen@google.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Dave Chinner <dchinner@redhat.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Artem Bityutskiy <artem.bityutskiy@linux.intel.com> Cc: Arve Hjønnevåg <arve@android.com> Cc: Carlos Maiolino <cmaiolino@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Chuck Lever <chuck.lever@oracle.com> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Cc: David Rientjes <rientjes@google.com> Cc: Gleb Natapov <gleb@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: J. Bruce Fields <bfields@redhat.com> Cc: Jan Kara <jack@suse.cz> Cc: Jerome Glisse <jglisse@redhat.com> Cc: John Stultz <john.stultz@linaro.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Kent Overstreet <koverstreet@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Thomas Hellstrom <thellstrom@vmware.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2013-08-28 08:18:15 +08:00
/* we can free zero page only if last reference remains */
return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
}
hugepage: convert huge zero page shrinker to new shrinker API It consists of: * returning long instead of int * separating count from scan * returning the number of freed entities in scan Signed-off-by: Glauber Costa <glommer@openvz.org> Reviewed-by: Greg Thelen <gthelen@google.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Dave Chinner <dchinner@redhat.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Artem Bityutskiy <artem.bityutskiy@linux.intel.com> Cc: Arve Hjønnevåg <arve@android.com> Cc: Carlos Maiolino <cmaiolino@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Chuck Lever <chuck.lever@oracle.com> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Cc: David Rientjes <rientjes@google.com> Cc: Gleb Natapov <gleb@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: J. Bruce Fields <bfields@redhat.com> Cc: Jan Kara <jack@suse.cz> Cc: Jerome Glisse <jglisse@redhat.com> Cc: John Stultz <john.stultz@linaro.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Kent Overstreet <koverstreet@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Thomas Hellstrom <thellstrom@vmware.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2013-08-28 08:18:15 +08:00
static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
struct shrink_control *sc)
{
if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
struct page *zero_page = xchg(&huge_zero_page, NULL);
BUG_ON(zero_page == NULL);
__free_pages(zero_page, compound_order(zero_page));
hugepage: convert huge zero page shrinker to new shrinker API It consists of: * returning long instead of int * separating count from scan * returning the number of freed entities in scan Signed-off-by: Glauber Costa <glommer@openvz.org> Reviewed-by: Greg Thelen <gthelen@google.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Dave Chinner <dchinner@redhat.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Artem Bityutskiy <artem.bityutskiy@linux.intel.com> Cc: Arve Hjønnevåg <arve@android.com> Cc: Carlos Maiolino <cmaiolino@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Chuck Lever <chuck.lever@oracle.com> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Cc: David Rientjes <rientjes@google.com> Cc: Gleb Natapov <gleb@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: J. Bruce Fields <bfields@redhat.com> Cc: Jan Kara <jack@suse.cz> Cc: Jerome Glisse <jglisse@redhat.com> Cc: John Stultz <john.stultz@linaro.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Kent Overstreet <koverstreet@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Thomas Hellstrom <thellstrom@vmware.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2013-08-28 08:18:15 +08:00
return HPAGE_PMD_NR;
}
return 0;
thp: huge zero page: basic preparation During testing I noticed big (up to 2.5 times) memory consumption overhead on some workloads (e.g. ft.A from NPB) if THP is enabled. The main reason for that big difference is lacking zero page in THP case. We have to allocate a real page on read page fault. A program to demonstrate the issue: #include <assert.h> #include <stdlib.h> #include <unistd.h> #define MB 1024*1024 int main(int argc, char **argv) { char *p; int i; posix_memalign((void **)&p, 2 * MB, 200 * MB); for (i = 0; i < 200 * MB; i+= 4096) assert(p[i] == 0); pause(); return 0; } With thp-never RSS is about 400k, but with thp-always it's 200M. After the patcheset thp-always RSS is 400k too. Design overview. Huge zero page (hzp) is a non-movable huge page (2M on x86-64) filled with zeros. The way how we allocate it changes in the patchset: - [01/10] simplest way: hzp allocated on boot time in hugepage_init(); - [09/10] lazy allocation on first use; - [10/10] lockless refcounting + shrinker-reclaimable hzp; We setup it in do_huge_pmd_anonymous_page() if area around fault address is suitable for THP and we've got read page fault. If we fail to setup hzp (ENOMEM) we fallback to handle_pte_fault() as we normally do in THP. On wp fault to hzp we allocate real memory for the huge page and clear it. If ENOMEM, graceful fallback: we create a new pmd table and set pte around fault address to newly allocated normal (4k) page. All other ptes in the pmd set to normal zero page. We cannot split hzp (and it's bug if we try), but we can split the pmd which points to it. On splitting the pmd we create a table with all ptes set to normal zero page. === By hpa's request I've tried alternative approach for hzp implementation (see Virtual huge zero page patchset): pmd table with all entries set to zero page. This way should be more cache friendly, but it increases TLB pressure. The problem with virtual huge zero page: it requires per-arch enabling. We need a way to mark that pmd table has all ptes set to zero page. Some numbers to compare two implementations (on 4s Westmere-EX): Mirobenchmark1 ============== test: posix_memalign((void **)&p, 2 * MB, 8 * GB); for (i = 0; i < 100; i++) { assert(memcmp(p, p + 4*GB, 4*GB) == 0); asm volatile ("": : :"memory"); } hzp: Performance counter stats for './test_memcmp' (5 runs): 32356.272845 task-clock # 0.998 CPUs utilized ( +- 0.13% ) 40 context-switches # 0.001 K/sec ( +- 0.94% ) 0 CPU-migrations # 0.000 K/sec 4,218 page-faults # 0.130 K/sec ( +- 0.00% ) 76,712,481,765 cycles # 2.371 GHz ( +- 0.13% ) [83.31%] 36,279,577,636 stalled-cycles-frontend # 47.29% frontend cycles idle ( +- 0.28% ) [83.35%] 1,684,049,110 stalled-cycles-backend # 2.20% backend cycles idle ( +- 2.96% ) [66.67%] 134,355,715,816 instructions # 1.75 insns per cycle # 0.27 stalled cycles per insn ( +- 0.10% ) [83.35%] 13,526,169,702 branches # 418.039 M/sec ( +- 0.10% ) [83.31%] 1,058,230 branch-misses # 0.01% of all branches ( +- 0.91% ) [83.36%] 32.413866442 seconds time elapsed ( +- 0.13% ) vhzp: Performance counter stats for './test_memcmp' (5 runs): 30327.183829 task-clock # 0.998 CPUs utilized ( +- 0.13% ) 38 context-switches # 0.001 K/sec ( +- 1.53% ) 0 CPU-migrations # 0.000 K/sec 4,218 page-faults # 0.139 K/sec ( +- 0.01% ) 71,964,773,660 cycles # 2.373 GHz ( +- 0.13% ) [83.35%] 31,191,284,231 stalled-cycles-frontend # 43.34% frontend cycles idle ( +- 0.40% ) [83.32%] 773,484,474 stalled-cycles-backend # 1.07% backend cycles idle ( +- 6.61% ) [66.67%] 134,982,215,437 instructions # 1.88 insns per cycle # 0.23 stalled cycles per insn ( +- 0.11% ) [83.32%] 13,509,150,683 branches # 445.447 M/sec ( +- 0.11% ) [83.34%] 1,017,667 branch-misses # 0.01% of all branches ( +- 1.07% ) [83.32%] 30.381324695 seconds time elapsed ( +- 0.13% ) Mirobenchmark2 ============== test: posix_memalign((void **)&p, 2 * MB, 8 * GB); for (i = 0; i < 1000; i++) { char *_p = p; while (_p < p+4*GB) { assert(*_p == *(_p+4*GB)); _p += 4096; asm volatile ("": : :"memory"); } } hzp: Performance counter stats for 'taskset -c 0 ./test_memcmp2' (5 runs): 3505.727639 task-clock # 0.998 CPUs utilized ( +- 0.26% ) 9 context-switches # 0.003 K/sec ( +- 4.97% ) 4,384 page-faults # 0.001 M/sec ( +- 0.00% ) 8,318,482,466 cycles # 2.373 GHz ( +- 0.26% ) [33.31%] 5,134,318,786 stalled-cycles-frontend # 61.72% frontend cycles idle ( +- 0.42% ) [33.32%] 2,193,266,208 stalled-cycles-backend # 26.37% backend cycles idle ( +- 5.51% ) [33.33%] 9,494,670,537 instructions # 1.14 insns per cycle # 0.54 stalled cycles per insn ( +- 0.13% ) [41.68%] 2,108,522,738 branches # 601.451 M/sec ( +- 0.09% ) [41.68%] 158,746 branch-misses # 0.01% of all branches ( +- 1.60% ) [41.71%] 3,168,102,115 L1-dcache-loads # 903.693 M/sec ( +- 0.11% ) [41.70%] 1,048,710,998 L1-dcache-misses # 33.10% of all L1-dcache hits ( +- 0.11% ) [41.72%] 1,047,699,685 LLC-load # 298.854 M/sec ( +- 0.03% ) [33.38%] 2,287 LLC-misses # 0.00% of all LL-cache hits ( +- 8.27% ) [33.37%] 3,166,187,367 dTLB-loads # 903.147 M/sec ( +- 0.02% ) [33.35%] 4,266,538 dTLB-misses # 0.13% of all dTLB cache hits ( +- 0.03% ) [33.33%] 3.513339813 seconds time elapsed ( +- 0.26% ) vhzp: Performance counter stats for 'taskset -c 0 ./test_memcmp2' (5 runs): 27313.891128 task-clock # 0.998 CPUs utilized ( +- 0.24% ) 62 context-switches # 0.002 K/sec ( +- 0.61% ) 4,384 page-faults # 0.160 K/sec ( +- 0.01% ) 64,747,374,606 cycles # 2.370 GHz ( +- 0.24% ) [33.33%] 61,341,580,278 stalled-cycles-frontend # 94.74% frontend cycles idle ( +- 0.26% ) [33.33%] 56,702,237,511 stalled-cycles-backend # 87.57% backend cycles idle ( +- 0.07% ) [33.33%] 10,033,724,846 instructions # 0.15 insns per cycle # 6.11 stalled cycles per insn ( +- 0.09% ) [41.65%] 2,190,424,932 branches # 80.195 M/sec ( +- 0.12% ) [41.66%] 1,028,630 branch-misses # 0.05% of all branches ( +- 1.50% ) [41.66%] 3,302,006,540 L1-dcache-loads # 120.891 M/sec ( +- 0.11% ) [41.68%] 271,374,358 L1-dcache-misses # 8.22% of all L1-dcache hits ( +- 0.04% ) [41.66%] 20,385,476 LLC-load # 0.746 M/sec ( +- 1.64% ) [33.34%] 76,754 LLC-misses # 0.38% of all LL-cache hits ( +- 2.35% ) [33.34%] 3,309,927,290 dTLB-loads # 121.181 M/sec ( +- 0.03% ) [33.34%] 2,098,967,427 dTLB-misses # 63.41% of all dTLB cache hits ( +- 0.03% ) [33.34%] 27.364448741 seconds time elapsed ( +- 0.24% ) === I personally prefer implementation present in this patchset. It doesn't touch arch-specific code. This patch: Huge zero page (hzp) is a non-movable huge page (2M on x86-64) filled with zeros. For now let's allocate the page on hugepage_init(). We'll switch to lazy allocation later. We are not going to map the huge zero page until we can handle it properly on all code paths. is_huge_zero_{pfn,pmd}() functions will be used by following patches to check whether the pfn/pmd is huge zero page. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: "H. Peter Anvin" <hpa@linux.intel.com> Cc: Mel Gorman <mel@csn.ul.ie> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-13 05:50:47 +08:00
}
static struct shrinker huge_zero_page_shrinker = {
hugepage: convert huge zero page shrinker to new shrinker API It consists of: * returning long instead of int * separating count from scan * returning the number of freed entities in scan Signed-off-by: Glauber Costa <glommer@openvz.org> Reviewed-by: Greg Thelen <gthelen@google.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Dave Chinner <dchinner@redhat.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Artem Bityutskiy <artem.bityutskiy@linux.intel.com> Cc: Arve Hjønnevåg <arve@android.com> Cc: Carlos Maiolino <cmaiolino@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Chuck Lever <chuck.lever@oracle.com> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Cc: David Rientjes <rientjes@google.com> Cc: Gleb Natapov <gleb@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: J. Bruce Fields <bfields@redhat.com> Cc: Jan Kara <jack@suse.cz> Cc: Jerome Glisse <jglisse@redhat.com> Cc: John Stultz <john.stultz@linaro.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Kent Overstreet <koverstreet@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Thomas Hellstrom <thellstrom@vmware.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2013-08-28 08:18:15 +08:00
.count_objects = shrink_huge_zero_page_count,
.scan_objects = shrink_huge_zero_page_scan,
.seeks = DEFAULT_SEEKS,
};
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
#ifdef CONFIG_SYSFS
static ssize_t enabled_show(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
mm: thp: set THP defrag by default to madvise and add a stall-free defrag option THP defrag is enabled by default to direct reclaim/compact but not wake kswapd in the event of a THP allocation failure. The problem is that THP allocation requests potentially enter reclaim/compaction. This potentially incurs a severe stall that is not guaranteed to be offset by reduced TLB misses. While there has been considerable effort to reduce the impact of reclaim/compaction, it is still a high cost and workloads that should fit in memory fail to do so. Specifically, a simple anon/file streaming workload will enter direct reclaim on NUMA at least even though the working set size is 80% of RAM. It's been years and it's time to throw in the towel. First, this patch defines THP defrag as follows; madvise: A failed allocation will direct reclaim/compact if the application requests it never: Neither reclaim/compact nor wake kswapd defer: A failed allocation will wake kswapd/kcompactd always: A failed allocation will direct reclaim/compact (historical behaviour) khugepaged defrag will enter direct/reclaim but not wake kswapd. Next it sets the default defrag option to be "madvise" to only enter direct reclaim/compaction for applications that specifically requested it. Lastly, it removes a check from the page allocator slowpath that is related to __GFP_THISNODE to allow "defer" to work. The callers that really cares are slub/slab and they are updated accordingly. The slab one may be surprising because it also corrects a comment as kswapd was never woken up by that path. This means that a THP fault will no longer stall for most applications by default and the ideal for most users that get THP if they are immediately available. There are still options for users that prefer a stall at startup of a new application by either restoring historical behaviour with "always" or pick a half-way point with "defer" where kswapd does some of the work in the background and wakes kcompactd if necessary. THP defrag for khugepaged remains enabled and will enter direct/reclaim but no wakeup kswapd or kcompactd. After this patch a THP allocation failure will quickly fallback and rely on khugepaged to recover the situation at some time in the future. In some cases, this will reduce THP usage but the benefit of THP is hard to measure and not a universal win where as a stall to reclaim/compaction is definitely measurable and can be painful. The first test for this is using "usemem" to read a large file and write a large anonymous mapping (to avoid the zero page) multiple times. The total size of the mappings is 80% of RAM and the benchmark simply measures how long it takes to complete. It uses multiple threads to see if that is a factor. On UMA, the performance is almost identical so is not reported but on NUMA, we see this usemem 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 Amean System-1 102.86 ( 0.00%) 46.81 ( 54.50%) Amean System-4 37.85 ( 0.00%) 34.02 ( 10.12%) Amean System-7 48.12 ( 0.00%) 46.89 ( 2.56%) Amean System-12 51.98 ( 0.00%) 56.96 ( -9.57%) Amean System-21 80.16 ( 0.00%) 79.05 ( 1.39%) Amean System-30 110.71 ( 0.00%) 107.17 ( 3.20%) Amean System-48 127.98 ( 0.00%) 124.83 ( 2.46%) Amean Elapsd-1 185.84 ( 0.00%) 105.51 ( 43.23%) Amean Elapsd-4 26.19 ( 0.00%) 25.58 ( 2.33%) Amean Elapsd-7 21.65 ( 0.00%) 21.62 ( 0.16%) Amean Elapsd-12 18.58 ( 0.00%) 17.94 ( 3.43%) Amean Elapsd-21 17.53 ( 0.00%) 16.60 ( 5.33%) Amean Elapsd-30 17.45 ( 0.00%) 17.13 ( 1.84%) Amean Elapsd-48 15.40 ( 0.00%) 15.27 ( 0.82%) For a single thread, the benchmark completes 43.23% faster with this patch applied with smaller benefits as the thread increases. Similar, notice the large reduction in most cases in system CPU usage. The overall CPU time is 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 User 10357.65 10438.33 System 3988.88 3543.94 Elapsed 2203.01 1634.41 Which is substantial. Now, the reclaim figures 4.4.0 4.4.0 kcompactd-v1r1nodefrag-v1r3 Minor Faults 128458477 278352931 Major Faults 2174976 225 Swap Ins 16904701 0 Swap Outs 17359627 0 Allocation stalls 43611 0 DMA allocs 0 0 DMA32 allocs 19832646 19448017 Normal allocs 614488453 580941839 Movable allocs 0 0 Direct pages scanned 24163800 0 Kswapd pages scanned 0 0 Kswapd pages reclaimed 0 0 Direct pages reclaimed 20691346 0 Compaction stalls 42263 0 Compaction success 938 0 Compaction failures 41325 0 This patch eliminates almost all swapping and direct reclaim activity. There is still overhead but it's from NUMA balancing which does not identify that it's pointless trying to do anything with this workload. I also tried the thpscale benchmark which forces a corner case where compaction can be used heavily and measures the latency of whether base or huge pages were used thpscale Fault Latencies 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 Amean fault-base-1 5288.84 ( 0.00%) 2817.12 ( 46.73%) Amean fault-base-3 6365.53 ( 0.00%) 3499.11 ( 45.03%) Amean fault-base-5 6526.19 ( 0.00%) 4363.06 ( 33.15%) Amean fault-base-7 7142.25 ( 0.00%) 4858.08 ( 31.98%) Amean fault-base-12 13827.64 ( 0.00%) 10292.11 ( 25.57%) Amean fault-base-18 18235.07 ( 0.00%) 13788.84 ( 24.38%) Amean fault-base-24 21597.80 ( 0.00%) 24388.03 (-12.92%) Amean fault-base-30 26754.15 ( 0.00%) 19700.55 ( 26.36%) Amean fault-base-32 26784.94 ( 0.00%) 19513.57 ( 27.15%) Amean fault-huge-1 4223.96 ( 0.00%) 2178.57 ( 48.42%) Amean fault-huge-3 2194.77 ( 0.00%) 2149.74 ( 2.05%) Amean fault-huge-5 2569.60 ( 0.00%) 2346.95 ( 8.66%) Amean fault-huge-7 3612.69 ( 0.00%) 2997.70 ( 17.02%) Amean fault-huge-12 3301.75 ( 0.00%) 6727.02 (-103.74%) Amean fault-huge-18 6696.47 ( 0.00%) 6685.72 ( 0.16%) Amean fault-huge-24 8000.72 ( 0.00%) 9311.43 (-16.38%) Amean fault-huge-30 13305.55 ( 0.00%) 9750.45 ( 26.72%) Amean fault-huge-32 9981.71 ( 0.00%) 10316.06 ( -3.35%) The average time to fault pages is substantially reduced in the majority of caseds but with the obvious caveat that fewer THPs are actually used in this adverse workload 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 Percentage huge-1 0.71 ( 0.00%) 14.04 (1865.22%) Percentage huge-3 10.77 ( 0.00%) 33.05 (206.85%) Percentage huge-5 60.39 ( 0.00%) 38.51 (-36.23%) Percentage huge-7 45.97 ( 0.00%) 34.57 (-24.79%) Percentage huge-12 68.12 ( 0.00%) 40.07 (-41.17%) Percentage huge-18 64.93 ( 0.00%) 47.82 (-26.35%) Percentage huge-24 62.69 ( 0.00%) 44.23 (-29.44%) Percentage huge-30 43.49 ( 0.00%) 55.38 ( 27.34%) Percentage huge-32 50.72 ( 0.00%) 51.90 ( 2.35%) 4.4.0 4.4.0 kcompactd-v1r1nodefrag-v1r3 Minor Faults 37429143 47564000 Major Faults 1916 1558 Swap Ins 1466 1079 Swap Outs 2936863 149626 Allocation stalls 62510 3 DMA allocs 0 0 DMA32 allocs 6566458 6401314 Normal allocs 216361697 216538171 Movable allocs 0 0 Direct pages scanned 25977580 17998 Kswapd pages scanned 0 3638931 Kswapd pages reclaimed 0 207236 Direct pages reclaimed 8833714 88 Compaction stalls 103349 5 Compaction success 270 4 Compaction failures 103079 1 Note again that while this does swap as it's an aggressive workload, the direct relcim activity and allocation stalls is substantially reduced. There is some kswapd activity but ftrace showed that the kswapd activity was due to normal wakeups from 4K pages being allocated. Compaction-related stalls and activity are almost eliminated. I also tried the stutter benchmark. For this, I do not have figures for NUMA but it's something that does impact UMA so I'll report what is available stutter 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 Min mmap 7.3571 ( 0.00%) 7.3438 ( 0.18%) 1st-qrtle mmap 7.5278 ( 0.00%) 17.9200 (-138.05%) 2nd-qrtle mmap 7.6818 ( 0.00%) 21.6055 (-181.25%) 3rd-qrtle mmap 11.0889 ( 0.00%) 21.8881 (-97.39%) Max-90% mmap 27.8978 ( 0.00%) 22.1632 ( 20.56%) Max-93% mmap 28.3202 ( 0.00%) 22.3044 ( 21.24%) Max-95% mmap 28.5600 ( 0.00%) 22.4580 ( 21.37%) Max-99% mmap 29.6032 ( 0.00%) 25.5216 ( 13.79%) Max mmap 4109.7289 ( 0.00%) 4813.9832 (-17.14%) Mean mmap 12.4474 ( 0.00%) 19.3027 (-55.07%) This benchmark is trying to fault an anonymous mapping while there is a heavy IO load -- a scenario that desktop users used to complain about frequently. This shows a mix because the ideal case of mapping with THP is not hit as often. However, note that 99% of the mappings complete 13.79% faster. The CPU usage here is particularly interesting 4.4.0 4.4.0 kcompactd-v1r1nodefrag-v1r3 User 67.50 0.99 System 1327.88 91.30 Elapsed 2079.00 2128.98 And once again we look at the reclaim figures 4.4.0 4.4.0 kcompactd-v1r1nodefrag-v1r3 Minor Faults 335241922 1314582827 Major Faults 715 819 Swap Ins 0 0 Swap Outs 0 0 Allocation stalls 532723 0 DMA allocs 0 0 DMA32 allocs 1822364341 1177950222 Normal allocs 1815640808 1517844854 Movable allocs 0 0 Direct pages scanned 21892772 0 Kswapd pages scanned 20015890 41879484 Kswapd pages reclaimed 19961986 41822072 Direct pages reclaimed 21892741 0 Compaction stalls 1065755 0 Compaction success 514 0 Compaction failures 1065241 0 Allocation stalls and all direct reclaim activity is eliminated as well as compaction-related stalls. THP gives impressive gains in some cases but only if they are quickly available. We're not going to reach the point where they are completely free so lets take the costs out of the fast paths finally and defer the cost to kswapd, kcompactd and khugepaged where it belongs. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Rik van Riel <riel@redhat.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-18 05:19:23 +08:00
if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
return sprintf(buf, "[always] madvise never\n");
else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
return sprintf(buf, "always [madvise] never\n");
else
return sprintf(buf, "always madvise [never]\n");
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
}
mm: thp: set THP defrag by default to madvise and add a stall-free defrag option THP defrag is enabled by default to direct reclaim/compact but not wake kswapd in the event of a THP allocation failure. The problem is that THP allocation requests potentially enter reclaim/compaction. This potentially incurs a severe stall that is not guaranteed to be offset by reduced TLB misses. While there has been considerable effort to reduce the impact of reclaim/compaction, it is still a high cost and workloads that should fit in memory fail to do so. Specifically, a simple anon/file streaming workload will enter direct reclaim on NUMA at least even though the working set size is 80% of RAM. It's been years and it's time to throw in the towel. First, this patch defines THP defrag as follows; madvise: A failed allocation will direct reclaim/compact if the application requests it never: Neither reclaim/compact nor wake kswapd defer: A failed allocation will wake kswapd/kcompactd always: A failed allocation will direct reclaim/compact (historical behaviour) khugepaged defrag will enter direct/reclaim but not wake kswapd. Next it sets the default defrag option to be "madvise" to only enter direct reclaim/compaction for applications that specifically requested it. Lastly, it removes a check from the page allocator slowpath that is related to __GFP_THISNODE to allow "defer" to work. The callers that really cares are slub/slab and they are updated accordingly. The slab one may be surprising because it also corrects a comment as kswapd was never woken up by that path. This means that a THP fault will no longer stall for most applications by default and the ideal for most users that get THP if they are immediately available. There are still options for users that prefer a stall at startup of a new application by either restoring historical behaviour with "always" or pick a half-way point with "defer" where kswapd does some of the work in the background and wakes kcompactd if necessary. THP defrag for khugepaged remains enabled and will enter direct/reclaim but no wakeup kswapd or kcompactd. After this patch a THP allocation failure will quickly fallback and rely on khugepaged to recover the situation at some time in the future. In some cases, this will reduce THP usage but the benefit of THP is hard to measure and not a universal win where as a stall to reclaim/compaction is definitely measurable and can be painful. The first test for this is using "usemem" to read a large file and write a large anonymous mapping (to avoid the zero page) multiple times. The total size of the mappings is 80% of RAM and the benchmark simply measures how long it takes to complete. It uses multiple threads to see if that is a factor. On UMA, the performance is almost identical so is not reported but on NUMA, we see this usemem 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 Amean System-1 102.86 ( 0.00%) 46.81 ( 54.50%) Amean System-4 37.85 ( 0.00%) 34.02 ( 10.12%) Amean System-7 48.12 ( 0.00%) 46.89 ( 2.56%) Amean System-12 51.98 ( 0.00%) 56.96 ( -9.57%) Amean System-21 80.16 ( 0.00%) 79.05 ( 1.39%) Amean System-30 110.71 ( 0.00%) 107.17 ( 3.20%) Amean System-48 127.98 ( 0.00%) 124.83 ( 2.46%) Amean Elapsd-1 185.84 ( 0.00%) 105.51 ( 43.23%) Amean Elapsd-4 26.19 ( 0.00%) 25.58 ( 2.33%) Amean Elapsd-7 21.65 ( 0.00%) 21.62 ( 0.16%) Amean Elapsd-12 18.58 ( 0.00%) 17.94 ( 3.43%) Amean Elapsd-21 17.53 ( 0.00%) 16.60 ( 5.33%) Amean Elapsd-30 17.45 ( 0.00%) 17.13 ( 1.84%) Amean Elapsd-48 15.40 ( 0.00%) 15.27 ( 0.82%) For a single thread, the benchmark completes 43.23% faster with this patch applied with smaller benefits as the thread increases. Similar, notice the large reduction in most cases in system CPU usage. The overall CPU time is 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 User 10357.65 10438.33 System 3988.88 3543.94 Elapsed 2203.01 1634.41 Which is substantial. Now, the reclaim figures 4.4.0 4.4.0 kcompactd-v1r1nodefrag-v1r3 Minor Faults 128458477 278352931 Major Faults 2174976 225 Swap Ins 16904701 0 Swap Outs 17359627 0 Allocation stalls 43611 0 DMA allocs 0 0 DMA32 allocs 19832646 19448017 Normal allocs 614488453 580941839 Movable allocs 0 0 Direct pages scanned 24163800 0 Kswapd pages scanned 0 0 Kswapd pages reclaimed 0 0 Direct pages reclaimed 20691346 0 Compaction stalls 42263 0 Compaction success 938 0 Compaction failures 41325 0 This patch eliminates almost all swapping and direct reclaim activity. There is still overhead but it's from NUMA balancing which does not identify that it's pointless trying to do anything with this workload. I also tried the thpscale benchmark which forces a corner case where compaction can be used heavily and measures the latency of whether base or huge pages were used thpscale Fault Latencies 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 Amean fault-base-1 5288.84 ( 0.00%) 2817.12 ( 46.73%) Amean fault-base-3 6365.53 ( 0.00%) 3499.11 ( 45.03%) Amean fault-base-5 6526.19 ( 0.00%) 4363.06 ( 33.15%) Amean fault-base-7 7142.25 ( 0.00%) 4858.08 ( 31.98%) Amean fault-base-12 13827.64 ( 0.00%) 10292.11 ( 25.57%) Amean fault-base-18 18235.07 ( 0.00%) 13788.84 ( 24.38%) Amean fault-base-24 21597.80 ( 0.00%) 24388.03 (-12.92%) Amean fault-base-30 26754.15 ( 0.00%) 19700.55 ( 26.36%) Amean fault-base-32 26784.94 ( 0.00%) 19513.57 ( 27.15%) Amean fault-huge-1 4223.96 ( 0.00%) 2178.57 ( 48.42%) Amean fault-huge-3 2194.77 ( 0.00%) 2149.74 ( 2.05%) Amean fault-huge-5 2569.60 ( 0.00%) 2346.95 ( 8.66%) Amean fault-huge-7 3612.69 ( 0.00%) 2997.70 ( 17.02%) Amean fault-huge-12 3301.75 ( 0.00%) 6727.02 (-103.74%) Amean fault-huge-18 6696.47 ( 0.00%) 6685.72 ( 0.16%) Amean fault-huge-24 8000.72 ( 0.00%) 9311.43 (-16.38%) Amean fault-huge-30 13305.55 ( 0.00%) 9750.45 ( 26.72%) Amean fault-huge-32 9981.71 ( 0.00%) 10316.06 ( -3.35%) The average time to fault pages is substantially reduced in the majority of caseds but with the obvious caveat that fewer THPs are actually used in this adverse workload 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 Percentage huge-1 0.71 ( 0.00%) 14.04 (1865.22%) Percentage huge-3 10.77 ( 0.00%) 33.05 (206.85%) Percentage huge-5 60.39 ( 0.00%) 38.51 (-36.23%) Percentage huge-7 45.97 ( 0.00%) 34.57 (-24.79%) Percentage huge-12 68.12 ( 0.00%) 40.07 (-41.17%) Percentage huge-18 64.93 ( 0.00%) 47.82 (-26.35%) Percentage huge-24 62.69 ( 0.00%) 44.23 (-29.44%) Percentage huge-30 43.49 ( 0.00%) 55.38 ( 27.34%) Percentage huge-32 50.72 ( 0.00%) 51.90 ( 2.35%) 4.4.0 4.4.0 kcompactd-v1r1nodefrag-v1r3 Minor Faults 37429143 47564000 Major Faults 1916 1558 Swap Ins 1466 1079 Swap Outs 2936863 149626 Allocation stalls 62510 3 DMA allocs 0 0 DMA32 allocs 6566458 6401314 Normal allocs 216361697 216538171 Movable allocs 0 0 Direct pages scanned 25977580 17998 Kswapd pages scanned 0 3638931 Kswapd pages reclaimed 0 207236 Direct pages reclaimed 8833714 88 Compaction stalls 103349 5 Compaction success 270 4 Compaction failures 103079 1 Note again that while this does swap as it's an aggressive workload, the direct relcim activity and allocation stalls is substantially reduced. There is some kswapd activity but ftrace showed that the kswapd activity was due to normal wakeups from 4K pages being allocated. Compaction-related stalls and activity are almost eliminated. I also tried the stutter benchmark. For this, I do not have figures for NUMA but it's something that does impact UMA so I'll report what is available stutter 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 Min mmap 7.3571 ( 0.00%) 7.3438 ( 0.18%) 1st-qrtle mmap 7.5278 ( 0.00%) 17.9200 (-138.05%) 2nd-qrtle mmap 7.6818 ( 0.00%) 21.6055 (-181.25%) 3rd-qrtle mmap 11.0889 ( 0.00%) 21.8881 (-97.39%) Max-90% mmap 27.8978 ( 0.00%) 22.1632 ( 20.56%) Max-93% mmap 28.3202 ( 0.00%) 22.3044 ( 21.24%) Max-95% mmap 28.5600 ( 0.00%) 22.4580 ( 21.37%) Max-99% mmap 29.6032 ( 0.00%) 25.5216 ( 13.79%) Max mmap 4109.7289 ( 0.00%) 4813.9832 (-17.14%) Mean mmap 12.4474 ( 0.00%) 19.3027 (-55.07%) This benchmark is trying to fault an anonymous mapping while there is a heavy IO load -- a scenario that desktop users used to complain about frequently. This shows a mix because the ideal case of mapping with THP is not hit as often. However, note that 99% of the mappings complete 13.79% faster. The CPU usage here is particularly interesting 4.4.0 4.4.0 kcompactd-v1r1nodefrag-v1r3 User 67.50 0.99 System 1327.88 91.30 Elapsed 2079.00 2128.98 And once again we look at the reclaim figures 4.4.0 4.4.0 kcompactd-v1r1nodefrag-v1r3 Minor Faults 335241922 1314582827 Major Faults 715 819 Swap Ins 0 0 Swap Outs 0 0 Allocation stalls 532723 0 DMA allocs 0 0 DMA32 allocs 1822364341 1177950222 Normal allocs 1815640808 1517844854 Movable allocs 0 0 Direct pages scanned 21892772 0 Kswapd pages scanned 20015890 41879484 Kswapd pages reclaimed 19961986 41822072 Direct pages reclaimed 21892741 0 Compaction stalls 1065755 0 Compaction success 514 0 Compaction failures 1065241 0 Allocation stalls and all direct reclaim activity is eliminated as well as compaction-related stalls. THP gives impressive gains in some cases but only if they are quickly available. We're not going to reach the point where they are completely free so lets take the costs out of the fast paths finally and defer the cost to kswapd, kcompactd and khugepaged where it belongs. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Rik van Riel <riel@redhat.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-18 05:19:23 +08:00
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
static ssize_t enabled_store(struct kobject *kobj,
struct kobj_attribute *attr,
const char *buf, size_t count)
{
mm, thp: add new defer+madvise defrag option There is no thp defrag option that currently allows MADV_HUGEPAGE regions to do direct compaction and reclaim while all other thp allocations simply trigger kswapd and kcompactd in the background and fail immediately. The "defer" setting simply triggers background reclaim and compaction for all regions, regardless of MADV_HUGEPAGE, which makes it unusable for our userspace where MADV_HUGEPAGE is being used to indicate the application is willing to wait for work for thp memory to be available. The "madvise" setting will do direct compaction and reclaim for these MADV_HUGEPAGE regions, but does not trigger kswapd and kcompactd in the background for anybody else. For reasonable usage, there needs to be a mesh between the two options. This patch introduces a fifth mode, "defer+madvise", that will do direct reclaim and compaction for MADV_HUGEPAGE regions and trigger background reclaim and compaction for everybody else so that hugepages may be available in the near future. A proposal to allow direct reclaim and compaction for MADV_HUGEPAGE regions as part of the "defer" mode, making it a very powerful setting and avoids breaking userspace, was offered: http://marc.info/?t=148236612700003 This additional mode is a compromise. A second proposal to allow both "defer" and "madvise" to be selected at the same time was also offered: http://marc.info/?t=148357345300001. This is possible, but there was a concern that it might break existing userspaces the parse the output of the defrag mode, so the fifth option was introduced instead. This patch also cleans up the helper function for storing to "enabled" and "defrag" since the former supports three modes while the latter supports five and triple_flag_store() was getting unnecessarily messy. Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1701101614330.41805@chino.kir.corp.google.com Signed-off-by: David Rientjes <rientjes@google.com> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Michal Hocko <mhocko@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-23 07:45:49 +08:00
ssize_t ret = count;
2011-01-14 07:46:58 +08:00
mm, thp: add new defer+madvise defrag option There is no thp defrag option that currently allows MADV_HUGEPAGE regions to do direct compaction and reclaim while all other thp allocations simply trigger kswapd and kcompactd in the background and fail immediately. The "defer" setting simply triggers background reclaim and compaction for all regions, regardless of MADV_HUGEPAGE, which makes it unusable for our userspace where MADV_HUGEPAGE is being used to indicate the application is willing to wait for work for thp memory to be available. The "madvise" setting will do direct compaction and reclaim for these MADV_HUGEPAGE regions, but does not trigger kswapd and kcompactd in the background for anybody else. For reasonable usage, there needs to be a mesh between the two options. This patch introduces a fifth mode, "defer+madvise", that will do direct reclaim and compaction for MADV_HUGEPAGE regions and trigger background reclaim and compaction for everybody else so that hugepages may be available in the near future. A proposal to allow direct reclaim and compaction for MADV_HUGEPAGE regions as part of the "defer" mode, making it a very powerful setting and avoids breaking userspace, was offered: http://marc.info/?t=148236612700003 This additional mode is a compromise. A second proposal to allow both "defer" and "madvise" to be selected at the same time was also offered: http://marc.info/?t=148357345300001. This is possible, but there was a concern that it might break existing userspaces the parse the output of the defrag mode, so the fifth option was introduced instead. This patch also cleans up the helper function for storing to "enabled" and "defrag" since the former supports three modes while the latter supports five and triple_flag_store() was getting unnecessarily messy. Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1701101614330.41805@chino.kir.corp.google.com Signed-off-by: David Rientjes <rientjes@google.com> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Michal Hocko <mhocko@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-23 07:45:49 +08:00
if (!memcmp("always", buf,
min(sizeof("always")-1, count))) {
clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
} else if (!memcmp("madvise", buf,
min(sizeof("madvise")-1, count))) {
clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
} else if (!memcmp("never", buf,
min(sizeof("never")-1, count))) {
clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
} else
ret = -EINVAL;
2011-01-14 07:46:58 +08:00
if (ret > 0) {
int err = start_stop_khugepaged();
2011-01-14 07:46:58 +08:00
if (err)
ret = err;
}
return ret;
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
}
static struct kobj_attribute enabled_attr =
__ATTR(enabled, 0644, enabled_show, enabled_store);
ssize_t single_hugepage_flag_show(struct kobject *kobj,
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
struct kobj_attribute *attr, char *buf,
enum transparent_hugepage_flag flag)
{
return sprintf(buf, "%d\n",
!!test_bit(flag, &transparent_hugepage_flags));
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
}
ssize_t single_hugepage_flag_store(struct kobject *kobj,
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
struct kobj_attribute *attr,
const char *buf, size_t count,
enum transparent_hugepage_flag flag)
{
unsigned long value;
int ret;
ret = kstrtoul(buf, 10, &value);
if (ret < 0)
return ret;
if (value > 1)
return -EINVAL;
if (value)
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
set_bit(flag, &transparent_hugepage_flags);
else
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
clear_bit(flag, &transparent_hugepage_flags);
return count;
}
static ssize_t defrag_show(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
mm: thp: set THP defrag by default to madvise and add a stall-free defrag option THP defrag is enabled by default to direct reclaim/compact but not wake kswapd in the event of a THP allocation failure. The problem is that THP allocation requests potentially enter reclaim/compaction. This potentially incurs a severe stall that is not guaranteed to be offset by reduced TLB misses. While there has been considerable effort to reduce the impact of reclaim/compaction, it is still a high cost and workloads that should fit in memory fail to do so. Specifically, a simple anon/file streaming workload will enter direct reclaim on NUMA at least even though the working set size is 80% of RAM. It's been years and it's time to throw in the towel. First, this patch defines THP defrag as follows; madvise: A failed allocation will direct reclaim/compact if the application requests it never: Neither reclaim/compact nor wake kswapd defer: A failed allocation will wake kswapd/kcompactd always: A failed allocation will direct reclaim/compact (historical behaviour) khugepaged defrag will enter direct/reclaim but not wake kswapd. Next it sets the default defrag option to be "madvise" to only enter direct reclaim/compaction for applications that specifically requested it. Lastly, it removes a check from the page allocator slowpath that is related to __GFP_THISNODE to allow "defer" to work. The callers that really cares are slub/slab and they are updated accordingly. The slab one may be surprising because it also corrects a comment as kswapd was never woken up by that path. This means that a THP fault will no longer stall for most applications by default and the ideal for most users that get THP if they are immediately available. There are still options for users that prefer a stall at startup of a new application by either restoring historical behaviour with "always" or pick a half-way point with "defer" where kswapd does some of the work in the background and wakes kcompactd if necessary. THP defrag for khugepaged remains enabled and will enter direct/reclaim but no wakeup kswapd or kcompactd. After this patch a THP allocation failure will quickly fallback and rely on khugepaged to recover the situation at some time in the future. In some cases, this will reduce THP usage but the benefit of THP is hard to measure and not a universal win where as a stall to reclaim/compaction is definitely measurable and can be painful. The first test for this is using "usemem" to read a large file and write a large anonymous mapping (to avoid the zero page) multiple times. The total size of the mappings is 80% of RAM and the benchmark simply measures how long it takes to complete. It uses multiple threads to see if that is a factor. On UMA, the performance is almost identical so is not reported but on NUMA, we see this usemem 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 Amean System-1 102.86 ( 0.00%) 46.81 ( 54.50%) Amean System-4 37.85 ( 0.00%) 34.02 ( 10.12%) Amean System-7 48.12 ( 0.00%) 46.89 ( 2.56%) Amean System-12 51.98 ( 0.00%) 56.96 ( -9.57%) Amean System-21 80.16 ( 0.00%) 79.05 ( 1.39%) Amean System-30 110.71 ( 0.00%) 107.17 ( 3.20%) Amean System-48 127.98 ( 0.00%) 124.83 ( 2.46%) Amean Elapsd-1 185.84 ( 0.00%) 105.51 ( 43.23%) Amean Elapsd-4 26.19 ( 0.00%) 25.58 ( 2.33%) Amean Elapsd-7 21.65 ( 0.00%) 21.62 ( 0.16%) Amean Elapsd-12 18.58 ( 0.00%) 17.94 ( 3.43%) Amean Elapsd-21 17.53 ( 0.00%) 16.60 ( 5.33%) Amean Elapsd-30 17.45 ( 0.00%) 17.13 ( 1.84%) Amean Elapsd-48 15.40 ( 0.00%) 15.27 ( 0.82%) For a single thread, the benchmark completes 43.23% faster with this patch applied with smaller benefits as the thread increases. Similar, notice the large reduction in most cases in system CPU usage. The overall CPU time is 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 User 10357.65 10438.33 System 3988.88 3543.94 Elapsed 2203.01 1634.41 Which is substantial. Now, the reclaim figures 4.4.0 4.4.0 kcompactd-v1r1nodefrag-v1r3 Minor Faults 128458477 278352931 Major Faults 2174976 225 Swap Ins 16904701 0 Swap Outs 17359627 0 Allocation stalls 43611 0 DMA allocs 0 0 DMA32 allocs 19832646 19448017 Normal allocs 614488453 580941839 Movable allocs 0 0 Direct pages scanned 24163800 0 Kswapd pages scanned 0 0 Kswapd pages reclaimed 0 0 Direct pages reclaimed 20691346 0 Compaction stalls 42263 0 Compaction success 938 0 Compaction failures 41325 0 This patch eliminates almost all swapping and direct reclaim activity. There is still overhead but it's from NUMA balancing which does not identify that it's pointless trying to do anything with this workload. I also tried the thpscale benchmark which forces a corner case where compaction can be used heavily and measures the latency of whether base or huge pages were used thpscale Fault Latencies 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 Amean fault-base-1 5288.84 ( 0.00%) 2817.12 ( 46.73%) Amean fault-base-3 6365.53 ( 0.00%) 3499.11 ( 45.03%) Amean fault-base-5 6526.19 ( 0.00%) 4363.06 ( 33.15%) Amean fault-base-7 7142.25 ( 0.00%) 4858.08 ( 31.98%) Amean fault-base-12 13827.64 ( 0.00%) 10292.11 ( 25.57%) Amean fault-base-18 18235.07 ( 0.00%) 13788.84 ( 24.38%) Amean fault-base-24 21597.80 ( 0.00%) 24388.03 (-12.92%) Amean fault-base-30 26754.15 ( 0.00%) 19700.55 ( 26.36%) Amean fault-base-32 26784.94 ( 0.00%) 19513.57 ( 27.15%) Amean fault-huge-1 4223.96 ( 0.00%) 2178.57 ( 48.42%) Amean fault-huge-3 2194.77 ( 0.00%) 2149.74 ( 2.05%) Amean fault-huge-5 2569.60 ( 0.00%) 2346.95 ( 8.66%) Amean fault-huge-7 3612.69 ( 0.00%) 2997.70 ( 17.02%) Amean fault-huge-12 3301.75 ( 0.00%) 6727.02 (-103.74%) Amean fault-huge-18 6696.47 ( 0.00%) 6685.72 ( 0.16%) Amean fault-huge-24 8000.72 ( 0.00%) 9311.43 (-16.38%) Amean fault-huge-30 13305.55 ( 0.00%) 9750.45 ( 26.72%) Amean fault-huge-32 9981.71 ( 0.00%) 10316.06 ( -3.35%) The average time to fault pages is substantially reduced in the majority of caseds but with the obvious caveat that fewer THPs are actually used in this adverse workload 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 Percentage huge-1 0.71 ( 0.00%) 14.04 (1865.22%) Percentage huge-3 10.77 ( 0.00%) 33.05 (206.85%) Percentage huge-5 60.39 ( 0.00%) 38.51 (-36.23%) Percentage huge-7 45.97 ( 0.00%) 34.57 (-24.79%) Percentage huge-12 68.12 ( 0.00%) 40.07 (-41.17%) Percentage huge-18 64.93 ( 0.00%) 47.82 (-26.35%) Percentage huge-24 62.69 ( 0.00%) 44.23 (-29.44%) Percentage huge-30 43.49 ( 0.00%) 55.38 ( 27.34%) Percentage huge-32 50.72 ( 0.00%) 51.90 ( 2.35%) 4.4.0 4.4.0 kcompactd-v1r1nodefrag-v1r3 Minor Faults 37429143 47564000 Major Faults 1916 1558 Swap Ins 1466 1079 Swap Outs 2936863 149626 Allocation stalls 62510 3 DMA allocs 0 0 DMA32 allocs 6566458 6401314 Normal allocs 216361697 216538171 Movable allocs 0 0 Direct pages scanned 25977580 17998 Kswapd pages scanned 0 3638931 Kswapd pages reclaimed 0 207236 Direct pages reclaimed 8833714 88 Compaction stalls 103349 5 Compaction success 270 4 Compaction failures 103079 1 Note again that while this does swap as it's an aggressive workload, the direct relcim activity and allocation stalls is substantially reduced. There is some kswapd activity but ftrace showed that the kswapd activity was due to normal wakeups from 4K pages being allocated. Compaction-related stalls and activity are almost eliminated. I also tried the stutter benchmark. For this, I do not have figures for NUMA but it's something that does impact UMA so I'll report what is available stutter 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 Min mmap 7.3571 ( 0.00%) 7.3438 ( 0.18%) 1st-qrtle mmap 7.5278 ( 0.00%) 17.9200 (-138.05%) 2nd-qrtle mmap 7.6818 ( 0.00%) 21.6055 (-181.25%) 3rd-qrtle mmap 11.0889 ( 0.00%) 21.8881 (-97.39%) Max-90% mmap 27.8978 ( 0.00%) 22.1632 ( 20.56%) Max-93% mmap 28.3202 ( 0.00%) 22.3044 ( 21.24%) Max-95% mmap 28.5600 ( 0.00%) 22.4580 ( 21.37%) Max-99% mmap 29.6032 ( 0.00%) 25.5216 ( 13.79%) Max mmap 4109.7289 ( 0.00%) 4813.9832 (-17.14%) Mean mmap 12.4474 ( 0.00%) 19.3027 (-55.07%) This benchmark is trying to fault an anonymous mapping while there is a heavy IO load -- a scenario that desktop users used to complain about frequently. This shows a mix because the ideal case of mapping with THP is not hit as often. However, note that 99% of the mappings complete 13.79% faster. The CPU usage here is particularly interesting 4.4.0 4.4.0 kcompactd-v1r1nodefrag-v1r3 User 67.50 0.99 System 1327.88 91.30 Elapsed 2079.00 2128.98 And once again we look at the reclaim figures 4.4.0 4.4.0 kcompactd-v1r1nodefrag-v1r3 Minor Faults 335241922 1314582827 Major Faults 715 819 Swap Ins 0 0 Swap Outs 0 0 Allocation stalls 532723 0 DMA allocs 0 0 DMA32 allocs 1822364341 1177950222 Normal allocs 1815640808 1517844854 Movable allocs 0 0 Direct pages scanned 21892772 0 Kswapd pages scanned 20015890 41879484 Kswapd pages reclaimed 19961986 41822072 Direct pages reclaimed 21892741 0 Compaction stalls 1065755 0 Compaction success 514 0 Compaction failures 1065241 0 Allocation stalls and all direct reclaim activity is eliminated as well as compaction-related stalls. THP gives impressive gains in some cases but only if they are quickly available. We're not going to reach the point where they are completely free so lets take the costs out of the fast paths finally and defer the cost to kswapd, kcompactd and khugepaged where it belongs. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Rik van Riel <riel@redhat.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-18 05:19:23 +08:00
if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
mm, thp: add new defer+madvise defrag option There is no thp defrag option that currently allows MADV_HUGEPAGE regions to do direct compaction and reclaim while all other thp allocations simply trigger kswapd and kcompactd in the background and fail immediately. The "defer" setting simply triggers background reclaim and compaction for all regions, regardless of MADV_HUGEPAGE, which makes it unusable for our userspace where MADV_HUGEPAGE is being used to indicate the application is willing to wait for work for thp memory to be available. The "madvise" setting will do direct compaction and reclaim for these MADV_HUGEPAGE regions, but does not trigger kswapd and kcompactd in the background for anybody else. For reasonable usage, there needs to be a mesh between the two options. This patch introduces a fifth mode, "defer+madvise", that will do direct reclaim and compaction for MADV_HUGEPAGE regions and trigger background reclaim and compaction for everybody else so that hugepages may be available in the near future. A proposal to allow direct reclaim and compaction for MADV_HUGEPAGE regions as part of the "defer" mode, making it a very powerful setting and avoids breaking userspace, was offered: http://marc.info/?t=148236612700003 This additional mode is a compromise. A second proposal to allow both "defer" and "madvise" to be selected at the same time was also offered: http://marc.info/?t=148357345300001. This is possible, but there was a concern that it might break existing userspaces the parse the output of the defrag mode, so the fifth option was introduced instead. This patch also cleans up the helper function for storing to "enabled" and "defrag" since the former supports three modes while the latter supports five and triple_flag_store() was getting unnecessarily messy. Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1701101614330.41805@chino.kir.corp.google.com Signed-off-by: David Rientjes <rientjes@google.com> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Michal Hocko <mhocko@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-23 07:45:49 +08:00
return sprintf(buf, "[always] defer defer+madvise madvise never\n");
mm: thp: set THP defrag by default to madvise and add a stall-free defrag option THP defrag is enabled by default to direct reclaim/compact but not wake kswapd in the event of a THP allocation failure. The problem is that THP allocation requests potentially enter reclaim/compaction. This potentially incurs a severe stall that is not guaranteed to be offset by reduced TLB misses. While there has been considerable effort to reduce the impact of reclaim/compaction, it is still a high cost and workloads that should fit in memory fail to do so. Specifically, a simple anon/file streaming workload will enter direct reclaim on NUMA at least even though the working set size is 80% of RAM. It's been years and it's time to throw in the towel. First, this patch defines THP defrag as follows; madvise: A failed allocation will direct reclaim/compact if the application requests it never: Neither reclaim/compact nor wake kswapd defer: A failed allocation will wake kswapd/kcompactd always: A failed allocation will direct reclaim/compact (historical behaviour) khugepaged defrag will enter direct/reclaim but not wake kswapd. Next it sets the default defrag option to be "madvise" to only enter direct reclaim/compaction for applications that specifically requested it. Lastly, it removes a check from the page allocator slowpath that is related to __GFP_THISNODE to allow "defer" to work. The callers that really cares are slub/slab and they are updated accordingly. The slab one may be surprising because it also corrects a comment as kswapd was never woken up by that path. This means that a THP fault will no longer stall for most applications by default and the ideal for most users that get THP if they are immediately available. There are still options for users that prefer a stall at startup of a new application by either restoring historical behaviour with "always" or pick a half-way point with "defer" where kswapd does some of the work in the background and wakes kcompactd if necessary. THP defrag for khugepaged remains enabled and will enter direct/reclaim but no wakeup kswapd or kcompactd. After this patch a THP allocation failure will quickly fallback and rely on khugepaged to recover the situation at some time in the future. In some cases, this will reduce THP usage but the benefit of THP is hard to measure and not a universal win where as a stall to reclaim/compaction is definitely measurable and can be painful. The first test for this is using "usemem" to read a large file and write a large anonymous mapping (to avoid the zero page) multiple times. The total size of the mappings is 80% of RAM and the benchmark simply measures how long it takes to complete. It uses multiple threads to see if that is a factor. On UMA, the performance is almost identical so is not reported but on NUMA, we see this usemem 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 Amean System-1 102.86 ( 0.00%) 46.81 ( 54.50%) Amean System-4 37.85 ( 0.00%) 34.02 ( 10.12%) Amean System-7 48.12 ( 0.00%) 46.89 ( 2.56%) Amean System-12 51.98 ( 0.00%) 56.96 ( -9.57%) Amean System-21 80.16 ( 0.00%) 79.05 ( 1.39%) Amean System-30 110.71 ( 0.00%) 107.17 ( 3.20%) Amean System-48 127.98 ( 0.00%) 124.83 ( 2.46%) Amean Elapsd-1 185.84 ( 0.00%) 105.51 ( 43.23%) Amean Elapsd-4 26.19 ( 0.00%) 25.58 ( 2.33%) Amean Elapsd-7 21.65 ( 0.00%) 21.62 ( 0.16%) Amean Elapsd-12 18.58 ( 0.00%) 17.94 ( 3.43%) Amean Elapsd-21 17.53 ( 0.00%) 16.60 ( 5.33%) Amean Elapsd-30 17.45 ( 0.00%) 17.13 ( 1.84%) Amean Elapsd-48 15.40 ( 0.00%) 15.27 ( 0.82%) For a single thread, the benchmark completes 43.23% faster with this patch applied with smaller benefits as the thread increases. Similar, notice the large reduction in most cases in system CPU usage. The overall CPU time is 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 User 10357.65 10438.33 System 3988.88 3543.94 Elapsed 2203.01 1634.41 Which is substantial. Now, the reclaim figures 4.4.0 4.4.0 kcompactd-v1r1nodefrag-v1r3 Minor Faults 128458477 278352931 Major Faults 2174976 225 Swap Ins 16904701 0 Swap Outs 17359627 0 Allocation stalls 43611 0 DMA allocs 0 0 DMA32 allocs 19832646 19448017 Normal allocs 614488453 580941839 Movable allocs 0 0 Direct pages scanned 24163800 0 Kswapd pages scanned 0 0 Kswapd pages reclaimed 0 0 Direct pages reclaimed 20691346 0 Compaction stalls 42263 0 Compaction success 938 0 Compaction failures 41325 0 This patch eliminates almost all swapping and direct reclaim activity. There is still overhead but it's from NUMA balancing which does not identify that it's pointless trying to do anything with this workload. I also tried the thpscale benchmark which forces a corner case where compaction can be used heavily and measures the latency of whether base or huge pages were used thpscale Fault Latencies 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 Amean fault-base-1 5288.84 ( 0.00%) 2817.12 ( 46.73%) Amean fault-base-3 6365.53 ( 0.00%) 3499.11 ( 45.03%) Amean fault-base-5 6526.19 ( 0.00%) 4363.06 ( 33.15%) Amean fault-base-7 7142.25 ( 0.00%) 4858.08 ( 31.98%) Amean fault-base-12 13827.64 ( 0.00%) 10292.11 ( 25.57%) Amean fault-base-18 18235.07 ( 0.00%) 13788.84 ( 24.38%) Amean fault-base-24 21597.80 ( 0.00%) 24388.03 (-12.92%) Amean fault-base-30 26754.15 ( 0.00%) 19700.55 ( 26.36%) Amean fault-base-32 26784.94 ( 0.00%) 19513.57 ( 27.15%) Amean fault-huge-1 4223.96 ( 0.00%) 2178.57 ( 48.42%) Amean fault-huge-3 2194.77 ( 0.00%) 2149.74 ( 2.05%) Amean fault-huge-5 2569.60 ( 0.00%) 2346.95 ( 8.66%) Amean fault-huge-7 3612.69 ( 0.00%) 2997.70 ( 17.02%) Amean fault-huge-12 3301.75 ( 0.00%) 6727.02 (-103.74%) Amean fault-huge-18 6696.47 ( 0.00%) 6685.72 ( 0.16%) Amean fault-huge-24 8000.72 ( 0.00%) 9311.43 (-16.38%) Amean fault-huge-30 13305.55 ( 0.00%) 9750.45 ( 26.72%) Amean fault-huge-32 9981.71 ( 0.00%) 10316.06 ( -3.35%) The average time to fault pages is substantially reduced in the majority of caseds but with the obvious caveat that fewer THPs are actually used in this adverse workload 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 Percentage huge-1 0.71 ( 0.00%) 14.04 (1865.22%) Percentage huge-3 10.77 ( 0.00%) 33.05 (206.85%) Percentage huge-5 60.39 ( 0.00%) 38.51 (-36.23%) Percentage huge-7 45.97 ( 0.00%) 34.57 (-24.79%) Percentage huge-12 68.12 ( 0.00%) 40.07 (-41.17%) Percentage huge-18 64.93 ( 0.00%) 47.82 (-26.35%) Percentage huge-24 62.69 ( 0.00%) 44.23 (-29.44%) Percentage huge-30 43.49 ( 0.00%) 55.38 ( 27.34%) Percentage huge-32 50.72 ( 0.00%) 51.90 ( 2.35%) 4.4.0 4.4.0 kcompactd-v1r1nodefrag-v1r3 Minor Faults 37429143 47564000 Major Faults 1916 1558 Swap Ins 1466 1079 Swap Outs 2936863 149626 Allocation stalls 62510 3 DMA allocs 0 0 DMA32 allocs 6566458 6401314 Normal allocs 216361697 216538171 Movable allocs 0 0 Direct pages scanned 25977580 17998 Kswapd pages scanned 0 3638931 Kswapd pages reclaimed 0 207236 Direct pages reclaimed 8833714 88 Compaction stalls 103349 5 Compaction success 270 4 Compaction failures 103079 1 Note again that while this does swap as it's an aggressive workload, the direct relcim activity and allocation stalls is substantially reduced. There is some kswapd activity but ftrace showed that the kswapd activity was due to normal wakeups from 4K pages being allocated. Compaction-related stalls and activity are almost eliminated. I also tried the stutter benchmark. For this, I do not have figures for NUMA but it's something that does impact UMA so I'll report what is available stutter 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 Min mmap 7.3571 ( 0.00%) 7.3438 ( 0.18%) 1st-qrtle mmap 7.5278 ( 0.00%) 17.9200 (-138.05%) 2nd-qrtle mmap 7.6818 ( 0.00%) 21.6055 (-181.25%) 3rd-qrtle mmap 11.0889 ( 0.00%) 21.8881 (-97.39%) Max-90% mmap 27.8978 ( 0.00%) 22.1632 ( 20.56%) Max-93% mmap 28.3202 ( 0.00%) 22.3044 ( 21.24%) Max-95% mmap 28.5600 ( 0.00%) 22.4580 ( 21.37%) Max-99% mmap 29.6032 ( 0.00%) 25.5216 ( 13.79%) Max mmap 4109.7289 ( 0.00%) 4813.9832 (-17.14%) Mean mmap 12.4474 ( 0.00%) 19.3027 (-55.07%) This benchmark is trying to fault an anonymous mapping while there is a heavy IO load -- a scenario that desktop users used to complain about frequently. This shows a mix because the ideal case of mapping with THP is not hit as often. However, note that 99% of the mappings complete 13.79% faster. The CPU usage here is particularly interesting 4.4.0 4.4.0 kcompactd-v1r1nodefrag-v1r3 User 67.50 0.99 System 1327.88 91.30 Elapsed 2079.00 2128.98 And once again we look at the reclaim figures 4.4.0 4.4.0 kcompactd-v1r1nodefrag-v1r3 Minor Faults 335241922 1314582827 Major Faults 715 819 Swap Ins 0 0 Swap Outs 0 0 Allocation stalls 532723 0 DMA allocs 0 0 DMA32 allocs 1822364341 1177950222 Normal allocs 1815640808 1517844854 Movable allocs 0 0 Direct pages scanned 21892772 0 Kswapd pages scanned 20015890 41879484 Kswapd pages reclaimed 19961986 41822072 Direct pages reclaimed 21892741 0 Compaction stalls 1065755 0 Compaction success 514 0 Compaction failures 1065241 0 Allocation stalls and all direct reclaim activity is eliminated as well as compaction-related stalls. THP gives impressive gains in some cases but only if they are quickly available. We're not going to reach the point where they are completely free so lets take the costs out of the fast paths finally and defer the cost to kswapd, kcompactd and khugepaged where it belongs. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Rik van Riel <riel@redhat.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-18 05:19:23 +08:00
if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
mm, thp: add new defer+madvise defrag option There is no thp defrag option that currently allows MADV_HUGEPAGE regions to do direct compaction and reclaim while all other thp allocations simply trigger kswapd and kcompactd in the background and fail immediately. The "defer" setting simply triggers background reclaim and compaction for all regions, regardless of MADV_HUGEPAGE, which makes it unusable for our userspace where MADV_HUGEPAGE is being used to indicate the application is willing to wait for work for thp memory to be available. The "madvise" setting will do direct compaction and reclaim for these MADV_HUGEPAGE regions, but does not trigger kswapd and kcompactd in the background for anybody else. For reasonable usage, there needs to be a mesh between the two options. This patch introduces a fifth mode, "defer+madvise", that will do direct reclaim and compaction for MADV_HUGEPAGE regions and trigger background reclaim and compaction for everybody else so that hugepages may be available in the near future. A proposal to allow direct reclaim and compaction for MADV_HUGEPAGE regions as part of the "defer" mode, making it a very powerful setting and avoids breaking userspace, was offered: http://marc.info/?t=148236612700003 This additional mode is a compromise. A second proposal to allow both "defer" and "madvise" to be selected at the same time was also offered: http://marc.info/?t=148357345300001. This is possible, but there was a concern that it might break existing userspaces the parse the output of the defrag mode, so the fifth option was introduced instead. This patch also cleans up the helper function for storing to "enabled" and "defrag" since the former supports three modes while the latter supports five and triple_flag_store() was getting unnecessarily messy. Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1701101614330.41805@chino.kir.corp.google.com Signed-off-by: David Rientjes <rientjes@google.com> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Michal Hocko <mhocko@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-23 07:45:49 +08:00
return sprintf(buf, "always [defer] defer+madvise madvise never\n");
if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
return sprintf(buf, "always defer [defer+madvise] madvise never\n");
if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
return sprintf(buf, "always defer defer+madvise [madvise] never\n");
return sprintf(buf, "always defer defer+madvise madvise [never]\n");
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
}
mm, thp: add new defer+madvise defrag option There is no thp defrag option that currently allows MADV_HUGEPAGE regions to do direct compaction and reclaim while all other thp allocations simply trigger kswapd and kcompactd in the background and fail immediately. The "defer" setting simply triggers background reclaim and compaction for all regions, regardless of MADV_HUGEPAGE, which makes it unusable for our userspace where MADV_HUGEPAGE is being used to indicate the application is willing to wait for work for thp memory to be available. The "madvise" setting will do direct compaction and reclaim for these MADV_HUGEPAGE regions, but does not trigger kswapd and kcompactd in the background for anybody else. For reasonable usage, there needs to be a mesh between the two options. This patch introduces a fifth mode, "defer+madvise", that will do direct reclaim and compaction for MADV_HUGEPAGE regions and trigger background reclaim and compaction for everybody else so that hugepages may be available in the near future. A proposal to allow direct reclaim and compaction for MADV_HUGEPAGE regions as part of the "defer" mode, making it a very powerful setting and avoids breaking userspace, was offered: http://marc.info/?t=148236612700003 This additional mode is a compromise. A second proposal to allow both "defer" and "madvise" to be selected at the same time was also offered: http://marc.info/?t=148357345300001. This is possible, but there was a concern that it might break existing userspaces the parse the output of the defrag mode, so the fifth option was introduced instead. This patch also cleans up the helper function for storing to "enabled" and "defrag" since the former supports three modes while the latter supports five and triple_flag_store() was getting unnecessarily messy. Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1701101614330.41805@chino.kir.corp.google.com Signed-off-by: David Rientjes <rientjes@google.com> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Michal Hocko <mhocko@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-23 07:45:49 +08:00
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
static ssize_t defrag_store(struct kobject *kobj,
struct kobj_attribute *attr,
const char *buf, size_t count)
{
mm, thp: add new defer+madvise defrag option There is no thp defrag option that currently allows MADV_HUGEPAGE regions to do direct compaction and reclaim while all other thp allocations simply trigger kswapd and kcompactd in the background and fail immediately. The "defer" setting simply triggers background reclaim and compaction for all regions, regardless of MADV_HUGEPAGE, which makes it unusable for our userspace where MADV_HUGEPAGE is being used to indicate the application is willing to wait for work for thp memory to be available. The "madvise" setting will do direct compaction and reclaim for these MADV_HUGEPAGE regions, but does not trigger kswapd and kcompactd in the background for anybody else. For reasonable usage, there needs to be a mesh between the two options. This patch introduces a fifth mode, "defer+madvise", that will do direct reclaim and compaction for MADV_HUGEPAGE regions and trigger background reclaim and compaction for everybody else so that hugepages may be available in the near future. A proposal to allow direct reclaim and compaction for MADV_HUGEPAGE regions as part of the "defer" mode, making it a very powerful setting and avoids breaking userspace, was offered: http://marc.info/?t=148236612700003 This additional mode is a compromise. A second proposal to allow both "defer" and "madvise" to be selected at the same time was also offered: http://marc.info/?t=148357345300001. This is possible, but there was a concern that it might break existing userspaces the parse the output of the defrag mode, so the fifth option was introduced instead. This patch also cleans up the helper function for storing to "enabled" and "defrag" since the former supports three modes while the latter supports five and triple_flag_store() was getting unnecessarily messy. Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1701101614330.41805@chino.kir.corp.google.com Signed-off-by: David Rientjes <rientjes@google.com> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Michal Hocko <mhocko@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-23 07:45:49 +08:00
if (!memcmp("always", buf,
min(sizeof("always")-1, count))) {
clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
} else if (!memcmp("defer+madvise", buf,
min(sizeof("defer+madvise")-1, count))) {
clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
} else if (!memcmp("defer", buf,
min(sizeof("defer")-1, count))) {
clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
mm, thp: add new defer+madvise defrag option There is no thp defrag option that currently allows MADV_HUGEPAGE regions to do direct compaction and reclaim while all other thp allocations simply trigger kswapd and kcompactd in the background and fail immediately. The "defer" setting simply triggers background reclaim and compaction for all regions, regardless of MADV_HUGEPAGE, which makes it unusable for our userspace where MADV_HUGEPAGE is being used to indicate the application is willing to wait for work for thp memory to be available. The "madvise" setting will do direct compaction and reclaim for these MADV_HUGEPAGE regions, but does not trigger kswapd and kcompactd in the background for anybody else. For reasonable usage, there needs to be a mesh between the two options. This patch introduces a fifth mode, "defer+madvise", that will do direct reclaim and compaction for MADV_HUGEPAGE regions and trigger background reclaim and compaction for everybody else so that hugepages may be available in the near future. A proposal to allow direct reclaim and compaction for MADV_HUGEPAGE regions as part of the "defer" mode, making it a very powerful setting and avoids breaking userspace, was offered: http://marc.info/?t=148236612700003 This additional mode is a compromise. A second proposal to allow both "defer" and "madvise" to be selected at the same time was also offered: http://marc.info/?t=148357345300001. This is possible, but there was a concern that it might break existing userspaces the parse the output of the defrag mode, so the fifth option was introduced instead. This patch also cleans up the helper function for storing to "enabled" and "defrag" since the former supports three modes while the latter supports five and triple_flag_store() was getting unnecessarily messy. Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1701101614330.41805@chino.kir.corp.google.com Signed-off-by: David Rientjes <rientjes@google.com> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Michal Hocko <mhocko@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-23 07:45:49 +08:00
} else if (!memcmp("madvise", buf,
min(sizeof("madvise")-1, count))) {
clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
} else if (!memcmp("never", buf,
min(sizeof("never")-1, count))) {
clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
} else
return -EINVAL;
return count;
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
}
static struct kobj_attribute defrag_attr =
__ATTR(defrag, 0644, defrag_show, defrag_store);
static ssize_t use_zero_page_show(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
return single_hugepage_flag_show(kobj, attr, buf,
TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
}
static ssize_t use_zero_page_store(struct kobject *kobj,
struct kobj_attribute *attr, const char *buf, size_t count)
{
return single_hugepage_flag_store(kobj, attr, buf, count,
TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
}
static struct kobj_attribute use_zero_page_attr =
__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
static ssize_t hpage_pmd_size_show(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
}
static struct kobj_attribute hpage_pmd_size_attr =
__ATTR_RO(hpage_pmd_size);
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
#ifdef CONFIG_DEBUG_VM
static ssize_t debug_cow_show(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
return single_hugepage_flag_show(kobj, attr, buf,
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
}
static ssize_t debug_cow_store(struct kobject *kobj,
struct kobj_attribute *attr,
const char *buf, size_t count)
{
return single_hugepage_flag_store(kobj, attr, buf, count,
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
}
static struct kobj_attribute debug_cow_attr =
__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
#endif /* CONFIG_DEBUG_VM */
static struct attribute *hugepage_attr[] = {
&enabled_attr.attr,
&defrag_attr.attr,
&use_zero_page_attr.attr,
&hpage_pmd_size_attr.attr,
#if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
shmem: prepare huge= mount option and sysfs knob This patch adds new mount option "huge=". It can have following values: - "always": Attempt to allocate huge pages every time we need a new page; - "never": Do not allocate huge pages; - "within_size": Only allocate huge page if it will be fully within i_size. Also respect fadvise()/madvise() hints; - "advise: Only allocate huge pages if requested with fadvise()/madvise(); Default is "never" for now. "mount -o remount,huge= /mountpoint" works fine after mount: remounting huge=never will not attempt to break up huge pages at all, just stop more from being allocated. No new config option: put this under CONFIG_TRANSPARENT_HUGEPAGE, which is the appropriate option to protect those who don't want the new bloat, and with which we shall share some pmd code. Prohibit the option when !CONFIG_TRANSPARENT_HUGEPAGE, just as mpol is invalid without CONFIG_NUMA (was hidden in mpol_parse_str(): make it explicit). Allow enabling THP only if the machine has_transparent_hugepage(). But what about Shmem with no user-visible mount? SysV SHM, memfds, shared anonymous mmaps (of /dev/zero or MAP_ANONYMOUS), GPU drivers' DRM objects, Ashmem. Though unlikely to suit all usages, provide sysfs knob /sys/kernel/mm/transparent_hugepage/shmem_enabled to experiment with huge on those. And allow shmem_enabled two further values: - "deny": For use in emergencies, to force the huge option off from all mounts; - "force": Force the huge option on for all - very useful for testing; Based on patch by Hugh Dickins. Link: http://lkml.kernel.org/r/1466021202-61880-28-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-27 06:26:13 +08:00
&shmem_enabled_attr.attr,
#endif
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
#ifdef CONFIG_DEBUG_VM
&debug_cow_attr.attr,
#endif
NULL,
};
static const struct attribute_group hugepage_attr_group = {
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
.attrs = hugepage_attr,
2011-01-14 07:46:58 +08:00
};
static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
{
int err;
*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
if (unlikely(!*hugepage_kobj)) {
pr_err("failed to create transparent hugepage kobject\n");
return -ENOMEM;
2011-01-14 07:46:58 +08:00
}
err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
2011-01-14 07:46:58 +08:00
if (err) {
pr_err("failed to register transparent hugepage group\n");
goto delete_obj;
2011-01-14 07:46:58 +08:00
}
err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
2011-01-14 07:46:58 +08:00
if (err) {
pr_err("failed to register transparent hugepage group\n");
goto remove_hp_group;
2011-01-14 07:46:58 +08:00
}
return 0;
remove_hp_group:
sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
delete_obj:
kobject_put(*hugepage_kobj);
return err;
}
static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
{
sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
kobject_put(hugepage_kobj);
}
#else
static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
{
return 0;
}
static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
{
}
#endif /* CONFIG_SYSFS */
static int __init hugepage_init(void)
{
int err;
struct kobject *hugepage_kobj;
if (!has_transparent_hugepage()) {
transparent_hugepage_flags = 0;
return -EINVAL;
}
/*
* hugepages can't be allocated by the buddy allocator
*/
MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
/*
* we use page->mapping and page->index in second tail page
* as list_head: assuming THP order >= 2
*/
MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
err = hugepage_init_sysfs(&hugepage_kobj);
if (err)
goto err_sysfs;
2011-01-14 07:46:58 +08:00
err = khugepaged_init();
2011-01-14 07:46:58 +08:00
if (err)
goto err_slab;
2011-01-14 07:46:58 +08:00
err = register_shrinker(&huge_zero_page_shrinker);
if (err)
goto err_hzp_shrinker;
thp: introduce deferred_split_huge_page() Currently we don't split huge page on partial unmap. It's not an ideal situation. It can lead to memory overhead. Furtunately, we can detect partial unmap on page_remove_rmap(). But we cannot call split_huge_page() from there due to locking context. It's also counterproductive to do directly from munmap() codepath: in many cases we will hit this from exit(2) and splitting the huge page just to free it up in small pages is not what we really want. The patch introduce deferred_split_huge_page() which put the huge page into queue for splitting. The splitting itself will happen when we get memory pressure via shrinker interface. The page will be dropped from list on freeing through compound page destructor. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:17 +08:00
err = register_shrinker(&deferred_split_shrinker);
if (err)
goto err_split_shrinker;
/*
* By default disable transparent hugepages on smaller systems,
* where the extra memory used could hurt more than TLB overhead
* is likely to save. The admin can still enable it through /sys.
*/
if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
transparent_hugepage_flags = 0;
return 0;
}
err = start_stop_khugepaged();
if (err)
goto err_khugepaged;
2011-01-14 07:46:58 +08:00
return 0;
err_khugepaged:
thp: introduce deferred_split_huge_page() Currently we don't split huge page on partial unmap. It's not an ideal situation. It can lead to memory overhead. Furtunately, we can detect partial unmap on page_remove_rmap(). But we cannot call split_huge_page() from there due to locking context. It's also counterproductive to do directly from munmap() codepath: in many cases we will hit this from exit(2) and splitting the huge page just to free it up in small pages is not what we really want. The patch introduce deferred_split_huge_page() which put the huge page into queue for splitting. The splitting itself will happen when we get memory pressure via shrinker interface. The page will be dropped from list on freeing through compound page destructor. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:17 +08:00
unregister_shrinker(&deferred_split_shrinker);
err_split_shrinker:
unregister_shrinker(&huge_zero_page_shrinker);
err_hzp_shrinker:
khugepaged_destroy();
err_slab:
hugepage_exit_sysfs(hugepage_kobj);
err_sysfs:
2011-01-14 07:46:58 +08:00
return err;
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
}
mm: audit/fix non-modular users of module_init in core code Code that is obj-y (always built-in) or dependent on a bool Kconfig (built-in or absent) can never be modular. So using module_init as an alias for __initcall can be somewhat misleading. Fix these up now, so that we can relocate module_init from init.h into module.h in the future. If we don't do this, we'd have to add module.h to obviously non-modular code, and that would be a worse thing. The audit targets the following module_init users for change: mm/ksm.c bool KSM mm/mmap.c bool MMU mm/huge_memory.c bool TRANSPARENT_HUGEPAGE mm/mmu_notifier.c bool MMU_NOTIFIER Note that direct use of __initcall is discouraged, vs. one of the priority categorized subgroups. As __initcall gets mapped onto device_initcall, our use of subsys_initcall (which makes sense for these files) will thus change this registration from level 6-device to level 4-subsys (i.e. slightly earlier). However no observable impact of that difference has been observed during testing. One might think that core_initcall (l2) or postcore_initcall (l3) would be more appropriate for anything in mm/ but if we look at some actual init functions themselves, we see things like: mm/huge_memory.c --> hugepage_init --> hugepage_init_sysfs mm/mmap.c --> init_user_reserve --> sysctl_user_reserve_kbytes mm/ksm.c --> ksm_init --> sysfs_create_group and hence the choice of subsys_initcall (l4) seems reasonable, and at the same time minimizes the risk of changing the priority too drastically all at once. We can adjust further in the future. Also, several instances of missing ";" at EOL are fixed. Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-24 07:53:30 +08:00
subsys_initcall(hugepage_init);
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
static int __init setup_transparent_hugepage(char *str)
{
int ret = 0;
if (!str)
goto out;
if (!strcmp(str, "always")) {
set_bit(TRANSPARENT_HUGEPAGE_FLAG,
&transparent_hugepage_flags);
clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
&transparent_hugepage_flags);
ret = 1;
} else if (!strcmp(str, "madvise")) {
clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
&transparent_hugepage_flags);
set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
&transparent_hugepage_flags);
ret = 1;
} else if (!strcmp(str, "never")) {
clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
&transparent_hugepage_flags);
clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
&transparent_hugepage_flags);
ret = 1;
}
out:
if (!ret)
pr_warn("transparent_hugepage= cannot parse, ignored\n");
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
return ret;
}
__setup("transparent_hugepage=", setup_transparent_hugepage);
pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
{
if (likely(vma->vm_flags & VM_WRITE))
pmd = pmd_mkwrite(pmd);
return pmd;
}
thp: introduce deferred_split_huge_page() Currently we don't split huge page on partial unmap. It's not an ideal situation. It can lead to memory overhead. Furtunately, we can detect partial unmap on page_remove_rmap(). But we cannot call split_huge_page() from there due to locking context. It's also counterproductive to do directly from munmap() codepath: in many cases we will hit this from exit(2) and splitting the huge page just to free it up in small pages is not what we really want. The patch introduce deferred_split_huge_page() which put the huge page into queue for splitting. The splitting itself will happen when we get memory pressure via shrinker interface. The page will be dropped from list on freeing through compound page destructor. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:17 +08:00
static inline struct list_head *page_deferred_list(struct page *page)
{
/*
* ->lru in the tail pages is occupied by compound_head.
* Let's use ->mapping + ->index in the second tail page as list_head.
*/
return (struct list_head *)&page[2].mapping;
}
void prep_transhuge_page(struct page *page)
{
/*
* we use page->mapping and page->indexlru in second tail page
* as list_head: assuming THP order >= 2
*/
INIT_LIST_HEAD(page_deferred_list(page));
set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
}
thp, dax: add thp_get_unmapped_area for pmd mappings When CONFIG_FS_DAX_PMD is set, DAX supports mmap() using pmd page size. This feature relies on both mmap virtual address and FS block (i.e. physical address) to be aligned by the pmd page size. Users can use mkfs options to specify FS to align block allocations. However, aligning mmap address requires code changes to existing applications for providing a pmd-aligned address to mmap(). For instance, fio with "ioengine=mmap" performs I/Os with mmap() [1]. It calls mmap() with a NULL address, which needs to be changed to provide a pmd-aligned address for testing with DAX pmd mappings. Changing all applications that call mmap() with NULL is undesirable. Add thp_get_unmapped_area(), which can be called by filesystem's get_unmapped_area to align an mmap address by the pmd size for a DAX file. It calls the default handler, mm->get_unmapped_area(), to find a range and then aligns it for a DAX file. The patch is based on Matthew Wilcox's change that allows adding support of the pud page size easily. [1]: https://github.com/axboe/fio/blob/master/engines/mmap.c Link: http://lkml.kernel.org/r/1472497881-9323-2-git-send-email-toshi.kani@hpe.com Signed-off-by: Toshi Kani <toshi.kani@hpe.com> Reviewed-by: Dan Williams <dan.j.williams@intel.com> Cc: Matthew Wilcox <mawilcox@microsoft.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Jan Kara <jack@suse.cz> Cc: Theodore Ts'o <tytso@mit.edu> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-08 07:59:56 +08:00
unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
loff_t off, unsigned long flags, unsigned long size)
{
unsigned long addr;
loff_t off_end = off + len;
loff_t off_align = round_up(off, size);
unsigned long len_pad;
if (off_end <= off_align || (off_end - off_align) < size)
return 0;
len_pad = len + size;
if (len_pad < len || (off + len_pad) < off)
return 0;
addr = current->mm->get_unmapped_area(filp, 0, len_pad,
off >> PAGE_SHIFT, flags);
if (IS_ERR_VALUE(addr))
return 0;
addr += (off - addr) & (size - 1);
return addr;
}
unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
unsigned long len, unsigned long pgoff, unsigned long flags)
{
loff_t off = (loff_t)pgoff << PAGE_SHIFT;
if (addr)
goto out;
if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
goto out;
addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
if (addr)
return addr;
out:
return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
}
EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
static int __do_huge_pmd_anonymous_page(struct vm_fault *vmf, struct page *page,
gfp_t gfp)
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
{
struct vm_area_struct *vma = vmf->vma;
mm: memcontrol: rewrite charge API These patches rework memcg charge lifetime to integrate more naturally with the lifetime of user pages. This drastically simplifies the code and reduces charging and uncharging overhead. The most expensive part of charging and uncharging is the page_cgroup bit spinlock, which is removed entirely after this series. Here are the top-10 profile entries of a stress test that reads a 128G sparse file on a freshly booted box, without even a dedicated cgroup (i.e. executing in the root memcg). Before: 15.36% cat [kernel.kallsyms] [k] copy_user_generic_string 13.31% cat [kernel.kallsyms] [k] memset 11.48% cat [kernel.kallsyms] [k] do_mpage_readpage 4.23% cat [kernel.kallsyms] [k] get_page_from_freelist 2.38% cat [kernel.kallsyms] [k] put_page 2.32% cat [kernel.kallsyms] [k] __mem_cgroup_commit_charge 2.18% kswapd0 [kernel.kallsyms] [k] __mem_cgroup_uncharge_common 1.92% kswapd0 [kernel.kallsyms] [k] shrink_page_list 1.86% cat [kernel.kallsyms] [k] __radix_tree_lookup 1.62% cat [kernel.kallsyms] [k] __pagevec_lru_add_fn After: 15.67% cat [kernel.kallsyms] [k] copy_user_generic_string 13.48% cat [kernel.kallsyms] [k] memset 11.42% cat [kernel.kallsyms] [k] do_mpage_readpage 3.98% cat [kernel.kallsyms] [k] get_page_from_freelist 2.46% cat [kernel.kallsyms] [k] put_page 2.13% kswapd0 [kernel.kallsyms] [k] shrink_page_list 1.88% cat [kernel.kallsyms] [k] __radix_tree_lookup 1.67% cat [kernel.kallsyms] [k] __pagevec_lru_add_fn 1.39% kswapd0 [kernel.kallsyms] [k] free_pcppages_bulk 1.30% cat [kernel.kallsyms] [k] kfree As you can see, the memcg footprint has shrunk quite a bit. text data bss dec hex filename 37970 9892 400 48262 bc86 mm/memcontrol.o.old 35239 9892 400 45531 b1db mm/memcontrol.o This patch (of 4): The memcg charge API charges pages before they are rmapped - i.e. have an actual "type" - and so every callsite needs its own set of charge and uncharge functions to know what type is being operated on. Worse, uncharge has to happen from a context that is still type-specific, rather than at the end of the page's lifetime with exclusive access, and so requires a lot of synchronization. Rewrite the charge API to provide a generic set of try_charge(), commit_charge() and cancel_charge() transaction operations, much like what's currently done for swap-in: mem_cgroup_try_charge() attempts to reserve a charge, reclaiming pages from the memcg if necessary. mem_cgroup_commit_charge() commits the page to the charge once it has a valid page->mapping and PageAnon() reliably tells the type. mem_cgroup_cancel_charge() aborts the transaction. This reduces the charge API and enables subsequent patches to drastically simplify uncharging. As pages need to be committed after rmap is established but before they are added to the LRU, page_add_new_anon_rmap() must stop doing LRU additions again. Revive lru_cache_add_active_or_unevictable(). [hughd@google.com: fix shmem_unuse] [hughd@google.com: Add comments on the private use of -EAGAIN] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: Tejun Heo <tj@kernel.org> Cc: Vladimir Davydov <vdavydov@parallels.com> Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-09 05:19:20 +08:00
struct mem_cgroup *memcg;
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
pgtable_t pgtable;
unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
mm, oom: fix potential data corruption when oom_reaper races with writer Wenwei Tao has noticed that our current assumption that the oom victim is dying and never doing any visible changes after it dies, and so the oom_reaper can tear it down, is not entirely true. __task_will_free_mem consider a task dying when SIGNAL_GROUP_EXIT is set but do_group_exit sends SIGKILL to all threads _after_ the flag is set. So there is a race window when some threads won't have fatal_signal_pending while the oom_reaper could start unmapping the address space. Moreover some paths might not check for fatal signals before each PF/g-u-p/copy_from_user. We already have a protection for oom_reaper vs. PF races by checking MMF_UNSTABLE. This has been, however, checked only for kernel threads (use_mm users) which can outlive the oom victim. A simple fix would be to extend the current check in handle_mm_fault for all tasks but that wouldn't be sufficient because the current check assumes that a kernel thread would bail out after EFAULT from get_user*/copy_from_user and never re-read the same address which would succeed because the PF path has established page tables already. This seems to be the case for the only existing use_mm user currently (virtio driver) but it is rather fragile in general. This is even more fragile in general for more complex paths such as generic_perform_write which can re-read the same address more times (e.g. iov_iter_copy_from_user_atomic to fail and then iov_iter_fault_in_readable on retry). Therefore we have to implement MMF_UNSTABLE protection in a robust way and never make a potentially corrupted content visible. That requires to hook deeper into the PF path and check for the flag _every time_ before a pte for anonymous memory is established (that means all !VM_SHARED mappings). The corruption can be triggered artificially (http://lkml.kernel.org/r/201708040646.v746kkhC024636@www262.sakura.ne.jp) but there doesn't seem to be any real life bug report. The race window should be quite tight to trigger most of the time. Link: http://lkml.kernel.org/r/20170807113839.16695-3-mhocko@kernel.org Fixes: aac453635549 ("mm, oom: introduce oom reaper") Signed-off-by: Michal Hocko <mhocko@suse.com> Reported-by: Wenwei Tao <wenwei.tww@alibaba-inc.com> Tested-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Andrea Argangeli <andrea@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-08-19 06:16:15 +08:00
int ret = 0;
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
VM_BUG_ON_PAGE(!PageCompound(page), page);
mm: memcontrol: rewrite charge API These patches rework memcg charge lifetime to integrate more naturally with the lifetime of user pages. This drastically simplifies the code and reduces charging and uncharging overhead. The most expensive part of charging and uncharging is the page_cgroup bit spinlock, which is removed entirely after this series. Here are the top-10 profile entries of a stress test that reads a 128G sparse file on a freshly booted box, without even a dedicated cgroup (i.e. executing in the root memcg). Before: 15.36% cat [kernel.kallsyms] [k] copy_user_generic_string 13.31% cat [kernel.kallsyms] [k] memset 11.48% cat [kernel.kallsyms] [k] do_mpage_readpage 4.23% cat [kernel.kallsyms] [k] get_page_from_freelist 2.38% cat [kernel.kallsyms] [k] put_page 2.32% cat [kernel.kallsyms] [k] __mem_cgroup_commit_charge 2.18% kswapd0 [kernel.kallsyms] [k] __mem_cgroup_uncharge_common 1.92% kswapd0 [kernel.kallsyms] [k] shrink_page_list 1.86% cat [kernel.kallsyms] [k] __radix_tree_lookup 1.62% cat [kernel.kallsyms] [k] __pagevec_lru_add_fn After: 15.67% cat [kernel.kallsyms] [k] copy_user_generic_string 13.48% cat [kernel.kallsyms] [k] memset 11.42% cat [kernel.kallsyms] [k] do_mpage_readpage 3.98% cat [kernel.kallsyms] [k] get_page_from_freelist 2.46% cat [kernel.kallsyms] [k] put_page 2.13% kswapd0 [kernel.kallsyms] [k] shrink_page_list 1.88% cat [kernel.kallsyms] [k] __radix_tree_lookup 1.67% cat [kernel.kallsyms] [k] __pagevec_lru_add_fn 1.39% kswapd0 [kernel.kallsyms] [k] free_pcppages_bulk 1.30% cat [kernel.kallsyms] [k] kfree As you can see, the memcg footprint has shrunk quite a bit. text data bss dec hex filename 37970 9892 400 48262 bc86 mm/memcontrol.o.old 35239 9892 400 45531 b1db mm/memcontrol.o This patch (of 4): The memcg charge API charges pages before they are rmapped - i.e. have an actual "type" - and so every callsite needs its own set of charge and uncharge functions to know what type is being operated on. Worse, uncharge has to happen from a context that is still type-specific, rather than at the end of the page's lifetime with exclusive access, and so requires a lot of synchronization. Rewrite the charge API to provide a generic set of try_charge(), commit_charge() and cancel_charge() transaction operations, much like what's currently done for swap-in: mem_cgroup_try_charge() attempts to reserve a charge, reclaiming pages from the memcg if necessary. mem_cgroup_commit_charge() commits the page to the charge once it has a valid page->mapping and PageAnon() reliably tells the type. mem_cgroup_cancel_charge() aborts the transaction. This reduces the charge API and enables subsequent patches to drastically simplify uncharging. As pages need to be committed after rmap is established but before they are added to the LRU, page_add_new_anon_rmap() must stop doing LRU additions again. Revive lru_cache_add_active_or_unevictable(). [hughd@google.com: fix shmem_unuse] [hughd@google.com: Add comments on the private use of -EAGAIN] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: Tejun Heo <tj@kernel.org> Cc: Vladimir Davydov <vdavydov@parallels.com> Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-09 05:19:20 +08:00
if (mem_cgroup_try_charge(page, vma->vm_mm, gfp, &memcg, true)) {
put_page(page);
count_vm_event(THP_FAULT_FALLBACK);
return VM_FAULT_FALLBACK;
}
mm: memcontrol: rewrite charge API These patches rework memcg charge lifetime to integrate more naturally with the lifetime of user pages. This drastically simplifies the code and reduces charging and uncharging overhead. The most expensive part of charging and uncharging is the page_cgroup bit spinlock, which is removed entirely after this series. Here are the top-10 profile entries of a stress test that reads a 128G sparse file on a freshly booted box, without even a dedicated cgroup (i.e. executing in the root memcg). Before: 15.36% cat [kernel.kallsyms] [k] copy_user_generic_string 13.31% cat [kernel.kallsyms] [k] memset 11.48% cat [kernel.kallsyms] [k] do_mpage_readpage 4.23% cat [kernel.kallsyms] [k] get_page_from_freelist 2.38% cat [kernel.kallsyms] [k] put_page 2.32% cat [kernel.kallsyms] [k] __mem_cgroup_commit_charge 2.18% kswapd0 [kernel.kallsyms] [k] __mem_cgroup_uncharge_common 1.92% kswapd0 [kernel.kallsyms] [k] shrink_page_list 1.86% cat [kernel.kallsyms] [k] __radix_tree_lookup 1.62% cat [kernel.kallsyms] [k] __pagevec_lru_add_fn After: 15.67% cat [kernel.kallsyms] [k] copy_user_generic_string 13.48% cat [kernel.kallsyms] [k] memset 11.42% cat [kernel.kallsyms] [k] do_mpage_readpage 3.98% cat [kernel.kallsyms] [k] get_page_from_freelist 2.46% cat [kernel.kallsyms] [k] put_page 2.13% kswapd0 [kernel.kallsyms] [k] shrink_page_list 1.88% cat [kernel.kallsyms] [k] __radix_tree_lookup 1.67% cat [kernel.kallsyms] [k] __pagevec_lru_add_fn 1.39% kswapd0 [kernel.kallsyms] [k] free_pcppages_bulk 1.30% cat [kernel.kallsyms] [k] kfree As you can see, the memcg footprint has shrunk quite a bit. text data bss dec hex filename 37970 9892 400 48262 bc86 mm/memcontrol.o.old 35239 9892 400 45531 b1db mm/memcontrol.o This patch (of 4): The memcg charge API charges pages before they are rmapped - i.e. have an actual "type" - and so every callsite needs its own set of charge and uncharge functions to know what type is being operated on. Worse, uncharge has to happen from a context that is still type-specific, rather than at the end of the page's lifetime with exclusive access, and so requires a lot of synchronization. Rewrite the charge API to provide a generic set of try_charge(), commit_charge() and cancel_charge() transaction operations, much like what's currently done for swap-in: mem_cgroup_try_charge() attempts to reserve a charge, reclaiming pages from the memcg if necessary. mem_cgroup_commit_charge() commits the page to the charge once it has a valid page->mapping and PageAnon() reliably tells the type. mem_cgroup_cancel_charge() aborts the transaction. This reduces the charge API and enables subsequent patches to drastically simplify uncharging. As pages need to be committed after rmap is established but before they are added to the LRU, page_add_new_anon_rmap() must stop doing LRU additions again. Revive lru_cache_add_active_or_unevictable(). [hughd@google.com: fix shmem_unuse] [hughd@google.com: Add comments on the private use of -EAGAIN] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: Tejun Heo <tj@kernel.org> Cc: Vladimir Davydov <vdavydov@parallels.com> Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-09 05:19:20 +08:00
pgtable = pte_alloc_one(vma->vm_mm, haddr);
mm: memcontrol: rewrite charge API These patches rework memcg charge lifetime to integrate more naturally with the lifetime of user pages. This drastically simplifies the code and reduces charging and uncharging overhead. The most expensive part of charging and uncharging is the page_cgroup bit spinlock, which is removed entirely after this series. Here are the top-10 profile entries of a stress test that reads a 128G sparse file on a freshly booted box, without even a dedicated cgroup (i.e. executing in the root memcg). Before: 15.36% cat [kernel.kallsyms] [k] copy_user_generic_string 13.31% cat [kernel.kallsyms] [k] memset 11.48% cat [kernel.kallsyms] [k] do_mpage_readpage 4.23% cat [kernel.kallsyms] [k] get_page_from_freelist 2.38% cat [kernel.kallsyms] [k] put_page 2.32% cat [kernel.kallsyms] [k] __mem_cgroup_commit_charge 2.18% kswapd0 [kernel.kallsyms] [k] __mem_cgroup_uncharge_common 1.92% kswapd0 [kernel.kallsyms] [k] shrink_page_list 1.86% cat [kernel.kallsyms] [k] __radix_tree_lookup 1.62% cat [kernel.kallsyms] [k] __pagevec_lru_add_fn After: 15.67% cat [kernel.kallsyms] [k] copy_user_generic_string 13.48% cat [kernel.kallsyms] [k] memset 11.42% cat [kernel.kallsyms] [k] do_mpage_readpage 3.98% cat [kernel.kallsyms] [k] get_page_from_freelist 2.46% cat [kernel.kallsyms] [k] put_page 2.13% kswapd0 [kernel.kallsyms] [k] shrink_page_list 1.88% cat [kernel.kallsyms] [k] __radix_tree_lookup 1.67% cat [kernel.kallsyms] [k] __pagevec_lru_add_fn 1.39% kswapd0 [kernel.kallsyms] [k] free_pcppages_bulk 1.30% cat [kernel.kallsyms] [k] kfree As you can see, the memcg footprint has shrunk quite a bit. text data bss dec hex filename 37970 9892 400 48262 bc86 mm/memcontrol.o.old 35239 9892 400 45531 b1db mm/memcontrol.o This patch (of 4): The memcg charge API charges pages before they are rmapped - i.e. have an actual "type" - and so every callsite needs its own set of charge and uncharge functions to know what type is being operated on. Worse, uncharge has to happen from a context that is still type-specific, rather than at the end of the page's lifetime with exclusive access, and so requires a lot of synchronization. Rewrite the charge API to provide a generic set of try_charge(), commit_charge() and cancel_charge() transaction operations, much like what's currently done for swap-in: mem_cgroup_try_charge() attempts to reserve a charge, reclaiming pages from the memcg if necessary. mem_cgroup_commit_charge() commits the page to the charge once it has a valid page->mapping and PageAnon() reliably tells the type. mem_cgroup_cancel_charge() aborts the transaction. This reduces the charge API and enables subsequent patches to drastically simplify uncharging. As pages need to be committed after rmap is established but before they are added to the LRU, page_add_new_anon_rmap() must stop doing LRU additions again. Revive lru_cache_add_active_or_unevictable(). [hughd@google.com: fix shmem_unuse] [hughd@google.com: Add comments on the private use of -EAGAIN] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: Tejun Heo <tj@kernel.org> Cc: Vladimir Davydov <vdavydov@parallels.com> Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-09 05:19:20 +08:00
if (unlikely(!pgtable)) {
mm, oom: fix potential data corruption when oom_reaper races with writer Wenwei Tao has noticed that our current assumption that the oom victim is dying and never doing any visible changes after it dies, and so the oom_reaper can tear it down, is not entirely true. __task_will_free_mem consider a task dying when SIGNAL_GROUP_EXIT is set but do_group_exit sends SIGKILL to all threads _after_ the flag is set. So there is a race window when some threads won't have fatal_signal_pending while the oom_reaper could start unmapping the address space. Moreover some paths might not check for fatal signals before each PF/g-u-p/copy_from_user. We already have a protection for oom_reaper vs. PF races by checking MMF_UNSTABLE. This has been, however, checked only for kernel threads (use_mm users) which can outlive the oom victim. A simple fix would be to extend the current check in handle_mm_fault for all tasks but that wouldn't be sufficient because the current check assumes that a kernel thread would bail out after EFAULT from get_user*/copy_from_user and never re-read the same address which would succeed because the PF path has established page tables already. This seems to be the case for the only existing use_mm user currently (virtio driver) but it is rather fragile in general. This is even more fragile in general for more complex paths such as generic_perform_write which can re-read the same address more times (e.g. iov_iter_copy_from_user_atomic to fail and then iov_iter_fault_in_readable on retry). Therefore we have to implement MMF_UNSTABLE protection in a robust way and never make a potentially corrupted content visible. That requires to hook deeper into the PF path and check for the flag _every time_ before a pte for anonymous memory is established (that means all !VM_SHARED mappings). The corruption can be triggered artificially (http://lkml.kernel.org/r/201708040646.v746kkhC024636@www262.sakura.ne.jp) but there doesn't seem to be any real life bug report. The race window should be quite tight to trigger most of the time. Link: http://lkml.kernel.org/r/20170807113839.16695-3-mhocko@kernel.org Fixes: aac453635549 ("mm, oom: introduce oom reaper") Signed-off-by: Michal Hocko <mhocko@suse.com> Reported-by: Wenwei Tao <wenwei.tww@alibaba-inc.com> Tested-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Andrea Argangeli <andrea@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-08-19 06:16:15 +08:00
ret = VM_FAULT_OOM;
goto release;
mm: memcontrol: rewrite charge API These patches rework memcg charge lifetime to integrate more naturally with the lifetime of user pages. This drastically simplifies the code and reduces charging and uncharging overhead. The most expensive part of charging and uncharging is the page_cgroup bit spinlock, which is removed entirely after this series. Here are the top-10 profile entries of a stress test that reads a 128G sparse file on a freshly booted box, without even a dedicated cgroup (i.e. executing in the root memcg). Before: 15.36% cat [kernel.kallsyms] [k] copy_user_generic_string 13.31% cat [kernel.kallsyms] [k] memset 11.48% cat [kernel.kallsyms] [k] do_mpage_readpage 4.23% cat [kernel.kallsyms] [k] get_page_from_freelist 2.38% cat [kernel.kallsyms] [k] put_page 2.32% cat [kernel.kallsyms] [k] __mem_cgroup_commit_charge 2.18% kswapd0 [kernel.kallsyms] [k] __mem_cgroup_uncharge_common 1.92% kswapd0 [kernel.kallsyms] [k] shrink_page_list 1.86% cat [kernel.kallsyms] [k] __radix_tree_lookup 1.62% cat [kernel.kallsyms] [k] __pagevec_lru_add_fn After: 15.67% cat [kernel.kallsyms] [k] copy_user_generic_string 13.48% cat [kernel.kallsyms] [k] memset 11.42% cat [kernel.kallsyms] [k] do_mpage_readpage 3.98% cat [kernel.kallsyms] [k] get_page_from_freelist 2.46% cat [kernel.kallsyms] [k] put_page 2.13% kswapd0 [kernel.kallsyms] [k] shrink_page_list 1.88% cat [kernel.kallsyms] [k] __radix_tree_lookup 1.67% cat [kernel.kallsyms] [k] __pagevec_lru_add_fn 1.39% kswapd0 [kernel.kallsyms] [k] free_pcppages_bulk 1.30% cat [kernel.kallsyms] [k] kfree As you can see, the memcg footprint has shrunk quite a bit. text data bss dec hex filename 37970 9892 400 48262 bc86 mm/memcontrol.o.old 35239 9892 400 45531 b1db mm/memcontrol.o This patch (of 4): The memcg charge API charges pages before they are rmapped - i.e. have an actual "type" - and so every callsite needs its own set of charge and uncharge functions to know what type is being operated on. Worse, uncharge has to happen from a context that is still type-specific, rather than at the end of the page's lifetime with exclusive access, and so requires a lot of synchronization. Rewrite the charge API to provide a generic set of try_charge(), commit_charge() and cancel_charge() transaction operations, much like what's currently done for swap-in: mem_cgroup_try_charge() attempts to reserve a charge, reclaiming pages from the memcg if necessary. mem_cgroup_commit_charge() commits the page to the charge once it has a valid page->mapping and PageAnon() reliably tells the type. mem_cgroup_cancel_charge() aborts the transaction. This reduces the charge API and enables subsequent patches to drastically simplify uncharging. As pages need to be committed after rmap is established but before they are added to the LRU, page_add_new_anon_rmap() must stop doing LRU additions again. Revive lru_cache_add_active_or_unevictable(). [hughd@google.com: fix shmem_unuse] [hughd@google.com: Add comments on the private use of -EAGAIN] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: Tejun Heo <tj@kernel.org> Cc: Vladimir Davydov <vdavydov@parallels.com> Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-09 05:19:20 +08:00
}
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
mm: hugetlb: clear target sub-page last when clearing huge page Huge page helps to reduce TLB miss rate, but it has higher cache footprint, sometimes this may cause some issue. For example, when clearing huge page on x86_64 platform, the cache footprint is 2M. But on a Xeon E5 v3 2699 CPU, there are 18 cores, 36 threads, and only 45M LLC (last level cache). That is, in average, there are 2.5M LLC for each core and 1.25M LLC for each thread. If the cache pressure is heavy when clearing the huge page, and we clear the huge page from the begin to the end, it is possible that the begin of huge page is evicted from the cache after we finishing clearing the end of the huge page. And it is possible for the application to access the begin of the huge page after clearing the huge page. To help the above situation, in this patch, when we clear a huge page, the order to clear sub-pages is changed. In quite some situation, we can get the address that the application will access after we clear the huge page, for example, in a page fault handler. Instead of clearing the huge page from begin to end, we will clear the sub-pages farthest from the the sub-page to access firstly, and clear the sub-page to access last. This will make the sub-page to access most cache-hot and sub-pages around it more cache-hot too. If we cannot know the address the application will access, the begin of the huge page is assumed to be the the address the application will access. With this patch, the throughput increases ~28.3% in vm-scalability anon-w-seq test case with 72 processes on a 2 socket Xeon E5 v3 2699 system (36 cores, 72 threads). The test case creates 72 processes, each process mmap a big anonymous memory area and writes to it from the begin to the end. For each process, other processes could be seen as other workload which generates heavy cache pressure. At the same time, the cache miss rate reduced from ~33.4% to ~31.7%, the IPC (instruction per cycle) increased from 0.56 to 0.74, and the time spent in user space is reduced ~7.9% Christopher Lameter suggests to clear bytes inside a sub-page from end to begin too. But tests show no visible performance difference in the tests. May because the size of page is small compared with the cache size. Thanks Andi Kleen to propose to use address to access to determine the order of sub-pages to clear. The hugetlbfs access address could be improved, will do that in another patch. [ying.huang@intel.com: improve readability of clear_huge_page()] Link: http://lkml.kernel.org/r/20170830051842.1397-1-ying.huang@intel.com Link: http://lkml.kernel.org/r/20170815014618.15842-1-ying.huang@intel.com Suggested-by: Andi Kleen <andi.kleen@intel.com> Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Acked-by: Jan Kara <jack@suse.cz> Reviewed-by: Michal Hocko <mhocko@suse.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Nadia Yvette Chambers <nyc@holomorphy.com> Cc: Matthew Wilcox <mawilcox@microsoft.com> Cc: Hugh Dickins <hughd@google.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Shaohua Li <shli@fb.com> Cc: Christopher Lameter <cl@linux.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-07 07:25:04 +08:00
clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
/*
* The memory barrier inside __SetPageUptodate makes sure that
* clear_huge_page writes become visible before the set_pmd_at()
* write.
*/
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
__SetPageUptodate(page);
vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
if (unlikely(!pmd_none(*vmf->pmd))) {
mm, oom: fix potential data corruption when oom_reaper races with writer Wenwei Tao has noticed that our current assumption that the oom victim is dying and never doing any visible changes after it dies, and so the oom_reaper can tear it down, is not entirely true. __task_will_free_mem consider a task dying when SIGNAL_GROUP_EXIT is set but do_group_exit sends SIGKILL to all threads _after_ the flag is set. So there is a race window when some threads won't have fatal_signal_pending while the oom_reaper could start unmapping the address space. Moreover some paths might not check for fatal signals before each PF/g-u-p/copy_from_user. We already have a protection for oom_reaper vs. PF races by checking MMF_UNSTABLE. This has been, however, checked only for kernel threads (use_mm users) which can outlive the oom victim. A simple fix would be to extend the current check in handle_mm_fault for all tasks but that wouldn't be sufficient because the current check assumes that a kernel thread would bail out after EFAULT from get_user*/copy_from_user and never re-read the same address which would succeed because the PF path has established page tables already. This seems to be the case for the only existing use_mm user currently (virtio driver) but it is rather fragile in general. This is even more fragile in general for more complex paths such as generic_perform_write which can re-read the same address more times (e.g. iov_iter_copy_from_user_atomic to fail and then iov_iter_fault_in_readable on retry). Therefore we have to implement MMF_UNSTABLE protection in a robust way and never make a potentially corrupted content visible. That requires to hook deeper into the PF path and check for the flag _every time_ before a pte for anonymous memory is established (that means all !VM_SHARED mappings). The corruption can be triggered artificially (http://lkml.kernel.org/r/201708040646.v746kkhC024636@www262.sakura.ne.jp) but there doesn't seem to be any real life bug report. The race window should be quite tight to trigger most of the time. Link: http://lkml.kernel.org/r/20170807113839.16695-3-mhocko@kernel.org Fixes: aac453635549 ("mm, oom: introduce oom reaper") Signed-off-by: Michal Hocko <mhocko@suse.com> Reported-by: Wenwei Tao <wenwei.tww@alibaba-inc.com> Tested-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Andrea Argangeli <andrea@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-08-19 06:16:15 +08:00
goto unlock_release;
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
} else {
pmd_t entry;
mm, oom: fix potential data corruption when oom_reaper races with writer Wenwei Tao has noticed that our current assumption that the oom victim is dying and never doing any visible changes after it dies, and so the oom_reaper can tear it down, is not entirely true. __task_will_free_mem consider a task dying when SIGNAL_GROUP_EXIT is set but do_group_exit sends SIGKILL to all threads _after_ the flag is set. So there is a race window when some threads won't have fatal_signal_pending while the oom_reaper could start unmapping the address space. Moreover some paths might not check for fatal signals before each PF/g-u-p/copy_from_user. We already have a protection for oom_reaper vs. PF races by checking MMF_UNSTABLE. This has been, however, checked only for kernel threads (use_mm users) which can outlive the oom victim. A simple fix would be to extend the current check in handle_mm_fault for all tasks but that wouldn't be sufficient because the current check assumes that a kernel thread would bail out after EFAULT from get_user*/copy_from_user and never re-read the same address which would succeed because the PF path has established page tables already. This seems to be the case for the only existing use_mm user currently (virtio driver) but it is rather fragile in general. This is even more fragile in general for more complex paths such as generic_perform_write which can re-read the same address more times (e.g. iov_iter_copy_from_user_atomic to fail and then iov_iter_fault_in_readable on retry). Therefore we have to implement MMF_UNSTABLE protection in a robust way and never make a potentially corrupted content visible. That requires to hook deeper into the PF path and check for the flag _every time_ before a pte for anonymous memory is established (that means all !VM_SHARED mappings). The corruption can be triggered artificially (http://lkml.kernel.org/r/201708040646.v746kkhC024636@www262.sakura.ne.jp) but there doesn't seem to be any real life bug report. The race window should be quite tight to trigger most of the time. Link: http://lkml.kernel.org/r/20170807113839.16695-3-mhocko@kernel.org Fixes: aac453635549 ("mm, oom: introduce oom reaper") Signed-off-by: Michal Hocko <mhocko@suse.com> Reported-by: Wenwei Tao <wenwei.tww@alibaba-inc.com> Tested-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Andrea Argangeli <andrea@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-08-19 06:16:15 +08:00
ret = check_stable_address_space(vma->vm_mm);
if (ret)
goto unlock_release;
/* Deliver the page fault to userland */
if (userfaultfd_missing(vma)) {
int ret;
spin_unlock(vmf->ptl);
memcg: adjust to support new THP refcounting As with rmap, with new refcounting we cannot rely on PageTransHuge() to check if we need to charge size of huge page form the cgroup. We need to get information from caller to know whether it was mapped with PMD or PTE. We do uncharge when last reference on the page gone. At that point if we see PageTransHuge() it means we need to unchange whole huge page. The tricky part is partial unmap -- when we try to unmap part of huge page. We don't do a special handing of this situation, meaning we don't uncharge the part of huge page unless last user is gone or split_huge_page() is triggered. In case of cgroup memory pressure happens the partial unmapped page will be split through shrinker. This should be good enough. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:52:20 +08:00
mem_cgroup_cancel_charge(page, memcg, true);
put_page(page);
pte_free(vma->vm_mm, pgtable);
ret = handle_userfault(vmf, VM_UFFD_MISSING);
VM_BUG_ON(ret & VM_FAULT_FALLBACK);
return ret;
}
entry = mk_huge_pmd(page, vma->vm_page_prot);
entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
page_add_new_anon_rmap(page, vma, haddr, true);
memcg: adjust to support new THP refcounting As with rmap, with new refcounting we cannot rely on PageTransHuge() to check if we need to charge size of huge page form the cgroup. We need to get information from caller to know whether it was mapped with PMD or PTE. We do uncharge when last reference on the page gone. At that point if we see PageTransHuge() it means we need to unchange whole huge page. The tricky part is partial unmap -- when we try to unmap part of huge page. We don't do a special handing of this situation, meaning we don't uncharge the part of huge page unless last user is gone or split_huge_page() is triggered. In case of cgroup memory pressure happens the partial unmapped page will be split through shrinker. This should be good enough. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:52:20 +08:00
mem_cgroup_commit_charge(page, memcg, false, true);
mm: memcontrol: rewrite charge API These patches rework memcg charge lifetime to integrate more naturally with the lifetime of user pages. This drastically simplifies the code and reduces charging and uncharging overhead. The most expensive part of charging and uncharging is the page_cgroup bit spinlock, which is removed entirely after this series. Here are the top-10 profile entries of a stress test that reads a 128G sparse file on a freshly booted box, without even a dedicated cgroup (i.e. executing in the root memcg). Before: 15.36% cat [kernel.kallsyms] [k] copy_user_generic_string 13.31% cat [kernel.kallsyms] [k] memset 11.48% cat [kernel.kallsyms] [k] do_mpage_readpage 4.23% cat [kernel.kallsyms] [k] get_page_from_freelist 2.38% cat [kernel.kallsyms] [k] put_page 2.32% cat [kernel.kallsyms] [k] __mem_cgroup_commit_charge 2.18% kswapd0 [kernel.kallsyms] [k] __mem_cgroup_uncharge_common 1.92% kswapd0 [kernel.kallsyms] [k] shrink_page_list 1.86% cat [kernel.kallsyms] [k] __radix_tree_lookup 1.62% cat [kernel.kallsyms] [k] __pagevec_lru_add_fn After: 15.67% cat [kernel.kallsyms] [k] copy_user_generic_string 13.48% cat [kernel.kallsyms] [k] memset 11.42% cat [kernel.kallsyms] [k] do_mpage_readpage 3.98% cat [kernel.kallsyms] [k] get_page_from_freelist 2.46% cat [kernel.kallsyms] [k] put_page 2.13% kswapd0 [kernel.kallsyms] [k] shrink_page_list 1.88% cat [kernel.kallsyms] [k] __radix_tree_lookup 1.67% cat [kernel.kallsyms] [k] __pagevec_lru_add_fn 1.39% kswapd0 [kernel.kallsyms] [k] free_pcppages_bulk 1.30% cat [kernel.kallsyms] [k] kfree As you can see, the memcg footprint has shrunk quite a bit. text data bss dec hex filename 37970 9892 400 48262 bc86 mm/memcontrol.o.old 35239 9892 400 45531 b1db mm/memcontrol.o This patch (of 4): The memcg charge API charges pages before they are rmapped - i.e. have an actual "type" - and so every callsite needs its own set of charge and uncharge functions to know what type is being operated on. Worse, uncharge has to happen from a context that is still type-specific, rather than at the end of the page's lifetime with exclusive access, and so requires a lot of synchronization. Rewrite the charge API to provide a generic set of try_charge(), commit_charge() and cancel_charge() transaction operations, much like what's currently done for swap-in: mem_cgroup_try_charge() attempts to reserve a charge, reclaiming pages from the memcg if necessary. mem_cgroup_commit_charge() commits the page to the charge once it has a valid page->mapping and PageAnon() reliably tells the type. mem_cgroup_cancel_charge() aborts the transaction. This reduces the charge API and enables subsequent patches to drastically simplify uncharging. As pages need to be committed after rmap is established but before they are added to the LRU, page_add_new_anon_rmap() must stop doing LRU additions again. Revive lru_cache_add_active_or_unevictable(). [hughd@google.com: fix shmem_unuse] [hughd@google.com: Add comments on the private use of -EAGAIN] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: Tejun Heo <tj@kernel.org> Cc: Vladimir Davydov <vdavydov@parallels.com> Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-09 05:19:20 +08:00
lru_cache_add_active_or_unevictable(page, vma);
pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
atomic_long_inc(&vma->vm_mm->nr_ptes);
spin_unlock(vmf->ptl);
count_vm_event(THP_FAULT_ALLOC);
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
}
return 0;
mm, oom: fix potential data corruption when oom_reaper races with writer Wenwei Tao has noticed that our current assumption that the oom victim is dying and never doing any visible changes after it dies, and so the oom_reaper can tear it down, is not entirely true. __task_will_free_mem consider a task dying when SIGNAL_GROUP_EXIT is set but do_group_exit sends SIGKILL to all threads _after_ the flag is set. So there is a race window when some threads won't have fatal_signal_pending while the oom_reaper could start unmapping the address space. Moreover some paths might not check for fatal signals before each PF/g-u-p/copy_from_user. We already have a protection for oom_reaper vs. PF races by checking MMF_UNSTABLE. This has been, however, checked only for kernel threads (use_mm users) which can outlive the oom victim. A simple fix would be to extend the current check in handle_mm_fault for all tasks but that wouldn't be sufficient because the current check assumes that a kernel thread would bail out after EFAULT from get_user*/copy_from_user and never re-read the same address which would succeed because the PF path has established page tables already. This seems to be the case for the only existing use_mm user currently (virtio driver) but it is rather fragile in general. This is even more fragile in general for more complex paths such as generic_perform_write which can re-read the same address more times (e.g. iov_iter_copy_from_user_atomic to fail and then iov_iter_fault_in_readable on retry). Therefore we have to implement MMF_UNSTABLE protection in a robust way and never make a potentially corrupted content visible. That requires to hook deeper into the PF path and check for the flag _every time_ before a pte for anonymous memory is established (that means all !VM_SHARED mappings). The corruption can be triggered artificially (http://lkml.kernel.org/r/201708040646.v746kkhC024636@www262.sakura.ne.jp) but there doesn't seem to be any real life bug report. The race window should be quite tight to trigger most of the time. Link: http://lkml.kernel.org/r/20170807113839.16695-3-mhocko@kernel.org Fixes: aac453635549 ("mm, oom: introduce oom reaper") Signed-off-by: Michal Hocko <mhocko@suse.com> Reported-by: Wenwei Tao <wenwei.tww@alibaba-inc.com> Tested-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Andrea Argangeli <andrea@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-08-19 06:16:15 +08:00
unlock_release:
spin_unlock(vmf->ptl);
release:
if (pgtable)
pte_free(vma->vm_mm, pgtable);
mem_cgroup_cancel_charge(page, memcg, true);
put_page(page);
return ret;
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
}
mm: thp: set THP defrag by default to madvise and add a stall-free defrag option THP defrag is enabled by default to direct reclaim/compact but not wake kswapd in the event of a THP allocation failure. The problem is that THP allocation requests potentially enter reclaim/compaction. This potentially incurs a severe stall that is not guaranteed to be offset by reduced TLB misses. While there has been considerable effort to reduce the impact of reclaim/compaction, it is still a high cost and workloads that should fit in memory fail to do so. Specifically, a simple anon/file streaming workload will enter direct reclaim on NUMA at least even though the working set size is 80% of RAM. It's been years and it's time to throw in the towel. First, this patch defines THP defrag as follows; madvise: A failed allocation will direct reclaim/compact if the application requests it never: Neither reclaim/compact nor wake kswapd defer: A failed allocation will wake kswapd/kcompactd always: A failed allocation will direct reclaim/compact (historical behaviour) khugepaged defrag will enter direct/reclaim but not wake kswapd. Next it sets the default defrag option to be "madvise" to only enter direct reclaim/compaction for applications that specifically requested it. Lastly, it removes a check from the page allocator slowpath that is related to __GFP_THISNODE to allow "defer" to work. The callers that really cares are slub/slab and they are updated accordingly. The slab one may be surprising because it also corrects a comment as kswapd was never woken up by that path. This means that a THP fault will no longer stall for most applications by default and the ideal for most users that get THP if they are immediately available. There are still options for users that prefer a stall at startup of a new application by either restoring historical behaviour with "always" or pick a half-way point with "defer" where kswapd does some of the work in the background and wakes kcompactd if necessary. THP defrag for khugepaged remains enabled and will enter direct/reclaim but no wakeup kswapd or kcompactd. After this patch a THP allocation failure will quickly fallback and rely on khugepaged to recover the situation at some time in the future. In some cases, this will reduce THP usage but the benefit of THP is hard to measure and not a universal win where as a stall to reclaim/compaction is definitely measurable and can be painful. The first test for this is using "usemem" to read a large file and write a large anonymous mapping (to avoid the zero page) multiple times. The total size of the mappings is 80% of RAM and the benchmark simply measures how long it takes to complete. It uses multiple threads to see if that is a factor. On UMA, the performance is almost identical so is not reported but on NUMA, we see this usemem 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 Amean System-1 102.86 ( 0.00%) 46.81 ( 54.50%) Amean System-4 37.85 ( 0.00%) 34.02 ( 10.12%) Amean System-7 48.12 ( 0.00%) 46.89 ( 2.56%) Amean System-12 51.98 ( 0.00%) 56.96 ( -9.57%) Amean System-21 80.16 ( 0.00%) 79.05 ( 1.39%) Amean System-30 110.71 ( 0.00%) 107.17 ( 3.20%) Amean System-48 127.98 ( 0.00%) 124.83 ( 2.46%) Amean Elapsd-1 185.84 ( 0.00%) 105.51 ( 43.23%) Amean Elapsd-4 26.19 ( 0.00%) 25.58 ( 2.33%) Amean Elapsd-7 21.65 ( 0.00%) 21.62 ( 0.16%) Amean Elapsd-12 18.58 ( 0.00%) 17.94 ( 3.43%) Amean Elapsd-21 17.53 ( 0.00%) 16.60 ( 5.33%) Amean Elapsd-30 17.45 ( 0.00%) 17.13 ( 1.84%) Amean Elapsd-48 15.40 ( 0.00%) 15.27 ( 0.82%) For a single thread, the benchmark completes 43.23% faster with this patch applied with smaller benefits as the thread increases. Similar, notice the large reduction in most cases in system CPU usage. The overall CPU time is 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 User 10357.65 10438.33 System 3988.88 3543.94 Elapsed 2203.01 1634.41 Which is substantial. Now, the reclaim figures 4.4.0 4.4.0 kcompactd-v1r1nodefrag-v1r3 Minor Faults 128458477 278352931 Major Faults 2174976 225 Swap Ins 16904701 0 Swap Outs 17359627 0 Allocation stalls 43611 0 DMA allocs 0 0 DMA32 allocs 19832646 19448017 Normal allocs 614488453 580941839 Movable allocs 0 0 Direct pages scanned 24163800 0 Kswapd pages scanned 0 0 Kswapd pages reclaimed 0 0 Direct pages reclaimed 20691346 0 Compaction stalls 42263 0 Compaction success 938 0 Compaction failures 41325 0 This patch eliminates almost all swapping and direct reclaim activity. There is still overhead but it's from NUMA balancing which does not identify that it's pointless trying to do anything with this workload. I also tried the thpscale benchmark which forces a corner case where compaction can be used heavily and measures the latency of whether base or huge pages were used thpscale Fault Latencies 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 Amean fault-base-1 5288.84 ( 0.00%) 2817.12 ( 46.73%) Amean fault-base-3 6365.53 ( 0.00%) 3499.11 ( 45.03%) Amean fault-base-5 6526.19 ( 0.00%) 4363.06 ( 33.15%) Amean fault-base-7 7142.25 ( 0.00%) 4858.08 ( 31.98%) Amean fault-base-12 13827.64 ( 0.00%) 10292.11 ( 25.57%) Amean fault-base-18 18235.07 ( 0.00%) 13788.84 ( 24.38%) Amean fault-base-24 21597.80 ( 0.00%) 24388.03 (-12.92%) Amean fault-base-30 26754.15 ( 0.00%) 19700.55 ( 26.36%) Amean fault-base-32 26784.94 ( 0.00%) 19513.57 ( 27.15%) Amean fault-huge-1 4223.96 ( 0.00%) 2178.57 ( 48.42%) Amean fault-huge-3 2194.77 ( 0.00%) 2149.74 ( 2.05%) Amean fault-huge-5 2569.60 ( 0.00%) 2346.95 ( 8.66%) Amean fault-huge-7 3612.69 ( 0.00%) 2997.70 ( 17.02%) Amean fault-huge-12 3301.75 ( 0.00%) 6727.02 (-103.74%) Amean fault-huge-18 6696.47 ( 0.00%) 6685.72 ( 0.16%) Amean fault-huge-24 8000.72 ( 0.00%) 9311.43 (-16.38%) Amean fault-huge-30 13305.55 ( 0.00%) 9750.45 ( 26.72%) Amean fault-huge-32 9981.71 ( 0.00%) 10316.06 ( -3.35%) The average time to fault pages is substantially reduced in the majority of caseds but with the obvious caveat that fewer THPs are actually used in this adverse workload 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 Percentage huge-1 0.71 ( 0.00%) 14.04 (1865.22%) Percentage huge-3 10.77 ( 0.00%) 33.05 (206.85%) Percentage huge-5 60.39 ( 0.00%) 38.51 (-36.23%) Percentage huge-7 45.97 ( 0.00%) 34.57 (-24.79%) Percentage huge-12 68.12 ( 0.00%) 40.07 (-41.17%) Percentage huge-18 64.93 ( 0.00%) 47.82 (-26.35%) Percentage huge-24 62.69 ( 0.00%) 44.23 (-29.44%) Percentage huge-30 43.49 ( 0.00%) 55.38 ( 27.34%) Percentage huge-32 50.72 ( 0.00%) 51.90 ( 2.35%) 4.4.0 4.4.0 kcompactd-v1r1nodefrag-v1r3 Minor Faults 37429143 47564000 Major Faults 1916 1558 Swap Ins 1466 1079 Swap Outs 2936863 149626 Allocation stalls 62510 3 DMA allocs 0 0 DMA32 allocs 6566458 6401314 Normal allocs 216361697 216538171 Movable allocs 0 0 Direct pages scanned 25977580 17998 Kswapd pages scanned 0 3638931 Kswapd pages reclaimed 0 207236 Direct pages reclaimed 8833714 88 Compaction stalls 103349 5 Compaction success 270 4 Compaction failures 103079 1 Note again that while this does swap as it's an aggressive workload, the direct relcim activity and allocation stalls is substantially reduced. There is some kswapd activity but ftrace showed that the kswapd activity was due to normal wakeups from 4K pages being allocated. Compaction-related stalls and activity are almost eliminated. I also tried the stutter benchmark. For this, I do not have figures for NUMA but it's something that does impact UMA so I'll report what is available stutter 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 Min mmap 7.3571 ( 0.00%) 7.3438 ( 0.18%) 1st-qrtle mmap 7.5278 ( 0.00%) 17.9200 (-138.05%) 2nd-qrtle mmap 7.6818 ( 0.00%) 21.6055 (-181.25%) 3rd-qrtle mmap 11.0889 ( 0.00%) 21.8881 (-97.39%) Max-90% mmap 27.8978 ( 0.00%) 22.1632 ( 20.56%) Max-93% mmap 28.3202 ( 0.00%) 22.3044 ( 21.24%) Max-95% mmap 28.5600 ( 0.00%) 22.4580 ( 21.37%) Max-99% mmap 29.6032 ( 0.00%) 25.5216 ( 13.79%) Max mmap 4109.7289 ( 0.00%) 4813.9832 (-17.14%) Mean mmap 12.4474 ( 0.00%) 19.3027 (-55.07%) This benchmark is trying to fault an anonymous mapping while there is a heavy IO load -- a scenario that desktop users used to complain about frequently. This shows a mix because the ideal case of mapping with THP is not hit as often. However, note that 99% of the mappings complete 13.79% faster. The CPU usage here is particularly interesting 4.4.0 4.4.0 kcompactd-v1r1nodefrag-v1r3 User 67.50 0.99 System 1327.88 91.30 Elapsed 2079.00 2128.98 And once again we look at the reclaim figures 4.4.0 4.4.0 kcompactd-v1r1nodefrag-v1r3 Minor Faults 335241922 1314582827 Major Faults 715 819 Swap Ins 0 0 Swap Outs 0 0 Allocation stalls 532723 0 DMA allocs 0 0 DMA32 allocs 1822364341 1177950222 Normal allocs 1815640808 1517844854 Movable allocs 0 0 Direct pages scanned 21892772 0 Kswapd pages scanned 20015890 41879484 Kswapd pages reclaimed 19961986 41822072 Direct pages reclaimed 21892741 0 Compaction stalls 1065755 0 Compaction success 514 0 Compaction failures 1065241 0 Allocation stalls and all direct reclaim activity is eliminated as well as compaction-related stalls. THP gives impressive gains in some cases but only if they are quickly available. We're not going to reach the point where they are completely free so lets take the costs out of the fast paths finally and defer the cost to kswapd, kcompactd and khugepaged where it belongs. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Rik van Riel <riel@redhat.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-18 05:19:23 +08:00
/*
mm, thp: add new defer+madvise defrag option There is no thp defrag option that currently allows MADV_HUGEPAGE regions to do direct compaction and reclaim while all other thp allocations simply trigger kswapd and kcompactd in the background and fail immediately. The "defer" setting simply triggers background reclaim and compaction for all regions, regardless of MADV_HUGEPAGE, which makes it unusable for our userspace where MADV_HUGEPAGE is being used to indicate the application is willing to wait for work for thp memory to be available. The "madvise" setting will do direct compaction and reclaim for these MADV_HUGEPAGE regions, but does not trigger kswapd and kcompactd in the background for anybody else. For reasonable usage, there needs to be a mesh between the two options. This patch introduces a fifth mode, "defer+madvise", that will do direct reclaim and compaction for MADV_HUGEPAGE regions and trigger background reclaim and compaction for everybody else so that hugepages may be available in the near future. A proposal to allow direct reclaim and compaction for MADV_HUGEPAGE regions as part of the "defer" mode, making it a very powerful setting and avoids breaking userspace, was offered: http://marc.info/?t=148236612700003 This additional mode is a compromise. A second proposal to allow both "defer" and "madvise" to be selected at the same time was also offered: http://marc.info/?t=148357345300001. This is possible, but there was a concern that it might break existing userspaces the parse the output of the defrag mode, so the fifth option was introduced instead. This patch also cleans up the helper function for storing to "enabled" and "defrag" since the former supports three modes while the latter supports five and triple_flag_store() was getting unnecessarily messy. Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1701101614330.41805@chino.kir.corp.google.com Signed-off-by: David Rientjes <rientjes@google.com> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Michal Hocko <mhocko@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-23 07:45:49 +08:00
* always: directly stall for all thp allocations
* defer: wake kswapd and fail if not immediately available
* defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
* fail if not immediately available
* madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
* available
* never: never stall for any thp allocation
mm: thp: set THP defrag by default to madvise and add a stall-free defrag option THP defrag is enabled by default to direct reclaim/compact but not wake kswapd in the event of a THP allocation failure. The problem is that THP allocation requests potentially enter reclaim/compaction. This potentially incurs a severe stall that is not guaranteed to be offset by reduced TLB misses. While there has been considerable effort to reduce the impact of reclaim/compaction, it is still a high cost and workloads that should fit in memory fail to do so. Specifically, a simple anon/file streaming workload will enter direct reclaim on NUMA at least even though the working set size is 80% of RAM. It's been years and it's time to throw in the towel. First, this patch defines THP defrag as follows; madvise: A failed allocation will direct reclaim/compact if the application requests it never: Neither reclaim/compact nor wake kswapd defer: A failed allocation will wake kswapd/kcompactd always: A failed allocation will direct reclaim/compact (historical behaviour) khugepaged defrag will enter direct/reclaim but not wake kswapd. Next it sets the default defrag option to be "madvise" to only enter direct reclaim/compaction for applications that specifically requested it. Lastly, it removes a check from the page allocator slowpath that is related to __GFP_THISNODE to allow "defer" to work. The callers that really cares are slub/slab and they are updated accordingly. The slab one may be surprising because it also corrects a comment as kswapd was never woken up by that path. This means that a THP fault will no longer stall for most applications by default and the ideal for most users that get THP if they are immediately available. There are still options for users that prefer a stall at startup of a new application by either restoring historical behaviour with "always" or pick a half-way point with "defer" where kswapd does some of the work in the background and wakes kcompactd if necessary. THP defrag for khugepaged remains enabled and will enter direct/reclaim but no wakeup kswapd or kcompactd. After this patch a THP allocation failure will quickly fallback and rely on khugepaged to recover the situation at some time in the future. In some cases, this will reduce THP usage but the benefit of THP is hard to measure and not a universal win where as a stall to reclaim/compaction is definitely measurable and can be painful. The first test for this is using "usemem" to read a large file and write a large anonymous mapping (to avoid the zero page) multiple times. The total size of the mappings is 80% of RAM and the benchmark simply measures how long it takes to complete. It uses multiple threads to see if that is a factor. On UMA, the performance is almost identical so is not reported but on NUMA, we see this usemem 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 Amean System-1 102.86 ( 0.00%) 46.81 ( 54.50%) Amean System-4 37.85 ( 0.00%) 34.02 ( 10.12%) Amean System-7 48.12 ( 0.00%) 46.89 ( 2.56%) Amean System-12 51.98 ( 0.00%) 56.96 ( -9.57%) Amean System-21 80.16 ( 0.00%) 79.05 ( 1.39%) Amean System-30 110.71 ( 0.00%) 107.17 ( 3.20%) Amean System-48 127.98 ( 0.00%) 124.83 ( 2.46%) Amean Elapsd-1 185.84 ( 0.00%) 105.51 ( 43.23%) Amean Elapsd-4 26.19 ( 0.00%) 25.58 ( 2.33%) Amean Elapsd-7 21.65 ( 0.00%) 21.62 ( 0.16%) Amean Elapsd-12 18.58 ( 0.00%) 17.94 ( 3.43%) Amean Elapsd-21 17.53 ( 0.00%) 16.60 ( 5.33%) Amean Elapsd-30 17.45 ( 0.00%) 17.13 ( 1.84%) Amean Elapsd-48 15.40 ( 0.00%) 15.27 ( 0.82%) For a single thread, the benchmark completes 43.23% faster with this patch applied with smaller benefits as the thread increases. Similar, notice the large reduction in most cases in system CPU usage. The overall CPU time is 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 User 10357.65 10438.33 System 3988.88 3543.94 Elapsed 2203.01 1634.41 Which is substantial. Now, the reclaim figures 4.4.0 4.4.0 kcompactd-v1r1nodefrag-v1r3 Minor Faults 128458477 278352931 Major Faults 2174976 225 Swap Ins 16904701 0 Swap Outs 17359627 0 Allocation stalls 43611 0 DMA allocs 0 0 DMA32 allocs 19832646 19448017 Normal allocs 614488453 580941839 Movable allocs 0 0 Direct pages scanned 24163800 0 Kswapd pages scanned 0 0 Kswapd pages reclaimed 0 0 Direct pages reclaimed 20691346 0 Compaction stalls 42263 0 Compaction success 938 0 Compaction failures 41325 0 This patch eliminates almost all swapping and direct reclaim activity. There is still overhead but it's from NUMA balancing which does not identify that it's pointless trying to do anything with this workload. I also tried the thpscale benchmark which forces a corner case where compaction can be used heavily and measures the latency of whether base or huge pages were used thpscale Fault Latencies 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 Amean fault-base-1 5288.84 ( 0.00%) 2817.12 ( 46.73%) Amean fault-base-3 6365.53 ( 0.00%) 3499.11 ( 45.03%) Amean fault-base-5 6526.19 ( 0.00%) 4363.06 ( 33.15%) Amean fault-base-7 7142.25 ( 0.00%) 4858.08 ( 31.98%) Amean fault-base-12 13827.64 ( 0.00%) 10292.11 ( 25.57%) Amean fault-base-18 18235.07 ( 0.00%) 13788.84 ( 24.38%) Amean fault-base-24 21597.80 ( 0.00%) 24388.03 (-12.92%) Amean fault-base-30 26754.15 ( 0.00%) 19700.55 ( 26.36%) Amean fault-base-32 26784.94 ( 0.00%) 19513.57 ( 27.15%) Amean fault-huge-1 4223.96 ( 0.00%) 2178.57 ( 48.42%) Amean fault-huge-3 2194.77 ( 0.00%) 2149.74 ( 2.05%) Amean fault-huge-5 2569.60 ( 0.00%) 2346.95 ( 8.66%) Amean fault-huge-7 3612.69 ( 0.00%) 2997.70 ( 17.02%) Amean fault-huge-12 3301.75 ( 0.00%) 6727.02 (-103.74%) Amean fault-huge-18 6696.47 ( 0.00%) 6685.72 ( 0.16%) Amean fault-huge-24 8000.72 ( 0.00%) 9311.43 (-16.38%) Amean fault-huge-30 13305.55 ( 0.00%) 9750.45 ( 26.72%) Amean fault-huge-32 9981.71 ( 0.00%) 10316.06 ( -3.35%) The average time to fault pages is substantially reduced in the majority of caseds but with the obvious caveat that fewer THPs are actually used in this adverse workload 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 Percentage huge-1 0.71 ( 0.00%) 14.04 (1865.22%) Percentage huge-3 10.77 ( 0.00%) 33.05 (206.85%) Percentage huge-5 60.39 ( 0.00%) 38.51 (-36.23%) Percentage huge-7 45.97 ( 0.00%) 34.57 (-24.79%) Percentage huge-12 68.12 ( 0.00%) 40.07 (-41.17%) Percentage huge-18 64.93 ( 0.00%) 47.82 (-26.35%) Percentage huge-24 62.69 ( 0.00%) 44.23 (-29.44%) Percentage huge-30 43.49 ( 0.00%) 55.38 ( 27.34%) Percentage huge-32 50.72 ( 0.00%) 51.90 ( 2.35%) 4.4.0 4.4.0 kcompactd-v1r1nodefrag-v1r3 Minor Faults 37429143 47564000 Major Faults 1916 1558 Swap Ins 1466 1079 Swap Outs 2936863 149626 Allocation stalls 62510 3 DMA allocs 0 0 DMA32 allocs 6566458 6401314 Normal allocs 216361697 216538171 Movable allocs 0 0 Direct pages scanned 25977580 17998 Kswapd pages scanned 0 3638931 Kswapd pages reclaimed 0 207236 Direct pages reclaimed 8833714 88 Compaction stalls 103349 5 Compaction success 270 4 Compaction failures 103079 1 Note again that while this does swap as it's an aggressive workload, the direct relcim activity and allocation stalls is substantially reduced. There is some kswapd activity but ftrace showed that the kswapd activity was due to normal wakeups from 4K pages being allocated. Compaction-related stalls and activity are almost eliminated. I also tried the stutter benchmark. For this, I do not have figures for NUMA but it's something that does impact UMA so I'll report what is available stutter 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 Min mmap 7.3571 ( 0.00%) 7.3438 ( 0.18%) 1st-qrtle mmap 7.5278 ( 0.00%) 17.9200 (-138.05%) 2nd-qrtle mmap 7.6818 ( 0.00%) 21.6055 (-181.25%) 3rd-qrtle mmap 11.0889 ( 0.00%) 21.8881 (-97.39%) Max-90% mmap 27.8978 ( 0.00%) 22.1632 ( 20.56%) Max-93% mmap 28.3202 ( 0.00%) 22.3044 ( 21.24%) Max-95% mmap 28.5600 ( 0.00%) 22.4580 ( 21.37%) Max-99% mmap 29.6032 ( 0.00%) 25.5216 ( 13.79%) Max mmap 4109.7289 ( 0.00%) 4813.9832 (-17.14%) Mean mmap 12.4474 ( 0.00%) 19.3027 (-55.07%) This benchmark is trying to fault an anonymous mapping while there is a heavy IO load -- a scenario that desktop users used to complain about frequently. This shows a mix because the ideal case of mapping with THP is not hit as often. However, note that 99% of the mappings complete 13.79% faster. The CPU usage here is particularly interesting 4.4.0 4.4.0 kcompactd-v1r1nodefrag-v1r3 User 67.50 0.99 System 1327.88 91.30 Elapsed 2079.00 2128.98 And once again we look at the reclaim figures 4.4.0 4.4.0 kcompactd-v1r1nodefrag-v1r3 Minor Faults 335241922 1314582827 Major Faults 715 819 Swap Ins 0 0 Swap Outs 0 0 Allocation stalls 532723 0 DMA allocs 0 0 DMA32 allocs 1822364341 1177950222 Normal allocs 1815640808 1517844854 Movable allocs 0 0 Direct pages scanned 21892772 0 Kswapd pages scanned 20015890 41879484 Kswapd pages reclaimed 19961986 41822072 Direct pages reclaimed 21892741 0 Compaction stalls 1065755 0 Compaction success 514 0 Compaction failures 1065241 0 Allocation stalls and all direct reclaim activity is eliminated as well as compaction-related stalls. THP gives impressive gains in some cases but only if they are quickly available. We're not going to reach the point where they are completely free so lets take the costs out of the fast paths finally and defer the cost to kswapd, kcompactd and khugepaged where it belongs. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Rik van Riel <riel@redhat.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-18 05:19:23 +08:00
*/
static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
{
mm, thp: add new defer+madvise defrag option There is no thp defrag option that currently allows MADV_HUGEPAGE regions to do direct compaction and reclaim while all other thp allocations simply trigger kswapd and kcompactd in the background and fail immediately. The "defer" setting simply triggers background reclaim and compaction for all regions, regardless of MADV_HUGEPAGE, which makes it unusable for our userspace where MADV_HUGEPAGE is being used to indicate the application is willing to wait for work for thp memory to be available. The "madvise" setting will do direct compaction and reclaim for these MADV_HUGEPAGE regions, but does not trigger kswapd and kcompactd in the background for anybody else. For reasonable usage, there needs to be a mesh between the two options. This patch introduces a fifth mode, "defer+madvise", that will do direct reclaim and compaction for MADV_HUGEPAGE regions and trigger background reclaim and compaction for everybody else so that hugepages may be available in the near future. A proposal to allow direct reclaim and compaction for MADV_HUGEPAGE regions as part of the "defer" mode, making it a very powerful setting and avoids breaking userspace, was offered: http://marc.info/?t=148236612700003 This additional mode is a compromise. A second proposal to allow both "defer" and "madvise" to be selected at the same time was also offered: http://marc.info/?t=148357345300001. This is possible, but there was a concern that it might break existing userspaces the parse the output of the defrag mode, so the fifth option was introduced instead. This patch also cleans up the helper function for storing to "enabled" and "defrag" since the former supports three modes while the latter supports five and triple_flag_store() was getting unnecessarily messy. Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1701101614330.41805@chino.kir.corp.google.com Signed-off-by: David Rientjes <rientjes@google.com> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Michal Hocko <mhocko@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-23 07:45:49 +08:00
const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
mm, thp: remove __GFP_NORETRY from khugepaged and madvised allocations After the previous patch, we can distinguish costly allocations that should be really lightweight, such as THP page faults, with __GFP_NORETRY. This means we don't need to recognize khugepaged allocations via PF_KTHREAD anymore. We can also change THP page faults in areas where madvise(MADV_HUGEPAGE) was used to try as hard as khugepaged, as the process has indicated that it benefits from THP's and is willing to pay some initial latency costs. We can also make the flags handling less cryptic by distinguishing GFP_TRANSHUGE_LIGHT (no reclaim at all, default mode in page fault) from GFP_TRANSHUGE (only direct reclaim, khugepaged default). Adding __GFP_NORETRY or __GFP_KSWAPD_RECLAIM is done where needed. The patch effectively changes the current GFP_TRANSHUGE users as follows: * get_huge_zero_page() - the zero page lifetime should be relatively long and it's shared by multiple users, so it's worth spending some effort on it. We use GFP_TRANSHUGE, and __GFP_NORETRY is not added. This also restores direct reclaim to this allocation, which was unintentionally removed by commit e4a49efe4e7e ("mm: thp: set THP defrag by default to madvise and add a stall-free defrag option") * alloc_hugepage_khugepaged_gfpmask() - this is khugepaged, so latency is not an issue. So if khugepaged "defrag" is enabled (the default), do reclaim via GFP_TRANSHUGE without __GFP_NORETRY. We can remove the PF_KTHREAD check from page alloc. As a side-effect, khugepaged will now no longer check if the initial compaction was deferred or contended. This is OK, as khugepaged sleep times between collapsion attempts are long enough to prevent noticeable disruption, so we should allow it to spend some effort. * migrate_misplaced_transhuge_page() - already was masking out __GFP_RECLAIM, so just convert to GFP_TRANSHUGE_LIGHT which is equivalent. * alloc_hugepage_direct_gfpmask() - vma's with VM_HUGEPAGE (via madvise) are now allocating without __GFP_NORETRY. Other vma's keep using __GFP_NORETRY if direct reclaim/compaction is at all allowed (by default it's allowed only for madvised vma's). The rest is conversion to GFP_TRANSHUGE(_LIGHT). [mhocko@suse.com: suggested GFP_TRANSHUGE_LIGHT] Link: http://lkml.kernel.org/r/20160721073614.24395-7-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-29 06:49:25 +08:00
mm, thp: add new defer+madvise defrag option There is no thp defrag option that currently allows MADV_HUGEPAGE regions to do direct compaction and reclaim while all other thp allocations simply trigger kswapd and kcompactd in the background and fail immediately. The "defer" setting simply triggers background reclaim and compaction for all regions, regardless of MADV_HUGEPAGE, which makes it unusable for our userspace where MADV_HUGEPAGE is being used to indicate the application is willing to wait for work for thp memory to be available. The "madvise" setting will do direct compaction and reclaim for these MADV_HUGEPAGE regions, but does not trigger kswapd and kcompactd in the background for anybody else. For reasonable usage, there needs to be a mesh between the two options. This patch introduces a fifth mode, "defer+madvise", that will do direct reclaim and compaction for MADV_HUGEPAGE regions and trigger background reclaim and compaction for everybody else so that hugepages may be available in the near future. A proposal to allow direct reclaim and compaction for MADV_HUGEPAGE regions as part of the "defer" mode, making it a very powerful setting and avoids breaking userspace, was offered: http://marc.info/?t=148236612700003 This additional mode is a compromise. A second proposal to allow both "defer" and "madvise" to be selected at the same time was also offered: http://marc.info/?t=148357345300001. This is possible, but there was a concern that it might break existing userspaces the parse the output of the defrag mode, so the fifth option was introduced instead. This patch also cleans up the helper function for storing to "enabled" and "defrag" since the former supports three modes while the latter supports five and triple_flag_store() was getting unnecessarily messy. Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1701101614330.41805@chino.kir.corp.google.com Signed-off-by: David Rientjes <rientjes@google.com> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Michal Hocko <mhocko@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-23 07:45:49 +08:00
if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
mm, thp: remove __GFP_NORETRY from khugepaged and madvised allocations After the previous patch, we can distinguish costly allocations that should be really lightweight, such as THP page faults, with __GFP_NORETRY. This means we don't need to recognize khugepaged allocations via PF_KTHREAD anymore. We can also change THP page faults in areas where madvise(MADV_HUGEPAGE) was used to try as hard as khugepaged, as the process has indicated that it benefits from THP's and is willing to pay some initial latency costs. We can also make the flags handling less cryptic by distinguishing GFP_TRANSHUGE_LIGHT (no reclaim at all, default mode in page fault) from GFP_TRANSHUGE (only direct reclaim, khugepaged default). Adding __GFP_NORETRY or __GFP_KSWAPD_RECLAIM is done where needed. The patch effectively changes the current GFP_TRANSHUGE users as follows: * get_huge_zero_page() - the zero page lifetime should be relatively long and it's shared by multiple users, so it's worth spending some effort on it. We use GFP_TRANSHUGE, and __GFP_NORETRY is not added. This also restores direct reclaim to this allocation, which was unintentionally removed by commit e4a49efe4e7e ("mm: thp: set THP defrag by default to madvise and add a stall-free defrag option") * alloc_hugepage_khugepaged_gfpmask() - this is khugepaged, so latency is not an issue. So if khugepaged "defrag" is enabled (the default), do reclaim via GFP_TRANSHUGE without __GFP_NORETRY. We can remove the PF_KTHREAD check from page alloc. As a side-effect, khugepaged will now no longer check if the initial compaction was deferred or contended. This is OK, as khugepaged sleep times between collapsion attempts are long enough to prevent noticeable disruption, so we should allow it to spend some effort. * migrate_misplaced_transhuge_page() - already was masking out __GFP_RECLAIM, so just convert to GFP_TRANSHUGE_LIGHT which is equivalent. * alloc_hugepage_direct_gfpmask() - vma's with VM_HUGEPAGE (via madvise) are now allocating without __GFP_NORETRY. Other vma's keep using __GFP_NORETRY if direct reclaim/compaction is at all allowed (by default it's allowed only for madvised vma's). The rest is conversion to GFP_TRANSHUGE(_LIGHT). [mhocko@suse.com: suggested GFP_TRANSHUGE_LIGHT] Link: http://lkml.kernel.org/r/20160721073614.24395-7-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-29 06:49:25 +08:00
return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
mm, thp: add new defer+madvise defrag option There is no thp defrag option that currently allows MADV_HUGEPAGE regions to do direct compaction and reclaim while all other thp allocations simply trigger kswapd and kcompactd in the background and fail immediately. The "defer" setting simply triggers background reclaim and compaction for all regions, regardless of MADV_HUGEPAGE, which makes it unusable for our userspace where MADV_HUGEPAGE is being used to indicate the application is willing to wait for work for thp memory to be available. The "madvise" setting will do direct compaction and reclaim for these MADV_HUGEPAGE regions, but does not trigger kswapd and kcompactd in the background for anybody else. For reasonable usage, there needs to be a mesh between the two options. This patch introduces a fifth mode, "defer+madvise", that will do direct reclaim and compaction for MADV_HUGEPAGE regions and trigger background reclaim and compaction for everybody else so that hugepages may be available in the near future. A proposal to allow direct reclaim and compaction for MADV_HUGEPAGE regions as part of the "defer" mode, making it a very powerful setting and avoids breaking userspace, was offered: http://marc.info/?t=148236612700003 This additional mode is a compromise. A second proposal to allow both "defer" and "madvise" to be selected at the same time was also offered: http://marc.info/?t=148357345300001. This is possible, but there was a concern that it might break existing userspaces the parse the output of the defrag mode, so the fifth option was introduced instead. This patch also cleans up the helper function for storing to "enabled" and "defrag" since the former supports three modes while the latter supports five and triple_flag_store() was getting unnecessarily messy. Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1701101614330.41805@chino.kir.corp.google.com Signed-off-by: David Rientjes <rientjes@google.com> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Michal Hocko <mhocko@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-23 07:45:49 +08:00
if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
__GFP_KSWAPD_RECLAIM);
if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
0);
mm, thp: remove __GFP_NORETRY from khugepaged and madvised allocations After the previous patch, we can distinguish costly allocations that should be really lightweight, such as THP page faults, with __GFP_NORETRY. This means we don't need to recognize khugepaged allocations via PF_KTHREAD anymore. We can also change THP page faults in areas where madvise(MADV_HUGEPAGE) was used to try as hard as khugepaged, as the process has indicated that it benefits from THP's and is willing to pay some initial latency costs. We can also make the flags handling less cryptic by distinguishing GFP_TRANSHUGE_LIGHT (no reclaim at all, default mode in page fault) from GFP_TRANSHUGE (only direct reclaim, khugepaged default). Adding __GFP_NORETRY or __GFP_KSWAPD_RECLAIM is done where needed. The patch effectively changes the current GFP_TRANSHUGE users as follows: * get_huge_zero_page() - the zero page lifetime should be relatively long and it's shared by multiple users, so it's worth spending some effort on it. We use GFP_TRANSHUGE, and __GFP_NORETRY is not added. This also restores direct reclaim to this allocation, which was unintentionally removed by commit e4a49efe4e7e ("mm: thp: set THP defrag by default to madvise and add a stall-free defrag option") * alloc_hugepage_khugepaged_gfpmask() - this is khugepaged, so latency is not an issue. So if khugepaged "defrag" is enabled (the default), do reclaim via GFP_TRANSHUGE without __GFP_NORETRY. We can remove the PF_KTHREAD check from page alloc. As a side-effect, khugepaged will now no longer check if the initial compaction was deferred or contended. This is OK, as khugepaged sleep times between collapsion attempts are long enough to prevent noticeable disruption, so we should allow it to spend some effort. * migrate_misplaced_transhuge_page() - already was masking out __GFP_RECLAIM, so just convert to GFP_TRANSHUGE_LIGHT which is equivalent. * alloc_hugepage_direct_gfpmask() - vma's with VM_HUGEPAGE (via madvise) are now allocating without __GFP_NORETRY. Other vma's keep using __GFP_NORETRY if direct reclaim/compaction is at all allowed (by default it's allowed only for madvised vma's). The rest is conversion to GFP_TRANSHUGE(_LIGHT). [mhocko@suse.com: suggested GFP_TRANSHUGE_LIGHT] Link: http://lkml.kernel.org/r/20160721073614.24395-7-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-29 06:49:25 +08:00
return GFP_TRANSHUGE_LIGHT;
mm: thp: set THP defrag by default to madvise and add a stall-free defrag option THP defrag is enabled by default to direct reclaim/compact but not wake kswapd in the event of a THP allocation failure. The problem is that THP allocation requests potentially enter reclaim/compaction. This potentially incurs a severe stall that is not guaranteed to be offset by reduced TLB misses. While there has been considerable effort to reduce the impact of reclaim/compaction, it is still a high cost and workloads that should fit in memory fail to do so. Specifically, a simple anon/file streaming workload will enter direct reclaim on NUMA at least even though the working set size is 80% of RAM. It's been years and it's time to throw in the towel. First, this patch defines THP defrag as follows; madvise: A failed allocation will direct reclaim/compact if the application requests it never: Neither reclaim/compact nor wake kswapd defer: A failed allocation will wake kswapd/kcompactd always: A failed allocation will direct reclaim/compact (historical behaviour) khugepaged defrag will enter direct/reclaim but not wake kswapd. Next it sets the default defrag option to be "madvise" to only enter direct reclaim/compaction for applications that specifically requested it. Lastly, it removes a check from the page allocator slowpath that is related to __GFP_THISNODE to allow "defer" to work. The callers that really cares are slub/slab and they are updated accordingly. The slab one may be surprising because it also corrects a comment as kswapd was never woken up by that path. This means that a THP fault will no longer stall for most applications by default and the ideal for most users that get THP if they are immediately available. There are still options for users that prefer a stall at startup of a new application by either restoring historical behaviour with "always" or pick a half-way point with "defer" where kswapd does some of the work in the background and wakes kcompactd if necessary. THP defrag for khugepaged remains enabled and will enter direct/reclaim but no wakeup kswapd or kcompactd. After this patch a THP allocation failure will quickly fallback and rely on khugepaged to recover the situation at some time in the future. In some cases, this will reduce THP usage but the benefit of THP is hard to measure and not a universal win where as a stall to reclaim/compaction is definitely measurable and can be painful. The first test for this is using "usemem" to read a large file and write a large anonymous mapping (to avoid the zero page) multiple times. The total size of the mappings is 80% of RAM and the benchmark simply measures how long it takes to complete. It uses multiple threads to see if that is a factor. On UMA, the performance is almost identical so is not reported but on NUMA, we see this usemem 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 Amean System-1 102.86 ( 0.00%) 46.81 ( 54.50%) Amean System-4 37.85 ( 0.00%) 34.02 ( 10.12%) Amean System-7 48.12 ( 0.00%) 46.89 ( 2.56%) Amean System-12 51.98 ( 0.00%) 56.96 ( -9.57%) Amean System-21 80.16 ( 0.00%) 79.05 ( 1.39%) Amean System-30 110.71 ( 0.00%) 107.17 ( 3.20%) Amean System-48 127.98 ( 0.00%) 124.83 ( 2.46%) Amean Elapsd-1 185.84 ( 0.00%) 105.51 ( 43.23%) Amean Elapsd-4 26.19 ( 0.00%) 25.58 ( 2.33%) Amean Elapsd-7 21.65 ( 0.00%) 21.62 ( 0.16%) Amean Elapsd-12 18.58 ( 0.00%) 17.94 ( 3.43%) Amean Elapsd-21 17.53 ( 0.00%) 16.60 ( 5.33%) Amean Elapsd-30 17.45 ( 0.00%) 17.13 ( 1.84%) Amean Elapsd-48 15.40 ( 0.00%) 15.27 ( 0.82%) For a single thread, the benchmark completes 43.23% faster with this patch applied with smaller benefits as the thread increases. Similar, notice the large reduction in most cases in system CPU usage. The overall CPU time is 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 User 10357.65 10438.33 System 3988.88 3543.94 Elapsed 2203.01 1634.41 Which is substantial. Now, the reclaim figures 4.4.0 4.4.0 kcompactd-v1r1nodefrag-v1r3 Minor Faults 128458477 278352931 Major Faults 2174976 225 Swap Ins 16904701 0 Swap Outs 17359627 0 Allocation stalls 43611 0 DMA allocs 0 0 DMA32 allocs 19832646 19448017 Normal allocs 614488453 580941839 Movable allocs 0 0 Direct pages scanned 24163800 0 Kswapd pages scanned 0 0 Kswapd pages reclaimed 0 0 Direct pages reclaimed 20691346 0 Compaction stalls 42263 0 Compaction success 938 0 Compaction failures 41325 0 This patch eliminates almost all swapping and direct reclaim activity. There is still overhead but it's from NUMA balancing which does not identify that it's pointless trying to do anything with this workload. I also tried the thpscale benchmark which forces a corner case where compaction can be used heavily and measures the latency of whether base or huge pages were used thpscale Fault Latencies 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 Amean fault-base-1 5288.84 ( 0.00%) 2817.12 ( 46.73%) Amean fault-base-3 6365.53 ( 0.00%) 3499.11 ( 45.03%) Amean fault-base-5 6526.19 ( 0.00%) 4363.06 ( 33.15%) Amean fault-base-7 7142.25 ( 0.00%) 4858.08 ( 31.98%) Amean fault-base-12 13827.64 ( 0.00%) 10292.11 ( 25.57%) Amean fault-base-18 18235.07 ( 0.00%) 13788.84 ( 24.38%) Amean fault-base-24 21597.80 ( 0.00%) 24388.03 (-12.92%) Amean fault-base-30 26754.15 ( 0.00%) 19700.55 ( 26.36%) Amean fault-base-32 26784.94 ( 0.00%) 19513.57 ( 27.15%) Amean fault-huge-1 4223.96 ( 0.00%) 2178.57 ( 48.42%) Amean fault-huge-3 2194.77 ( 0.00%) 2149.74 ( 2.05%) Amean fault-huge-5 2569.60 ( 0.00%) 2346.95 ( 8.66%) Amean fault-huge-7 3612.69 ( 0.00%) 2997.70 ( 17.02%) Amean fault-huge-12 3301.75 ( 0.00%) 6727.02 (-103.74%) Amean fault-huge-18 6696.47 ( 0.00%) 6685.72 ( 0.16%) Amean fault-huge-24 8000.72 ( 0.00%) 9311.43 (-16.38%) Amean fault-huge-30 13305.55 ( 0.00%) 9750.45 ( 26.72%) Amean fault-huge-32 9981.71 ( 0.00%) 10316.06 ( -3.35%) The average time to fault pages is substantially reduced in the majority of caseds but with the obvious caveat that fewer THPs are actually used in this adverse workload 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 Percentage huge-1 0.71 ( 0.00%) 14.04 (1865.22%) Percentage huge-3 10.77 ( 0.00%) 33.05 (206.85%) Percentage huge-5 60.39 ( 0.00%) 38.51 (-36.23%) Percentage huge-7 45.97 ( 0.00%) 34.57 (-24.79%) Percentage huge-12 68.12 ( 0.00%) 40.07 (-41.17%) Percentage huge-18 64.93 ( 0.00%) 47.82 (-26.35%) Percentage huge-24 62.69 ( 0.00%) 44.23 (-29.44%) Percentage huge-30 43.49 ( 0.00%) 55.38 ( 27.34%) Percentage huge-32 50.72 ( 0.00%) 51.90 ( 2.35%) 4.4.0 4.4.0 kcompactd-v1r1nodefrag-v1r3 Minor Faults 37429143 47564000 Major Faults 1916 1558 Swap Ins 1466 1079 Swap Outs 2936863 149626 Allocation stalls 62510 3 DMA allocs 0 0 DMA32 allocs 6566458 6401314 Normal allocs 216361697 216538171 Movable allocs 0 0 Direct pages scanned 25977580 17998 Kswapd pages scanned 0 3638931 Kswapd pages reclaimed 0 207236 Direct pages reclaimed 8833714 88 Compaction stalls 103349 5 Compaction success 270 4 Compaction failures 103079 1 Note again that while this does swap as it's an aggressive workload, the direct relcim activity and allocation stalls is substantially reduced. There is some kswapd activity but ftrace showed that the kswapd activity was due to normal wakeups from 4K pages being allocated. Compaction-related stalls and activity are almost eliminated. I also tried the stutter benchmark. For this, I do not have figures for NUMA but it's something that does impact UMA so I'll report what is available stutter 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 Min mmap 7.3571 ( 0.00%) 7.3438 ( 0.18%) 1st-qrtle mmap 7.5278 ( 0.00%) 17.9200 (-138.05%) 2nd-qrtle mmap 7.6818 ( 0.00%) 21.6055 (-181.25%) 3rd-qrtle mmap 11.0889 ( 0.00%) 21.8881 (-97.39%) Max-90% mmap 27.8978 ( 0.00%) 22.1632 ( 20.56%) Max-93% mmap 28.3202 ( 0.00%) 22.3044 ( 21.24%) Max-95% mmap 28.5600 ( 0.00%) 22.4580 ( 21.37%) Max-99% mmap 29.6032 ( 0.00%) 25.5216 ( 13.79%) Max mmap 4109.7289 ( 0.00%) 4813.9832 (-17.14%) Mean mmap 12.4474 ( 0.00%) 19.3027 (-55.07%) This benchmark is trying to fault an anonymous mapping while there is a heavy IO load -- a scenario that desktop users used to complain about frequently. This shows a mix because the ideal case of mapping with THP is not hit as often. However, note that 99% of the mappings complete 13.79% faster. The CPU usage here is particularly interesting 4.4.0 4.4.0 kcompactd-v1r1nodefrag-v1r3 User 67.50 0.99 System 1327.88 91.30 Elapsed 2079.00 2128.98 And once again we look at the reclaim figures 4.4.0 4.4.0 kcompactd-v1r1nodefrag-v1r3 Minor Faults 335241922 1314582827 Major Faults 715 819 Swap Ins 0 0 Swap Outs 0 0 Allocation stalls 532723 0 DMA allocs 0 0 DMA32 allocs 1822364341 1177950222 Normal allocs 1815640808 1517844854 Movable allocs 0 0 Direct pages scanned 21892772 0 Kswapd pages scanned 20015890 41879484 Kswapd pages reclaimed 19961986 41822072 Direct pages reclaimed 21892741 0 Compaction stalls 1065755 0 Compaction success 514 0 Compaction failures 1065241 0 Allocation stalls and all direct reclaim activity is eliminated as well as compaction-related stalls. THP gives impressive gains in some cases but only if they are quickly available. We're not going to reach the point where they are completely free so lets take the costs out of the fast paths finally and defer the cost to kswapd, kcompactd and khugepaged where it belongs. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Rik van Riel <riel@redhat.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-18 05:19:23 +08:00
}
/* Caller must hold page table lock. */
static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
struct page *zero_page)
{
pmd_t entry;
if (!pmd_none(*pmd))
return false;
entry = mk_pmd(zero_page, vma->vm_page_prot);
entry = pmd_mkhuge(entry);
if (pgtable)
pgtable_trans_huge_deposit(mm, pmd, pgtable);
set_pmd_at(mm, haddr, pmd, entry);
atomic_long_inc(&mm->nr_ptes);
return true;
}
int do_huge_pmd_anonymous_page(struct vm_fault *vmf)
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
{
struct vm_area_struct *vma = vmf->vma;
gfp_t gfp;
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
struct page *page;
unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
return VM_FAULT_FALLBACK;
if (unlikely(anon_vma_prepare(vma)))
return VM_FAULT_OOM;
if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
return VM_FAULT_OOM;
if (!(vmf->flags & FAULT_FLAG_WRITE) &&
!mm_forbids_zeropage(vma->vm_mm) &&
transparent_hugepage_use_zero_page()) {
pgtable_t pgtable;
struct page *zero_page;
bool set;
int ret;
pgtable = pte_alloc_one(vma->vm_mm, haddr);
if (unlikely(!pgtable))
2011-01-14 07:46:58 +08:00
return VM_FAULT_OOM;
thp: reduce usage of huge zero page's atomic counter The global zero page is used to satisfy an anonymous read fault. If THP(Transparent HugePage) is enabled then the global huge zero page is used. The global huge zero page uses an atomic counter for reference counting and is allocated/freed dynamically according to its counter value. CPU time spent on that counter will greatly increase if there are a lot of processes doing anonymous read faults. This patch proposes a way to reduce the access to the global counter so that the CPU load can be reduced accordingly. To do this, a new flag of the mm_struct is introduced: MMF_USED_HUGE_ZERO_PAGE. With this flag, the process only need to touch the global counter in two cases: 1 The first time it uses the global huge zero page; 2 The time when mm_user of its mm_struct reaches zero. Note that right now, the huge zero page is eligible to be freed as soon as its last use goes away. With this patch, the page will not be eligible to be freed until the exit of the last process from which it was ever used. And with the use of mm_user, the kthread is not eligible to use huge zero page either. Since no kthread is using huge zero page today, there is no difference after applying this patch. But if that is not desired, I can change it to when mm_count reaches zero. Case used for test on Haswell EP: usemem -n 72 --readonly -j 0x200000 100G Which spawns 72 processes and each will mmap 100G anonymous space and then do read only access to that space sequentially with a step of 2MB. CPU cycles from perf report for base commit: 54.03% usemem [kernel.kallsyms] [k] get_huge_zero_page CPU cycles from perf report for this commit: 0.11% usemem [kernel.kallsyms] [k] mm_get_huge_zero_page Performance(throughput) of the workload for base commit: 1784430792 Performance(throughput) of the workload for this commit: 4726928591 164% increase. Runtime of the workload for base commit: 707592 us Runtime of the workload for this commit: 303970 us 50% drop. Link: http://lkml.kernel.org/r/fe51a88f-446a-4622-1363-ad1282d71385@intel.com Signed-off-by: Aaron Lu <aaron.lu@intel.com> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Huang Ying <ying.huang@intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Ebru Akagunduz <ebru.akagunduz@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-08 08:00:08 +08:00
zero_page = mm_get_huge_zero_page(vma->vm_mm);
if (unlikely(!zero_page)) {
pte_free(vma->vm_mm, pgtable);
count_vm_event(THP_FAULT_FALLBACK);
return VM_FAULT_FALLBACK;
}
vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
ret = 0;
set = false;
if (pmd_none(*vmf->pmd)) {
mm, oom: fix potential data corruption when oom_reaper races with writer Wenwei Tao has noticed that our current assumption that the oom victim is dying and never doing any visible changes after it dies, and so the oom_reaper can tear it down, is not entirely true. __task_will_free_mem consider a task dying when SIGNAL_GROUP_EXIT is set but do_group_exit sends SIGKILL to all threads _after_ the flag is set. So there is a race window when some threads won't have fatal_signal_pending while the oom_reaper could start unmapping the address space. Moreover some paths might not check for fatal signals before each PF/g-u-p/copy_from_user. We already have a protection for oom_reaper vs. PF races by checking MMF_UNSTABLE. This has been, however, checked only for kernel threads (use_mm users) which can outlive the oom victim. A simple fix would be to extend the current check in handle_mm_fault for all tasks but that wouldn't be sufficient because the current check assumes that a kernel thread would bail out after EFAULT from get_user*/copy_from_user and never re-read the same address which would succeed because the PF path has established page tables already. This seems to be the case for the only existing use_mm user currently (virtio driver) but it is rather fragile in general. This is even more fragile in general for more complex paths such as generic_perform_write which can re-read the same address more times (e.g. iov_iter_copy_from_user_atomic to fail and then iov_iter_fault_in_readable on retry). Therefore we have to implement MMF_UNSTABLE protection in a robust way and never make a potentially corrupted content visible. That requires to hook deeper into the PF path and check for the flag _every time_ before a pte for anonymous memory is established (that means all !VM_SHARED mappings). The corruption can be triggered artificially (http://lkml.kernel.org/r/201708040646.v746kkhC024636@www262.sakura.ne.jp) but there doesn't seem to be any real life bug report. The race window should be quite tight to trigger most of the time. Link: http://lkml.kernel.org/r/20170807113839.16695-3-mhocko@kernel.org Fixes: aac453635549 ("mm, oom: introduce oom reaper") Signed-off-by: Michal Hocko <mhocko@suse.com> Reported-by: Wenwei Tao <wenwei.tww@alibaba-inc.com> Tested-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Andrea Argangeli <andrea@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-08-19 06:16:15 +08:00
ret = check_stable_address_space(vma->vm_mm);
if (ret) {
spin_unlock(vmf->ptl);
} else if (userfaultfd_missing(vma)) {
spin_unlock(vmf->ptl);
ret = handle_userfault(vmf, VM_UFFD_MISSING);
VM_BUG_ON(ret & VM_FAULT_FALLBACK);
} else {
set_huge_zero_page(pgtable, vma->vm_mm, vma,
haddr, vmf->pmd, zero_page);
spin_unlock(vmf->ptl);
set = true;
}
} else
spin_unlock(vmf->ptl);
thp: reduce usage of huge zero page's atomic counter The global zero page is used to satisfy an anonymous read fault. If THP(Transparent HugePage) is enabled then the global huge zero page is used. The global huge zero page uses an atomic counter for reference counting and is allocated/freed dynamically according to its counter value. CPU time spent on that counter will greatly increase if there are a lot of processes doing anonymous read faults. This patch proposes a way to reduce the access to the global counter so that the CPU load can be reduced accordingly. To do this, a new flag of the mm_struct is introduced: MMF_USED_HUGE_ZERO_PAGE. With this flag, the process only need to touch the global counter in two cases: 1 The first time it uses the global huge zero page; 2 The time when mm_user of its mm_struct reaches zero. Note that right now, the huge zero page is eligible to be freed as soon as its last use goes away. With this patch, the page will not be eligible to be freed until the exit of the last process from which it was ever used. And with the use of mm_user, the kthread is not eligible to use huge zero page either. Since no kthread is using huge zero page today, there is no difference after applying this patch. But if that is not desired, I can change it to when mm_count reaches zero. Case used for test on Haswell EP: usemem -n 72 --readonly -j 0x200000 100G Which spawns 72 processes and each will mmap 100G anonymous space and then do read only access to that space sequentially with a step of 2MB. CPU cycles from perf report for base commit: 54.03% usemem [kernel.kallsyms] [k] get_huge_zero_page CPU cycles from perf report for this commit: 0.11% usemem [kernel.kallsyms] [k] mm_get_huge_zero_page Performance(throughput) of the workload for base commit: 1784430792 Performance(throughput) of the workload for this commit: 4726928591 164% increase. Runtime of the workload for base commit: 707592 us Runtime of the workload for this commit: 303970 us 50% drop. Link: http://lkml.kernel.org/r/fe51a88f-446a-4622-1363-ad1282d71385@intel.com Signed-off-by: Aaron Lu <aaron.lu@intel.com> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Huang Ying <ying.huang@intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Ebru Akagunduz <ebru.akagunduz@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-08 08:00:08 +08:00
if (!set)
pte_free(vma->vm_mm, pgtable);
return ret;
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
}
mm: thp: set THP defrag by default to madvise and add a stall-free defrag option THP defrag is enabled by default to direct reclaim/compact but not wake kswapd in the event of a THP allocation failure. The problem is that THP allocation requests potentially enter reclaim/compaction. This potentially incurs a severe stall that is not guaranteed to be offset by reduced TLB misses. While there has been considerable effort to reduce the impact of reclaim/compaction, it is still a high cost and workloads that should fit in memory fail to do so. Specifically, a simple anon/file streaming workload will enter direct reclaim on NUMA at least even though the working set size is 80% of RAM. It's been years and it's time to throw in the towel. First, this patch defines THP defrag as follows; madvise: A failed allocation will direct reclaim/compact if the application requests it never: Neither reclaim/compact nor wake kswapd defer: A failed allocation will wake kswapd/kcompactd always: A failed allocation will direct reclaim/compact (historical behaviour) khugepaged defrag will enter direct/reclaim but not wake kswapd. Next it sets the default defrag option to be "madvise" to only enter direct reclaim/compaction for applications that specifically requested it. Lastly, it removes a check from the page allocator slowpath that is related to __GFP_THISNODE to allow "defer" to work. The callers that really cares are slub/slab and they are updated accordingly. The slab one may be surprising because it also corrects a comment as kswapd was never woken up by that path. This means that a THP fault will no longer stall for most applications by default and the ideal for most users that get THP if they are immediately available. There are still options for users that prefer a stall at startup of a new application by either restoring historical behaviour with "always" or pick a half-way point with "defer" where kswapd does some of the work in the background and wakes kcompactd if necessary. THP defrag for khugepaged remains enabled and will enter direct/reclaim but no wakeup kswapd or kcompactd. After this patch a THP allocation failure will quickly fallback and rely on khugepaged to recover the situation at some time in the future. In some cases, this will reduce THP usage but the benefit of THP is hard to measure and not a universal win where as a stall to reclaim/compaction is definitely measurable and can be painful. The first test for this is using "usemem" to read a large file and write a large anonymous mapping (to avoid the zero page) multiple times. The total size of the mappings is 80% of RAM and the benchmark simply measures how long it takes to complete. It uses multiple threads to see if that is a factor. On UMA, the performance is almost identical so is not reported but on NUMA, we see this usemem 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 Amean System-1 102.86 ( 0.00%) 46.81 ( 54.50%) Amean System-4 37.85 ( 0.00%) 34.02 ( 10.12%) Amean System-7 48.12 ( 0.00%) 46.89 ( 2.56%) Amean System-12 51.98 ( 0.00%) 56.96 ( -9.57%) Amean System-21 80.16 ( 0.00%) 79.05 ( 1.39%) Amean System-30 110.71 ( 0.00%) 107.17 ( 3.20%) Amean System-48 127.98 ( 0.00%) 124.83 ( 2.46%) Amean Elapsd-1 185.84 ( 0.00%) 105.51 ( 43.23%) Amean Elapsd-4 26.19 ( 0.00%) 25.58 ( 2.33%) Amean Elapsd-7 21.65 ( 0.00%) 21.62 ( 0.16%) Amean Elapsd-12 18.58 ( 0.00%) 17.94 ( 3.43%) Amean Elapsd-21 17.53 ( 0.00%) 16.60 ( 5.33%) Amean Elapsd-30 17.45 ( 0.00%) 17.13 ( 1.84%) Amean Elapsd-48 15.40 ( 0.00%) 15.27 ( 0.82%) For a single thread, the benchmark completes 43.23% faster with this patch applied with smaller benefits as the thread increases. Similar, notice the large reduction in most cases in system CPU usage. The overall CPU time is 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 User 10357.65 10438.33 System 3988.88 3543.94 Elapsed 2203.01 1634.41 Which is substantial. Now, the reclaim figures 4.4.0 4.4.0 kcompactd-v1r1nodefrag-v1r3 Minor Faults 128458477 278352931 Major Faults 2174976 225 Swap Ins 16904701 0 Swap Outs 17359627 0 Allocation stalls 43611 0 DMA allocs 0 0 DMA32 allocs 19832646 19448017 Normal allocs 614488453 580941839 Movable allocs 0 0 Direct pages scanned 24163800 0 Kswapd pages scanned 0 0 Kswapd pages reclaimed 0 0 Direct pages reclaimed 20691346 0 Compaction stalls 42263 0 Compaction success 938 0 Compaction failures 41325 0 This patch eliminates almost all swapping and direct reclaim activity. There is still overhead but it's from NUMA balancing which does not identify that it's pointless trying to do anything with this workload. I also tried the thpscale benchmark which forces a corner case where compaction can be used heavily and measures the latency of whether base or huge pages were used thpscale Fault Latencies 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 Amean fault-base-1 5288.84 ( 0.00%) 2817.12 ( 46.73%) Amean fault-base-3 6365.53 ( 0.00%) 3499.11 ( 45.03%) Amean fault-base-5 6526.19 ( 0.00%) 4363.06 ( 33.15%) Amean fault-base-7 7142.25 ( 0.00%) 4858.08 ( 31.98%) Amean fault-base-12 13827.64 ( 0.00%) 10292.11 ( 25.57%) Amean fault-base-18 18235.07 ( 0.00%) 13788.84 ( 24.38%) Amean fault-base-24 21597.80 ( 0.00%) 24388.03 (-12.92%) Amean fault-base-30 26754.15 ( 0.00%) 19700.55 ( 26.36%) Amean fault-base-32 26784.94 ( 0.00%) 19513.57 ( 27.15%) Amean fault-huge-1 4223.96 ( 0.00%) 2178.57 ( 48.42%) Amean fault-huge-3 2194.77 ( 0.00%) 2149.74 ( 2.05%) Amean fault-huge-5 2569.60 ( 0.00%) 2346.95 ( 8.66%) Amean fault-huge-7 3612.69 ( 0.00%) 2997.70 ( 17.02%) Amean fault-huge-12 3301.75 ( 0.00%) 6727.02 (-103.74%) Amean fault-huge-18 6696.47 ( 0.00%) 6685.72 ( 0.16%) Amean fault-huge-24 8000.72 ( 0.00%) 9311.43 (-16.38%) Amean fault-huge-30 13305.55 ( 0.00%) 9750.45 ( 26.72%) Amean fault-huge-32 9981.71 ( 0.00%) 10316.06 ( -3.35%) The average time to fault pages is substantially reduced in the majority of caseds but with the obvious caveat that fewer THPs are actually used in this adverse workload 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 Percentage huge-1 0.71 ( 0.00%) 14.04 (1865.22%) Percentage huge-3 10.77 ( 0.00%) 33.05 (206.85%) Percentage huge-5 60.39 ( 0.00%) 38.51 (-36.23%) Percentage huge-7 45.97 ( 0.00%) 34.57 (-24.79%) Percentage huge-12 68.12 ( 0.00%) 40.07 (-41.17%) Percentage huge-18 64.93 ( 0.00%) 47.82 (-26.35%) Percentage huge-24 62.69 ( 0.00%) 44.23 (-29.44%) Percentage huge-30 43.49 ( 0.00%) 55.38 ( 27.34%) Percentage huge-32 50.72 ( 0.00%) 51.90 ( 2.35%) 4.4.0 4.4.0 kcompactd-v1r1nodefrag-v1r3 Minor Faults 37429143 47564000 Major Faults 1916 1558 Swap Ins 1466 1079 Swap Outs 2936863 149626 Allocation stalls 62510 3 DMA allocs 0 0 DMA32 allocs 6566458 6401314 Normal allocs 216361697 216538171 Movable allocs 0 0 Direct pages scanned 25977580 17998 Kswapd pages scanned 0 3638931 Kswapd pages reclaimed 0 207236 Direct pages reclaimed 8833714 88 Compaction stalls 103349 5 Compaction success 270 4 Compaction failures 103079 1 Note again that while this does swap as it's an aggressive workload, the direct relcim activity and allocation stalls is substantially reduced. There is some kswapd activity but ftrace showed that the kswapd activity was due to normal wakeups from 4K pages being allocated. Compaction-related stalls and activity are almost eliminated. I also tried the stutter benchmark. For this, I do not have figures for NUMA but it's something that does impact UMA so I'll report what is available stutter 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 Min mmap 7.3571 ( 0.00%) 7.3438 ( 0.18%) 1st-qrtle mmap 7.5278 ( 0.00%) 17.9200 (-138.05%) 2nd-qrtle mmap 7.6818 ( 0.00%) 21.6055 (-181.25%) 3rd-qrtle mmap 11.0889 ( 0.00%) 21.8881 (-97.39%) Max-90% mmap 27.8978 ( 0.00%) 22.1632 ( 20.56%) Max-93% mmap 28.3202 ( 0.00%) 22.3044 ( 21.24%) Max-95% mmap 28.5600 ( 0.00%) 22.4580 ( 21.37%) Max-99% mmap 29.6032 ( 0.00%) 25.5216 ( 13.79%) Max mmap 4109.7289 ( 0.00%) 4813.9832 (-17.14%) Mean mmap 12.4474 ( 0.00%) 19.3027 (-55.07%) This benchmark is trying to fault an anonymous mapping while there is a heavy IO load -- a scenario that desktop users used to complain about frequently. This shows a mix because the ideal case of mapping with THP is not hit as often. However, note that 99% of the mappings complete 13.79% faster. The CPU usage here is particularly interesting 4.4.0 4.4.0 kcompactd-v1r1nodefrag-v1r3 User 67.50 0.99 System 1327.88 91.30 Elapsed 2079.00 2128.98 And once again we look at the reclaim figures 4.4.0 4.4.0 kcompactd-v1r1nodefrag-v1r3 Minor Faults 335241922 1314582827 Major Faults 715 819 Swap Ins 0 0 Swap Outs 0 0 Allocation stalls 532723 0 DMA allocs 0 0 DMA32 allocs 1822364341 1177950222 Normal allocs 1815640808 1517844854 Movable allocs 0 0 Direct pages scanned 21892772 0 Kswapd pages scanned 20015890 41879484 Kswapd pages reclaimed 19961986 41822072 Direct pages reclaimed 21892741 0 Compaction stalls 1065755 0 Compaction success 514 0 Compaction failures 1065241 0 Allocation stalls and all direct reclaim activity is eliminated as well as compaction-related stalls. THP gives impressive gains in some cases but only if they are quickly available. We're not going to reach the point where they are completely free so lets take the costs out of the fast paths finally and defer the cost to kswapd, kcompactd and khugepaged where it belongs. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Rik van Riel <riel@redhat.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-18 05:19:23 +08:00
gfp = alloc_hugepage_direct_gfpmask(vma);
page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
if (unlikely(!page)) {
count_vm_event(THP_FAULT_FALLBACK);
return VM_FAULT_FALLBACK;
}
thp: introduce deferred_split_huge_page() Currently we don't split huge page on partial unmap. It's not an ideal situation. It can lead to memory overhead. Furtunately, we can detect partial unmap on page_remove_rmap(). But we cannot call split_huge_page() from there due to locking context. It's also counterproductive to do directly from munmap() codepath: in many cases we will hit this from exit(2) and splitting the huge page just to free it up in small pages is not what we really want. The patch introduce deferred_split_huge_page() which put the huge page into queue for splitting. The splitting itself will happen when we get memory pressure via shrinker interface. The page will be dropped from list on freeing through compound page destructor. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:17 +08:00
prep_transhuge_page(page);
return __do_huge_pmd_anonymous_page(vmf, page, gfp);
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
}
static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
pgtable_t pgtable)
{
struct mm_struct *mm = vma->vm_mm;
pmd_t entry;
spinlock_t *ptl;
ptl = pmd_lock(mm, pmd);
entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
if (pfn_t_devmap(pfn))
entry = pmd_mkdevmap(entry);
if (write) {
entry = pmd_mkyoung(pmd_mkdirty(entry));
entry = maybe_pmd_mkwrite(entry, vma);
}
if (pgtable) {
pgtable_trans_huge_deposit(mm, pmd, pgtable);
atomic_long_inc(&mm->nr_ptes);
}
set_pmd_at(mm, addr, pmd, entry);
update_mmu_cache_pmd(vma, addr, pmd);
spin_unlock(ptl);
}
int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
pmd_t *pmd, pfn_t pfn, bool write)
{
pgprot_t pgprot = vma->vm_page_prot;
pgtable_t pgtable = NULL;
/*
* If we had pmd_special, we could avoid all these restrictions,
* but we need to be consistent with PTEs and architectures that
* can't support a 'special' bit.
*/
BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
(VM_PFNMAP|VM_MIXEDMAP));
BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
BUG_ON(!pfn_t_devmap(pfn));
if (addr < vma->vm_start || addr >= vma->vm_end)
return VM_FAULT_SIGBUS;
if (arch_needs_pgtable_deposit()) {
pgtable = pte_alloc_one(vma->vm_mm, addr);
if (!pgtable)
return VM_FAULT_OOM;
}
track_pfn_insert(vma, &pgprot, pfn);
insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write, pgtable);
return VM_FAULT_NOPAGE;
}
EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
mm, x86: add support for PUD-sized transparent hugepages The current transparent hugepage code only supports PMDs. This patch adds support for transparent use of PUDs with DAX. It does not include support for anonymous pages. x86 support code also added. Most of this patch simply parallels the work that was done for huge PMDs. The only major difference is how the new ->pud_entry method in mm_walk works. The ->pmd_entry method replaces the ->pte_entry method, whereas the ->pud_entry method works along with either ->pmd_entry or ->pte_entry. The pagewalk code takes care of locking the PUD before calling ->pud_walk, so handlers do not need to worry whether the PUD is stable. [dave.jiang@intel.com: fix SMP x86 32bit build for native_pud_clear()] Link: http://lkml.kernel.org/r/148719066814.31111.3239231168815337012.stgit@djiang5-desk3.ch.intel.com [dave.jiang@intel.com: native_pud_clear missing on i386 build] Link: http://lkml.kernel.org/r/148640375195.69754.3315433724330910314.stgit@djiang5-desk3.ch.intel.com Link: http://lkml.kernel.org/r/148545059381.17912.8602162635537598445.stgit@djiang5-desk3.ch.intel.com Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com> Signed-off-by: Dave Jiang <dave.jiang@intel.com> Tested-by: Alexander Kapshuk <alexander.kapshuk@gmail.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Jan Kara <jack@suse.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Nilesh Choudhury <nilesh.choudhury@oracle.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-25 06:57:02 +08:00
#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
{
if (likely(vma->vm_flags & VM_WRITE))
pud = pud_mkwrite(pud);
return pud;
}
static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
{
struct mm_struct *mm = vma->vm_mm;
pud_t entry;
spinlock_t *ptl;
ptl = pud_lock(mm, pud);
entry = pud_mkhuge(pfn_t_pud(pfn, prot));
if (pfn_t_devmap(pfn))
entry = pud_mkdevmap(entry);
if (write) {
entry = pud_mkyoung(pud_mkdirty(entry));
entry = maybe_pud_mkwrite(entry, vma);
}
set_pud_at(mm, addr, pud, entry);
update_mmu_cache_pud(vma, addr, pud);
spin_unlock(ptl);
}
int vmf_insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
pud_t *pud, pfn_t pfn, bool write)
{
pgprot_t pgprot = vma->vm_page_prot;
/*
* If we had pud_special, we could avoid all these restrictions,
* but we need to be consistent with PTEs and architectures that
* can't support a 'special' bit.
*/
BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
(VM_PFNMAP|VM_MIXEDMAP));
BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
BUG_ON(!pfn_t_devmap(pfn));
if (addr < vma->vm_start || addr >= vma->vm_end)
return VM_FAULT_SIGBUS;
track_pfn_insert(vma, &pgprot, pfn);
insert_pfn_pud(vma, addr, pud, pfn, pgprot, write);
return VM_FAULT_NOPAGE;
}
EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
pmd_t *pmd)
{
pmd_t _pmd;
/*
* We should set the dirty bit only for FOLL_WRITE but for now
* the dirty bit in the pmd is meaningless. And if the dirty
* bit will become meaningful and we'll only set it with
* FOLL_WRITE, an atomic set_bit will be required on the pmd to
* set the young bit, instead of the current set_pmd_at.
*/
_pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
pmd, _pmd, 1))
update_mmu_cache_pmd(vma, addr, pmd);
}
struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
pmd_t *pmd, int flags)
{
unsigned long pfn = pmd_pfn(*pmd);
struct mm_struct *mm = vma->vm_mm;
struct dev_pagemap *pgmap;
struct page *page;
assert_spin_locked(pmd_lockptr(mm, pmd));
mm/huge_memory.c: respect FOLL_FORCE/FOLL_COW for thp In commit 19be0eaffa3a ("mm: remove gup_flags FOLL_WRITE games from __get_user_pages()"), the mm code was changed from unsetting FOLL_WRITE after a COW was resolved to setting the (newly introduced) FOLL_COW instead. Simultaneously, the check in gup.c was updated to still allow writes with FOLL_FORCE set if FOLL_COW had also been set. However, a similar check in huge_memory.c was forgotten. As a result, remote memory writes to ro regions of memory backed by transparent huge pages cause an infinite loop in the kernel (handle_mm_fault sets FOLL_COW and returns 0 causing a retry, but follow_trans_huge_pmd bails out immidiately because `(flags & FOLL_WRITE) && !pmd_write(*pmd)` is true. While in this state the process is stil SIGKILLable, but little else works (e.g. no ptrace attach, no other signals). This is easily reproduced with the following code (assuming thp are set to always): #include <assert.h> #include <fcntl.h> #include <stdint.h> #include <stdio.h> #include <string.h> #include <sys/mman.h> #include <sys/stat.h> #include <sys/types.h> #include <sys/wait.h> #include <unistd.h> #define TEST_SIZE 5 * 1024 * 1024 int main(void) { int status; pid_t child; int fd = open("/proc/self/mem", O_RDWR); void *addr = mmap(NULL, TEST_SIZE, PROT_READ, MAP_ANONYMOUS | MAP_PRIVATE, 0, 0); assert(addr != MAP_FAILED); pid_t parent_pid = getpid(); if ((child = fork()) == 0) { void *addr2 = mmap(NULL, TEST_SIZE, PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_PRIVATE, 0, 0); assert(addr2 != MAP_FAILED); memset(addr2, 'a', TEST_SIZE); pwrite(fd, addr2, TEST_SIZE, (uintptr_t)addr); return 0; } assert(child == waitpid(child, &status, 0)); assert(WIFEXITED(status) && WEXITSTATUS(status) == 0); return 0; } Fix this by updating follow_trans_huge_pmd in huge_memory.c analogously to the update in gup.c in the original commit. The same pattern exists in follow_devmap_pmd. However, we should not be able to reach that check with FOLL_COW set, so add WARN_ONCE to make sure we notice if we ever do. [akpm@linux-foundation.org: coding-style fixes] Link: http://lkml.kernel.org/r/20170106015025.GA38411@juliacomputing.com Signed-off-by: Keno Fischer <keno@juliacomputing.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Greg Thelen <gthelen@google.com> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Willy Tarreau <w@1wt.eu> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Kees Cook <keescook@chromium.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Hugh Dickins <hughd@google.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-01-25 07:17:48 +08:00
/*
* When we COW a devmap PMD entry, we split it into PTEs, so we should
* not be in this function with `flags & FOLL_COW` set.
*/
WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
if (flags & FOLL_WRITE && !pmd_write(*pmd))
return NULL;
if (pmd_present(*pmd) && pmd_devmap(*pmd))
/* pass */;
else
return NULL;
if (flags & FOLL_TOUCH)
touch_pmd(vma, addr, pmd);
/*
* device mapped pages can only be returned if the
* caller will manage the page reference count.
*/
if (!(flags & FOLL_GET))
return ERR_PTR(-EEXIST);
pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
pgmap = get_dev_pagemap(pfn, NULL);
if (!pgmap)
return ERR_PTR(-EFAULT);
page = pfn_to_page(pfn);
get_page(page);
put_dev_pagemap(pgmap);
return page;
}
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
struct vm_area_struct *vma)
{
spinlock_t *dst_ptl, *src_ptl;
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
struct page *src_page;
pmd_t pmd;
pgtable_t pgtable = NULL;
int ret = -ENOMEM;
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
/* Skip if can be re-fill on fault */
if (!vma_is_anonymous(vma))
return 0;
pgtable = pte_alloc_one(dst_mm, addr);
if (unlikely(!pgtable))
goto out;
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
dst_ptl = pmd_lock(dst_mm, dst_pmd);
src_ptl = pmd_lockptr(src_mm, src_pmd);
spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
ret = -EAGAIN;
pmd = *src_pmd;
mm: thp: check pmd migration entry in common path When THP migration is being used, memory management code needs to handle pmd migration entries properly. This patch uses !pmd_present() or is_swap_pmd() (depending on whether pmd_none() needs separate code or not) to check pmd migration entries at the places where a pmd entry is present. Since pmd-related code uses split_huge_page(), split_huge_pmd(), pmd_trans_huge(), pmd_trans_unstable(), or pmd_none_or_trans_huge_or_clear_bad(), this patch: 1. adds pmd migration entry split code in split_huge_pmd(), 2. takes care of pmd migration entries whenever pmd_trans_huge() is present, 3. makes pmd_none_or_trans_huge_or_clear_bad() pmd migration entry aware. Since split_huge_page() uses split_huge_pmd() and pmd_trans_unstable() is equivalent to pmd_none_or_trans_huge_or_clear_bad(), we do not change them. Until this commit, a pmd entry should be: 1. pointing to a pte page, 2. is_swap_pmd(), 3. pmd_trans_huge(), 4. pmd_devmap(), or 5. pmd_none(). Signed-off-by: Zi Yan <zi.yan@cs.rutgers.edu> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: David Nellans <dnellans@nvidia.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-09 07:11:01 +08:00
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
if (unlikely(is_swap_pmd(pmd))) {
swp_entry_t entry = pmd_to_swp_entry(pmd);
VM_BUG_ON(!is_pmd_migration_entry(pmd));
if (is_write_migration_entry(entry)) {
make_migration_entry_read(&entry);
pmd = swp_entry_to_pmd(entry);
if (pmd_swp_soft_dirty(*src_pmd))
pmd = pmd_swp_mksoft_dirty(pmd);
mm: thp: check pmd migration entry in common path When THP migration is being used, memory management code needs to handle pmd migration entries properly. This patch uses !pmd_present() or is_swap_pmd() (depending on whether pmd_none() needs separate code or not) to check pmd migration entries at the places where a pmd entry is present. Since pmd-related code uses split_huge_page(), split_huge_pmd(), pmd_trans_huge(), pmd_trans_unstable(), or pmd_none_or_trans_huge_or_clear_bad(), this patch: 1. adds pmd migration entry split code in split_huge_pmd(), 2. takes care of pmd migration entries whenever pmd_trans_huge() is present, 3. makes pmd_none_or_trans_huge_or_clear_bad() pmd migration entry aware. Since split_huge_page() uses split_huge_pmd() and pmd_trans_unstable() is equivalent to pmd_none_or_trans_huge_or_clear_bad(), we do not change them. Until this commit, a pmd entry should be: 1. pointing to a pte page, 2. is_swap_pmd(), 3. pmd_trans_huge(), 4. pmd_devmap(), or 5. pmd_none(). Signed-off-by: Zi Yan <zi.yan@cs.rutgers.edu> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: David Nellans <dnellans@nvidia.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-09 07:11:01 +08:00
set_pmd_at(src_mm, addr, src_pmd, pmd);
}
add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
atomic_long_inc(&dst_mm->nr_ptes);
pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
mm: thp: check pmd migration entry in common path When THP migration is being used, memory management code needs to handle pmd migration entries properly. This patch uses !pmd_present() or is_swap_pmd() (depending on whether pmd_none() needs separate code or not) to check pmd migration entries at the places where a pmd entry is present. Since pmd-related code uses split_huge_page(), split_huge_pmd(), pmd_trans_huge(), pmd_trans_unstable(), or pmd_none_or_trans_huge_or_clear_bad(), this patch: 1. adds pmd migration entry split code in split_huge_pmd(), 2. takes care of pmd migration entries whenever pmd_trans_huge() is present, 3. makes pmd_none_or_trans_huge_or_clear_bad() pmd migration entry aware. Since split_huge_page() uses split_huge_pmd() and pmd_trans_unstable() is equivalent to pmd_none_or_trans_huge_or_clear_bad(), we do not change them. Until this commit, a pmd entry should be: 1. pointing to a pte page, 2. is_swap_pmd(), 3. pmd_trans_huge(), 4. pmd_devmap(), or 5. pmd_none(). Signed-off-by: Zi Yan <zi.yan@cs.rutgers.edu> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: David Nellans <dnellans@nvidia.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-09 07:11:01 +08:00
set_pmd_at(dst_mm, addr, dst_pmd, pmd);
ret = 0;
goto out_unlock;
}
#endif
if (unlikely(!pmd_trans_huge(pmd))) {
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
pte_free(dst_mm, pgtable);
goto out_unlock;
}
/*
* When page table lock is held, the huge zero pmd should not be
* under splitting since we don't split the page itself, only pmd to
* a page table.
*/
if (is_huge_zero_pmd(pmd)) {
struct page *zero_page;
/*
* get_huge_zero_page() will never allocate a new page here,
* since we already have a zero page to copy. It just takes a
* reference.
*/
thp: reduce usage of huge zero page's atomic counter The global zero page is used to satisfy an anonymous read fault. If THP(Transparent HugePage) is enabled then the global huge zero page is used. The global huge zero page uses an atomic counter for reference counting and is allocated/freed dynamically according to its counter value. CPU time spent on that counter will greatly increase if there are a lot of processes doing anonymous read faults. This patch proposes a way to reduce the access to the global counter so that the CPU load can be reduced accordingly. To do this, a new flag of the mm_struct is introduced: MMF_USED_HUGE_ZERO_PAGE. With this flag, the process only need to touch the global counter in two cases: 1 The first time it uses the global huge zero page; 2 The time when mm_user of its mm_struct reaches zero. Note that right now, the huge zero page is eligible to be freed as soon as its last use goes away. With this patch, the page will not be eligible to be freed until the exit of the last process from which it was ever used. And with the use of mm_user, the kthread is not eligible to use huge zero page either. Since no kthread is using huge zero page today, there is no difference after applying this patch. But if that is not desired, I can change it to when mm_count reaches zero. Case used for test on Haswell EP: usemem -n 72 --readonly -j 0x200000 100G Which spawns 72 processes and each will mmap 100G anonymous space and then do read only access to that space sequentially with a step of 2MB. CPU cycles from perf report for base commit: 54.03% usemem [kernel.kallsyms] [k] get_huge_zero_page CPU cycles from perf report for this commit: 0.11% usemem [kernel.kallsyms] [k] mm_get_huge_zero_page Performance(throughput) of the workload for base commit: 1784430792 Performance(throughput) of the workload for this commit: 4726928591 164% increase. Runtime of the workload for base commit: 707592 us Runtime of the workload for this commit: 303970 us 50% drop. Link: http://lkml.kernel.org/r/fe51a88f-446a-4622-1363-ad1282d71385@intel.com Signed-off-by: Aaron Lu <aaron.lu@intel.com> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Huang Ying <ying.huang@intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Ebru Akagunduz <ebru.akagunduz@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-08 08:00:08 +08:00
zero_page = mm_get_huge_zero_page(dst_mm);
set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
zero_page);
ret = 0;
goto out_unlock;
}
src_page = pmd_page(pmd);
VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
get_page(src_page);
page_dup_rmap(src_page, true);
add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
atomic_long_inc(&dst_mm->nr_ptes);
pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
pmdp_set_wrprotect(src_mm, addr, src_pmd);
pmd = pmd_mkold(pmd_wrprotect(pmd));
set_pmd_at(dst_mm, addr, dst_pmd, pmd);
ret = 0;
out_unlock:
spin_unlock(src_ptl);
spin_unlock(dst_ptl);
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
out:
return ret;
}
mm, x86: add support for PUD-sized transparent hugepages The current transparent hugepage code only supports PMDs. This patch adds support for transparent use of PUDs with DAX. It does not include support for anonymous pages. x86 support code also added. Most of this patch simply parallels the work that was done for huge PMDs. The only major difference is how the new ->pud_entry method in mm_walk works. The ->pmd_entry method replaces the ->pte_entry method, whereas the ->pud_entry method works along with either ->pmd_entry or ->pte_entry. The pagewalk code takes care of locking the PUD before calling ->pud_walk, so handlers do not need to worry whether the PUD is stable. [dave.jiang@intel.com: fix SMP x86 32bit build for native_pud_clear()] Link: http://lkml.kernel.org/r/148719066814.31111.3239231168815337012.stgit@djiang5-desk3.ch.intel.com [dave.jiang@intel.com: native_pud_clear missing on i386 build] Link: http://lkml.kernel.org/r/148640375195.69754.3315433724330910314.stgit@djiang5-desk3.ch.intel.com Link: http://lkml.kernel.org/r/148545059381.17912.8602162635537598445.stgit@djiang5-desk3.ch.intel.com Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com> Signed-off-by: Dave Jiang <dave.jiang@intel.com> Tested-by: Alexander Kapshuk <alexander.kapshuk@gmail.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Jan Kara <jack@suse.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Nilesh Choudhury <nilesh.choudhury@oracle.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-25 06:57:02 +08:00
#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
pud_t *pud)
{
pud_t _pud;
/*
* We should set the dirty bit only for FOLL_WRITE but for now
* the dirty bit in the pud is meaningless. And if the dirty
* bit will become meaningful and we'll only set it with
* FOLL_WRITE, an atomic set_bit will be required on the pud to
* set the young bit, instead of the current set_pud_at.
*/
_pud = pud_mkyoung(pud_mkdirty(*pud));
if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
pud, _pud, 1))
update_mmu_cache_pud(vma, addr, pud);
}
struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
pud_t *pud, int flags)
{
unsigned long pfn = pud_pfn(*pud);
struct mm_struct *mm = vma->vm_mm;
struct dev_pagemap *pgmap;
struct page *page;
assert_spin_locked(pud_lockptr(mm, pud));
if (flags & FOLL_WRITE && !pud_write(*pud))
return NULL;
if (pud_present(*pud) && pud_devmap(*pud))
/* pass */;
else
return NULL;
if (flags & FOLL_TOUCH)
touch_pud(vma, addr, pud);
/*
* device mapped pages can only be returned if the
* caller will manage the page reference count.
*/
if (!(flags & FOLL_GET))
return ERR_PTR(-EEXIST);
pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
pgmap = get_dev_pagemap(pfn, NULL);
if (!pgmap)
return ERR_PTR(-EFAULT);
page = pfn_to_page(pfn);
get_page(page);
put_dev_pagemap(pgmap);
return page;
}
int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
struct vm_area_struct *vma)
{
spinlock_t *dst_ptl, *src_ptl;
pud_t pud;
int ret;
dst_ptl = pud_lock(dst_mm, dst_pud);
src_ptl = pud_lockptr(src_mm, src_pud);
spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
ret = -EAGAIN;
pud = *src_pud;
if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
goto out_unlock;
/*
* When page table lock is held, the huge zero pud should not be
* under splitting since we don't split the page itself, only pud to
* a page table.
*/
if (is_huge_zero_pud(pud)) {
/* No huge zero pud yet */
}
pudp_set_wrprotect(src_mm, addr, src_pud);
pud = pud_mkold(pud_wrprotect(pud));
set_pud_at(dst_mm, addr, dst_pud, pud);
ret = 0;
out_unlock:
spin_unlock(src_ptl);
spin_unlock(dst_ptl);
return ret;
}
void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
{
pud_t entry;
unsigned long haddr;
bool write = vmf->flags & FAULT_FLAG_WRITE;
vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
if (unlikely(!pud_same(*vmf->pud, orig_pud)))
goto unlock;
entry = pud_mkyoung(orig_pud);
if (write)
entry = pud_mkdirty(entry);
haddr = vmf->address & HPAGE_PUD_MASK;
if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
unlock:
spin_unlock(vmf->ptl);
}
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
{
pmd_t entry;
unsigned long haddr;
mm: pmd dirty emulation in page fault handler Andreas reported [1] made a test in jemalloc hang in THP mode in arm64: http://lkml.kernel.org/r/mvmmvfy37g1.fsf@hawking.suse.de The problem is currently page fault handler doesn't supports dirty bit emulation of pmd for non-HW dirty-bit architecture so that application stucks until VM marked the pmd dirty. How the emulation work depends on the architecture. In case of arm64, when it set up pte firstly, it sets pte PTE_RDONLY to get a chance to mark the pte dirty via triggering page fault when store access happens. Once the page fault occurs, VM marks the pmd dirty and arch code for setting pmd will clear PTE_RDONLY for application to proceed. IOW, if VM doesn't mark the pmd dirty, application hangs forever by repeated fault(i.e., store op but the pmd is PTE_RDONLY). This patch enables pmd dirty-bit emulation for those architectures. [1] b8d3c4c3009d, mm/huge_memory.c: don't split THP page when MADV_FREE syscall is called Fixes: b8d3c4c3009d ("mm/huge_memory.c: don't split THP page when MADV_FREE syscall is called") Link: http://lkml.kernel.org/r/1482506098-6149-1-git-send-email-minchan@kernel.org Signed-off-by: Minchan Kim <minchan@kernel.org> Reported-by: Andreas Schwab <schwab@suse.de> Tested-by: Andreas Schwab <schwab@suse.de> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Jason Evans <je@fb.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: <stable@vger.kernel.org> [4.5+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-01-11 08:57:51 +08:00
bool write = vmf->flags & FAULT_FLAG_WRITE;
vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
goto unlock;
entry = pmd_mkyoung(orig_pmd);
mm: pmd dirty emulation in page fault handler Andreas reported [1] made a test in jemalloc hang in THP mode in arm64: http://lkml.kernel.org/r/mvmmvfy37g1.fsf@hawking.suse.de The problem is currently page fault handler doesn't supports dirty bit emulation of pmd for non-HW dirty-bit architecture so that application stucks until VM marked the pmd dirty. How the emulation work depends on the architecture. In case of arm64, when it set up pte firstly, it sets pte PTE_RDONLY to get a chance to mark the pte dirty via triggering page fault when store access happens. Once the page fault occurs, VM marks the pmd dirty and arch code for setting pmd will clear PTE_RDONLY for application to proceed. IOW, if VM doesn't mark the pmd dirty, application hangs forever by repeated fault(i.e., store op but the pmd is PTE_RDONLY). This patch enables pmd dirty-bit emulation for those architectures. [1] b8d3c4c3009d, mm/huge_memory.c: don't split THP page when MADV_FREE syscall is called Fixes: b8d3c4c3009d ("mm/huge_memory.c: don't split THP page when MADV_FREE syscall is called") Link: http://lkml.kernel.org/r/1482506098-6149-1-git-send-email-minchan@kernel.org Signed-off-by: Minchan Kim <minchan@kernel.org> Reported-by: Andreas Schwab <schwab@suse.de> Tested-by: Andreas Schwab <schwab@suse.de> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Jason Evans <je@fb.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: <stable@vger.kernel.org> [4.5+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-01-11 08:57:51 +08:00
if (write)
entry = pmd_mkdirty(entry);
haddr = vmf->address & HPAGE_PMD_MASK;
mm: pmd dirty emulation in page fault handler Andreas reported [1] made a test in jemalloc hang in THP mode in arm64: http://lkml.kernel.org/r/mvmmvfy37g1.fsf@hawking.suse.de The problem is currently page fault handler doesn't supports dirty bit emulation of pmd for non-HW dirty-bit architecture so that application stucks until VM marked the pmd dirty. How the emulation work depends on the architecture. In case of arm64, when it set up pte firstly, it sets pte PTE_RDONLY to get a chance to mark the pte dirty via triggering page fault when store access happens. Once the page fault occurs, VM marks the pmd dirty and arch code for setting pmd will clear PTE_RDONLY for application to proceed. IOW, if VM doesn't mark the pmd dirty, application hangs forever by repeated fault(i.e., store op but the pmd is PTE_RDONLY). This patch enables pmd dirty-bit emulation for those architectures. [1] b8d3c4c3009d, mm/huge_memory.c: don't split THP page when MADV_FREE syscall is called Fixes: b8d3c4c3009d ("mm/huge_memory.c: don't split THP page when MADV_FREE syscall is called") Link: http://lkml.kernel.org/r/1482506098-6149-1-git-send-email-minchan@kernel.org Signed-off-by: Minchan Kim <minchan@kernel.org> Reported-by: Andreas Schwab <schwab@suse.de> Tested-by: Andreas Schwab <schwab@suse.de> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Jason Evans <je@fb.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: <stable@vger.kernel.org> [4.5+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-01-11 08:57:51 +08:00
if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
unlock:
spin_unlock(vmf->ptl);
}
static int do_huge_pmd_wp_page_fallback(struct vm_fault *vmf, pmd_t orig_pmd,
struct page *page)
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
{
struct vm_area_struct *vma = vmf->vma;
unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
mm: memcontrol: rewrite charge API These patches rework memcg charge lifetime to integrate more naturally with the lifetime of user pages. This drastically simplifies the code and reduces charging and uncharging overhead. The most expensive part of charging and uncharging is the page_cgroup bit spinlock, which is removed entirely after this series. Here are the top-10 profile entries of a stress test that reads a 128G sparse file on a freshly booted box, without even a dedicated cgroup (i.e. executing in the root memcg). Before: 15.36% cat [kernel.kallsyms] [k] copy_user_generic_string 13.31% cat [kernel.kallsyms] [k] memset 11.48% cat [kernel.kallsyms] [k] do_mpage_readpage 4.23% cat [kernel.kallsyms] [k] get_page_from_freelist 2.38% cat [kernel.kallsyms] [k] put_page 2.32% cat [kernel.kallsyms] [k] __mem_cgroup_commit_charge 2.18% kswapd0 [kernel.kallsyms] [k] __mem_cgroup_uncharge_common 1.92% kswapd0 [kernel.kallsyms] [k] shrink_page_list 1.86% cat [kernel.kallsyms] [k] __radix_tree_lookup 1.62% cat [kernel.kallsyms] [k] __pagevec_lru_add_fn After: 15.67% cat [kernel.kallsyms] [k] copy_user_generic_string 13.48% cat [kernel.kallsyms] [k] memset 11.42% cat [kernel.kallsyms] [k] do_mpage_readpage 3.98% cat [kernel.kallsyms] [k] get_page_from_freelist 2.46% cat [kernel.kallsyms] [k] put_page 2.13% kswapd0 [kernel.kallsyms] [k] shrink_page_list 1.88% cat [kernel.kallsyms] [k] __radix_tree_lookup 1.67% cat [kernel.kallsyms] [k] __pagevec_lru_add_fn 1.39% kswapd0 [kernel.kallsyms] [k] free_pcppages_bulk 1.30% cat [kernel.kallsyms] [k] kfree As you can see, the memcg footprint has shrunk quite a bit. text data bss dec hex filename 37970 9892 400 48262 bc86 mm/memcontrol.o.old 35239 9892 400 45531 b1db mm/memcontrol.o This patch (of 4): The memcg charge API charges pages before they are rmapped - i.e. have an actual "type" - and so every callsite needs its own set of charge and uncharge functions to know what type is being operated on. Worse, uncharge has to happen from a context that is still type-specific, rather than at the end of the page's lifetime with exclusive access, and so requires a lot of synchronization. Rewrite the charge API to provide a generic set of try_charge(), commit_charge() and cancel_charge() transaction operations, much like what's currently done for swap-in: mem_cgroup_try_charge() attempts to reserve a charge, reclaiming pages from the memcg if necessary. mem_cgroup_commit_charge() commits the page to the charge once it has a valid page->mapping and PageAnon() reliably tells the type. mem_cgroup_cancel_charge() aborts the transaction. This reduces the charge API and enables subsequent patches to drastically simplify uncharging. As pages need to be committed after rmap is established but before they are added to the LRU, page_add_new_anon_rmap() must stop doing LRU additions again. Revive lru_cache_add_active_or_unevictable(). [hughd@google.com: fix shmem_unuse] [hughd@google.com: Add comments on the private use of -EAGAIN] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: Tejun Heo <tj@kernel.org> Cc: Vladimir Davydov <vdavydov@parallels.com> Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-09 05:19:20 +08:00
struct mem_cgroup *memcg;
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
pgtable_t pgtable;
pmd_t _pmd;
int ret = 0, i;
struct page **pages;
mm: move all mmu notifier invocations to be done outside the PT lock In order to allow sleeping during mmu notifier calls, we need to avoid invoking them under the page table spinlock. This patch solves the problem by calling invalidate_page notification after releasing the lock (but before freeing the page itself), or by wrapping the page invalidation with calls to invalidate_range_begin and invalidate_range_end. To prevent accidental changes to the invalidate_range_end arguments after the call to invalidate_range_begin, the patch introduces a convention of saving the arguments in consistently named locals: unsigned long mmun_start; /* For mmu_notifiers */ unsigned long mmun_end; /* For mmu_notifiers */ ... mmun_start = ... mmun_end = ... mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); ... mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); The patch changes code to use this convention for all calls to mmu_notifier_invalidate_range_start/end, except those where the calls are close enough so that anyone who glances at the code can see the values aren't changing. This patchset is a preliminary step towards on-demand paging design to be added to the RDMA stack. Why do we want on-demand paging for Infiniband? Applications register memory with an RDMA adapter using system calls, and subsequently post IO operations that refer to the corresponding virtual addresses directly to HW. Until now, this was achieved by pinning the memory during the registration calls. The goal of on demand paging is to avoid pinning the pages of registered memory regions (MRs). This will allow users the same flexibility they get when swapping any other part of their processes address spaces. Instead of requiring the entire MR to fit in physical memory, we can allow the MR to be larger, and only fit the current working set in physical memory. Why should anyone care? What problems are users currently experiencing? This can make programming with RDMA much simpler. Today, developers that are working with more data than their RAM can hold need either to deregister and reregister memory regions throughout their process's life, or keep a single memory region and copy the data to it. On demand paging will allow these developers to register a single MR at the beginning of their process's life, and let the operating system manage which pages needs to be fetched at a given time. In the future, we might be able to provide a single memory access key for each process that would provide the entire process's address as one large memory region, and the developers wouldn't need to register memory regions at all. Is there any prospect that any other subsystems will utilise these infrastructural changes? If so, which and how, etc? As for other subsystems, I understand that XPMEM wanted to sleep in MMU notifiers, as Christoph Lameter wrote at http://lkml.indiana.edu/hypermail/linux/kernel/0802.1/0460.html and perhaps Andrea knows about other use cases. Scheduling in mmu notifications is required since we need to sync the hardware with the secondary page tables change. A TLB flush of an IO device is inherently slower than a CPU TLB flush, so our design works by sending the invalidation request to the device, and waiting for an interrupt before exiting the mmu notifier handler. Avi said: kvm may be a buyer. kvm::mmu_lock, which serializes guest page faults, also protects long operations such as destroying large ranges. It would be good to convert it into a spinlock, but as it is used inside mmu notifiers, this cannot be done. (there are alternatives, such as keeping the spinlock and using a generation counter to do the teardown in O(1), which is what the "may" is doing up there). [akpm@linux-foundation.orgpossible speed tweak in hugetlb_cow(), cleanups] Signed-off-by: Andrea Arcangeli <andrea@qumranet.com> Signed-off-by: Sagi Grimberg <sagig@mellanox.com> Signed-off-by: Haggai Eran <haggaie@mellanox.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Or Gerlitz <ogerlitz@mellanox.com> Cc: Haggai Eran <haggaie@mellanox.com> Cc: Shachar Raindel <raindel@mellanox.com> Cc: Liran Liss <liranl@mellanox.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Avi Kivity <avi@redhat.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09 07:33:33 +08:00
unsigned long mmun_start; /* For mmu_notifiers */
unsigned long mmun_end; /* For mmu_notifiers */
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
GFP_KERNEL);
if (unlikely(!pages)) {
ret |= VM_FAULT_OOM;
goto out;
}
for (i = 0; i < HPAGE_PMD_NR; i++) {
pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
vmf->address, page_to_nid(page));
if (unlikely(!pages[i] ||
mem_cgroup_try_charge(pages[i], vma->vm_mm,
GFP_KERNEL, &memcg, false))) {
if (pages[i])
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
put_page(pages[i]);
while (--i >= 0) {
mm: memcontrol: rewrite charge API These patches rework memcg charge lifetime to integrate more naturally with the lifetime of user pages. This drastically simplifies the code and reduces charging and uncharging overhead. The most expensive part of charging and uncharging is the page_cgroup bit spinlock, which is removed entirely after this series. Here are the top-10 profile entries of a stress test that reads a 128G sparse file on a freshly booted box, without even a dedicated cgroup (i.e. executing in the root memcg). Before: 15.36% cat [kernel.kallsyms] [k] copy_user_generic_string 13.31% cat [kernel.kallsyms] [k] memset 11.48% cat [kernel.kallsyms] [k] do_mpage_readpage 4.23% cat [kernel.kallsyms] [k] get_page_from_freelist 2.38% cat [kernel.kallsyms] [k] put_page 2.32% cat [kernel.kallsyms] [k] __mem_cgroup_commit_charge 2.18% kswapd0 [kernel.kallsyms] [k] __mem_cgroup_uncharge_common 1.92% kswapd0 [kernel.kallsyms] [k] shrink_page_list 1.86% cat [kernel.kallsyms] [k] __radix_tree_lookup 1.62% cat [kernel.kallsyms] [k] __pagevec_lru_add_fn After: 15.67% cat [kernel.kallsyms] [k] copy_user_generic_string 13.48% cat [kernel.kallsyms] [k] memset 11.42% cat [kernel.kallsyms] [k] do_mpage_readpage 3.98% cat [kernel.kallsyms] [k] get_page_from_freelist 2.46% cat [kernel.kallsyms] [k] put_page 2.13% kswapd0 [kernel.kallsyms] [k] shrink_page_list 1.88% cat [kernel.kallsyms] [k] __radix_tree_lookup 1.67% cat [kernel.kallsyms] [k] __pagevec_lru_add_fn 1.39% kswapd0 [kernel.kallsyms] [k] free_pcppages_bulk 1.30% cat [kernel.kallsyms] [k] kfree As you can see, the memcg footprint has shrunk quite a bit. text data bss dec hex filename 37970 9892 400 48262 bc86 mm/memcontrol.o.old 35239 9892 400 45531 b1db mm/memcontrol.o This patch (of 4): The memcg charge API charges pages before they are rmapped - i.e. have an actual "type" - and so every callsite needs its own set of charge and uncharge functions to know what type is being operated on. Worse, uncharge has to happen from a context that is still type-specific, rather than at the end of the page's lifetime with exclusive access, and so requires a lot of synchronization. Rewrite the charge API to provide a generic set of try_charge(), commit_charge() and cancel_charge() transaction operations, much like what's currently done for swap-in: mem_cgroup_try_charge() attempts to reserve a charge, reclaiming pages from the memcg if necessary. mem_cgroup_commit_charge() commits the page to the charge once it has a valid page->mapping and PageAnon() reliably tells the type. mem_cgroup_cancel_charge() aborts the transaction. This reduces the charge API and enables subsequent patches to drastically simplify uncharging. As pages need to be committed after rmap is established but before they are added to the LRU, page_add_new_anon_rmap() must stop doing LRU additions again. Revive lru_cache_add_active_or_unevictable(). [hughd@google.com: fix shmem_unuse] [hughd@google.com: Add comments on the private use of -EAGAIN] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: Tejun Heo <tj@kernel.org> Cc: Vladimir Davydov <vdavydov@parallels.com> Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-09 05:19:20 +08:00
memcg = (void *)page_private(pages[i]);
set_page_private(pages[i], 0);
memcg: adjust to support new THP refcounting As with rmap, with new refcounting we cannot rely on PageTransHuge() to check if we need to charge size of huge page form the cgroup. We need to get information from caller to know whether it was mapped with PMD or PTE. We do uncharge when last reference on the page gone. At that point if we see PageTransHuge() it means we need to unchange whole huge page. The tricky part is partial unmap -- when we try to unmap part of huge page. We don't do a special handing of this situation, meaning we don't uncharge the part of huge page unless last user is gone or split_huge_page() is triggered. In case of cgroup memory pressure happens the partial unmapped page will be split through shrinker. This should be good enough. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:52:20 +08:00
mem_cgroup_cancel_charge(pages[i], memcg,
false);
put_page(pages[i]);
}
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
kfree(pages);
ret |= VM_FAULT_OOM;
goto out;
}
mm: memcontrol: rewrite charge API These patches rework memcg charge lifetime to integrate more naturally with the lifetime of user pages. This drastically simplifies the code and reduces charging and uncharging overhead. The most expensive part of charging and uncharging is the page_cgroup bit spinlock, which is removed entirely after this series. Here are the top-10 profile entries of a stress test that reads a 128G sparse file on a freshly booted box, without even a dedicated cgroup (i.e. executing in the root memcg). Before: 15.36% cat [kernel.kallsyms] [k] copy_user_generic_string 13.31% cat [kernel.kallsyms] [k] memset 11.48% cat [kernel.kallsyms] [k] do_mpage_readpage 4.23% cat [kernel.kallsyms] [k] get_page_from_freelist 2.38% cat [kernel.kallsyms] [k] put_page 2.32% cat [kernel.kallsyms] [k] __mem_cgroup_commit_charge 2.18% kswapd0 [kernel.kallsyms] [k] __mem_cgroup_uncharge_common 1.92% kswapd0 [kernel.kallsyms] [k] shrink_page_list 1.86% cat [kernel.kallsyms] [k] __radix_tree_lookup 1.62% cat [kernel.kallsyms] [k] __pagevec_lru_add_fn After: 15.67% cat [kernel.kallsyms] [k] copy_user_generic_string 13.48% cat [kernel.kallsyms] [k] memset 11.42% cat [kernel.kallsyms] [k] do_mpage_readpage 3.98% cat [kernel.kallsyms] [k] get_page_from_freelist 2.46% cat [kernel.kallsyms] [k] put_page 2.13% kswapd0 [kernel.kallsyms] [k] shrink_page_list 1.88% cat [kernel.kallsyms] [k] __radix_tree_lookup 1.67% cat [kernel.kallsyms] [k] __pagevec_lru_add_fn 1.39% kswapd0 [kernel.kallsyms] [k] free_pcppages_bulk 1.30% cat [kernel.kallsyms] [k] kfree As you can see, the memcg footprint has shrunk quite a bit. text data bss dec hex filename 37970 9892 400 48262 bc86 mm/memcontrol.o.old 35239 9892 400 45531 b1db mm/memcontrol.o This patch (of 4): The memcg charge API charges pages before they are rmapped - i.e. have an actual "type" - and so every callsite needs its own set of charge and uncharge functions to know what type is being operated on. Worse, uncharge has to happen from a context that is still type-specific, rather than at the end of the page's lifetime with exclusive access, and so requires a lot of synchronization. Rewrite the charge API to provide a generic set of try_charge(), commit_charge() and cancel_charge() transaction operations, much like what's currently done for swap-in: mem_cgroup_try_charge() attempts to reserve a charge, reclaiming pages from the memcg if necessary. mem_cgroup_commit_charge() commits the page to the charge once it has a valid page->mapping and PageAnon() reliably tells the type. mem_cgroup_cancel_charge() aborts the transaction. This reduces the charge API and enables subsequent patches to drastically simplify uncharging. As pages need to be committed after rmap is established but before they are added to the LRU, page_add_new_anon_rmap() must stop doing LRU additions again. Revive lru_cache_add_active_or_unevictable(). [hughd@google.com: fix shmem_unuse] [hughd@google.com: Add comments on the private use of -EAGAIN] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: Tejun Heo <tj@kernel.org> Cc: Vladimir Davydov <vdavydov@parallels.com> Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-09 05:19:20 +08:00
set_page_private(pages[i], (unsigned long)memcg);
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
}
for (i = 0; i < HPAGE_PMD_NR; i++) {
copy_user_highpage(pages[i], page + i,
haddr + PAGE_SIZE * i, vma);
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
__SetPageUptodate(pages[i]);
cond_resched();
}
mm: move all mmu notifier invocations to be done outside the PT lock In order to allow sleeping during mmu notifier calls, we need to avoid invoking them under the page table spinlock. This patch solves the problem by calling invalidate_page notification after releasing the lock (but before freeing the page itself), or by wrapping the page invalidation with calls to invalidate_range_begin and invalidate_range_end. To prevent accidental changes to the invalidate_range_end arguments after the call to invalidate_range_begin, the patch introduces a convention of saving the arguments in consistently named locals: unsigned long mmun_start; /* For mmu_notifiers */ unsigned long mmun_end; /* For mmu_notifiers */ ... mmun_start = ... mmun_end = ... mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); ... mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); The patch changes code to use this convention for all calls to mmu_notifier_invalidate_range_start/end, except those where the calls are close enough so that anyone who glances at the code can see the values aren't changing. This patchset is a preliminary step towards on-demand paging design to be added to the RDMA stack. Why do we want on-demand paging for Infiniband? Applications register memory with an RDMA adapter using system calls, and subsequently post IO operations that refer to the corresponding virtual addresses directly to HW. Until now, this was achieved by pinning the memory during the registration calls. The goal of on demand paging is to avoid pinning the pages of registered memory regions (MRs). This will allow users the same flexibility they get when swapping any other part of their processes address spaces. Instead of requiring the entire MR to fit in physical memory, we can allow the MR to be larger, and only fit the current working set in physical memory. Why should anyone care? What problems are users currently experiencing? This can make programming with RDMA much simpler. Today, developers that are working with more data than their RAM can hold need either to deregister and reregister memory regions throughout their process's life, or keep a single memory region and copy the data to it. On demand paging will allow these developers to register a single MR at the beginning of their process's life, and let the operating system manage which pages needs to be fetched at a given time. In the future, we might be able to provide a single memory access key for each process that would provide the entire process's address as one large memory region, and the developers wouldn't need to register memory regions at all. Is there any prospect that any other subsystems will utilise these infrastructural changes? If so, which and how, etc? As for other subsystems, I understand that XPMEM wanted to sleep in MMU notifiers, as Christoph Lameter wrote at http://lkml.indiana.edu/hypermail/linux/kernel/0802.1/0460.html and perhaps Andrea knows about other use cases. Scheduling in mmu notifications is required since we need to sync the hardware with the secondary page tables change. A TLB flush of an IO device is inherently slower than a CPU TLB flush, so our design works by sending the invalidation request to the device, and waiting for an interrupt before exiting the mmu notifier handler. Avi said: kvm may be a buyer. kvm::mmu_lock, which serializes guest page faults, also protects long operations such as destroying large ranges. It would be good to convert it into a spinlock, but as it is used inside mmu notifiers, this cannot be done. (there are alternatives, such as keeping the spinlock and using a generation counter to do the teardown in O(1), which is what the "may" is doing up there). [akpm@linux-foundation.orgpossible speed tweak in hugetlb_cow(), cleanups] Signed-off-by: Andrea Arcangeli <andrea@qumranet.com> Signed-off-by: Sagi Grimberg <sagig@mellanox.com> Signed-off-by: Haggai Eran <haggaie@mellanox.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Or Gerlitz <ogerlitz@mellanox.com> Cc: Haggai Eran <haggaie@mellanox.com> Cc: Shachar Raindel <raindel@mellanox.com> Cc: Liran Liss <liranl@mellanox.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Avi Kivity <avi@redhat.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09 07:33:33 +08:00
mmun_start = haddr;
mmun_end = haddr + HPAGE_PMD_SIZE;
mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
mm: move all mmu notifier invocations to be done outside the PT lock In order to allow sleeping during mmu notifier calls, we need to avoid invoking them under the page table spinlock. This patch solves the problem by calling invalidate_page notification after releasing the lock (but before freeing the page itself), or by wrapping the page invalidation with calls to invalidate_range_begin and invalidate_range_end. To prevent accidental changes to the invalidate_range_end arguments after the call to invalidate_range_begin, the patch introduces a convention of saving the arguments in consistently named locals: unsigned long mmun_start; /* For mmu_notifiers */ unsigned long mmun_end; /* For mmu_notifiers */ ... mmun_start = ... mmun_end = ... mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); ... mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); The patch changes code to use this convention for all calls to mmu_notifier_invalidate_range_start/end, except those where the calls are close enough so that anyone who glances at the code can see the values aren't changing. This patchset is a preliminary step towards on-demand paging design to be added to the RDMA stack. Why do we want on-demand paging for Infiniband? Applications register memory with an RDMA adapter using system calls, and subsequently post IO operations that refer to the corresponding virtual addresses directly to HW. Until now, this was achieved by pinning the memory during the registration calls. The goal of on demand paging is to avoid pinning the pages of registered memory regions (MRs). This will allow users the same flexibility they get when swapping any other part of their processes address spaces. Instead of requiring the entire MR to fit in physical memory, we can allow the MR to be larger, and only fit the current working set in physical memory. Why should anyone care? What problems are users currently experiencing? This can make programming with RDMA much simpler. Today, developers that are working with more data than their RAM can hold need either to deregister and reregister memory regions throughout their process's life, or keep a single memory region and copy the data to it. On demand paging will allow these developers to register a single MR at the beginning of their process's life, and let the operating system manage which pages needs to be fetched at a given time. In the future, we might be able to provide a single memory access key for each process that would provide the entire process's address as one large memory region, and the developers wouldn't need to register memory regions at all. Is there any prospect that any other subsystems will utilise these infrastructural changes? If so, which and how, etc? As for other subsystems, I understand that XPMEM wanted to sleep in MMU notifiers, as Christoph Lameter wrote at http://lkml.indiana.edu/hypermail/linux/kernel/0802.1/0460.html and perhaps Andrea knows about other use cases. Scheduling in mmu notifications is required since we need to sync the hardware with the secondary page tables change. A TLB flush of an IO device is inherently slower than a CPU TLB flush, so our design works by sending the invalidation request to the device, and waiting for an interrupt before exiting the mmu notifier handler. Avi said: kvm may be a buyer. kvm::mmu_lock, which serializes guest page faults, also protects long operations such as destroying large ranges. It would be good to convert it into a spinlock, but as it is used inside mmu notifiers, this cannot be done. (there are alternatives, such as keeping the spinlock and using a generation counter to do the teardown in O(1), which is what the "may" is doing up there). [akpm@linux-foundation.orgpossible speed tweak in hugetlb_cow(), cleanups] Signed-off-by: Andrea Arcangeli <andrea@qumranet.com> Signed-off-by: Sagi Grimberg <sagig@mellanox.com> Signed-off-by: Haggai Eran <haggaie@mellanox.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Or Gerlitz <ogerlitz@mellanox.com> Cc: Haggai Eran <haggaie@mellanox.com> Cc: Shachar Raindel <raindel@mellanox.com> Cc: Liran Liss <liranl@mellanox.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Avi Kivity <avi@redhat.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09 07:33:33 +08:00
vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
goto out_free_pages;
VM_BUG_ON_PAGE(!PageHead(page), page);
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
mm/mmu_notifier: avoid double notification when it is useless This patch only affects users of mmu_notifier->invalidate_range callback which are device drivers related to ATS/PASID, CAPI, IOMMUv2, SVM ... and it is an optimization for those users. Everyone else is unaffected by it. When clearing a pte/pmd we are given a choice to notify the event under the page table lock (notify version of *_clear_flush helpers do call the mmu_notifier_invalidate_range). But that notification is not necessary in all cases. This patch removes almost all cases where it is useless to have a call to mmu_notifier_invalidate_range before mmu_notifier_invalidate_range_end. It also adds documentation in all those cases explaining why. Below is a more in depth analysis of why this is fine to do this: For secondary TLB (non CPU TLB) like IOMMU TLB or device TLB (when device use thing like ATS/PASID to get the IOMMU to walk the CPU page table to access a process virtual address space). There is only 2 cases when you need to notify those secondary TLB while holding page table lock when clearing a pte/pmd: A) page backing address is free before mmu_notifier_invalidate_range_end B) a page table entry is updated to point to a new page (COW, write fault on zero page, __replace_page(), ...) Case A is obvious you do not want to take the risk for the device to write to a page that might now be used by something completely different. Case B is more subtle. For correctness it requires the following sequence to happen: - take page table lock - clear page table entry and notify (pmd/pte_huge_clear_flush_notify()) - set page table entry to point to new page If clearing the page table entry is not followed by a notify before setting the new pte/pmd value then you can break memory model like C11 or C++11 for the device. Consider the following scenario (device use a feature similar to ATS/ PASID): Two address addrA and addrB such that |addrA - addrB| >= PAGE_SIZE we assume they are write protected for COW (other case of B apply too). [Time N] ----------------------------------------------------------------- CPU-thread-0 {try to write to addrA} CPU-thread-1 {try to write to addrB} CPU-thread-2 {} CPU-thread-3 {} DEV-thread-0 {read addrA and populate device TLB} DEV-thread-2 {read addrB and populate device TLB} [Time N+1] --------------------------------------------------------------- CPU-thread-0 {COW_step0: {mmu_notifier_invalidate_range_start(addrA)}} CPU-thread-1 {COW_step0: {mmu_notifier_invalidate_range_start(addrB)}} CPU-thread-2 {} CPU-thread-3 {} DEV-thread-0 {} DEV-thread-2 {} [Time N+2] --------------------------------------------------------------- CPU-thread-0 {COW_step1: {update page table point to new page for addrA}} CPU-thread-1 {COW_step1: {update page table point to new page for addrB}} CPU-thread-2 {} CPU-thread-3 {} DEV-thread-0 {} DEV-thread-2 {} [Time N+3] --------------------------------------------------------------- CPU-thread-0 {preempted} CPU-thread-1 {preempted} CPU-thread-2 {write to addrA which is a write to new page} CPU-thread-3 {} DEV-thread-0 {} DEV-thread-2 {} [Time N+3] --------------------------------------------------------------- CPU-thread-0 {preempted} CPU-thread-1 {preempted} CPU-thread-2 {} CPU-thread-3 {write to addrB which is a write to new page} DEV-thread-0 {} DEV-thread-2 {} [Time N+4] --------------------------------------------------------------- CPU-thread-0 {preempted} CPU-thread-1 {COW_step3: {mmu_notifier_invalidate_range_end(addrB)}} CPU-thread-2 {} CPU-thread-3 {} DEV-thread-0 {} DEV-thread-2 {} [Time N+5] --------------------------------------------------------------- CPU-thread-0 {preempted} CPU-thread-1 {} CPU-thread-2 {} CPU-thread-3 {} DEV-thread-0 {read addrA from old page} DEV-thread-2 {read addrB from new page} So here because at time N+2 the clear page table entry was not pair with a notification to invalidate the secondary TLB, the device see the new value for addrB before seing the new value for addrA. This break total memory ordering for the device. When changing a pte to write protect or to point to a new write protected page with same content (KSM) it is ok to delay invalidate_range callback to mmu_notifier_invalidate_range_end() outside the page table lock. This is true even if the thread doing page table update is preempted right after releasing page table lock before calling mmu_notifier_invalidate_range_end Thanks to Andrea for thinking of a problematic scenario for COW. [jglisse@redhat.com: v2] Link: http://lkml.kernel.org/r/20171017031003.7481-2-jglisse@redhat.com Link: http://lkml.kernel.org/r/20170901173011.10745-1-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Nadav Amit <nadav.amit@gmail.com> Cc: Joerg Roedel <jroedel@suse.de> Cc: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Alistair Popple <alistair@popple.id.au> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Andrew Donnellan <andrew.donnellan@au1.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-16 09:34:07 +08:00
/*
* Leave pmd empty until pte is filled note we must notify here as
* concurrent CPU thread might write to new page before the call to
* mmu_notifier_invalidate_range_end() happens which can lead to a
* device seeing memory write in different order than CPU.
*
* See Documentation/vm/mmu_notifier.txt
*/
pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
pmd_populate(vma->vm_mm, &_pmd, pgtable);
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
pte_t entry;
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
entry = mk_pte(pages[i], vma->vm_page_prot);
entry = maybe_mkwrite(pte_mkdirty(entry), vma);
mm: memcontrol: rewrite charge API These patches rework memcg charge lifetime to integrate more naturally with the lifetime of user pages. This drastically simplifies the code and reduces charging and uncharging overhead. The most expensive part of charging and uncharging is the page_cgroup bit spinlock, which is removed entirely after this series. Here are the top-10 profile entries of a stress test that reads a 128G sparse file on a freshly booted box, without even a dedicated cgroup (i.e. executing in the root memcg). Before: 15.36% cat [kernel.kallsyms] [k] copy_user_generic_string 13.31% cat [kernel.kallsyms] [k] memset 11.48% cat [kernel.kallsyms] [k] do_mpage_readpage 4.23% cat [kernel.kallsyms] [k] get_page_from_freelist 2.38% cat [kernel.kallsyms] [k] put_page 2.32% cat [kernel.kallsyms] [k] __mem_cgroup_commit_charge 2.18% kswapd0 [kernel.kallsyms] [k] __mem_cgroup_uncharge_common 1.92% kswapd0 [kernel.kallsyms] [k] shrink_page_list 1.86% cat [kernel.kallsyms] [k] __radix_tree_lookup 1.62% cat [kernel.kallsyms] [k] __pagevec_lru_add_fn After: 15.67% cat [kernel.kallsyms] [k] copy_user_generic_string 13.48% cat [kernel.kallsyms] [k] memset 11.42% cat [kernel.kallsyms] [k] do_mpage_readpage 3.98% cat [kernel.kallsyms] [k] get_page_from_freelist 2.46% cat [kernel.kallsyms] [k] put_page 2.13% kswapd0 [kernel.kallsyms] [k] shrink_page_list 1.88% cat [kernel.kallsyms] [k] __radix_tree_lookup 1.67% cat [kernel.kallsyms] [k] __pagevec_lru_add_fn 1.39% kswapd0 [kernel.kallsyms] [k] free_pcppages_bulk 1.30% cat [kernel.kallsyms] [k] kfree As you can see, the memcg footprint has shrunk quite a bit. text data bss dec hex filename 37970 9892 400 48262 bc86 mm/memcontrol.o.old 35239 9892 400 45531 b1db mm/memcontrol.o This patch (of 4): The memcg charge API charges pages before they are rmapped - i.e. have an actual "type" - and so every callsite needs its own set of charge and uncharge functions to know what type is being operated on. Worse, uncharge has to happen from a context that is still type-specific, rather than at the end of the page's lifetime with exclusive access, and so requires a lot of synchronization. Rewrite the charge API to provide a generic set of try_charge(), commit_charge() and cancel_charge() transaction operations, much like what's currently done for swap-in: mem_cgroup_try_charge() attempts to reserve a charge, reclaiming pages from the memcg if necessary. mem_cgroup_commit_charge() commits the page to the charge once it has a valid page->mapping and PageAnon() reliably tells the type. mem_cgroup_cancel_charge() aborts the transaction. This reduces the charge API and enables subsequent patches to drastically simplify uncharging. As pages need to be committed after rmap is established but before they are added to the LRU, page_add_new_anon_rmap() must stop doing LRU additions again. Revive lru_cache_add_active_or_unevictable(). [hughd@google.com: fix shmem_unuse] [hughd@google.com: Add comments on the private use of -EAGAIN] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: Tejun Heo <tj@kernel.org> Cc: Vladimir Davydov <vdavydov@parallels.com> Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-09 05:19:20 +08:00
memcg = (void *)page_private(pages[i]);
set_page_private(pages[i], 0);
page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
memcg: adjust to support new THP refcounting As with rmap, with new refcounting we cannot rely on PageTransHuge() to check if we need to charge size of huge page form the cgroup. We need to get information from caller to know whether it was mapped with PMD or PTE. We do uncharge when last reference on the page gone. At that point if we see PageTransHuge() it means we need to unchange whole huge page. The tricky part is partial unmap -- when we try to unmap part of huge page. We don't do a special handing of this situation, meaning we don't uncharge the part of huge page unless last user is gone or split_huge_page() is triggered. In case of cgroup memory pressure happens the partial unmapped page will be split through shrinker. This should be good enough. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:52:20 +08:00
mem_cgroup_commit_charge(pages[i], memcg, false, false);
mm: memcontrol: rewrite charge API These patches rework memcg charge lifetime to integrate more naturally with the lifetime of user pages. This drastically simplifies the code and reduces charging and uncharging overhead. The most expensive part of charging and uncharging is the page_cgroup bit spinlock, which is removed entirely after this series. Here are the top-10 profile entries of a stress test that reads a 128G sparse file on a freshly booted box, without even a dedicated cgroup (i.e. executing in the root memcg). Before: 15.36% cat [kernel.kallsyms] [k] copy_user_generic_string 13.31% cat [kernel.kallsyms] [k] memset 11.48% cat [kernel.kallsyms] [k] do_mpage_readpage 4.23% cat [kernel.kallsyms] [k] get_page_from_freelist 2.38% cat [kernel.kallsyms] [k] put_page 2.32% cat [kernel.kallsyms] [k] __mem_cgroup_commit_charge 2.18% kswapd0 [kernel.kallsyms] [k] __mem_cgroup_uncharge_common 1.92% kswapd0 [kernel.kallsyms] [k] shrink_page_list 1.86% cat [kernel.kallsyms] [k] __radix_tree_lookup 1.62% cat [kernel.kallsyms] [k] __pagevec_lru_add_fn After: 15.67% cat [kernel.kallsyms] [k] copy_user_generic_string 13.48% cat [kernel.kallsyms] [k] memset 11.42% cat [kernel.kallsyms] [k] do_mpage_readpage 3.98% cat [kernel.kallsyms] [k] get_page_from_freelist 2.46% cat [kernel.kallsyms] [k] put_page 2.13% kswapd0 [kernel.kallsyms] [k] shrink_page_list 1.88% cat [kernel.kallsyms] [k] __radix_tree_lookup 1.67% cat [kernel.kallsyms] [k] __pagevec_lru_add_fn 1.39% kswapd0 [kernel.kallsyms] [k] free_pcppages_bulk 1.30% cat [kernel.kallsyms] [k] kfree As you can see, the memcg footprint has shrunk quite a bit. text data bss dec hex filename 37970 9892 400 48262 bc86 mm/memcontrol.o.old 35239 9892 400 45531 b1db mm/memcontrol.o This patch (of 4): The memcg charge API charges pages before they are rmapped - i.e. have an actual "type" - and so every callsite needs its own set of charge and uncharge functions to know what type is being operated on. Worse, uncharge has to happen from a context that is still type-specific, rather than at the end of the page's lifetime with exclusive access, and so requires a lot of synchronization. Rewrite the charge API to provide a generic set of try_charge(), commit_charge() and cancel_charge() transaction operations, much like what's currently done for swap-in: mem_cgroup_try_charge() attempts to reserve a charge, reclaiming pages from the memcg if necessary. mem_cgroup_commit_charge() commits the page to the charge once it has a valid page->mapping and PageAnon() reliably tells the type. mem_cgroup_cancel_charge() aborts the transaction. This reduces the charge API and enables subsequent patches to drastically simplify uncharging. As pages need to be committed after rmap is established but before they are added to the LRU, page_add_new_anon_rmap() must stop doing LRU additions again. Revive lru_cache_add_active_or_unevictable(). [hughd@google.com: fix shmem_unuse] [hughd@google.com: Add comments on the private use of -EAGAIN] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: Tejun Heo <tj@kernel.org> Cc: Vladimir Davydov <vdavydov@parallels.com> Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-09 05:19:20 +08:00
lru_cache_add_active_or_unevictable(pages[i], vma);
vmf->pte = pte_offset_map(&_pmd, haddr);
VM_BUG_ON(!pte_none(*vmf->pte));
set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
pte_unmap(vmf->pte);
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
}
kfree(pages);
smp_wmb(); /* make pte visible before pmd */
pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
page_remove_rmap(page, true);
spin_unlock(vmf->ptl);
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
mm/mmu_notifier: avoid call to invalidate_range() in range_end() This is an optimization patch that only affect mmu_notifier users which rely on the invalidate_range() callback. This patch avoids calling that callback twice in a row from inside __mmu_notifier_invalidate_range_end Existing pattern (before this patch): mmu_notifier_invalidate_range_start() pte/pmd/pud_clear_flush_notify() mmu_notifier_invalidate_range() mmu_notifier_invalidate_range_end() mmu_notifier_invalidate_range() New pattern (after this patch): mmu_notifier_invalidate_range_start() pte/pmd/pud_clear_flush_notify() mmu_notifier_invalidate_range() mmu_notifier_invalidate_range_only_end() We call the invalidate_range callback after clearing the page table under the page table lock and we skip the call to invalidate_range inside the __mmu_notifier_invalidate_range_end() function. Idea from Andrea Arcangeli Link: http://lkml.kernel.org/r/20171017031003.7481-3-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Joerg Roedel <jroedel@suse.de> Cc: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Alistair Popple <alistair@popple.id.au> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Andrew Donnellan <andrew.donnellan@au1.ibm.com> Cc: Nadav Amit <nadav.amit@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-16 09:34:11 +08:00
/*
* No need to double call mmu_notifier->invalidate_range() callback as
* the above pmdp_huge_clear_flush_notify() did already call it.
*/
mmu_notifier_invalidate_range_only_end(vma->vm_mm, mmun_start,
mmun_end);
mm: move all mmu notifier invocations to be done outside the PT lock In order to allow sleeping during mmu notifier calls, we need to avoid invoking them under the page table spinlock. This patch solves the problem by calling invalidate_page notification after releasing the lock (but before freeing the page itself), or by wrapping the page invalidation with calls to invalidate_range_begin and invalidate_range_end. To prevent accidental changes to the invalidate_range_end arguments after the call to invalidate_range_begin, the patch introduces a convention of saving the arguments in consistently named locals: unsigned long mmun_start; /* For mmu_notifiers */ unsigned long mmun_end; /* For mmu_notifiers */ ... mmun_start = ... mmun_end = ... mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); ... mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); The patch changes code to use this convention for all calls to mmu_notifier_invalidate_range_start/end, except those where the calls are close enough so that anyone who glances at the code can see the values aren't changing. This patchset is a preliminary step towards on-demand paging design to be added to the RDMA stack. Why do we want on-demand paging for Infiniband? Applications register memory with an RDMA adapter using system calls, and subsequently post IO operations that refer to the corresponding virtual addresses directly to HW. Until now, this was achieved by pinning the memory during the registration calls. The goal of on demand paging is to avoid pinning the pages of registered memory regions (MRs). This will allow users the same flexibility they get when swapping any other part of their processes address spaces. Instead of requiring the entire MR to fit in physical memory, we can allow the MR to be larger, and only fit the current working set in physical memory. Why should anyone care? What problems are users currently experiencing? This can make programming with RDMA much simpler. Today, developers that are working with more data than their RAM can hold need either to deregister and reregister memory regions throughout their process's life, or keep a single memory region and copy the data to it. On demand paging will allow these developers to register a single MR at the beginning of their process's life, and let the operating system manage which pages needs to be fetched at a given time. In the future, we might be able to provide a single memory access key for each process that would provide the entire process's address as one large memory region, and the developers wouldn't need to register memory regions at all. Is there any prospect that any other subsystems will utilise these infrastructural changes? If so, which and how, etc? As for other subsystems, I understand that XPMEM wanted to sleep in MMU notifiers, as Christoph Lameter wrote at http://lkml.indiana.edu/hypermail/linux/kernel/0802.1/0460.html and perhaps Andrea knows about other use cases. Scheduling in mmu notifications is required since we need to sync the hardware with the secondary page tables change. A TLB flush of an IO device is inherently slower than a CPU TLB flush, so our design works by sending the invalidation request to the device, and waiting for an interrupt before exiting the mmu notifier handler. Avi said: kvm may be a buyer. kvm::mmu_lock, which serializes guest page faults, also protects long operations such as destroying large ranges. It would be good to convert it into a spinlock, but as it is used inside mmu notifiers, this cannot be done. (there are alternatives, such as keeping the spinlock and using a generation counter to do the teardown in O(1), which is what the "may" is doing up there). [akpm@linux-foundation.orgpossible speed tweak in hugetlb_cow(), cleanups] Signed-off-by: Andrea Arcangeli <andrea@qumranet.com> Signed-off-by: Sagi Grimberg <sagig@mellanox.com> Signed-off-by: Haggai Eran <haggaie@mellanox.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Or Gerlitz <ogerlitz@mellanox.com> Cc: Haggai Eran <haggaie@mellanox.com> Cc: Shachar Raindel <raindel@mellanox.com> Cc: Liran Liss <liranl@mellanox.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Avi Kivity <avi@redhat.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09 07:33:33 +08:00
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
ret |= VM_FAULT_WRITE;
put_page(page);
out:
return ret;
out_free_pages:
spin_unlock(vmf->ptl);
mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
for (i = 0; i < HPAGE_PMD_NR; i++) {
mm: memcontrol: rewrite charge API These patches rework memcg charge lifetime to integrate more naturally with the lifetime of user pages. This drastically simplifies the code and reduces charging and uncharging overhead. The most expensive part of charging and uncharging is the page_cgroup bit spinlock, which is removed entirely after this series. Here are the top-10 profile entries of a stress test that reads a 128G sparse file on a freshly booted box, without even a dedicated cgroup (i.e. executing in the root memcg). Before: 15.36% cat [kernel.kallsyms] [k] copy_user_generic_string 13.31% cat [kernel.kallsyms] [k] memset 11.48% cat [kernel.kallsyms] [k] do_mpage_readpage 4.23% cat [kernel.kallsyms] [k] get_page_from_freelist 2.38% cat [kernel.kallsyms] [k] put_page 2.32% cat [kernel.kallsyms] [k] __mem_cgroup_commit_charge 2.18% kswapd0 [kernel.kallsyms] [k] __mem_cgroup_uncharge_common 1.92% kswapd0 [kernel.kallsyms] [k] shrink_page_list 1.86% cat [kernel.kallsyms] [k] __radix_tree_lookup 1.62% cat [kernel.kallsyms] [k] __pagevec_lru_add_fn After: 15.67% cat [kernel.kallsyms] [k] copy_user_generic_string 13.48% cat [kernel.kallsyms] [k] memset 11.42% cat [kernel.kallsyms] [k] do_mpage_readpage 3.98% cat [kernel.kallsyms] [k] get_page_from_freelist 2.46% cat [kernel.kallsyms] [k] put_page 2.13% kswapd0 [kernel.kallsyms] [k] shrink_page_list 1.88% cat [kernel.kallsyms] [k] __radix_tree_lookup 1.67% cat [kernel.kallsyms] [k] __pagevec_lru_add_fn 1.39% kswapd0 [kernel.kallsyms] [k] free_pcppages_bulk 1.30% cat [kernel.kallsyms] [k] kfree As you can see, the memcg footprint has shrunk quite a bit. text data bss dec hex filename 37970 9892 400 48262 bc86 mm/memcontrol.o.old 35239 9892 400 45531 b1db mm/memcontrol.o This patch (of 4): The memcg charge API charges pages before they are rmapped - i.e. have an actual "type" - and so every callsite needs its own set of charge and uncharge functions to know what type is being operated on. Worse, uncharge has to happen from a context that is still type-specific, rather than at the end of the page's lifetime with exclusive access, and so requires a lot of synchronization. Rewrite the charge API to provide a generic set of try_charge(), commit_charge() and cancel_charge() transaction operations, much like what's currently done for swap-in: mem_cgroup_try_charge() attempts to reserve a charge, reclaiming pages from the memcg if necessary. mem_cgroup_commit_charge() commits the page to the charge once it has a valid page->mapping and PageAnon() reliably tells the type. mem_cgroup_cancel_charge() aborts the transaction. This reduces the charge API and enables subsequent patches to drastically simplify uncharging. As pages need to be committed after rmap is established but before they are added to the LRU, page_add_new_anon_rmap() must stop doing LRU additions again. Revive lru_cache_add_active_or_unevictable(). [hughd@google.com: fix shmem_unuse] [hughd@google.com: Add comments on the private use of -EAGAIN] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: Tejun Heo <tj@kernel.org> Cc: Vladimir Davydov <vdavydov@parallels.com> Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-09 05:19:20 +08:00
memcg = (void *)page_private(pages[i]);
set_page_private(pages[i], 0);
memcg: adjust to support new THP refcounting As with rmap, with new refcounting we cannot rely on PageTransHuge() to check if we need to charge size of huge page form the cgroup. We need to get information from caller to know whether it was mapped with PMD or PTE. We do uncharge when last reference on the page gone. At that point if we see PageTransHuge() it means we need to unchange whole huge page. The tricky part is partial unmap -- when we try to unmap part of huge page. We don't do a special handing of this situation, meaning we don't uncharge the part of huge page unless last user is gone or split_huge_page() is triggered. In case of cgroup memory pressure happens the partial unmapped page will be split through shrinker. This should be good enough. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:52:20 +08:00
mem_cgroup_cancel_charge(pages[i], memcg, false);
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
put_page(pages[i]);
}
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
kfree(pages);
goto out;
}
int do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
{
struct vm_area_struct *vma = vmf->vma;
struct page *page = NULL, *new_page;
mm: memcontrol: rewrite charge API These patches rework memcg charge lifetime to integrate more naturally with the lifetime of user pages. This drastically simplifies the code and reduces charging and uncharging overhead. The most expensive part of charging and uncharging is the page_cgroup bit spinlock, which is removed entirely after this series. Here are the top-10 profile entries of a stress test that reads a 128G sparse file on a freshly booted box, without even a dedicated cgroup (i.e. executing in the root memcg). Before: 15.36% cat [kernel.kallsyms] [k] copy_user_generic_string 13.31% cat [kernel.kallsyms] [k] memset 11.48% cat [kernel.kallsyms] [k] do_mpage_readpage 4.23% cat [kernel.kallsyms] [k] get_page_from_freelist 2.38% cat [kernel.kallsyms] [k] put_page 2.32% cat [kernel.kallsyms] [k] __mem_cgroup_commit_charge 2.18% kswapd0 [kernel.kallsyms] [k] __mem_cgroup_uncharge_common 1.92% kswapd0 [kernel.kallsyms] [k] shrink_page_list 1.86% cat [kernel.kallsyms] [k] __radix_tree_lookup 1.62% cat [kernel.kallsyms] [k] __pagevec_lru_add_fn After: 15.67% cat [kernel.kallsyms] [k] copy_user_generic_string 13.48% cat [kernel.kallsyms] [k] memset 11.42% cat [kernel.kallsyms] [k] do_mpage_readpage 3.98% cat [kernel.kallsyms] [k] get_page_from_freelist 2.46% cat [kernel.kallsyms] [k] put_page 2.13% kswapd0 [kernel.kallsyms] [k] shrink_page_list 1.88% cat [kernel.kallsyms] [k] __radix_tree_lookup 1.67% cat [kernel.kallsyms] [k] __pagevec_lru_add_fn 1.39% kswapd0 [kernel.kallsyms] [k] free_pcppages_bulk 1.30% cat [kernel.kallsyms] [k] kfree As you can see, the memcg footprint has shrunk quite a bit. text data bss dec hex filename 37970 9892 400 48262 bc86 mm/memcontrol.o.old 35239 9892 400 45531 b1db mm/memcontrol.o This patch (of 4): The memcg charge API charges pages before they are rmapped - i.e. have an actual "type" - and so every callsite needs its own set of charge and uncharge functions to know what type is being operated on. Worse, uncharge has to happen from a context that is still type-specific, rather than at the end of the page's lifetime with exclusive access, and so requires a lot of synchronization. Rewrite the charge API to provide a generic set of try_charge(), commit_charge() and cancel_charge() transaction operations, much like what's currently done for swap-in: mem_cgroup_try_charge() attempts to reserve a charge, reclaiming pages from the memcg if necessary. mem_cgroup_commit_charge() commits the page to the charge once it has a valid page->mapping and PageAnon() reliably tells the type. mem_cgroup_cancel_charge() aborts the transaction. This reduces the charge API and enables subsequent patches to drastically simplify uncharging. As pages need to be committed after rmap is established but before they are added to the LRU, page_add_new_anon_rmap() must stop doing LRU additions again. Revive lru_cache_add_active_or_unevictable(). [hughd@google.com: fix shmem_unuse] [hughd@google.com: Add comments on the private use of -EAGAIN] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: Tejun Heo <tj@kernel.org> Cc: Vladimir Davydov <vdavydov@parallels.com> Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-09 05:19:20 +08:00
struct mem_cgroup *memcg;
unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
mm: move all mmu notifier invocations to be done outside the PT lock In order to allow sleeping during mmu notifier calls, we need to avoid invoking them under the page table spinlock. This patch solves the problem by calling invalidate_page notification after releasing the lock (but before freeing the page itself), or by wrapping the page invalidation with calls to invalidate_range_begin and invalidate_range_end. To prevent accidental changes to the invalidate_range_end arguments after the call to invalidate_range_begin, the patch introduces a convention of saving the arguments in consistently named locals: unsigned long mmun_start; /* For mmu_notifiers */ unsigned long mmun_end; /* For mmu_notifiers */ ... mmun_start = ... mmun_end = ... mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); ... mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); The patch changes code to use this convention for all calls to mmu_notifier_invalidate_range_start/end, except those where the calls are close enough so that anyone who glances at the code can see the values aren't changing. This patchset is a preliminary step towards on-demand paging design to be added to the RDMA stack. Why do we want on-demand paging for Infiniband? Applications register memory with an RDMA adapter using system calls, and subsequently post IO operations that refer to the corresponding virtual addresses directly to HW. Until now, this was achieved by pinning the memory during the registration calls. The goal of on demand paging is to avoid pinning the pages of registered memory regions (MRs). This will allow users the same flexibility they get when swapping any other part of their processes address spaces. Instead of requiring the entire MR to fit in physical memory, we can allow the MR to be larger, and only fit the current working set in physical memory. Why should anyone care? What problems are users currently experiencing? This can make programming with RDMA much simpler. Today, developers that are working with more data than their RAM can hold need either to deregister and reregister memory regions throughout their process's life, or keep a single memory region and copy the data to it. On demand paging will allow these developers to register a single MR at the beginning of their process's life, and let the operating system manage which pages needs to be fetched at a given time. In the future, we might be able to provide a single memory access key for each process that would provide the entire process's address as one large memory region, and the developers wouldn't need to register memory regions at all. Is there any prospect that any other subsystems will utilise these infrastructural changes? If so, which and how, etc? As for other subsystems, I understand that XPMEM wanted to sleep in MMU notifiers, as Christoph Lameter wrote at http://lkml.indiana.edu/hypermail/linux/kernel/0802.1/0460.html and perhaps Andrea knows about other use cases. Scheduling in mmu notifications is required since we need to sync the hardware with the secondary page tables change. A TLB flush of an IO device is inherently slower than a CPU TLB flush, so our design works by sending the invalidation request to the device, and waiting for an interrupt before exiting the mmu notifier handler. Avi said: kvm may be a buyer. kvm::mmu_lock, which serializes guest page faults, also protects long operations such as destroying large ranges. It would be good to convert it into a spinlock, but as it is used inside mmu notifiers, this cannot be done. (there are alternatives, such as keeping the spinlock and using a generation counter to do the teardown in O(1), which is what the "may" is doing up there). [akpm@linux-foundation.orgpossible speed tweak in hugetlb_cow(), cleanups] Signed-off-by: Andrea Arcangeli <andrea@qumranet.com> Signed-off-by: Sagi Grimberg <sagig@mellanox.com> Signed-off-by: Haggai Eran <haggaie@mellanox.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Or Gerlitz <ogerlitz@mellanox.com> Cc: Haggai Eran <haggaie@mellanox.com> Cc: Shachar Raindel <raindel@mellanox.com> Cc: Liran Liss <liranl@mellanox.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Avi Kivity <avi@redhat.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09 07:33:33 +08:00
unsigned long mmun_start; /* For mmu_notifiers */
unsigned long mmun_end; /* For mmu_notifiers */
mm, memcg: sync allocation and memcg charge gfp flags for THP memcg currently uses hardcoded GFP_TRANSHUGE gfp flags for all THP charges. THP allocations, however, might be using different flags depending on /sys/kernel/mm/transparent_hugepage/{,khugepaged/}defrag and the current allocation context. The primary difference is that defrag configured to "madvise" value will clear __GFP_WAIT flag from the core gfp mask to make the allocation lighter for all mappings which are not backed by VM_HUGEPAGE vmas. If memcg charge path ignores this fact we will get light allocation but the a potential memcg reclaim would kill the whole point of the configuration. Fix the mismatch by providing the same gfp mask used for the allocation to the charge functions. This is quite easy for all paths except for hugepaged kernel thread with !CONFIG_NUMA which is doing a pre-allocation long before the allocated page is used in collapse_huge_page via khugepaged_alloc_page. To prevent from cluttering the whole code path from khugepaged_do_scan we simply return the current flags as per khugepaged_defrag() value which might have changed since the preallocation. If somebody changed the value of the knob we would charge differently but this shouldn't happen often and it is definitely not critical because it would only lead to a reduced success rate of one-off THP promotion. [akpm@linux-foundation.org: fix weird code layout while we're there] [rientjes@google.com: clean up around alloc_hugepage_gfpmask()] Signed-off-by: Michal Hocko <mhocko@suse.cz> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-16 07:13:29 +08:00
gfp_t huge_gfp; /* for allocation and charge */
int ret = 0;
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
VM_BUG_ON_VMA(!vma->anon_vma, vma);
if (is_huge_zero_pmd(orig_pmd))
goto alloc;
spin_lock(vmf->ptl);
if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
goto out_unlock;
page = pmd_page(orig_pmd);
VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
mm, thp: adjust conditions when we can reuse the page on WP fault With new refcounting we will be able map the same compound page with PTEs and PMDs. It requires adjustment to conditions when we can reuse the page on write-protection fault. For PTE fault we can't reuse the page if it's part of huge page. For PMD we can only reuse the page if nobody else maps the huge page or it's part. We can do it by checking page_mapcount() on each sub-page, but it's expensive. The cheaper way is to check page_count() to be equal 1: every mapcount takes page reference, so this way we can guarantee, that the PMD is the only mapping. This approach can give false negative if somebody pinned the page, but that doesn't affect correctness. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Jerome Marchand <jmarchan@redhat.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:52:24 +08:00
/*
* We can only reuse the page if nobody else maps the huge page or it's
mm: thp: calculate the mapcount correctly for THP pages during WP faults This will provide fully accuracy to the mapcount calculation in the write protect faults, so page pinning will not get broken by false positive copy-on-writes. total_mapcount() isn't the right calculation needed in reuse_swap_page(), so this introduces a page_trans_huge_mapcount() that is effectively the full accurate return value for page_mapcount() if dealing with Transparent Hugepages, however we only use the page_trans_huge_mapcount() during COW faults where it strictly needed, due to its higher runtime cost. This also provide at practical zero cost the total_mapcount information which is needed to know if we can still relocate the page anon_vma to the local vma. If page_trans_huge_mapcount() returns 1 we can reuse the page no matter if it's a pte or a pmd_trans_huge triggering the fault, but we can only relocate the page anon_vma to the local vma->anon_vma if we're sure it's only this "vma" mapping the whole THP physical range. Kirill A. Shutemov discovered the problem with moving the page anon_vma to the local vma->anon_vma in a previous version of this patch and another problem in the way page_move_anon_rmap() was called. Andrew Morton discovered that CONFIG_SWAP=n wouldn't build in a previous version, because reuse_swap_page must be a macro to call page_trans_huge_mapcount from swap.h, so this uses a macro again instead of an inline function. With this change at least it's a less dangerous usage than it was before, because "page" is used only once now, while with the previous code reuse_swap_page(page++) would have called page_mapcount on page+1 and it would have increased page twice instead of just once. Dean Luick noticed an uninitialized variable that could result in a rmap inefficiency for the non-THP case in a previous version. Mike Marciniszyn said: : Our RDMA tests are seeing an issue with memory locking that bisects to : commit 61f5d698cc97 ("mm: re-enable THP") : : The test program registers two rather large MRs (512M) and RDMA : writes data to a passive peer using the first and RDMA reads it back : into the second MR and compares that data. The sizes are chosen randomly : between 0 and 1024 bytes. : : The test will get through a few (<= 4 iterations) and then gets a : compare error. : : Tracing indicates the kernel logical addresses associated with the individual : pages at registration ARE correct , the data in the "RDMA read response only" : packets ARE correct. : : The "corruption" occurs when the packet crosse two pages that are not physically : contiguous. The second page reads back as zero in the program. : : It looks like the user VA at the point of the compare error no longer points to : the same physical address as was registered. : : This patch totally resolves the issue! Link: http://lkml.kernel.org/r/1462547040-1737-2-git-send-email-aarcange@redhat.com Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Reviewed-by: "Kirill A. Shutemov" <kirill@shutemov.name> Reviewed-by: Dean Luick <dean.luick@intel.com> Tested-by: Alex Williamson <alex.williamson@redhat.com> Tested-by: Mike Marciniszyn <mike.marciniszyn@intel.com> Tested-by: Josh Collier <josh.d.collier@intel.com> Cc: Marc Haber <mh+linux-kernel@zugschlus.de> Cc: <stable@vger.kernel.org> [4.5] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-13 06:42:25 +08:00
* part.
mm, thp: adjust conditions when we can reuse the page on WP fault With new refcounting we will be able map the same compound page with PTEs and PMDs. It requires adjustment to conditions when we can reuse the page on write-protection fault. For PTE fault we can't reuse the page if it's part of huge page. For PMD we can only reuse the page if nobody else maps the huge page or it's part. We can do it by checking page_mapcount() on each sub-page, but it's expensive. The cheaper way is to check page_count() to be equal 1: every mapcount takes page reference, so this way we can guarantee, that the PMD is the only mapping. This approach can give false negative if somebody pinned the page, but that doesn't affect correctness. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Jerome Marchand <jmarchan@redhat.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:52:24 +08:00
*/
if (!trylock_page(page)) {
get_page(page);
spin_unlock(vmf->ptl);
lock_page(page);
spin_lock(vmf->ptl);
if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
unlock_page(page);
put_page(page);
goto out_unlock;
}
put_page(page);
}
if (reuse_swap_page(page, NULL)) {
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
pmd_t entry;
entry = pmd_mkyoung(orig_pmd);
entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
ret |= VM_FAULT_WRITE;
unlock_page(page);
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
goto out_unlock;
}
unlock_page(page);
mm: drop tail page refcounting Tail page refcounting is utterly complicated and painful to support. It uses ->_mapcount on tail pages to store how many times this page is pinned. get_page() bumps ->_mapcount on tail page in addition to ->_count on head. This information is required by split_huge_page() to be able to distribute pins from head of compound page to tails during the split. We will need ->_mapcount to account PTE mappings of subpages of the compound page. We eliminate need in current meaning of ->_mapcount in tail pages by forbidding split entirely if the page is pinned. The only user of tail page refcounting is THP which is marked BROKEN for now. Let's drop all this mess. It makes get_page() and put_page() much simpler. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:52:56 +08:00
get_page(page);
spin_unlock(vmf->ptl);
alloc:
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
if (transparent_hugepage_enabled(vma) &&
!transparent_hugepage_debug_cow()) {
mm: thp: set THP defrag by default to madvise and add a stall-free defrag option THP defrag is enabled by default to direct reclaim/compact but not wake kswapd in the event of a THP allocation failure. The problem is that THP allocation requests potentially enter reclaim/compaction. This potentially incurs a severe stall that is not guaranteed to be offset by reduced TLB misses. While there has been considerable effort to reduce the impact of reclaim/compaction, it is still a high cost and workloads that should fit in memory fail to do so. Specifically, a simple anon/file streaming workload will enter direct reclaim on NUMA at least even though the working set size is 80% of RAM. It's been years and it's time to throw in the towel. First, this patch defines THP defrag as follows; madvise: A failed allocation will direct reclaim/compact if the application requests it never: Neither reclaim/compact nor wake kswapd defer: A failed allocation will wake kswapd/kcompactd always: A failed allocation will direct reclaim/compact (historical behaviour) khugepaged defrag will enter direct/reclaim but not wake kswapd. Next it sets the default defrag option to be "madvise" to only enter direct reclaim/compaction for applications that specifically requested it. Lastly, it removes a check from the page allocator slowpath that is related to __GFP_THISNODE to allow "defer" to work. The callers that really cares are slub/slab and they are updated accordingly. The slab one may be surprising because it also corrects a comment as kswapd was never woken up by that path. This means that a THP fault will no longer stall for most applications by default and the ideal for most users that get THP if they are immediately available. There are still options for users that prefer a stall at startup of a new application by either restoring historical behaviour with "always" or pick a half-way point with "defer" where kswapd does some of the work in the background and wakes kcompactd if necessary. THP defrag for khugepaged remains enabled and will enter direct/reclaim but no wakeup kswapd or kcompactd. After this patch a THP allocation failure will quickly fallback and rely on khugepaged to recover the situation at some time in the future. In some cases, this will reduce THP usage but the benefit of THP is hard to measure and not a universal win where as a stall to reclaim/compaction is definitely measurable and can be painful. The first test for this is using "usemem" to read a large file and write a large anonymous mapping (to avoid the zero page) multiple times. The total size of the mappings is 80% of RAM and the benchmark simply measures how long it takes to complete. It uses multiple threads to see if that is a factor. On UMA, the performance is almost identical so is not reported but on NUMA, we see this usemem 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 Amean System-1 102.86 ( 0.00%) 46.81 ( 54.50%) Amean System-4 37.85 ( 0.00%) 34.02 ( 10.12%) Amean System-7 48.12 ( 0.00%) 46.89 ( 2.56%) Amean System-12 51.98 ( 0.00%) 56.96 ( -9.57%) Amean System-21 80.16 ( 0.00%) 79.05 ( 1.39%) Amean System-30 110.71 ( 0.00%) 107.17 ( 3.20%) Amean System-48 127.98 ( 0.00%) 124.83 ( 2.46%) Amean Elapsd-1 185.84 ( 0.00%) 105.51 ( 43.23%) Amean Elapsd-4 26.19 ( 0.00%) 25.58 ( 2.33%) Amean Elapsd-7 21.65 ( 0.00%) 21.62 ( 0.16%) Amean Elapsd-12 18.58 ( 0.00%) 17.94 ( 3.43%) Amean Elapsd-21 17.53 ( 0.00%) 16.60 ( 5.33%) Amean Elapsd-30 17.45 ( 0.00%) 17.13 ( 1.84%) Amean Elapsd-48 15.40 ( 0.00%) 15.27 ( 0.82%) For a single thread, the benchmark completes 43.23% faster with this patch applied with smaller benefits as the thread increases. Similar, notice the large reduction in most cases in system CPU usage. The overall CPU time is 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 User 10357.65 10438.33 System 3988.88 3543.94 Elapsed 2203.01 1634.41 Which is substantial. Now, the reclaim figures 4.4.0 4.4.0 kcompactd-v1r1nodefrag-v1r3 Minor Faults 128458477 278352931 Major Faults 2174976 225 Swap Ins 16904701 0 Swap Outs 17359627 0 Allocation stalls 43611 0 DMA allocs 0 0 DMA32 allocs 19832646 19448017 Normal allocs 614488453 580941839 Movable allocs 0 0 Direct pages scanned 24163800 0 Kswapd pages scanned 0 0 Kswapd pages reclaimed 0 0 Direct pages reclaimed 20691346 0 Compaction stalls 42263 0 Compaction success 938 0 Compaction failures 41325 0 This patch eliminates almost all swapping and direct reclaim activity. There is still overhead but it's from NUMA balancing which does not identify that it's pointless trying to do anything with this workload. I also tried the thpscale benchmark which forces a corner case where compaction can be used heavily and measures the latency of whether base or huge pages were used thpscale Fault Latencies 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 Amean fault-base-1 5288.84 ( 0.00%) 2817.12 ( 46.73%) Amean fault-base-3 6365.53 ( 0.00%) 3499.11 ( 45.03%) Amean fault-base-5 6526.19 ( 0.00%) 4363.06 ( 33.15%) Amean fault-base-7 7142.25 ( 0.00%) 4858.08 ( 31.98%) Amean fault-base-12 13827.64 ( 0.00%) 10292.11 ( 25.57%) Amean fault-base-18 18235.07 ( 0.00%) 13788.84 ( 24.38%) Amean fault-base-24 21597.80 ( 0.00%) 24388.03 (-12.92%) Amean fault-base-30 26754.15 ( 0.00%) 19700.55 ( 26.36%) Amean fault-base-32 26784.94 ( 0.00%) 19513.57 ( 27.15%) Amean fault-huge-1 4223.96 ( 0.00%) 2178.57 ( 48.42%) Amean fault-huge-3 2194.77 ( 0.00%) 2149.74 ( 2.05%) Amean fault-huge-5 2569.60 ( 0.00%) 2346.95 ( 8.66%) Amean fault-huge-7 3612.69 ( 0.00%) 2997.70 ( 17.02%) Amean fault-huge-12 3301.75 ( 0.00%) 6727.02 (-103.74%) Amean fault-huge-18 6696.47 ( 0.00%) 6685.72 ( 0.16%) Amean fault-huge-24 8000.72 ( 0.00%) 9311.43 (-16.38%) Amean fault-huge-30 13305.55 ( 0.00%) 9750.45 ( 26.72%) Amean fault-huge-32 9981.71 ( 0.00%) 10316.06 ( -3.35%) The average time to fault pages is substantially reduced in the majority of caseds but with the obvious caveat that fewer THPs are actually used in this adverse workload 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 Percentage huge-1 0.71 ( 0.00%) 14.04 (1865.22%) Percentage huge-3 10.77 ( 0.00%) 33.05 (206.85%) Percentage huge-5 60.39 ( 0.00%) 38.51 (-36.23%) Percentage huge-7 45.97 ( 0.00%) 34.57 (-24.79%) Percentage huge-12 68.12 ( 0.00%) 40.07 (-41.17%) Percentage huge-18 64.93 ( 0.00%) 47.82 (-26.35%) Percentage huge-24 62.69 ( 0.00%) 44.23 (-29.44%) Percentage huge-30 43.49 ( 0.00%) 55.38 ( 27.34%) Percentage huge-32 50.72 ( 0.00%) 51.90 ( 2.35%) 4.4.0 4.4.0 kcompactd-v1r1nodefrag-v1r3 Minor Faults 37429143 47564000 Major Faults 1916 1558 Swap Ins 1466 1079 Swap Outs 2936863 149626 Allocation stalls 62510 3 DMA allocs 0 0 DMA32 allocs 6566458 6401314 Normal allocs 216361697 216538171 Movable allocs 0 0 Direct pages scanned 25977580 17998 Kswapd pages scanned 0 3638931 Kswapd pages reclaimed 0 207236 Direct pages reclaimed 8833714 88 Compaction stalls 103349 5 Compaction success 270 4 Compaction failures 103079 1 Note again that while this does swap as it's an aggressive workload, the direct relcim activity and allocation stalls is substantially reduced. There is some kswapd activity but ftrace showed that the kswapd activity was due to normal wakeups from 4K pages being allocated. Compaction-related stalls and activity are almost eliminated. I also tried the stutter benchmark. For this, I do not have figures for NUMA but it's something that does impact UMA so I'll report what is available stutter 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 Min mmap 7.3571 ( 0.00%) 7.3438 ( 0.18%) 1st-qrtle mmap 7.5278 ( 0.00%) 17.9200 (-138.05%) 2nd-qrtle mmap 7.6818 ( 0.00%) 21.6055 (-181.25%) 3rd-qrtle mmap 11.0889 ( 0.00%) 21.8881 (-97.39%) Max-90% mmap 27.8978 ( 0.00%) 22.1632 ( 20.56%) Max-93% mmap 28.3202 ( 0.00%) 22.3044 ( 21.24%) Max-95% mmap 28.5600 ( 0.00%) 22.4580 ( 21.37%) Max-99% mmap 29.6032 ( 0.00%) 25.5216 ( 13.79%) Max mmap 4109.7289 ( 0.00%) 4813.9832 (-17.14%) Mean mmap 12.4474 ( 0.00%) 19.3027 (-55.07%) This benchmark is trying to fault an anonymous mapping while there is a heavy IO load -- a scenario that desktop users used to complain about frequently. This shows a mix because the ideal case of mapping with THP is not hit as often. However, note that 99% of the mappings complete 13.79% faster. The CPU usage here is particularly interesting 4.4.0 4.4.0 kcompactd-v1r1nodefrag-v1r3 User 67.50 0.99 System 1327.88 91.30 Elapsed 2079.00 2128.98 And once again we look at the reclaim figures 4.4.0 4.4.0 kcompactd-v1r1nodefrag-v1r3 Minor Faults 335241922 1314582827 Major Faults 715 819 Swap Ins 0 0 Swap Outs 0 0 Allocation stalls 532723 0 DMA allocs 0 0 DMA32 allocs 1822364341 1177950222 Normal allocs 1815640808 1517844854 Movable allocs 0 0 Direct pages scanned 21892772 0 Kswapd pages scanned 20015890 41879484 Kswapd pages reclaimed 19961986 41822072 Direct pages reclaimed 21892741 0 Compaction stalls 1065755 0 Compaction success 514 0 Compaction failures 1065241 0 Allocation stalls and all direct reclaim activity is eliminated as well as compaction-related stalls. THP gives impressive gains in some cases but only if they are quickly available. We're not going to reach the point where they are completely free so lets take the costs out of the fast paths finally and defer the cost to kswapd, kcompactd and khugepaged where it belongs. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Rik van Riel <riel@redhat.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-18 05:19:23 +08:00
huge_gfp = alloc_hugepage_direct_gfpmask(vma);
mm, memcg: sync allocation and memcg charge gfp flags for THP memcg currently uses hardcoded GFP_TRANSHUGE gfp flags for all THP charges. THP allocations, however, might be using different flags depending on /sys/kernel/mm/transparent_hugepage/{,khugepaged/}defrag and the current allocation context. The primary difference is that defrag configured to "madvise" value will clear __GFP_WAIT flag from the core gfp mask to make the allocation lighter for all mappings which are not backed by VM_HUGEPAGE vmas. If memcg charge path ignores this fact we will get light allocation but the a potential memcg reclaim would kill the whole point of the configuration. Fix the mismatch by providing the same gfp mask used for the allocation to the charge functions. This is quite easy for all paths except for hugepaged kernel thread with !CONFIG_NUMA which is doing a pre-allocation long before the allocated page is used in collapse_huge_page via khugepaged_alloc_page. To prevent from cluttering the whole code path from khugepaged_do_scan we simply return the current flags as per khugepaged_defrag() value which might have changed since the preallocation. If somebody changed the value of the knob we would charge differently but this shouldn't happen often and it is definitely not critical because it would only lead to a reduced success rate of one-off THP promotion. [akpm@linux-foundation.org: fix weird code layout while we're there] [rientjes@google.com: clean up around alloc_hugepage_gfpmask()] Signed-off-by: Michal Hocko <mhocko@suse.cz> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-16 07:13:29 +08:00
new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
} else
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
new_page = NULL;
thp: introduce deferred_split_huge_page() Currently we don't split huge page on partial unmap. It's not an ideal situation. It can lead to memory overhead. Furtunately, we can detect partial unmap on page_remove_rmap(). But we cannot call split_huge_page() from there due to locking context. It's also counterproductive to do directly from munmap() codepath: in many cases we will hit this from exit(2) and splitting the huge page just to free it up in small pages is not what we really want. The patch introduce deferred_split_huge_page() which put the huge page into queue for splitting. The splitting itself will happen when we get memory pressure via shrinker interface. The page will be dropped from list on freeing through compound page destructor. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:17 +08:00
if (likely(new_page)) {
prep_transhuge_page(new_page);
} else {
thp: fix copy_page_rep GPF by testing is_huge_zero_pmd once only We see General Protection Fault on RSI in copy_page_rep: that RSI is what you get from a NULL struct page pointer. RIP: 0010:[<ffffffff81154955>] [<ffffffff81154955>] copy_page_rep+0x5/0x10 RSP: 0000:ffff880136e15c00 EFLAGS: 00010286 RAX: ffff880000000000 RBX: ffff880136e14000 RCX: 0000000000000200 RDX: 6db6db6db6db6db7 RSI: db73880000000000 RDI: ffff880dd0c00000 RBP: ffff880136e15c18 R08: 0000000000000200 R09: 000000000005987c R10: 000000000005987c R11: 0000000000000200 R12: 0000000000000001 R13: ffffea00305aa000 R14: 0000000000000000 R15: 0000000000000000 FS: 00007f195752f700(0000) GS:ffff880c7fc20000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000093010000 CR3: 00000001458e1000 CR4: 00000000000027e0 Call Trace: copy_user_huge_page+0x93/0xab do_huge_pmd_wp_page+0x710/0x815 handle_mm_fault+0x15d8/0x1d70 __do_page_fault+0x14d/0x840 do_page_fault+0x2f/0x90 page_fault+0x22/0x30 do_huge_pmd_wp_page() tests is_huge_zero_pmd(orig_pmd) four times: but since shrink_huge_zero_page() can free the huge_zero_page, and we have no hold of our own on it here (except where the fourth test holds page_table_lock and has checked pmd_same), it's possible for it to answer yes the first time, but no to the second or third test. Change all those last three to tests for NULL page. (Note: this is not the same issue as trinity's DEBUG_PAGEALLOC BUG in copy_page_rep with RSI: ffff88009c422000, reported by Sasha Levin in https://lkml.org/lkml/2013/3/29/103. I believe that one is due to the source page being split, and a tail page freed, while copy is in progress; and not a problem without DEBUG_PAGEALLOC, since the pmd_same check will prevent a miscopy from being made visible.) Fixes: 97ae17497e99 ("thp: implement refcounting for huge zero page") Signed-off-by: Hugh Dickins <hughd@google.com> Cc: stable@vger.kernel.org # v3.10 v3.11 v3.12 Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-12 17:25:21 +08:00
if (!page) {
split_huge_pmd(vma, vmf->pmd, vmf->address);
ret |= VM_FAULT_FALLBACK;
} else {
ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
if (ret & VM_FAULT_OOM) {
split_huge_pmd(vma, vmf->pmd, vmf->address);
ret |= VM_FAULT_FALLBACK;
}
mm: drop tail page refcounting Tail page refcounting is utterly complicated and painful to support. It uses ->_mapcount on tail pages to store how many times this page is pinned. get_page() bumps ->_mapcount on tail page in addition to ->_count on head. This information is required by split_huge_page() to be able to distribute pins from head of compound page to tails during the split. We will need ->_mapcount to account PTE mappings of subpages of the compound page. We eliminate need in current meaning of ->_mapcount in tail pages by forbidding split entirely if the page is pinned. The only user of tail page refcounting is THP which is marked BROKEN for now. Let's drop all this mess. It makes get_page() and put_page() much simpler. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:52:56 +08:00
put_page(page);
}
count_vm_event(THP_FAULT_FALLBACK);
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
goto out;
}
if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm,
huge_gfp, &memcg, true))) {
put_page(new_page);
split_huge_pmd(vma, vmf->pmd, vmf->address);
if (page)
mm: drop tail page refcounting Tail page refcounting is utterly complicated and painful to support. It uses ->_mapcount on tail pages to store how many times this page is pinned. get_page() bumps ->_mapcount on tail page in addition to ->_count on head. This information is required by split_huge_page() to be able to distribute pins from head of compound page to tails during the split. We will need ->_mapcount to account PTE mappings of subpages of the compound page. We eliminate need in current meaning of ->_mapcount in tail pages by forbidding split entirely if the page is pinned. The only user of tail page refcounting is THP which is marked BROKEN for now. Let's drop all this mess. It makes get_page() and put_page() much simpler. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:52:56 +08:00
put_page(page);
ret |= VM_FAULT_FALLBACK;
count_vm_event(THP_FAULT_FALLBACK);
goto out;
}
count_vm_event(THP_FAULT_ALLOC);
thp: fix copy_page_rep GPF by testing is_huge_zero_pmd once only We see General Protection Fault on RSI in copy_page_rep: that RSI is what you get from a NULL struct page pointer. RIP: 0010:[<ffffffff81154955>] [<ffffffff81154955>] copy_page_rep+0x5/0x10 RSP: 0000:ffff880136e15c00 EFLAGS: 00010286 RAX: ffff880000000000 RBX: ffff880136e14000 RCX: 0000000000000200 RDX: 6db6db6db6db6db7 RSI: db73880000000000 RDI: ffff880dd0c00000 RBP: ffff880136e15c18 R08: 0000000000000200 R09: 000000000005987c R10: 000000000005987c R11: 0000000000000200 R12: 0000000000000001 R13: ffffea00305aa000 R14: 0000000000000000 R15: 0000000000000000 FS: 00007f195752f700(0000) GS:ffff880c7fc20000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000093010000 CR3: 00000001458e1000 CR4: 00000000000027e0 Call Trace: copy_user_huge_page+0x93/0xab do_huge_pmd_wp_page+0x710/0x815 handle_mm_fault+0x15d8/0x1d70 __do_page_fault+0x14d/0x840 do_page_fault+0x2f/0x90 page_fault+0x22/0x30 do_huge_pmd_wp_page() tests is_huge_zero_pmd(orig_pmd) four times: but since shrink_huge_zero_page() can free the huge_zero_page, and we have no hold of our own on it here (except where the fourth test holds page_table_lock and has checked pmd_same), it's possible for it to answer yes the first time, but no to the second or third test. Change all those last three to tests for NULL page. (Note: this is not the same issue as trinity's DEBUG_PAGEALLOC BUG in copy_page_rep with RSI: ffff88009c422000, reported by Sasha Levin in https://lkml.org/lkml/2013/3/29/103. I believe that one is due to the source page being split, and a tail page freed, while copy is in progress; and not a problem without DEBUG_PAGEALLOC, since the pmd_same check will prevent a miscopy from being made visible.) Fixes: 97ae17497e99 ("thp: implement refcounting for huge zero page") Signed-off-by: Hugh Dickins <hughd@google.com> Cc: stable@vger.kernel.org # v3.10 v3.11 v3.12 Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-12 17:25:21 +08:00
if (!page)
mm: hugetlb: clear target sub-page last when clearing huge page Huge page helps to reduce TLB miss rate, but it has higher cache footprint, sometimes this may cause some issue. For example, when clearing huge page on x86_64 platform, the cache footprint is 2M. But on a Xeon E5 v3 2699 CPU, there are 18 cores, 36 threads, and only 45M LLC (last level cache). That is, in average, there are 2.5M LLC for each core and 1.25M LLC for each thread. If the cache pressure is heavy when clearing the huge page, and we clear the huge page from the begin to the end, it is possible that the begin of huge page is evicted from the cache after we finishing clearing the end of the huge page. And it is possible for the application to access the begin of the huge page after clearing the huge page. To help the above situation, in this patch, when we clear a huge page, the order to clear sub-pages is changed. In quite some situation, we can get the address that the application will access after we clear the huge page, for example, in a page fault handler. Instead of clearing the huge page from begin to end, we will clear the sub-pages farthest from the the sub-page to access firstly, and clear the sub-page to access last. This will make the sub-page to access most cache-hot and sub-pages around it more cache-hot too. If we cannot know the address the application will access, the begin of the huge page is assumed to be the the address the application will access. With this patch, the throughput increases ~28.3% in vm-scalability anon-w-seq test case with 72 processes on a 2 socket Xeon E5 v3 2699 system (36 cores, 72 threads). The test case creates 72 processes, each process mmap a big anonymous memory area and writes to it from the begin to the end. For each process, other processes could be seen as other workload which generates heavy cache pressure. At the same time, the cache miss rate reduced from ~33.4% to ~31.7%, the IPC (instruction per cycle) increased from 0.56 to 0.74, and the time spent in user space is reduced ~7.9% Christopher Lameter suggests to clear bytes inside a sub-page from end to begin too. But tests show no visible performance difference in the tests. May because the size of page is small compared with the cache size. Thanks Andi Kleen to propose to use address to access to determine the order of sub-pages to clear. The hugetlbfs access address could be improved, will do that in another patch. [ying.huang@intel.com: improve readability of clear_huge_page()] Link: http://lkml.kernel.org/r/20170830051842.1397-1-ying.huang@intel.com Link: http://lkml.kernel.org/r/20170815014618.15842-1-ying.huang@intel.com Suggested-by: Andi Kleen <andi.kleen@intel.com> Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Acked-by: Jan Kara <jack@suse.cz> Reviewed-by: Michal Hocko <mhocko@suse.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Nadia Yvette Chambers <nyc@holomorphy.com> Cc: Matthew Wilcox <mawilcox@microsoft.com> Cc: Hugh Dickins <hughd@google.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Shaohua Li <shli@fb.com> Cc: Christopher Lameter <cl@linux.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-07 07:25:04 +08:00
clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
else
copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
__SetPageUptodate(new_page);
mm: move all mmu notifier invocations to be done outside the PT lock In order to allow sleeping during mmu notifier calls, we need to avoid invoking them under the page table spinlock. This patch solves the problem by calling invalidate_page notification after releasing the lock (but before freeing the page itself), or by wrapping the page invalidation with calls to invalidate_range_begin and invalidate_range_end. To prevent accidental changes to the invalidate_range_end arguments after the call to invalidate_range_begin, the patch introduces a convention of saving the arguments in consistently named locals: unsigned long mmun_start; /* For mmu_notifiers */ unsigned long mmun_end; /* For mmu_notifiers */ ... mmun_start = ... mmun_end = ... mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); ... mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); The patch changes code to use this convention for all calls to mmu_notifier_invalidate_range_start/end, except those where the calls are close enough so that anyone who glances at the code can see the values aren't changing. This patchset is a preliminary step towards on-demand paging design to be added to the RDMA stack. Why do we want on-demand paging for Infiniband? Applications register memory with an RDMA adapter using system calls, and subsequently post IO operations that refer to the corresponding virtual addresses directly to HW. Until now, this was achieved by pinning the memory during the registration calls. The goal of on demand paging is to avoid pinning the pages of registered memory regions (MRs). This will allow users the same flexibility they get when swapping any other part of their processes address spaces. Instead of requiring the entire MR to fit in physical memory, we can allow the MR to be larger, and only fit the current working set in physical memory. Why should anyone care? What problems are users currently experiencing? This can make programming with RDMA much simpler. Today, developers that are working with more data than their RAM can hold need either to deregister and reregister memory regions throughout their process's life, or keep a single memory region and copy the data to it. On demand paging will allow these developers to register a single MR at the beginning of their process's life, and let the operating system manage which pages needs to be fetched at a given time. In the future, we might be able to provide a single memory access key for each process that would provide the entire process's address as one large memory region, and the developers wouldn't need to register memory regions at all. Is there any prospect that any other subsystems will utilise these infrastructural changes? If so, which and how, etc? As for other subsystems, I understand that XPMEM wanted to sleep in MMU notifiers, as Christoph Lameter wrote at http://lkml.indiana.edu/hypermail/linux/kernel/0802.1/0460.html and perhaps Andrea knows about other use cases. Scheduling in mmu notifications is required since we need to sync the hardware with the secondary page tables change. A TLB flush of an IO device is inherently slower than a CPU TLB flush, so our design works by sending the invalidation request to the device, and waiting for an interrupt before exiting the mmu notifier handler. Avi said: kvm may be a buyer. kvm::mmu_lock, which serializes guest page faults, also protects long operations such as destroying large ranges. It would be good to convert it into a spinlock, but as it is used inside mmu notifiers, this cannot be done. (there are alternatives, such as keeping the spinlock and using a generation counter to do the teardown in O(1), which is what the "may" is doing up there). [akpm@linux-foundation.orgpossible speed tweak in hugetlb_cow(), cleanups] Signed-off-by: Andrea Arcangeli <andrea@qumranet.com> Signed-off-by: Sagi Grimberg <sagig@mellanox.com> Signed-off-by: Haggai Eran <haggaie@mellanox.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Or Gerlitz <ogerlitz@mellanox.com> Cc: Haggai Eran <haggaie@mellanox.com> Cc: Shachar Raindel <raindel@mellanox.com> Cc: Liran Liss <liranl@mellanox.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Avi Kivity <avi@redhat.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09 07:33:33 +08:00
mmun_start = haddr;
mmun_end = haddr + HPAGE_PMD_SIZE;
mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
mm: move all mmu notifier invocations to be done outside the PT lock In order to allow sleeping during mmu notifier calls, we need to avoid invoking them under the page table spinlock. This patch solves the problem by calling invalidate_page notification after releasing the lock (but before freeing the page itself), or by wrapping the page invalidation with calls to invalidate_range_begin and invalidate_range_end. To prevent accidental changes to the invalidate_range_end arguments after the call to invalidate_range_begin, the patch introduces a convention of saving the arguments in consistently named locals: unsigned long mmun_start; /* For mmu_notifiers */ unsigned long mmun_end; /* For mmu_notifiers */ ... mmun_start = ... mmun_end = ... mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); ... mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); The patch changes code to use this convention for all calls to mmu_notifier_invalidate_range_start/end, except those where the calls are close enough so that anyone who glances at the code can see the values aren't changing. This patchset is a preliminary step towards on-demand paging design to be added to the RDMA stack. Why do we want on-demand paging for Infiniband? Applications register memory with an RDMA adapter using system calls, and subsequently post IO operations that refer to the corresponding virtual addresses directly to HW. Until now, this was achieved by pinning the memory during the registration calls. The goal of on demand paging is to avoid pinning the pages of registered memory regions (MRs). This will allow users the same flexibility they get when swapping any other part of their processes address spaces. Instead of requiring the entire MR to fit in physical memory, we can allow the MR to be larger, and only fit the current working set in physical memory. Why should anyone care? What problems are users currently experiencing? This can make programming with RDMA much simpler. Today, developers that are working with more data than their RAM can hold need either to deregister and reregister memory regions throughout their process's life, or keep a single memory region and copy the data to it. On demand paging will allow these developers to register a single MR at the beginning of their process's life, and let the operating system manage which pages needs to be fetched at a given time. In the future, we might be able to provide a single memory access key for each process that would provide the entire process's address as one large memory region, and the developers wouldn't need to register memory regions at all. Is there any prospect that any other subsystems will utilise these infrastructural changes? If so, which and how, etc? As for other subsystems, I understand that XPMEM wanted to sleep in MMU notifiers, as Christoph Lameter wrote at http://lkml.indiana.edu/hypermail/linux/kernel/0802.1/0460.html and perhaps Andrea knows about other use cases. Scheduling in mmu notifications is required since we need to sync the hardware with the secondary page tables change. A TLB flush of an IO device is inherently slower than a CPU TLB flush, so our design works by sending the invalidation request to the device, and waiting for an interrupt before exiting the mmu notifier handler. Avi said: kvm may be a buyer. kvm::mmu_lock, which serializes guest page faults, also protects long operations such as destroying large ranges. It would be good to convert it into a spinlock, but as it is used inside mmu notifiers, this cannot be done. (there are alternatives, such as keeping the spinlock and using a generation counter to do the teardown in O(1), which is what the "may" is doing up there). [akpm@linux-foundation.orgpossible speed tweak in hugetlb_cow(), cleanups] Signed-off-by: Andrea Arcangeli <andrea@qumranet.com> Signed-off-by: Sagi Grimberg <sagig@mellanox.com> Signed-off-by: Haggai Eran <haggaie@mellanox.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Or Gerlitz <ogerlitz@mellanox.com> Cc: Haggai Eran <haggaie@mellanox.com> Cc: Shachar Raindel <raindel@mellanox.com> Cc: Liran Liss <liranl@mellanox.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Avi Kivity <avi@redhat.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09 07:33:33 +08:00
spin_lock(vmf->ptl);
if (page)
mm: drop tail page refcounting Tail page refcounting is utterly complicated and painful to support. It uses ->_mapcount on tail pages to store how many times this page is pinned. get_page() bumps ->_mapcount on tail page in addition to ->_count on head. This information is required by split_huge_page() to be able to distribute pins from head of compound page to tails during the split. We will need ->_mapcount to account PTE mappings of subpages of the compound page. We eliminate need in current meaning of ->_mapcount in tail pages by forbidding split entirely if the page is pinned. The only user of tail page refcounting is THP which is marked BROKEN for now. Let's drop all this mess. It makes get_page() and put_page() much simpler. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:52:56 +08:00
put_page(page);
if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
spin_unlock(vmf->ptl);
memcg: adjust to support new THP refcounting As with rmap, with new refcounting we cannot rely on PageTransHuge() to check if we need to charge size of huge page form the cgroup. We need to get information from caller to know whether it was mapped with PMD or PTE. We do uncharge when last reference on the page gone. At that point if we see PageTransHuge() it means we need to unchange whole huge page. The tricky part is partial unmap -- when we try to unmap part of huge page. We don't do a special handing of this situation, meaning we don't uncharge the part of huge page unless last user is gone or split_huge_page() is triggered. In case of cgroup memory pressure happens the partial unmapped page will be split through shrinker. This should be good enough. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:52:20 +08:00
mem_cgroup_cancel_charge(new_page, memcg, true);
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
put_page(new_page);
mm: move all mmu notifier invocations to be done outside the PT lock In order to allow sleeping during mmu notifier calls, we need to avoid invoking them under the page table spinlock. This patch solves the problem by calling invalidate_page notification after releasing the lock (but before freeing the page itself), or by wrapping the page invalidation with calls to invalidate_range_begin and invalidate_range_end. To prevent accidental changes to the invalidate_range_end arguments after the call to invalidate_range_begin, the patch introduces a convention of saving the arguments in consistently named locals: unsigned long mmun_start; /* For mmu_notifiers */ unsigned long mmun_end; /* For mmu_notifiers */ ... mmun_start = ... mmun_end = ... mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); ... mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); The patch changes code to use this convention for all calls to mmu_notifier_invalidate_range_start/end, except those where the calls are close enough so that anyone who glances at the code can see the values aren't changing. This patchset is a preliminary step towards on-demand paging design to be added to the RDMA stack. Why do we want on-demand paging for Infiniband? Applications register memory with an RDMA adapter using system calls, and subsequently post IO operations that refer to the corresponding virtual addresses directly to HW. Until now, this was achieved by pinning the memory during the registration calls. The goal of on demand paging is to avoid pinning the pages of registered memory regions (MRs). This will allow users the same flexibility they get when swapping any other part of their processes address spaces. Instead of requiring the entire MR to fit in physical memory, we can allow the MR to be larger, and only fit the current working set in physical memory. Why should anyone care? What problems are users currently experiencing? This can make programming with RDMA much simpler. Today, developers that are working with more data than their RAM can hold need either to deregister and reregister memory regions throughout their process's life, or keep a single memory region and copy the data to it. On demand paging will allow these developers to register a single MR at the beginning of their process's life, and let the operating system manage which pages needs to be fetched at a given time. In the future, we might be able to provide a single memory access key for each process that would provide the entire process's address as one large memory region, and the developers wouldn't need to register memory regions at all. Is there any prospect that any other subsystems will utilise these infrastructural changes? If so, which and how, etc? As for other subsystems, I understand that XPMEM wanted to sleep in MMU notifiers, as Christoph Lameter wrote at http://lkml.indiana.edu/hypermail/linux/kernel/0802.1/0460.html and perhaps Andrea knows about other use cases. Scheduling in mmu notifications is required since we need to sync the hardware with the secondary page tables change. A TLB flush of an IO device is inherently slower than a CPU TLB flush, so our design works by sending the invalidation request to the device, and waiting for an interrupt before exiting the mmu notifier handler. Avi said: kvm may be a buyer. kvm::mmu_lock, which serializes guest page faults, also protects long operations such as destroying large ranges. It would be good to convert it into a spinlock, but as it is used inside mmu notifiers, this cannot be done. (there are alternatives, such as keeping the spinlock and using a generation counter to do the teardown in O(1), which is what the "may" is doing up there). [akpm@linux-foundation.orgpossible speed tweak in hugetlb_cow(), cleanups] Signed-off-by: Andrea Arcangeli <andrea@qumranet.com> Signed-off-by: Sagi Grimberg <sagig@mellanox.com> Signed-off-by: Haggai Eran <haggaie@mellanox.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Or Gerlitz <ogerlitz@mellanox.com> Cc: Haggai Eran <haggaie@mellanox.com> Cc: Shachar Raindel <raindel@mellanox.com> Cc: Liran Liss <liranl@mellanox.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Avi Kivity <avi@redhat.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09 07:33:33 +08:00
goto out_mn;
} else {
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
pmd_t entry;
entry = mk_huge_pmd(new_page, vma->vm_page_prot);
entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
page_add_new_anon_rmap(new_page, vma, haddr, true);
memcg: adjust to support new THP refcounting As with rmap, with new refcounting we cannot rely on PageTransHuge() to check if we need to charge size of huge page form the cgroup. We need to get information from caller to know whether it was mapped with PMD or PTE. We do uncharge when last reference on the page gone. At that point if we see PageTransHuge() it means we need to unchange whole huge page. The tricky part is partial unmap -- when we try to unmap part of huge page. We don't do a special handing of this situation, meaning we don't uncharge the part of huge page unless last user is gone or split_huge_page() is triggered. In case of cgroup memory pressure happens the partial unmapped page will be split through shrinker. This should be good enough. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:52:20 +08:00
mem_cgroup_commit_charge(new_page, memcg, false, true);
mm: memcontrol: rewrite charge API These patches rework memcg charge lifetime to integrate more naturally with the lifetime of user pages. This drastically simplifies the code and reduces charging and uncharging overhead. The most expensive part of charging and uncharging is the page_cgroup bit spinlock, which is removed entirely after this series. Here are the top-10 profile entries of a stress test that reads a 128G sparse file on a freshly booted box, without even a dedicated cgroup (i.e. executing in the root memcg). Before: 15.36% cat [kernel.kallsyms] [k] copy_user_generic_string 13.31% cat [kernel.kallsyms] [k] memset 11.48% cat [kernel.kallsyms] [k] do_mpage_readpage 4.23% cat [kernel.kallsyms] [k] get_page_from_freelist 2.38% cat [kernel.kallsyms] [k] put_page 2.32% cat [kernel.kallsyms] [k] __mem_cgroup_commit_charge 2.18% kswapd0 [kernel.kallsyms] [k] __mem_cgroup_uncharge_common 1.92% kswapd0 [kernel.kallsyms] [k] shrink_page_list 1.86% cat [kernel.kallsyms] [k] __radix_tree_lookup 1.62% cat [kernel.kallsyms] [k] __pagevec_lru_add_fn After: 15.67% cat [kernel.kallsyms] [k] copy_user_generic_string 13.48% cat [kernel.kallsyms] [k] memset 11.42% cat [kernel.kallsyms] [k] do_mpage_readpage 3.98% cat [kernel.kallsyms] [k] get_page_from_freelist 2.46% cat [kernel.kallsyms] [k] put_page 2.13% kswapd0 [kernel.kallsyms] [k] shrink_page_list 1.88% cat [kernel.kallsyms] [k] __radix_tree_lookup 1.67% cat [kernel.kallsyms] [k] __pagevec_lru_add_fn 1.39% kswapd0 [kernel.kallsyms] [k] free_pcppages_bulk 1.30% cat [kernel.kallsyms] [k] kfree As you can see, the memcg footprint has shrunk quite a bit. text data bss dec hex filename 37970 9892 400 48262 bc86 mm/memcontrol.o.old 35239 9892 400 45531 b1db mm/memcontrol.o This patch (of 4): The memcg charge API charges pages before they are rmapped - i.e. have an actual "type" - and so every callsite needs its own set of charge and uncharge functions to know what type is being operated on. Worse, uncharge has to happen from a context that is still type-specific, rather than at the end of the page's lifetime with exclusive access, and so requires a lot of synchronization. Rewrite the charge API to provide a generic set of try_charge(), commit_charge() and cancel_charge() transaction operations, much like what's currently done for swap-in: mem_cgroup_try_charge() attempts to reserve a charge, reclaiming pages from the memcg if necessary. mem_cgroup_commit_charge() commits the page to the charge once it has a valid page->mapping and PageAnon() reliably tells the type. mem_cgroup_cancel_charge() aborts the transaction. This reduces the charge API and enables subsequent patches to drastically simplify uncharging. As pages need to be committed after rmap is established but before they are added to the LRU, page_add_new_anon_rmap() must stop doing LRU additions again. Revive lru_cache_add_active_or_unevictable(). [hughd@google.com: fix shmem_unuse] [hughd@google.com: Add comments on the private use of -EAGAIN] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: Tejun Heo <tj@kernel.org> Cc: Vladimir Davydov <vdavydov@parallels.com> Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-09 05:19:20 +08:00
lru_cache_add_active_or_unevictable(new_page, vma);
set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
thp: fix copy_page_rep GPF by testing is_huge_zero_pmd once only We see General Protection Fault on RSI in copy_page_rep: that RSI is what you get from a NULL struct page pointer. RIP: 0010:[<ffffffff81154955>] [<ffffffff81154955>] copy_page_rep+0x5/0x10 RSP: 0000:ffff880136e15c00 EFLAGS: 00010286 RAX: ffff880000000000 RBX: ffff880136e14000 RCX: 0000000000000200 RDX: 6db6db6db6db6db7 RSI: db73880000000000 RDI: ffff880dd0c00000 RBP: ffff880136e15c18 R08: 0000000000000200 R09: 000000000005987c R10: 000000000005987c R11: 0000000000000200 R12: 0000000000000001 R13: ffffea00305aa000 R14: 0000000000000000 R15: 0000000000000000 FS: 00007f195752f700(0000) GS:ffff880c7fc20000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000093010000 CR3: 00000001458e1000 CR4: 00000000000027e0 Call Trace: copy_user_huge_page+0x93/0xab do_huge_pmd_wp_page+0x710/0x815 handle_mm_fault+0x15d8/0x1d70 __do_page_fault+0x14d/0x840 do_page_fault+0x2f/0x90 page_fault+0x22/0x30 do_huge_pmd_wp_page() tests is_huge_zero_pmd(orig_pmd) four times: but since shrink_huge_zero_page() can free the huge_zero_page, and we have no hold of our own on it here (except where the fourth test holds page_table_lock and has checked pmd_same), it's possible for it to answer yes the first time, but no to the second or third test. Change all those last three to tests for NULL page. (Note: this is not the same issue as trinity's DEBUG_PAGEALLOC BUG in copy_page_rep with RSI: ffff88009c422000, reported by Sasha Levin in https://lkml.org/lkml/2013/3/29/103. I believe that one is due to the source page being split, and a tail page freed, while copy is in progress; and not a problem without DEBUG_PAGEALLOC, since the pmd_same check will prevent a miscopy from being made visible.) Fixes: 97ae17497e99 ("thp: implement refcounting for huge zero page") Signed-off-by: Hugh Dickins <hughd@google.com> Cc: stable@vger.kernel.org # v3.10 v3.11 v3.12 Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-12 17:25:21 +08:00
if (!page) {
add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
} else {
VM_BUG_ON_PAGE(!PageHead(page), page);
page_remove_rmap(page, true);
put_page(page);
}
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
ret |= VM_FAULT_WRITE;
}
spin_unlock(vmf->ptl);
mm: move all mmu notifier invocations to be done outside the PT lock In order to allow sleeping during mmu notifier calls, we need to avoid invoking them under the page table spinlock. This patch solves the problem by calling invalidate_page notification after releasing the lock (but before freeing the page itself), or by wrapping the page invalidation with calls to invalidate_range_begin and invalidate_range_end. To prevent accidental changes to the invalidate_range_end arguments after the call to invalidate_range_begin, the patch introduces a convention of saving the arguments in consistently named locals: unsigned long mmun_start; /* For mmu_notifiers */ unsigned long mmun_end; /* For mmu_notifiers */ ... mmun_start = ... mmun_end = ... mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); ... mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); The patch changes code to use this convention for all calls to mmu_notifier_invalidate_range_start/end, except those where the calls are close enough so that anyone who glances at the code can see the values aren't changing. This patchset is a preliminary step towards on-demand paging design to be added to the RDMA stack. Why do we want on-demand paging for Infiniband? Applications register memory with an RDMA adapter using system calls, and subsequently post IO operations that refer to the corresponding virtual addresses directly to HW. Until now, this was achieved by pinning the memory during the registration calls. The goal of on demand paging is to avoid pinning the pages of registered memory regions (MRs). This will allow users the same flexibility they get when swapping any other part of their processes address spaces. Instead of requiring the entire MR to fit in physical memory, we can allow the MR to be larger, and only fit the current working set in physical memory. Why should anyone care? What problems are users currently experiencing? This can make programming with RDMA much simpler. Today, developers that are working with more data than their RAM can hold need either to deregister and reregister memory regions throughout their process's life, or keep a single memory region and copy the data to it. On demand paging will allow these developers to register a single MR at the beginning of their process's life, and let the operating system manage which pages needs to be fetched at a given time. In the future, we might be able to provide a single memory access key for each process that would provide the entire process's address as one large memory region, and the developers wouldn't need to register memory regions at all. Is there any prospect that any other subsystems will utilise these infrastructural changes? If so, which and how, etc? As for other subsystems, I understand that XPMEM wanted to sleep in MMU notifiers, as Christoph Lameter wrote at http://lkml.indiana.edu/hypermail/linux/kernel/0802.1/0460.html and perhaps Andrea knows about other use cases. Scheduling in mmu notifications is required since we need to sync the hardware with the secondary page tables change. A TLB flush of an IO device is inherently slower than a CPU TLB flush, so our design works by sending the invalidation request to the device, and waiting for an interrupt before exiting the mmu notifier handler. Avi said: kvm may be a buyer. kvm::mmu_lock, which serializes guest page faults, also protects long operations such as destroying large ranges. It would be good to convert it into a spinlock, but as it is used inside mmu notifiers, this cannot be done. (there are alternatives, such as keeping the spinlock and using a generation counter to do the teardown in O(1), which is what the "may" is doing up there). [akpm@linux-foundation.orgpossible speed tweak in hugetlb_cow(), cleanups] Signed-off-by: Andrea Arcangeli <andrea@qumranet.com> Signed-off-by: Sagi Grimberg <sagig@mellanox.com> Signed-off-by: Haggai Eran <haggaie@mellanox.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Or Gerlitz <ogerlitz@mellanox.com> Cc: Haggai Eran <haggaie@mellanox.com> Cc: Shachar Raindel <raindel@mellanox.com> Cc: Liran Liss <liranl@mellanox.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Avi Kivity <avi@redhat.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09 07:33:33 +08:00
out_mn:
mm/mmu_notifier: avoid call to invalidate_range() in range_end() This is an optimization patch that only affect mmu_notifier users which rely on the invalidate_range() callback. This patch avoids calling that callback twice in a row from inside __mmu_notifier_invalidate_range_end Existing pattern (before this patch): mmu_notifier_invalidate_range_start() pte/pmd/pud_clear_flush_notify() mmu_notifier_invalidate_range() mmu_notifier_invalidate_range_end() mmu_notifier_invalidate_range() New pattern (after this patch): mmu_notifier_invalidate_range_start() pte/pmd/pud_clear_flush_notify() mmu_notifier_invalidate_range() mmu_notifier_invalidate_range_only_end() We call the invalidate_range callback after clearing the page table under the page table lock and we skip the call to invalidate_range inside the __mmu_notifier_invalidate_range_end() function. Idea from Andrea Arcangeli Link: http://lkml.kernel.org/r/20171017031003.7481-3-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Joerg Roedel <jroedel@suse.de> Cc: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Alistair Popple <alistair@popple.id.au> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Andrew Donnellan <andrew.donnellan@au1.ibm.com> Cc: Nadav Amit <nadav.amit@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-16 09:34:11 +08:00
/*
* No need to double call mmu_notifier->invalidate_range() callback as
* the above pmdp_huge_clear_flush_notify() did already call it.
*/
mmu_notifier_invalidate_range_only_end(vma->vm_mm, mmun_start,
mmun_end);
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
out:
return ret;
mm: move all mmu notifier invocations to be done outside the PT lock In order to allow sleeping during mmu notifier calls, we need to avoid invoking them under the page table spinlock. This patch solves the problem by calling invalidate_page notification after releasing the lock (but before freeing the page itself), or by wrapping the page invalidation with calls to invalidate_range_begin and invalidate_range_end. To prevent accidental changes to the invalidate_range_end arguments after the call to invalidate_range_begin, the patch introduces a convention of saving the arguments in consistently named locals: unsigned long mmun_start; /* For mmu_notifiers */ unsigned long mmun_end; /* For mmu_notifiers */ ... mmun_start = ... mmun_end = ... mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); ... mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); The patch changes code to use this convention for all calls to mmu_notifier_invalidate_range_start/end, except those where the calls are close enough so that anyone who glances at the code can see the values aren't changing. This patchset is a preliminary step towards on-demand paging design to be added to the RDMA stack. Why do we want on-demand paging for Infiniband? Applications register memory with an RDMA adapter using system calls, and subsequently post IO operations that refer to the corresponding virtual addresses directly to HW. Until now, this was achieved by pinning the memory during the registration calls. The goal of on demand paging is to avoid pinning the pages of registered memory regions (MRs). This will allow users the same flexibility they get when swapping any other part of their processes address spaces. Instead of requiring the entire MR to fit in physical memory, we can allow the MR to be larger, and only fit the current working set in physical memory. Why should anyone care? What problems are users currently experiencing? This can make programming with RDMA much simpler. Today, developers that are working with more data than their RAM can hold need either to deregister and reregister memory regions throughout their process's life, or keep a single memory region and copy the data to it. On demand paging will allow these developers to register a single MR at the beginning of their process's life, and let the operating system manage which pages needs to be fetched at a given time. In the future, we might be able to provide a single memory access key for each process that would provide the entire process's address as one large memory region, and the developers wouldn't need to register memory regions at all. Is there any prospect that any other subsystems will utilise these infrastructural changes? If so, which and how, etc? As for other subsystems, I understand that XPMEM wanted to sleep in MMU notifiers, as Christoph Lameter wrote at http://lkml.indiana.edu/hypermail/linux/kernel/0802.1/0460.html and perhaps Andrea knows about other use cases. Scheduling in mmu notifications is required since we need to sync the hardware with the secondary page tables change. A TLB flush of an IO device is inherently slower than a CPU TLB flush, so our design works by sending the invalidation request to the device, and waiting for an interrupt before exiting the mmu notifier handler. Avi said: kvm may be a buyer. kvm::mmu_lock, which serializes guest page faults, also protects long operations such as destroying large ranges. It would be good to convert it into a spinlock, but as it is used inside mmu notifiers, this cannot be done. (there are alternatives, such as keeping the spinlock and using a generation counter to do the teardown in O(1), which is what the "may" is doing up there). [akpm@linux-foundation.orgpossible speed tweak in hugetlb_cow(), cleanups] Signed-off-by: Andrea Arcangeli <andrea@qumranet.com> Signed-off-by: Sagi Grimberg <sagig@mellanox.com> Signed-off-by: Haggai Eran <haggaie@mellanox.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Or Gerlitz <ogerlitz@mellanox.com> Cc: Haggai Eran <haggaie@mellanox.com> Cc: Shachar Raindel <raindel@mellanox.com> Cc: Liran Liss <liranl@mellanox.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Avi Kivity <avi@redhat.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09 07:33:33 +08:00
out_unlock:
spin_unlock(vmf->ptl);
mm: move all mmu notifier invocations to be done outside the PT lock In order to allow sleeping during mmu notifier calls, we need to avoid invoking them under the page table spinlock. This patch solves the problem by calling invalidate_page notification after releasing the lock (but before freeing the page itself), or by wrapping the page invalidation with calls to invalidate_range_begin and invalidate_range_end. To prevent accidental changes to the invalidate_range_end arguments after the call to invalidate_range_begin, the patch introduces a convention of saving the arguments in consistently named locals: unsigned long mmun_start; /* For mmu_notifiers */ unsigned long mmun_end; /* For mmu_notifiers */ ... mmun_start = ... mmun_end = ... mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); ... mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); The patch changes code to use this convention for all calls to mmu_notifier_invalidate_range_start/end, except those where the calls are close enough so that anyone who glances at the code can see the values aren't changing. This patchset is a preliminary step towards on-demand paging design to be added to the RDMA stack. Why do we want on-demand paging for Infiniband? Applications register memory with an RDMA adapter using system calls, and subsequently post IO operations that refer to the corresponding virtual addresses directly to HW. Until now, this was achieved by pinning the memory during the registration calls. The goal of on demand paging is to avoid pinning the pages of registered memory regions (MRs). This will allow users the same flexibility they get when swapping any other part of their processes address spaces. Instead of requiring the entire MR to fit in physical memory, we can allow the MR to be larger, and only fit the current working set in physical memory. Why should anyone care? What problems are users currently experiencing? This can make programming with RDMA much simpler. Today, developers that are working with more data than their RAM can hold need either to deregister and reregister memory regions throughout their process's life, or keep a single memory region and copy the data to it. On demand paging will allow these developers to register a single MR at the beginning of their process's life, and let the operating system manage which pages needs to be fetched at a given time. In the future, we might be able to provide a single memory access key for each process that would provide the entire process's address as one large memory region, and the developers wouldn't need to register memory regions at all. Is there any prospect that any other subsystems will utilise these infrastructural changes? If so, which and how, etc? As for other subsystems, I understand that XPMEM wanted to sleep in MMU notifiers, as Christoph Lameter wrote at http://lkml.indiana.edu/hypermail/linux/kernel/0802.1/0460.html and perhaps Andrea knows about other use cases. Scheduling in mmu notifications is required since we need to sync the hardware with the secondary page tables change. A TLB flush of an IO device is inherently slower than a CPU TLB flush, so our design works by sending the invalidation request to the device, and waiting for an interrupt before exiting the mmu notifier handler. Avi said: kvm may be a buyer. kvm::mmu_lock, which serializes guest page faults, also protects long operations such as destroying large ranges. It would be good to convert it into a spinlock, but as it is used inside mmu notifiers, this cannot be done. (there are alternatives, such as keeping the spinlock and using a generation counter to do the teardown in O(1), which is what the "may" is doing up there). [akpm@linux-foundation.orgpossible speed tweak in hugetlb_cow(), cleanups] Signed-off-by: Andrea Arcangeli <andrea@qumranet.com> Signed-off-by: Sagi Grimberg <sagig@mellanox.com> Signed-off-by: Haggai Eran <haggaie@mellanox.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Or Gerlitz <ogerlitz@mellanox.com> Cc: Haggai Eran <haggaie@mellanox.com> Cc: Shachar Raindel <raindel@mellanox.com> Cc: Liran Liss <liranl@mellanox.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Avi Kivity <avi@redhat.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09 07:33:33 +08:00
return ret;
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
}
mm/huge_memory.c: respect FOLL_FORCE/FOLL_COW for thp In commit 19be0eaffa3a ("mm: remove gup_flags FOLL_WRITE games from __get_user_pages()"), the mm code was changed from unsetting FOLL_WRITE after a COW was resolved to setting the (newly introduced) FOLL_COW instead. Simultaneously, the check in gup.c was updated to still allow writes with FOLL_FORCE set if FOLL_COW had also been set. However, a similar check in huge_memory.c was forgotten. As a result, remote memory writes to ro regions of memory backed by transparent huge pages cause an infinite loop in the kernel (handle_mm_fault sets FOLL_COW and returns 0 causing a retry, but follow_trans_huge_pmd bails out immidiately because `(flags & FOLL_WRITE) && !pmd_write(*pmd)` is true. While in this state the process is stil SIGKILLable, but little else works (e.g. no ptrace attach, no other signals). This is easily reproduced with the following code (assuming thp are set to always): #include <assert.h> #include <fcntl.h> #include <stdint.h> #include <stdio.h> #include <string.h> #include <sys/mman.h> #include <sys/stat.h> #include <sys/types.h> #include <sys/wait.h> #include <unistd.h> #define TEST_SIZE 5 * 1024 * 1024 int main(void) { int status; pid_t child; int fd = open("/proc/self/mem", O_RDWR); void *addr = mmap(NULL, TEST_SIZE, PROT_READ, MAP_ANONYMOUS | MAP_PRIVATE, 0, 0); assert(addr != MAP_FAILED); pid_t parent_pid = getpid(); if ((child = fork()) == 0) { void *addr2 = mmap(NULL, TEST_SIZE, PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_PRIVATE, 0, 0); assert(addr2 != MAP_FAILED); memset(addr2, 'a', TEST_SIZE); pwrite(fd, addr2, TEST_SIZE, (uintptr_t)addr); return 0; } assert(child == waitpid(child, &status, 0)); assert(WIFEXITED(status) && WEXITSTATUS(status) == 0); return 0; } Fix this by updating follow_trans_huge_pmd in huge_memory.c analogously to the update in gup.c in the original commit. The same pattern exists in follow_devmap_pmd. However, we should not be able to reach that check with FOLL_COW set, so add WARN_ONCE to make sure we notice if we ever do. [akpm@linux-foundation.org: coding-style fixes] Link: http://lkml.kernel.org/r/20170106015025.GA38411@juliacomputing.com Signed-off-by: Keno Fischer <keno@juliacomputing.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Greg Thelen <gthelen@google.com> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Willy Tarreau <w@1wt.eu> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Kees Cook <keescook@chromium.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Hugh Dickins <hughd@google.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-01-25 07:17:48 +08:00
/*
* FOLL_FORCE can write to even unwritable pmd's, but only
* after we've gone through a COW cycle and they are dirty.
*/
static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
{
return pmd_write(pmd) ||
((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
}
mm, thp: fix mapped pages avoiding unevictable list on mlock When a transparent hugepage is mapped and it is included in an mlock() range, follow_page() incorrectly avoids setting the page's mlock bit and moving it to the unevictable lru. This is evident if you try to mlock(), munlock(), and then mlock() a range again. Currently: #define MAP_SIZE (4 << 30) /* 4GB */ void *ptr = mmap(NULL, MAP_SIZE, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0); mlock(ptr, MAP_SIZE); $ grep -E "Unevictable|Inactive\(anon" /proc/meminfo Inactive(anon): 6304 kB Unevictable: 4213924 kB munlock(ptr, MAP_SIZE); Inactive(anon): 4186252 kB Unevictable: 19652 kB mlock(ptr, MAP_SIZE); Inactive(anon): 4198556 kB Unevictable: 21684 kB Notice that less than 2MB was added to the unevictable list; this is because these pages in the range are not transparent hugepages since the 4GB range was allocated with mmap() and has no specific alignment. If posix_memalign() were used instead, unevictable would not have grown at all on the second mlock(). The fix is to call mlock_vma_page() so that the mlock bit is set and the page is added to the unevictable list. With this patch: mlock(ptr, MAP_SIZE); Inactive(anon): 4056 kB Unevictable: 4213940 kB munlock(ptr, MAP_SIZE); Inactive(anon): 4198268 kB Unevictable: 19636 kB mlock(ptr, MAP_SIZE); Inactive(anon): 4008 kB Unevictable: 4213940 kB Signed-off-by: David Rientjes <rientjes@google.com> Acked-by: Hugh Dickins <hughd@google.com> Reviewed-by: Andrea Arcangeli <aarcange@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michel Lespinasse <walken@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09 07:34:03 +08:00
struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
unsigned long addr,
pmd_t *pmd,
unsigned int flags)
{
mm, thp: fix mapped pages avoiding unevictable list on mlock When a transparent hugepage is mapped and it is included in an mlock() range, follow_page() incorrectly avoids setting the page's mlock bit and moving it to the unevictable lru. This is evident if you try to mlock(), munlock(), and then mlock() a range again. Currently: #define MAP_SIZE (4 << 30) /* 4GB */ void *ptr = mmap(NULL, MAP_SIZE, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0); mlock(ptr, MAP_SIZE); $ grep -E "Unevictable|Inactive\(anon" /proc/meminfo Inactive(anon): 6304 kB Unevictable: 4213924 kB munlock(ptr, MAP_SIZE); Inactive(anon): 4186252 kB Unevictable: 19652 kB mlock(ptr, MAP_SIZE); Inactive(anon): 4198556 kB Unevictable: 21684 kB Notice that less than 2MB was added to the unevictable list; this is because these pages in the range are not transparent hugepages since the 4GB range was allocated with mmap() and has no specific alignment. If posix_memalign() were used instead, unevictable would not have grown at all on the second mlock(). The fix is to call mlock_vma_page() so that the mlock bit is set and the page is added to the unevictable list. With this patch: mlock(ptr, MAP_SIZE); Inactive(anon): 4056 kB Unevictable: 4213940 kB munlock(ptr, MAP_SIZE); Inactive(anon): 4198268 kB Unevictable: 19636 kB mlock(ptr, MAP_SIZE); Inactive(anon): 4008 kB Unevictable: 4213940 kB Signed-off-by: David Rientjes <rientjes@google.com> Acked-by: Hugh Dickins <hughd@google.com> Reviewed-by: Andrea Arcangeli <aarcange@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michel Lespinasse <walken@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09 07:34:03 +08:00
struct mm_struct *mm = vma->vm_mm;
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
struct page *page = NULL;
assert_spin_locked(pmd_lockptr(mm, pmd));
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
mm/huge_memory.c: respect FOLL_FORCE/FOLL_COW for thp In commit 19be0eaffa3a ("mm: remove gup_flags FOLL_WRITE games from __get_user_pages()"), the mm code was changed from unsetting FOLL_WRITE after a COW was resolved to setting the (newly introduced) FOLL_COW instead. Simultaneously, the check in gup.c was updated to still allow writes with FOLL_FORCE set if FOLL_COW had also been set. However, a similar check in huge_memory.c was forgotten. As a result, remote memory writes to ro regions of memory backed by transparent huge pages cause an infinite loop in the kernel (handle_mm_fault sets FOLL_COW and returns 0 causing a retry, but follow_trans_huge_pmd bails out immidiately because `(flags & FOLL_WRITE) && !pmd_write(*pmd)` is true. While in this state the process is stil SIGKILLable, but little else works (e.g. no ptrace attach, no other signals). This is easily reproduced with the following code (assuming thp are set to always): #include <assert.h> #include <fcntl.h> #include <stdint.h> #include <stdio.h> #include <string.h> #include <sys/mman.h> #include <sys/stat.h> #include <sys/types.h> #include <sys/wait.h> #include <unistd.h> #define TEST_SIZE 5 * 1024 * 1024 int main(void) { int status; pid_t child; int fd = open("/proc/self/mem", O_RDWR); void *addr = mmap(NULL, TEST_SIZE, PROT_READ, MAP_ANONYMOUS | MAP_PRIVATE, 0, 0); assert(addr != MAP_FAILED); pid_t parent_pid = getpid(); if ((child = fork()) == 0) { void *addr2 = mmap(NULL, TEST_SIZE, PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_PRIVATE, 0, 0); assert(addr2 != MAP_FAILED); memset(addr2, 'a', TEST_SIZE); pwrite(fd, addr2, TEST_SIZE, (uintptr_t)addr); return 0; } assert(child == waitpid(child, &status, 0)); assert(WIFEXITED(status) && WEXITSTATUS(status) == 0); return 0; } Fix this by updating follow_trans_huge_pmd in huge_memory.c analogously to the update in gup.c in the original commit. The same pattern exists in follow_devmap_pmd. However, we should not be able to reach that check with FOLL_COW set, so add WARN_ONCE to make sure we notice if we ever do. [akpm@linux-foundation.org: coding-style fixes] Link: http://lkml.kernel.org/r/20170106015025.GA38411@juliacomputing.com Signed-off-by: Keno Fischer <keno@juliacomputing.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Greg Thelen <gthelen@google.com> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Willy Tarreau <w@1wt.eu> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Kees Cook <keescook@chromium.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Hugh Dickins <hughd@google.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-01-25 07:17:48 +08:00
if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
goto out;
/* Avoid dumping huge zero page */
if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
return ERR_PTR(-EFAULT);
/* Full NUMA hinting faults to serialise migration in fault paths */
if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
goto out;
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
page = pmd_page(*pmd);
VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
if (flags & FOLL_TOUCH)
touch_pmd(vma, addr, pmd);
mm: introduce VM_LOCKONFAULT The cost of faulting in all memory to be locked can be very high when working with large mappings. If only portions of the mapping will be used this can incur a high penalty for locking. For the example of a large file, this is the usage pattern for a large statical language model (probably applies to other statical or graphical models as well). For the security example, any application transacting in data that cannot be swapped out (credit card data, medical records, etc). This patch introduces the ability to request that pages are not pre-faulted, but are placed on the unevictable LRU when they are finally faulted in. The VM_LOCKONFAULT flag will be used together with VM_LOCKED and has no effect when set without VM_LOCKED. Setting the VM_LOCKONFAULT flag for a VMA will cause pages faulted into that VMA to be added to the unevictable LRU when they are faulted or if they are already present, but will not cause any missing pages to be faulted in. Exposing this new lock state means that we cannot overload the meaning of the FOLL_POPULATE flag any longer. Prior to this patch it was used to mean that the VMA for a fault was locked. This means we need the new FOLL_MLOCK flag to communicate the locked state of a VMA. FOLL_POPULATE will now only control if the VMA should be populated and in the case of VM_LOCKONFAULT, it will not be set. Signed-off-by: Eric B Munson <emunson@akamai.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Michal Hocko <mhocko@suse.cz> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Guenter Roeck <linux@roeck-us.net> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Shuah Khan <shuahkh@osg.samsung.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-06 10:51:36 +08:00
if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
thp: allow mlocked THP again Before THP refcounting rework, THP was not allowed to cross VMA boundary. So, if we have THP and we split it, PG_mlocked can be safely transferred to small pages. With new THP refcounting and naive approach to mlocking we can end up with this scenario: 1. we have a mlocked THP, which belong to one VM_LOCKED VMA. 2. the process does munlock() on the *part* of the THP: - the VMA is split into two, one of them VM_LOCKED; - huge PMD split into PTE table; - THP is still mlocked; 3. split_huge_page(): - it transfers PG_mlocked to *all* small pages regrardless if it blong to any VM_LOCKED VMA. We probably could munlock() all small pages on split_huge_page(), but I think we have accounting issue already on step two. Instead of forbidding mlocked pages altogether, we just avoid mlocking PTE-mapped THPs and munlock THPs on split_huge_pmd(). This means PTE-mapped THPs will be on normal lru lists and will be split under memory pressure by vmscan. After the split vmscan will detect unevictable small pages and mlock them. With this approach we shouldn't hit situation like described above. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:33 +08:00
/*
* We don't mlock() pte-mapped THPs. This way we can avoid
* leaking mlocked pages into non-VM_LOCKED VMAs.
*
* For anon THP:
*
thp: allow mlocked THP again Before THP refcounting rework, THP was not allowed to cross VMA boundary. So, if we have THP and we split it, PG_mlocked can be safely transferred to small pages. With new THP refcounting and naive approach to mlocking we can end up with this scenario: 1. we have a mlocked THP, which belong to one VM_LOCKED VMA. 2. the process does munlock() on the *part* of the THP: - the VMA is split into two, one of them VM_LOCKED; - huge PMD split into PTE table; - THP is still mlocked; 3. split_huge_page(): - it transfers PG_mlocked to *all* small pages regrardless if it blong to any VM_LOCKED VMA. We probably could munlock() all small pages on split_huge_page(), but I think we have accounting issue already on step two. Instead of forbidding mlocked pages altogether, we just avoid mlocking PTE-mapped THPs and munlock THPs on split_huge_pmd(). This means PTE-mapped THPs will be on normal lru lists and will be split under memory pressure by vmscan. After the split vmscan will detect unevictable small pages and mlock them. With this approach we shouldn't hit situation like described above. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:33 +08:00
* In most cases the pmd is the only mapping of the page as we
* break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
* writable private mappings in populate_vma_page_range().
*
* The only scenario when we have the page shared here is if we
* mlocking read-only mapping shared over fork(). We skip
* mlocking such pages.
*
* For file THP:
*
* We can expect PageDoubleMap() to be stable under page lock:
* for file pages we set it in page_add_file_rmap(), which
* requires page to be locked.
thp: allow mlocked THP again Before THP refcounting rework, THP was not allowed to cross VMA boundary. So, if we have THP and we split it, PG_mlocked can be safely transferred to small pages. With new THP refcounting and naive approach to mlocking we can end up with this scenario: 1. we have a mlocked THP, which belong to one VM_LOCKED VMA. 2. the process does munlock() on the *part* of the THP: - the VMA is split into two, one of them VM_LOCKED; - huge PMD split into PTE table; - THP is still mlocked; 3. split_huge_page(): - it transfers PG_mlocked to *all* small pages regrardless if it blong to any VM_LOCKED VMA. We probably could munlock() all small pages on split_huge_page(), but I think we have accounting issue already on step two. Instead of forbidding mlocked pages altogether, we just avoid mlocking PTE-mapped THPs and munlock THPs on split_huge_pmd(). This means PTE-mapped THPs will be on normal lru lists and will be split under memory pressure by vmscan. After the split vmscan will detect unevictable small pages and mlock them. With this approach we shouldn't hit situation like described above. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:33 +08:00
*/
if (PageAnon(page) && compound_mapcount(page) != 1)
goto skip_mlock;
if (PageDoubleMap(page) || !page->mapping)
goto skip_mlock;
if (!trylock_page(page))
goto skip_mlock;
lru_add_drain();
if (page->mapping && !PageDoubleMap(page))
mlock_vma_page(page);
unlock_page(page);
mm, thp: fix mapped pages avoiding unevictable list on mlock When a transparent hugepage is mapped and it is included in an mlock() range, follow_page() incorrectly avoids setting the page's mlock bit and moving it to the unevictable lru. This is evident if you try to mlock(), munlock(), and then mlock() a range again. Currently: #define MAP_SIZE (4 << 30) /* 4GB */ void *ptr = mmap(NULL, MAP_SIZE, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0); mlock(ptr, MAP_SIZE); $ grep -E "Unevictable|Inactive\(anon" /proc/meminfo Inactive(anon): 6304 kB Unevictable: 4213924 kB munlock(ptr, MAP_SIZE); Inactive(anon): 4186252 kB Unevictable: 19652 kB mlock(ptr, MAP_SIZE); Inactive(anon): 4198556 kB Unevictable: 21684 kB Notice that less than 2MB was added to the unevictable list; this is because these pages in the range are not transparent hugepages since the 4GB range was allocated with mmap() and has no specific alignment. If posix_memalign() were used instead, unevictable would not have grown at all on the second mlock(). The fix is to call mlock_vma_page() so that the mlock bit is set and the page is added to the unevictable list. With this patch: mlock(ptr, MAP_SIZE); Inactive(anon): 4056 kB Unevictable: 4213940 kB munlock(ptr, MAP_SIZE); Inactive(anon): 4198268 kB Unevictable: 19636 kB mlock(ptr, MAP_SIZE); Inactive(anon): 4008 kB Unevictable: 4213940 kB Signed-off-by: David Rientjes <rientjes@google.com> Acked-by: Hugh Dickins <hughd@google.com> Reviewed-by: Andrea Arcangeli <aarcange@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michel Lespinasse <walken@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09 07:34:03 +08:00
}
skip_mlock:
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
if (flags & FOLL_GET)
mm: drop tail page refcounting Tail page refcounting is utterly complicated and painful to support. It uses ->_mapcount on tail pages to store how many times this page is pinned. get_page() bumps ->_mapcount on tail page in addition to ->_count on head. This information is required by split_huge_page() to be able to distribute pins from head of compound page to tails during the split. We will need ->_mapcount to account PTE mappings of subpages of the compound page. We eliminate need in current meaning of ->_mapcount in tail pages by forbidding split entirely if the page is pinned. The only user of tail page refcounting is THP which is marked BROKEN for now. Let's drop all this mess. It makes get_page() and put_page() much simpler. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:52:56 +08:00
get_page(page);
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
out:
return page;
}
/* NUMA hinting page fault entry point for trans huge pmds */
int do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
{
struct vm_area_struct *vma = vmf->vma;
struct anon_vma *anon_vma = NULL;
struct page *page;
unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
int page_nid = -1, this_nid = numa_node_id();
int target_nid, last_cpupid = -1;
bool page_locked;
bool migrated = false;
mm: numa: preserve PTE write permissions across a NUMA hinting fault Protecting a PTE to trap a NUMA hinting fault clears the writable bit and further faults are needed after trapping a NUMA hinting fault to set the writable bit again. This patch preserves the writable bit when trapping NUMA hinting faults. The impact is obvious from the number of minor faults trapped during the basis balancing benchmark and the system CPU usage; autonumabench 4.0.0-rc4 4.0.0-rc4 baseline preserve Time System-NUMA01 107.13 ( 0.00%) 103.13 ( 3.73%) Time System-NUMA01_THEADLOCAL 131.87 ( 0.00%) 83.30 ( 36.83%) Time System-NUMA02 8.95 ( 0.00%) 10.72 (-19.78%) Time System-NUMA02_SMT 4.57 ( 0.00%) 3.99 ( 12.69%) Time Elapsed-NUMA01 515.78 ( 0.00%) 517.26 ( -0.29%) Time Elapsed-NUMA01_THEADLOCAL 384.10 ( 0.00%) 384.31 ( -0.05%) Time Elapsed-NUMA02 48.86 ( 0.00%) 48.78 ( 0.16%) Time Elapsed-NUMA02_SMT 47.98 ( 0.00%) 48.12 ( -0.29%) 4.0.0-rc4 4.0.0-rc4 baseline preserve User 44383.95 43971.89 System 252.61 201.24 Elapsed 998.68 1000.94 Minor Faults 2597249 1981230 Major Faults 365 364 There is a similar drop in system CPU usage using Dave Chinner's xfsrepair workload 4.0.0-rc4 4.0.0-rc4 baseline preserve Amean real-xfsrepair 454.14 ( 0.00%) 442.36 ( 2.60%) Amean syst-xfsrepair 277.20 ( 0.00%) 204.68 ( 26.16%) The patch looks hacky but the alternatives looked worse. The tidest was to rewalk the page tables after a hinting fault but it was more complex than this approach and the performance was worse. It's not generally safe to just mark the page writable during the fault if it's a write fault as it may have been read-only for COW so that approach was discarded. Signed-off-by: Mel Gorman <mgorman@suse.de> Reported-by: Dave Chinner <david@fromorbit.com> Tested-by: Dave Chinner <david@fromorbit.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-03-26 06:55:40 +08:00
bool was_writable;
int flags = 0;
vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
if (unlikely(!pmd_same(pmd, *vmf->pmd)))
goto out_unlock;
/*
* If there are potential migrations, wait for completion and retry
* without disrupting NUMA hinting information. Do not relock and
* check_same as the page may no longer be mapped.
*/
if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
page = pmd_page(*vmf->pmd);
mm: numa: avoid waiting on freed migrated pages In do_huge_pmd_numa_page(), we attempt to handle a migrating thp pmd by waiting until the pmd is unlocked before we return and retry. However, we can race with migrate_misplaced_transhuge_page(): // do_huge_pmd_numa_page // migrate_misplaced_transhuge_page() // Holds 0 refs on page // Holds 2 refs on page vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); /* ... */ if (pmd_trans_migrating(*vmf->pmd)) { page = pmd_page(*vmf->pmd); spin_unlock(vmf->ptl); ptl = pmd_lock(mm, pmd); if (page_count(page) != 2)) { /* roll back */ } /* ... */ mlock_migrate_page(new_page, page); /* ... */ spin_unlock(ptl); put_page(page); put_page(page); // page freed here wait_on_page_locked(page); goto out; } This can result in the freed page having its waiters flag set unexpectedly, which trips the PAGE_FLAGS_CHECK_AT_PREP checks in the page alloc/free functions. This has been observed on arm64 KVM guests. We can avoid this by having do_huge_pmd_numa_page() take a reference on the page before dropping the pmd lock, mirroring what we do in __migration_entry_wait(). When we hit the race, migrate_misplaced_transhuge_page() will see the reference and abort the migration, as it may do today in other cases. Fixes: b8916634b77bffb2 ("mm: Prevent parallel splits during THP migration") Link: http://lkml.kernel.org/r/1497349722-6731-2-git-send-email-will.deacon@arm.com Signed-off-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com> Acked-by: Steve Capper <steve.capper@arm.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@suse.de> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-06-17 05:02:34 +08:00
if (!get_page_unless_zero(page))
goto out_unlock;
spin_unlock(vmf->ptl);
mm: numa: do not dereference pmd outside of the lock during NUMA hinting fault Automatic NUMA balancing depends on being able to protect PTEs to trap a fault and gather reference locality information. Very broadly speaking it would mark PTEs as not present and use another bit to distinguish between NUMA hinting faults and other types of faults. It was universally loved by everybody and caused no problems whatsoever. That last sentence might be a lie. This series is very heavily based on patches from Linus and Aneesh to replace the existing PTE/PMD NUMA helper functions with normal change protections. I did alter and add parts of it but I consider them relatively minor contributions. At their suggestion, acked-bys are in there but I've no problem converting them to Signed-off-by if requested. AFAIK, this has received no testing on ppc64 and I'm depending on Aneesh for that. I tested trinity under kvm-tool and passed and ran a few other basic tests. At the time of writing, only the short-lived tests have completed but testing of V2 indicated that long-term testing had no surprises. In most cases I'm leaving out detail as it's not that interesting. specjbb single JVM: There was negligible performance difference in the benchmark itself for short runs. However, system activity is higher and interrupts are much higher over time -- possibly TLB flushes. Migrations are also higher. Overall, this is more overhead but considering the problems faced with the old approach I think we just have to suck it up and find another way of reducing the overhead. specjbb multi JVM: Negligible performance difference to the actual benchmark but like the single JVM case, the system overhead is noticeably higher. Again, interrupts are a major factor. autonumabench: This was all over the place and about all that can be reasonably concluded is that it's different but not necessarily better or worse. autonumabench 3.18.0-rc5 3.18.0-rc5 mmotm-20141119 protnone-v3r3 User NUMA01 32380.24 ( 0.00%) 21642.92 ( 33.16%) User NUMA01_THEADLOCAL 22481.02 ( 0.00%) 22283.22 ( 0.88%) User NUMA02 3137.00 ( 0.00%) 3116.54 ( 0.65%) User NUMA02_SMT 1614.03 ( 0.00%) 1543.53 ( 4.37%) System NUMA01 322.97 ( 0.00%) 1465.89 (-353.88%) System NUMA01_THEADLOCAL 91.87 ( 0.00%) 49.32 ( 46.32%) System NUMA02 37.83 ( 0.00%) 14.61 ( 61.38%) System NUMA02_SMT 7.36 ( 0.00%) 7.45 ( -1.22%) Elapsed NUMA01 716.63 ( 0.00%) 599.29 ( 16.37%) Elapsed NUMA01_THEADLOCAL 553.98 ( 0.00%) 539.94 ( 2.53%) Elapsed NUMA02 83.85 ( 0.00%) 83.04 ( 0.97%) Elapsed NUMA02_SMT 86.57 ( 0.00%) 79.15 ( 8.57%) CPU NUMA01 4563.00 ( 0.00%) 3855.00 ( 15.52%) CPU NUMA01_THEADLOCAL 4074.00 ( 0.00%) 4136.00 ( -1.52%) CPU NUMA02 3785.00 ( 0.00%) 3770.00 ( 0.40%) CPU NUMA02_SMT 1872.00 ( 0.00%) 1959.00 ( -4.65%) System CPU usage of NUMA01 is worse but it's an adverse workload on this machine so I'm reluctant to conclude that it's a problem that matters. On the other workloads that are sensible on this machine, system CPU usage is great. Overall time to complete the benchmark is comparable 3.18.0-rc5 3.18.0-rc5 mmotm-20141119protnone-v3r3 User 59612.50 48586.44 System 460.22 1537.45 Elapsed 1442.20 1304.29 NUMA alloc hit 5075182 5743353 NUMA alloc miss 0 0 NUMA interleave hit 0 0 NUMA alloc local 5075174 5743339 NUMA base PTE updates 637061448 443106883 NUMA huge PMD updates 1243434 864747 NUMA page range updates 1273699656 885857347 NUMA hint faults 1658116 1214277 NUMA hint local faults 959487 754113 NUMA hint local percent 57 62 NUMA pages migrated 5467056 61676398 The NUMA pages migrated look terrible but when I looked at a graph of the activity over time I see that the massive spike in migration activity was during NUMA01. This correlates with high system CPU usage and could be simply down to bad luck but any modifications that affect that workload would be related to scan rates and migrations, not the protection mechanism. For all other workloads, migration activity was comparable. Overall, headline performance figures are comparable but the overhead is higher, mostly in interrupts. To some extent, higher overhead from this approach was anticipated but not to this degree. It's going to be necessary to reduce this again with a separate series in the future. It's still worth going ahead with this series though as it's likely to avoid constant headaches with Xen and is probably easier to maintain. This patch (of 10): A transhuge NUMA hinting fault may find the page is migrating and should wait until migration completes. The check is race-prone because the pmd is deferenced outside of the page lock and while the race is tiny, it'll be larger if the PMD is cleared while marking PMDs for hinting fault. This patch closes the race. Signed-off-by: Mel Gorman <mgorman@suse.de> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Dave Jones <davej@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Kirill Shutemov <kirill.shutemov@linux.intel.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Rik van Riel <riel@redhat.com> Cc: Sasha Levin <sasha.levin@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-13 06:58:16 +08:00
wait_on_page_locked(page);
mm: numa: avoid waiting on freed migrated pages In do_huge_pmd_numa_page(), we attempt to handle a migrating thp pmd by waiting until the pmd is unlocked before we return and retry. However, we can race with migrate_misplaced_transhuge_page(): // do_huge_pmd_numa_page // migrate_misplaced_transhuge_page() // Holds 0 refs on page // Holds 2 refs on page vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); /* ... */ if (pmd_trans_migrating(*vmf->pmd)) { page = pmd_page(*vmf->pmd); spin_unlock(vmf->ptl); ptl = pmd_lock(mm, pmd); if (page_count(page) != 2)) { /* roll back */ } /* ... */ mlock_migrate_page(new_page, page); /* ... */ spin_unlock(ptl); put_page(page); put_page(page); // page freed here wait_on_page_locked(page); goto out; } This can result in the freed page having its waiters flag set unexpectedly, which trips the PAGE_FLAGS_CHECK_AT_PREP checks in the page alloc/free functions. This has been observed on arm64 KVM guests. We can avoid this by having do_huge_pmd_numa_page() take a reference on the page before dropping the pmd lock, mirroring what we do in __migration_entry_wait(). When we hit the race, migrate_misplaced_transhuge_page() will see the reference and abort the migration, as it may do today in other cases. Fixes: b8916634b77bffb2 ("mm: Prevent parallel splits during THP migration") Link: http://lkml.kernel.org/r/1497349722-6731-2-git-send-email-will.deacon@arm.com Signed-off-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com> Acked-by: Steve Capper <steve.capper@arm.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@suse.de> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-06-17 05:02:34 +08:00
put_page(page);
goto out;
}
page = pmd_page(pmd);
BUG_ON(is_huge_zero_page(page));
page_nid = page_to_nid(page);
last_cpupid = page_cpupid_last(page);
mm: numa: Add pte updates, hinting and migration stats It is tricky to quantify the basic cost of automatic NUMA placement in a meaningful manner. This patch adds some vmstats that can be used as part of a basic costing model. u = basic unit = sizeof(void *) Ca = cost of struct page access = sizeof(struct page) / u Cpte = Cost PTE access = Ca Cupdate = Cost PTE update = (2 * Cpte) + (2 * Wlock) where Cpte is incurred twice for a read and a write and Wlock is a constant representing the cost of taking or releasing a lock Cnumahint = Cost of a minor page fault = some high constant e.g. 1000 Cpagerw = Cost to read or write a full page = Ca + PAGE_SIZE/u Ci = Cost of page isolation = Ca + Wi where Wi is a constant that should reflect the approximate cost of the locking operation Cpagecopy = Cpagerw + (Cpagerw * Wnuma) + Ci + (Ci * Wnuma) where Wnuma is the approximate NUMA factor. 1 is local. 1.2 would imply that remote accesses are 20% more expensive Balancing cost = Cpte * numa_pte_updates + Cnumahint * numa_hint_faults + Ci * numa_pages_migrated + Cpagecopy * numa_pages_migrated Note that numa_pages_migrated is used as a measure of how many pages were isolated even though it would miss pages that failed to migrate. A vmstat counter could have been added for it but the isolation cost is pretty marginal in comparison to the overall cost so it seemed overkill. The ideal way to measure automatic placement benefit would be to count the number of remote accesses versus local accesses and do something like benefit = (remote_accesses_before - remove_access_after) * Wnuma but the information is not readily available. As a workload converges, the expection would be that the number of remote numa hints would reduce to 0. convergence = numa_hint_faults_local / numa_hint_faults where this is measured for the last N number of numa hints recorded. When the workload is fully converged the value is 1. This can measure if the placement policy is converging and how fast it is doing it. Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: Rik van Riel <riel@redhat.com>
2012-11-02 22:52:48 +08:00
count_vm_numa_event(NUMA_HINT_FAULTS);
if (page_nid == this_nid) {
mm: numa: Add pte updates, hinting and migration stats It is tricky to quantify the basic cost of automatic NUMA placement in a meaningful manner. This patch adds some vmstats that can be used as part of a basic costing model. u = basic unit = sizeof(void *) Ca = cost of struct page access = sizeof(struct page) / u Cpte = Cost PTE access = Ca Cupdate = Cost PTE update = (2 * Cpte) + (2 * Wlock) where Cpte is incurred twice for a read and a write and Wlock is a constant representing the cost of taking or releasing a lock Cnumahint = Cost of a minor page fault = some high constant e.g. 1000 Cpagerw = Cost to read or write a full page = Ca + PAGE_SIZE/u Ci = Cost of page isolation = Ca + Wi where Wi is a constant that should reflect the approximate cost of the locking operation Cpagecopy = Cpagerw + (Cpagerw * Wnuma) + Ci + (Ci * Wnuma) where Wnuma is the approximate NUMA factor. 1 is local. 1.2 would imply that remote accesses are 20% more expensive Balancing cost = Cpte * numa_pte_updates + Cnumahint * numa_hint_faults + Ci * numa_pages_migrated + Cpagecopy * numa_pages_migrated Note that numa_pages_migrated is used as a measure of how many pages were isolated even though it would miss pages that failed to migrate. A vmstat counter could have been added for it but the isolation cost is pretty marginal in comparison to the overall cost so it seemed overkill. The ideal way to measure automatic placement benefit would be to count the number of remote accesses versus local accesses and do something like benefit = (remote_accesses_before - remove_access_after) * Wnuma but the information is not readily available. As a workload converges, the expection would be that the number of remote numa hints would reduce to 0. convergence = numa_hint_faults_local / numa_hint_faults where this is measured for the last N number of numa hints recorded. When the workload is fully converged the value is 1. This can measure if the placement policy is converging and how fast it is doing it. Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: Rik van Riel <riel@redhat.com>
2012-11-02 22:52:48 +08:00
count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
flags |= TNF_FAULT_LOCAL;
}
mm: numa: group related processes based on VMA flags instead of page table flags These are three follow-on patches based on the xfsrepair workload Dave Chinner reported was problematic in 4.0-rc1 due to changes in page table management -- https://lkml.org/lkml/2015/3/1/226. Much of the problem was reduced by commit 53da3bc2ba9e ("mm: fix up numa read-only thread grouping logic") and commit ba68bc0115eb ("mm: thp: Return the correct value for change_huge_pmd"). It was known that the performance in 3.19 was still better even if is far less safe. This series aims to restore the performance without compromising on safety. For the test of this mail, I'm comparing 3.19 against 4.0-rc4 and the three patches applied on top autonumabench 3.19.0 4.0.0-rc4 4.0.0-rc4 4.0.0-rc4 4.0.0-rc4 vanilla vanilla vmwrite-v5r8 preserve-v5r8 slowscan-v5r8 Time System-NUMA01 124.00 ( 0.00%) 161.86 (-30.53%) 107.13 ( 13.60%) 103.13 ( 16.83%) 145.01 (-16.94%) Time System-NUMA01_THEADLOCAL 115.54 ( 0.00%) 107.64 ( 6.84%) 131.87 (-14.13%) 83.30 ( 27.90%) 92.35 ( 20.07%) Time System-NUMA02 9.35 ( 0.00%) 10.44 (-11.66%) 8.95 ( 4.28%) 10.72 (-14.65%) 8.16 ( 12.73%) Time System-NUMA02_SMT 3.87 ( 0.00%) 4.63 (-19.64%) 4.57 (-18.09%) 3.99 ( -3.10%) 3.36 ( 13.18%) Time Elapsed-NUMA01 570.06 ( 0.00%) 567.82 ( 0.39%) 515.78 ( 9.52%) 517.26 ( 9.26%) 543.80 ( 4.61%) Time Elapsed-NUMA01_THEADLOCAL 393.69 ( 0.00%) 384.83 ( 2.25%) 384.10 ( 2.44%) 384.31 ( 2.38%) 380.73 ( 3.29%) Time Elapsed-NUMA02 49.09 ( 0.00%) 49.33 ( -0.49%) 48.86 ( 0.47%) 48.78 ( 0.63%) 50.94 ( -3.77%) Time Elapsed-NUMA02_SMT 47.51 ( 0.00%) 47.15 ( 0.76%) 47.98 ( -0.99%) 48.12 ( -1.28%) 49.56 ( -4.31%) 3.19.0 4.0.0-rc4 4.0.0-rc4 4.0.0-rc4 4.0.0-rc4 vanilla vanillavmwrite-v5r8preserve-v5r8slowscan-v5r8 User 46334.60 46391.94 44383.95 43971.89 44372.12 System 252.84 284.66 252.61 201.24 249.00 Elapsed 1062.14 1050.96 998.68 1000.94 1026.78 Overall the system CPU usage is comparable and the test is naturally a bit variable. The slowing of the scanner hurts numa01 but on this machine it is an adverse workload and patches that dramatically help it often hurt absolutely everything else. Due to patch 2, the fault activity is interesting 3.19.0 4.0.0-rc4 4.0.0-rc4 4.0.0-rc4 4.0.0-rc4 vanilla vanillavmwrite-v5r8preserve-v5r8slowscan-v5r8 Minor Faults 2097811 2656646 2597249 1981230 1636841 Major Faults 362 450 365 364 365 Note the impact preserving the write bit across protection updates and fault reduces faults. NUMA alloc hit 1229008 1217015 1191660 1178322 1199681 NUMA alloc miss 0 0 0 0 0 NUMA interleave hit 0 0 0 0 0 NUMA alloc local 1228514 1216317 1190871 1177448 1199021 NUMA base PTE updates 245706197 240041607 238195516 244704842 115012800 NUMA huge PMD updates 479530 468448 464868 477573 224487 NUMA page range updates 491225557 479886983 476207932 489222218 229950144 NUMA hint faults 659753 656503 641678 656926 294842 NUMA hint local faults 381604 373963 360478 337585 186249 NUMA hint local percent 57 56 56 51 63 NUMA pages migrated 5412140 6374899 6266530 5277468 5755096 AutoNUMA cost 5121% 5083% 4994% 5097% 2388% Here the impact of slowing the PTE scanner on migratrion failures is obvious as "NUMA base PTE updates" and "NUMA huge PMD updates" are massively reduced even though the headline performance is very similar. As xfsrepair was the reported workload here is the impact of the series on it. xfsrepair 3.19.0 4.0.0-rc4 4.0.0-rc4 4.0.0-rc4 4.0.0-rc4 vanilla vanilla vmwrite-v5r8 preserve-v5r8 slowscan-v5r8 Min real-fsmark 1183.29 ( 0.00%) 1165.73 ( 1.48%) 1152.78 ( 2.58%) 1153.64 ( 2.51%) 1177.62 ( 0.48%) Min syst-fsmark 4107.85 ( 0.00%) 4027.75 ( 1.95%) 3986.74 ( 2.95%) 3979.16 ( 3.13%) 4048.76 ( 1.44%) Min real-xfsrepair 441.51 ( 0.00%) 463.96 ( -5.08%) 449.50 ( -1.81%) 440.08 ( 0.32%) 439.87 ( 0.37%) Min syst-xfsrepair 195.76 ( 0.00%) 278.47 (-42.25%) 262.34 (-34.01%) 203.70 ( -4.06%) 143.64 ( 26.62%) Amean real-fsmark 1188.30 ( 0.00%) 1177.34 ( 0.92%) 1157.97 ( 2.55%) 1158.21 ( 2.53%) 1182.22 ( 0.51%) Amean syst-fsmark 4111.37 ( 0.00%) 4055.70 ( 1.35%) 3987.19 ( 3.02%) 3998.72 ( 2.74%) 4061.69 ( 1.21%) Amean real-xfsrepair 450.88 ( 0.00%) 468.32 ( -3.87%) 454.14 ( -0.72%) 442.36 ( 1.89%) 440.59 ( 2.28%) Amean syst-xfsrepair 199.66 ( 0.00%) 290.60 (-45.55%) 277.20 (-38.84%) 204.68 ( -2.51%) 150.55 ( 24.60%) Stddev real-fsmark 4.12 ( 0.00%) 10.82 (-162.29%) 4.14 ( -0.28%) 5.98 (-45.05%) 4.60 (-11.53%) Stddev syst-fsmark 2.63 ( 0.00%) 20.32 (-671.82%) 0.37 ( 85.89%) 16.47 (-525.59%) 15.05 (-471.79%) Stddev real-xfsrepair 6.87 ( 0.00%) 4.55 ( 33.75%) 3.46 ( 49.58%) 1.78 ( 74.12%) 0.52 ( 92.50%) Stddev syst-xfsrepair 3.02 ( 0.00%) 10.30 (-241.37%) 13.17 (-336.37%) 0.71 ( 76.63%) 5.00 (-65.61%) CoeffVar real-fsmark 0.35 ( 0.00%) 0.92 (-164.73%) 0.36 ( -2.91%) 0.52 (-48.82%) 0.39 (-12.10%) CoeffVar syst-fsmark 0.06 ( 0.00%) 0.50 (-682.41%) 0.01 ( 85.45%) 0.41 (-543.22%) 0.37 (-478.78%) CoeffVar real-xfsrepair 1.52 ( 0.00%) 0.97 ( 36.21%) 0.76 ( 49.94%) 0.40 ( 73.62%) 0.12 ( 92.33%) CoeffVar syst-xfsrepair 1.51 ( 0.00%) 3.54 (-134.54%) 4.75 (-214.31%) 0.34 ( 77.20%) 3.32 (-119.63%) Max real-fsmark 1193.39 ( 0.00%) 1191.77 ( 0.14%) 1162.90 ( 2.55%) 1166.66 ( 2.24%) 1188.50 ( 0.41%) Max syst-fsmark 4114.18 ( 0.00%) 4075.45 ( 0.94%) 3987.65 ( 3.08%) 4019.45 ( 2.30%) 4082.80 ( 0.76%) Max real-xfsrepair 457.80 ( 0.00%) 474.60 ( -3.67%) 457.82 ( -0.00%) 444.42 ( 2.92%) 441.03 ( 3.66%) Max syst-xfsrepair 203.11 ( 0.00%) 303.65 (-49.50%) 294.35 (-44.92%) 205.33 ( -1.09%) 155.28 ( 23.55%) The really relevant lines as syst-xfsrepair which is the system CPU usage when running xfsrepair. Note that on my machine the overhead was 45% higher on 4.0-rc4 which may be part of what Dave is seeing. Once we preserve the write bit across faults, it's only 2.51% higher on average. With the full series applied, system CPU usage is 24.6% lower on average. Again, the impact of preserving the write bit on minor faults is obvious and the impact of slowing scanning after migration failures is obvious on the PTE updates. Note also that the number of pages migrated is much reduced even though the headline performance is comparable. 3.19.0 4.0.0-rc4 4.0.0-rc4 4.0.0-rc4 4.0.0-rc4 vanilla vanillavmwrite-v5r8preserve-v5r8slowscan-v5r8 Minor Faults 153466827 254507978 249163829 153501373 105737890 Major Faults 610 702 690 649 724 NUMA base PTE updates 217735049 210756527 217729596 216937111 144344993 NUMA huge PMD updates 129294 85044 106921 127246 79887 NUMA pages migrated 21938995 29705270 28594162 22687324 16258075 3.19.0 4.0.0-rc4 4.0.0-rc4 4.0.0-rc4 4.0.0-rc4 vanilla vanillavmwrite-v5r8preserve-v5r8slowscan-v5r8 Mean sdb-avgqusz 13.47 2.54 2.55 2.47 2.49 Mean sdb-avgrqsz 202.32 140.22 139.50 139.02 138.12 Mean sdb-await 25.92 5.09 5.33 5.02 5.22 Mean sdb-r_await 4.71 0.19 0.83 0.51 0.11 Mean sdb-w_await 104.13 5.21 5.38 5.05 5.32 Mean sdb-svctm 0.59 0.13 0.14 0.13 0.14 Mean sdb-rrqm 0.16 0.00 0.00 0.00 0.00 Mean sdb-wrqm 3.59 1799.43 1826.84 1812.21 1785.67 Max sdb-avgqusz 111.06 12.13 14.05 11.66 15.60 Max sdb-avgrqsz 255.60 190.34 190.01 187.33 191.78 Max sdb-await 168.24 39.28 49.22 44.64 65.62 Max sdb-r_await 660.00 52.00 280.00 76.00 12.00 Max sdb-w_await 7804.00 39.28 49.22 44.64 65.62 Max sdb-svctm 4.00 2.82 2.86 1.98 2.84 Max sdb-rrqm 8.30 0.00 0.00 0.00 0.00 Max sdb-wrqm 34.20 5372.80 5278.60 5386.60 5546.15 FWIW, I also checked SPECjbb in different configurations but it's similar observations -- minor faults lower, PTE update activity lower and performance is roughly comparable against 3.19. This patch (of 3): Threads that share writable data within pages are grouped together as related tasks. This decision is based on whether the PTE is marked dirty which is subject to timing races between the PTE scanner update and when the application writes the page. If the page is file-backed, then background flushes and sync also affect placement. This is unpredictable behaviour which is impossible to reason about so this patch makes grouping decisions based on the VMA flags. Signed-off-by: Mel Gorman <mgorman@suse.de> Reported-by: Dave Chinner <david@fromorbit.com> Tested-by: Dave Chinner <david@fromorbit.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-03-26 06:55:37 +08:00
/* See similar comment in do_numa_page for explanation */
mm/autonuma: let architecture override how the write bit should be stashed in a protnone pte. Patch series "Numabalancing preserve write fix", v2. This patch series address an issue w.r.t THP migration and autonuma preserve write feature. migrate_misplaced_transhuge_page() cannot deal with concurrent modification of the page. It does a page copy without following the migration pte sequence. IIUC, this was done to keep the migration simpler and at the time of implemenation we didn't had THP page cache which would have required a more elaborate migration scheme. That means thp autonuma migration expect the protnone with saved write to be done such that both kernel and user cannot update the page content. This patch series enables archs like ppc64 to do that. We are good with the hash translation mode with the current code, because we never create a hardware page table entry for a protnone pte. This patch (of 2): Autonuma preserves the write permission across numa fault to avoid taking a writefault after a numa fault (Commit: b191f9b106ea " mm: numa: preserve PTE write permissions across a NUMA hinting fault"). Architecture can implement protnone in different ways and some may choose to implement that by clearing Read/ Write/Exec bit of pte. Setting the write bit on such pte can result in wrong behaviour. Fix this up by allowing arch to override how to save the write bit on a protnone pte. [aneesh.kumar@linux.vnet.ibm.com: don't mark pte saved write in case of dirty_accountable] Link: http://lkml.kernel.org/r/1487942884-16517-1-git-send-email-aneesh.kumar@linux.vnet.ibm.com [aneesh.kumar@linux.vnet.ibm.com: v3] Link: http://lkml.kernel.org/r/1487498625-10891-2-git-send-email-aneesh.kumar@linux.vnet.ibm.com Link: http://lkml.kernel.org/r/1487050314-3892-2-git-send-email-aneesh.kumar@linux.vnet.ibm.com Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Michael Neuling <mikey@neuling.org> Cc: Rik van Riel <riel@surriel.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Michael Ellerman <michaele@au1.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-25 06:59:16 +08:00
if (!pmd_savedwrite(pmd))
flags |= TNF_NO_GROUP;
/*
* Acquire the page lock to serialise THP migrations but avoid dropping
* page_table_lock if at all possible
*/
page_locked = trylock_page(page);
target_nid = mpol_misplaced(page, vma, haddr);
if (target_nid == -1) {
/* If the page was locked, there are no parallel migrations */
if (page_locked)
goto clear_pmdnuma;
}
/* Migration could have started since the pmd_trans_migrating check */
if (!page_locked) {
mm: numa: avoid waiting on freed migrated pages In do_huge_pmd_numa_page(), we attempt to handle a migrating thp pmd by waiting until the pmd is unlocked before we return and retry. However, we can race with migrate_misplaced_transhuge_page(): // do_huge_pmd_numa_page // migrate_misplaced_transhuge_page() // Holds 0 refs on page // Holds 2 refs on page vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); /* ... */ if (pmd_trans_migrating(*vmf->pmd)) { page = pmd_page(*vmf->pmd); spin_unlock(vmf->ptl); ptl = pmd_lock(mm, pmd); if (page_count(page) != 2)) { /* roll back */ } /* ... */ mlock_migrate_page(new_page, page); /* ... */ spin_unlock(ptl); put_page(page); put_page(page); // page freed here wait_on_page_locked(page); goto out; } This can result in the freed page having its waiters flag set unexpectedly, which trips the PAGE_FLAGS_CHECK_AT_PREP checks in the page alloc/free functions. This has been observed on arm64 KVM guests. We can avoid this by having do_huge_pmd_numa_page() take a reference on the page before dropping the pmd lock, mirroring what we do in __migration_entry_wait(). When we hit the race, migrate_misplaced_transhuge_page() will see the reference and abort the migration, as it may do today in other cases. Fixes: b8916634b77bffb2 ("mm: Prevent parallel splits during THP migration") Link: http://lkml.kernel.org/r/1497349722-6731-2-git-send-email-will.deacon@arm.com Signed-off-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com> Acked-by: Steve Capper <steve.capper@arm.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@suse.de> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-06-17 05:02:34 +08:00
page_nid = -1;
if (!get_page_unless_zero(page))
goto out_unlock;
spin_unlock(vmf->ptl);
wait_on_page_locked(page);
mm: numa: avoid waiting on freed migrated pages In do_huge_pmd_numa_page(), we attempt to handle a migrating thp pmd by waiting until the pmd is unlocked before we return and retry. However, we can race with migrate_misplaced_transhuge_page(): // do_huge_pmd_numa_page // migrate_misplaced_transhuge_page() // Holds 0 refs on page // Holds 2 refs on page vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); /* ... */ if (pmd_trans_migrating(*vmf->pmd)) { page = pmd_page(*vmf->pmd); spin_unlock(vmf->ptl); ptl = pmd_lock(mm, pmd); if (page_count(page) != 2)) { /* roll back */ } /* ... */ mlock_migrate_page(new_page, page); /* ... */ spin_unlock(ptl); put_page(page); put_page(page); // page freed here wait_on_page_locked(page); goto out; } This can result in the freed page having its waiters flag set unexpectedly, which trips the PAGE_FLAGS_CHECK_AT_PREP checks in the page alloc/free functions. This has been observed on arm64 KVM guests. We can avoid this by having do_huge_pmd_numa_page() take a reference on the page before dropping the pmd lock, mirroring what we do in __migration_entry_wait(). When we hit the race, migrate_misplaced_transhuge_page() will see the reference and abort the migration, as it may do today in other cases. Fixes: b8916634b77bffb2 ("mm: Prevent parallel splits during THP migration") Link: http://lkml.kernel.org/r/1497349722-6731-2-git-send-email-will.deacon@arm.com Signed-off-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com> Acked-by: Steve Capper <steve.capper@arm.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@suse.de> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-06-17 05:02:34 +08:00
put_page(page);
goto out;
}
/*
* Page is misplaced. Page lock serialises migrations. Acquire anon_vma
* to serialises splits
*/
get_page(page);
spin_unlock(vmf->ptl);
anon_vma = page_lock_anon_vma_read(page);
/* Confirm the PMD did not change while page_table_lock was released */
spin_lock(vmf->ptl);
if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
unlock_page(page);
put_page(page);
page_nid = -1;
goto out_unlock;
}
/* Bail if we fail to protect against THP splits for any reason */
if (unlikely(!anon_vma)) {
put_page(page);
page_nid = -1;
goto clear_pmdnuma;
}
mm, locking: Rework {set,clear,mm}_tlb_flush_pending() Commit: af2c1401e6f9 ("mm: numa: guarantee that tlb_flush_pending updates are visible before page table updates") added smp_mb__before_spinlock() to set_tlb_flush_pending(). I think we can solve the same problem without this barrier. If instead we mandate that mm_tlb_flush_pending() is used while holding the PTL we're guaranteed to observe prior set_tlb_flush_pending() instances. For this to work we need to rework migrate_misplaced_transhuge_page() a little and move the test up into do_huge_pmd_numa_page(). NOTE: this relies on flush_tlb_range() to guarantee: (1) it ensures that prior page table updates are visible to the page table walker and (2) it ensures that subsequent memory accesses are only made visible after the invalidation has completed This is required for architectures that implement TRANSPARENT_HUGEPAGE (arc, arm, arm64, mips, powerpc, s390, sparc, x86) or otherwise use mm_tlb_flush_pending() in their page-table operations (arm, arm64, x86). This appears true for: - arm (DSB ISB before and after), - arm64 (DSB ISHST before, and DSB ISH after), - powerpc (PTESYNC before and after), - s390 and x86 TLB invalidate are serializing instructions But I failed to understand the situation for: - arc, mips, sparc Now SPARC64 is a wee bit special in that flush_tlb_range() is a no-op and it flushes the TLBs using arch_{enter,leave}_lazy_mmu_mode() inside the PTL. It still needs to guarantee the PTL unlock happens _after_ the invalidate completes. Vineet, Ralf and Dave could you guys please have a look? Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Will Deacon <will.deacon@arm.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: David S. Miller <davem@davemloft.net> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Rik van Riel <riel@redhat.com> Cc: Russell King <linux@armlinux.org.uk> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vineet Gupta <vgupta@synopsys.com> Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-06-08 00:05:07 +08:00
/*
* Since we took the NUMA fault, we must have observed the !accessible
* bit. Make sure all other CPUs agree with that, to avoid them
* modifying the page we're about to migrate.
*
* Must be done under PTL such that we'll observe the relevant
* inc_tlb_flush_pending().
*
* We are not sure a pending tlb flush here is for a huge page
* mapping or not. Hence use the tlb range variant
mm, locking: Rework {set,clear,mm}_tlb_flush_pending() Commit: af2c1401e6f9 ("mm: numa: guarantee that tlb_flush_pending updates are visible before page table updates") added smp_mb__before_spinlock() to set_tlb_flush_pending(). I think we can solve the same problem without this barrier. If instead we mandate that mm_tlb_flush_pending() is used while holding the PTL we're guaranteed to observe prior set_tlb_flush_pending() instances. For this to work we need to rework migrate_misplaced_transhuge_page() a little and move the test up into do_huge_pmd_numa_page(). NOTE: this relies on flush_tlb_range() to guarantee: (1) it ensures that prior page table updates are visible to the page table walker and (2) it ensures that subsequent memory accesses are only made visible after the invalidation has completed This is required for architectures that implement TRANSPARENT_HUGEPAGE (arc, arm, arm64, mips, powerpc, s390, sparc, x86) or otherwise use mm_tlb_flush_pending() in their page-table operations (arm, arm64, x86). This appears true for: - arm (DSB ISB before and after), - arm64 (DSB ISHST before, and DSB ISH after), - powerpc (PTESYNC before and after), - s390 and x86 TLB invalidate are serializing instructions But I failed to understand the situation for: - arc, mips, sparc Now SPARC64 is a wee bit special in that flush_tlb_range() is a no-op and it flushes the TLBs using arch_{enter,leave}_lazy_mmu_mode() inside the PTL. It still needs to guarantee the PTL unlock happens _after_ the invalidate completes. Vineet, Ralf and Dave could you guys please have a look? Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Will Deacon <will.deacon@arm.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: David S. Miller <davem@davemloft.net> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Rik van Riel <riel@redhat.com> Cc: Russell King <linux@armlinux.org.uk> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vineet Gupta <vgupta@synopsys.com> Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-06-08 00:05:07 +08:00
*/
if (mm_tlb_flush_pending(vma->vm_mm))
flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
mm, locking: Rework {set,clear,mm}_tlb_flush_pending() Commit: af2c1401e6f9 ("mm: numa: guarantee that tlb_flush_pending updates are visible before page table updates") added smp_mb__before_spinlock() to set_tlb_flush_pending(). I think we can solve the same problem without this barrier. If instead we mandate that mm_tlb_flush_pending() is used while holding the PTL we're guaranteed to observe prior set_tlb_flush_pending() instances. For this to work we need to rework migrate_misplaced_transhuge_page() a little and move the test up into do_huge_pmd_numa_page(). NOTE: this relies on flush_tlb_range() to guarantee: (1) it ensures that prior page table updates are visible to the page table walker and (2) it ensures that subsequent memory accesses are only made visible after the invalidation has completed This is required for architectures that implement TRANSPARENT_HUGEPAGE (arc, arm, arm64, mips, powerpc, s390, sparc, x86) or otherwise use mm_tlb_flush_pending() in their page-table operations (arm, arm64, x86). This appears true for: - arm (DSB ISB before and after), - arm64 (DSB ISHST before, and DSB ISH after), - powerpc (PTESYNC before and after), - s390 and x86 TLB invalidate are serializing instructions But I failed to understand the situation for: - arc, mips, sparc Now SPARC64 is a wee bit special in that flush_tlb_range() is a no-op and it flushes the TLBs using arch_{enter,leave}_lazy_mmu_mode() inside the PTL. It still needs to guarantee the PTL unlock happens _after_ the invalidate completes. Vineet, Ralf and Dave could you guys please have a look? Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Will Deacon <will.deacon@arm.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: David S. Miller <davem@davemloft.net> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Rik van Riel <riel@redhat.com> Cc: Russell King <linux@armlinux.org.uk> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vineet Gupta <vgupta@synopsys.com> Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-06-08 00:05:07 +08:00
/*
* Migrate the THP to the requested node, returns with page unlocked
* and access rights restored.
*/
spin_unlock(vmf->ptl);
mm, locking: Rework {set,clear,mm}_tlb_flush_pending() Commit: af2c1401e6f9 ("mm: numa: guarantee that tlb_flush_pending updates are visible before page table updates") added smp_mb__before_spinlock() to set_tlb_flush_pending(). I think we can solve the same problem without this barrier. If instead we mandate that mm_tlb_flush_pending() is used while holding the PTL we're guaranteed to observe prior set_tlb_flush_pending() instances. For this to work we need to rework migrate_misplaced_transhuge_page() a little and move the test up into do_huge_pmd_numa_page(). NOTE: this relies on flush_tlb_range() to guarantee: (1) it ensures that prior page table updates are visible to the page table walker and (2) it ensures that subsequent memory accesses are only made visible after the invalidation has completed This is required for architectures that implement TRANSPARENT_HUGEPAGE (arc, arm, arm64, mips, powerpc, s390, sparc, x86) or otherwise use mm_tlb_flush_pending() in their page-table operations (arm, arm64, x86). This appears true for: - arm (DSB ISB before and after), - arm64 (DSB ISHST before, and DSB ISH after), - powerpc (PTESYNC before and after), - s390 and x86 TLB invalidate are serializing instructions But I failed to understand the situation for: - arc, mips, sparc Now SPARC64 is a wee bit special in that flush_tlb_range() is a no-op and it flushes the TLBs using arch_{enter,leave}_lazy_mmu_mode() inside the PTL. It still needs to guarantee the PTL unlock happens _after_ the invalidate completes. Vineet, Ralf and Dave could you guys please have a look? Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Will Deacon <will.deacon@arm.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: David S. Miller <davem@davemloft.net> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Rik van Riel <riel@redhat.com> Cc: Russell King <linux@armlinux.org.uk> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vineet Gupta <vgupta@synopsys.com> Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-06-08 00:05:07 +08:00
migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
vmf->pmd, pmd, vmf->address, page, target_nid);
if (migrated) {
flags |= TNF_MIGRATED;
page_nid = target_nid;
mm: numa: slow PTE scan rate if migration failures occur Dave Chinner reported the following on https://lkml.org/lkml/2015/3/1/226 Across the board the 4.0-rc1 numbers are much slower, and the degradation is far worse when using the large memory footprint configs. Perf points straight at the cause - this is from 4.0-rc1 on the "-o bhash=101073" config: - 56.07% 56.07% [kernel] [k] default_send_IPI_mask_sequence_phys - default_send_IPI_mask_sequence_phys - 99.99% physflat_send_IPI_mask - 99.37% native_send_call_func_ipi smp_call_function_many - native_flush_tlb_others - 99.85% flush_tlb_page ptep_clear_flush try_to_unmap_one rmap_walk try_to_unmap migrate_pages migrate_misplaced_page - handle_mm_fault - 99.73% __do_page_fault trace_do_page_fault do_async_page_fault + async_page_fault 0.63% native_send_call_func_single_ipi generic_exec_single smp_call_function_single This is showing excessive migration activity even though excessive migrations are meant to get throttled. Normally, the scan rate is tuned on a per-task basis depending on the locality of faults. However, if migrations fail for any reason then the PTE scanner may scan faster if the faults continue to be remote. This means there is higher system CPU overhead and fault trapping at exactly the time we know that migrations cannot happen. This patch tracks when migration failures occur and slows the PTE scanner. Signed-off-by: Mel Gorman <mgorman@suse.de> Reported-by: Dave Chinner <david@fromorbit.com> Tested-by: Dave Chinner <david@fromorbit.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-03-26 06:55:42 +08:00
} else
flags |= TNF_MIGRATE_FAIL;
goto out;
clear_pmdnuma:
BUG_ON(!PageLocked(page));
mm/autonuma: let architecture override how the write bit should be stashed in a protnone pte. Patch series "Numabalancing preserve write fix", v2. This patch series address an issue w.r.t THP migration and autonuma preserve write feature. migrate_misplaced_transhuge_page() cannot deal with concurrent modification of the page. It does a page copy without following the migration pte sequence. IIUC, this was done to keep the migration simpler and at the time of implemenation we didn't had THP page cache which would have required a more elaborate migration scheme. That means thp autonuma migration expect the protnone with saved write to be done such that both kernel and user cannot update the page content. This patch series enables archs like ppc64 to do that. We are good with the hash translation mode with the current code, because we never create a hardware page table entry for a protnone pte. This patch (of 2): Autonuma preserves the write permission across numa fault to avoid taking a writefault after a numa fault (Commit: b191f9b106ea " mm: numa: preserve PTE write permissions across a NUMA hinting fault"). Architecture can implement protnone in different ways and some may choose to implement that by clearing Read/ Write/Exec bit of pte. Setting the write bit on such pte can result in wrong behaviour. Fix this up by allowing arch to override how to save the write bit on a protnone pte. [aneesh.kumar@linux.vnet.ibm.com: don't mark pte saved write in case of dirty_accountable] Link: http://lkml.kernel.org/r/1487942884-16517-1-git-send-email-aneesh.kumar@linux.vnet.ibm.com [aneesh.kumar@linux.vnet.ibm.com: v3] Link: http://lkml.kernel.org/r/1487498625-10891-2-git-send-email-aneesh.kumar@linux.vnet.ibm.com Link: http://lkml.kernel.org/r/1487050314-3892-2-git-send-email-aneesh.kumar@linux.vnet.ibm.com Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Michael Neuling <mikey@neuling.org> Cc: Rik van Riel <riel@surriel.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Michael Ellerman <michaele@au1.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-25 06:59:16 +08:00
was_writable = pmd_savedwrite(pmd);
pmd = pmd_modify(pmd, vma->vm_page_prot);
pmd = pmd_mkyoung(pmd);
mm: numa: preserve PTE write permissions across a NUMA hinting fault Protecting a PTE to trap a NUMA hinting fault clears the writable bit and further faults are needed after trapping a NUMA hinting fault to set the writable bit again. This patch preserves the writable bit when trapping NUMA hinting faults. The impact is obvious from the number of minor faults trapped during the basis balancing benchmark and the system CPU usage; autonumabench 4.0.0-rc4 4.0.0-rc4 baseline preserve Time System-NUMA01 107.13 ( 0.00%) 103.13 ( 3.73%) Time System-NUMA01_THEADLOCAL 131.87 ( 0.00%) 83.30 ( 36.83%) Time System-NUMA02 8.95 ( 0.00%) 10.72 (-19.78%) Time System-NUMA02_SMT 4.57 ( 0.00%) 3.99 ( 12.69%) Time Elapsed-NUMA01 515.78 ( 0.00%) 517.26 ( -0.29%) Time Elapsed-NUMA01_THEADLOCAL 384.10 ( 0.00%) 384.31 ( -0.05%) Time Elapsed-NUMA02 48.86 ( 0.00%) 48.78 ( 0.16%) Time Elapsed-NUMA02_SMT 47.98 ( 0.00%) 48.12 ( -0.29%) 4.0.0-rc4 4.0.0-rc4 baseline preserve User 44383.95 43971.89 System 252.61 201.24 Elapsed 998.68 1000.94 Minor Faults 2597249 1981230 Major Faults 365 364 There is a similar drop in system CPU usage using Dave Chinner's xfsrepair workload 4.0.0-rc4 4.0.0-rc4 baseline preserve Amean real-xfsrepair 454.14 ( 0.00%) 442.36 ( 2.60%) Amean syst-xfsrepair 277.20 ( 0.00%) 204.68 ( 26.16%) The patch looks hacky but the alternatives looked worse. The tidest was to rewalk the page tables after a hinting fault but it was more complex than this approach and the performance was worse. It's not generally safe to just mark the page writable during the fault if it's a write fault as it may have been read-only for COW so that approach was discarded. Signed-off-by: Mel Gorman <mgorman@suse.de> Reported-by: Dave Chinner <david@fromorbit.com> Tested-by: Dave Chinner <david@fromorbit.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-03-26 06:55:40 +08:00
if (was_writable)
pmd = pmd_mkwrite(pmd);
set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
unlock_page(page);
out_unlock:
spin_unlock(vmf->ptl);
out:
if (anon_vma)
page_unlock_anon_vma_read(anon_vma);
if (page_nid != -1)
task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
flags);
return 0;
}
/*
* Return true if we do MADV_FREE successfully on entire pmd page.
* Otherwise, return false.
*/
bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
mm/huge_memory.c: don't split THP page when MADV_FREE syscall is called We don't need to split THP page when MADV_FREE syscall is called if [start, len] is aligned with THP size. The split could be done when VM decide to free it in reclaim path if memory pressure is heavy. With that, we could avoid unnecessary THP split. For the feature, this patch changes pte dirtness marking logic of THP. Now, it marks every ptes of pages dirty unconditionally in splitting, which makes MADV_FREE void. So, instead, this patch propagates pmd dirtiness to all pages via PG_dirty and restores pte dirtiness from PG_dirty. With this, if pmd is clean(ie, MADV_FREEed) when split happens(e,g, shrink_page_list), all of pages are clean too so we could discard them. Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Hugh Dickins <hughd@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "James E.J. Bottomley" <jejb@parisc-linux.org> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Shaohua Li <shli@kernel.org> Cc: <yalin.wang2010@gmail.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chen Gang <gang.chen.5i5j@gmail.com> Cc: Chris Zankel <chris@zankel.net> Cc: Daniel Micay <danielmicay@gmail.com> Cc: Darrick J. Wong <darrick.wong@oracle.com> Cc: David S. Miller <davem@davemloft.net> Cc: Helge Deller <deller@gmx.de> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: Jason Evans <je@fb.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mika Penttil <mika.penttila@nextfour.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Richard Henderson <rth@twiddle.net> Cc: Rik van Riel <riel@redhat.com> Cc: Roland Dreier <roland@kernel.org> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Shaohua Li <shli@kernel.org> Cc: Will Deacon <will.deacon@arm.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:55:42 +08:00
pmd_t *pmd, unsigned long addr, unsigned long next)
{
spinlock_t *ptl;
pmd_t orig_pmd;
struct page *page;
struct mm_struct *mm = tlb->mm;
bool ret = false;
mm/huge_memory.c: don't split THP page when MADV_FREE syscall is called We don't need to split THP page when MADV_FREE syscall is called if [start, len] is aligned with THP size. The split could be done when VM decide to free it in reclaim path if memory pressure is heavy. With that, we could avoid unnecessary THP split. For the feature, this patch changes pte dirtness marking logic of THP. Now, it marks every ptes of pages dirty unconditionally in splitting, which makes MADV_FREE void. So, instead, this patch propagates pmd dirtiness to all pages via PG_dirty and restores pte dirtiness from PG_dirty. With this, if pmd is clean(ie, MADV_FREEed) when split happens(e,g, shrink_page_list), all of pages are clean too so we could discard them. Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Hugh Dickins <hughd@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "James E.J. Bottomley" <jejb@parisc-linux.org> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Shaohua Li <shli@kernel.org> Cc: <yalin.wang2010@gmail.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chen Gang <gang.chen.5i5j@gmail.com> Cc: Chris Zankel <chris@zankel.net> Cc: Daniel Micay <danielmicay@gmail.com> Cc: Darrick J. Wong <darrick.wong@oracle.com> Cc: David S. Miller <davem@davemloft.net> Cc: Helge Deller <deller@gmx.de> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: Jason Evans <je@fb.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mika Penttil <mika.penttila@nextfour.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Richard Henderson <rth@twiddle.net> Cc: Rik van Riel <riel@redhat.com> Cc: Roland Dreier <roland@kernel.org> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Shaohua Li <shli@kernel.org> Cc: Will Deacon <will.deacon@arm.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:55:42 +08:00
tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
ptl = pmd_trans_huge_lock(pmd, vma);
if (!ptl)
goto out_unlocked;
mm/huge_memory.c: don't split THP page when MADV_FREE syscall is called We don't need to split THP page when MADV_FREE syscall is called if [start, len] is aligned with THP size. The split could be done when VM decide to free it in reclaim path if memory pressure is heavy. With that, we could avoid unnecessary THP split. For the feature, this patch changes pte dirtness marking logic of THP. Now, it marks every ptes of pages dirty unconditionally in splitting, which makes MADV_FREE void. So, instead, this patch propagates pmd dirtiness to all pages via PG_dirty and restores pte dirtiness from PG_dirty. With this, if pmd is clean(ie, MADV_FREEed) when split happens(e,g, shrink_page_list), all of pages are clean too so we could discard them. Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Hugh Dickins <hughd@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "James E.J. Bottomley" <jejb@parisc-linux.org> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Shaohua Li <shli@kernel.org> Cc: <yalin.wang2010@gmail.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chen Gang <gang.chen.5i5j@gmail.com> Cc: Chris Zankel <chris@zankel.net> Cc: Daniel Micay <danielmicay@gmail.com> Cc: Darrick J. Wong <darrick.wong@oracle.com> Cc: David S. Miller <davem@davemloft.net> Cc: Helge Deller <deller@gmx.de> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: Jason Evans <je@fb.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mika Penttil <mika.penttila@nextfour.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Richard Henderson <rth@twiddle.net> Cc: Rik van Riel <riel@redhat.com> Cc: Roland Dreier <roland@kernel.org> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Shaohua Li <shli@kernel.org> Cc: Will Deacon <will.deacon@arm.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:55:42 +08:00
orig_pmd = *pmd;
if (is_huge_zero_pmd(orig_pmd))
mm/huge_memory.c: don't split THP page when MADV_FREE syscall is called We don't need to split THP page when MADV_FREE syscall is called if [start, len] is aligned with THP size. The split could be done when VM decide to free it in reclaim path if memory pressure is heavy. With that, we could avoid unnecessary THP split. For the feature, this patch changes pte dirtness marking logic of THP. Now, it marks every ptes of pages dirty unconditionally in splitting, which makes MADV_FREE void. So, instead, this patch propagates pmd dirtiness to all pages via PG_dirty and restores pte dirtiness from PG_dirty. With this, if pmd is clean(ie, MADV_FREEed) when split happens(e,g, shrink_page_list), all of pages are clean too so we could discard them. Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Hugh Dickins <hughd@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "James E.J. Bottomley" <jejb@parisc-linux.org> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Shaohua Li <shli@kernel.org> Cc: <yalin.wang2010@gmail.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chen Gang <gang.chen.5i5j@gmail.com> Cc: Chris Zankel <chris@zankel.net> Cc: Daniel Micay <danielmicay@gmail.com> Cc: Darrick J. Wong <darrick.wong@oracle.com> Cc: David S. Miller <davem@davemloft.net> Cc: Helge Deller <deller@gmx.de> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: Jason Evans <je@fb.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mika Penttil <mika.penttila@nextfour.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Richard Henderson <rth@twiddle.net> Cc: Rik van Riel <riel@redhat.com> Cc: Roland Dreier <roland@kernel.org> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Shaohua Li <shli@kernel.org> Cc: Will Deacon <will.deacon@arm.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:55:42 +08:00
goto out;
mm: thp: check pmd migration entry in common path When THP migration is being used, memory management code needs to handle pmd migration entries properly. This patch uses !pmd_present() or is_swap_pmd() (depending on whether pmd_none() needs separate code or not) to check pmd migration entries at the places where a pmd entry is present. Since pmd-related code uses split_huge_page(), split_huge_pmd(), pmd_trans_huge(), pmd_trans_unstable(), or pmd_none_or_trans_huge_or_clear_bad(), this patch: 1. adds pmd migration entry split code in split_huge_pmd(), 2. takes care of pmd migration entries whenever pmd_trans_huge() is present, 3. makes pmd_none_or_trans_huge_or_clear_bad() pmd migration entry aware. Since split_huge_page() uses split_huge_pmd() and pmd_trans_unstable() is equivalent to pmd_none_or_trans_huge_or_clear_bad(), we do not change them. Until this commit, a pmd entry should be: 1. pointing to a pte page, 2. is_swap_pmd(), 3. pmd_trans_huge(), 4. pmd_devmap(), or 5. pmd_none(). Signed-off-by: Zi Yan <zi.yan@cs.rutgers.edu> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: David Nellans <dnellans@nvidia.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-09 07:11:01 +08:00
if (unlikely(!pmd_present(orig_pmd))) {
VM_BUG_ON(thp_migration_supported() &&
!is_pmd_migration_entry(orig_pmd));
goto out;
}
mm/huge_memory.c: don't split THP page when MADV_FREE syscall is called We don't need to split THP page when MADV_FREE syscall is called if [start, len] is aligned with THP size. The split could be done when VM decide to free it in reclaim path if memory pressure is heavy. With that, we could avoid unnecessary THP split. For the feature, this patch changes pte dirtness marking logic of THP. Now, it marks every ptes of pages dirty unconditionally in splitting, which makes MADV_FREE void. So, instead, this patch propagates pmd dirtiness to all pages via PG_dirty and restores pte dirtiness from PG_dirty. With this, if pmd is clean(ie, MADV_FREEed) when split happens(e,g, shrink_page_list), all of pages are clean too so we could discard them. Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Hugh Dickins <hughd@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "James E.J. Bottomley" <jejb@parisc-linux.org> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Shaohua Li <shli@kernel.org> Cc: <yalin.wang2010@gmail.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chen Gang <gang.chen.5i5j@gmail.com> Cc: Chris Zankel <chris@zankel.net> Cc: Daniel Micay <danielmicay@gmail.com> Cc: Darrick J. Wong <darrick.wong@oracle.com> Cc: David S. Miller <davem@davemloft.net> Cc: Helge Deller <deller@gmx.de> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: Jason Evans <je@fb.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mika Penttil <mika.penttila@nextfour.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Richard Henderson <rth@twiddle.net> Cc: Rik van Riel <riel@redhat.com> Cc: Roland Dreier <roland@kernel.org> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Shaohua Li <shli@kernel.org> Cc: Will Deacon <will.deacon@arm.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:55:42 +08:00
page = pmd_page(orig_pmd);
/*
* If other processes are mapping this page, we couldn't discard
* the page unless they all do MADV_FREE so let's skip the page.
*/
if (page_mapcount(page) != 1)
goto out;
if (!trylock_page(page))
goto out;
/*
* If user want to discard part-pages of THP, split it so MADV_FREE
* will deactivate only them.
*/
if (next - addr != HPAGE_PMD_SIZE) {
get_page(page);
spin_unlock(ptl);
split_huge_page(page);
mm/huge_memory.c: don't split THP page when MADV_FREE syscall is called We don't need to split THP page when MADV_FREE syscall is called if [start, len] is aligned with THP size. The split could be done when VM decide to free it in reclaim path if memory pressure is heavy. With that, we could avoid unnecessary THP split. For the feature, this patch changes pte dirtness marking logic of THP. Now, it marks every ptes of pages dirty unconditionally in splitting, which makes MADV_FREE void. So, instead, this patch propagates pmd dirtiness to all pages via PG_dirty and restores pte dirtiness from PG_dirty. With this, if pmd is clean(ie, MADV_FREEed) when split happens(e,g, shrink_page_list), all of pages are clean too so we could discard them. Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Hugh Dickins <hughd@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "James E.J. Bottomley" <jejb@parisc-linux.org> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Shaohua Li <shli@kernel.org> Cc: <yalin.wang2010@gmail.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chen Gang <gang.chen.5i5j@gmail.com> Cc: Chris Zankel <chris@zankel.net> Cc: Daniel Micay <danielmicay@gmail.com> Cc: Darrick J. Wong <darrick.wong@oracle.com> Cc: David S. Miller <davem@davemloft.net> Cc: Helge Deller <deller@gmx.de> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: Jason Evans <je@fb.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mika Penttil <mika.penttila@nextfour.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Richard Henderson <rth@twiddle.net> Cc: Rik van Riel <riel@redhat.com> Cc: Roland Dreier <roland@kernel.org> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Shaohua Li <shli@kernel.org> Cc: Will Deacon <will.deacon@arm.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:55:42 +08:00
unlock_page(page);
thp, mm: fix crash due race in MADV_FREE handling Reinette reported the following crash: BUG: Bad page state in process log2exe pfn:57600 page:ffffea00015d8000 count:0 mapcount:0 mapping: (null) index:0x20200 flags: 0x4000000000040019(locked|uptodate|dirty|swapbacked) raw: 4000000000040019 0000000000000000 0000000000020200 00000000ffffffff raw: ffffea00015d8020 ffffea00015d8020 0000000000000000 0000000000000000 page dumped because: PAGE_FLAGS_CHECK_AT_FREE flag(s) set bad because of flags: 0x1(locked) Modules linked in: rfcomm 8021q bnep intel_rapl x86_pkg_temp_thermal coretemp efivars btusb btrtl btbcm pwm_lpss_pci snd_hda_codec_hdmi btintel pwm_lpss snd_hda_codec_realtek snd_soc_skl snd_hda_codec_generic snd_soc_skl_ipc spi_pxa2xx_platform snd_soc_sst_ipc snd_soc_sst_dsp i2c_designware_platform i2c_designware_core snd_hda_ext_core snd_soc_sst_match snd_hda_intel snd_hda_codec mei_me snd_hda_core mei snd_soc_rt286 snd_soc_rl6347a snd_soc_core efivarfs CPU: 1 PID: 354 Comm: log2exe Not tainted 4.12.0-rc7-test-test #19 Hardware name: Intel corporation NUC6CAYS/NUC6CAYB, BIOS AYAPLCEL.86A.0027.2016.1108.1529 11/08/2016 Call Trace: bad_page+0x16a/0x1f0 free_pages_check_bad+0x117/0x190 free_hot_cold_page+0x7b1/0xad0 __put_page+0x70/0xa0 madvise_free_huge_pmd+0x627/0x7b0 madvise_free_pte_range+0x6f8/0x1150 __walk_page_range+0x6b5/0xe30 walk_page_range+0x13b/0x310 madvise_free_page_range.isra.16+0xad/0xd0 madvise_free_single_vma+0x2e4/0x470 SyS_madvise+0x8ce/0x1450 If somebody frees the page under us and we hold the last reference to it, put_page() would attempt to free the page before unlocking it. The fix is trivial reorder of operations. Dave said: "I came up with the exact same patch. For posterity, here's the test case, generated by syzkaller and trimmed down by Reinette: https://www.sr71.net/~dave/intel/log2.c And the config that helps detect this: https://www.sr71.net/~dave/intel/config-log2" Fixes: b8d3c4c3009d ("mm/huge_memory.c: don't split THP page when MADV_FREE syscall is called") Link: http://lkml.kernel.org/r/20170628101249.17879-1-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reported-by: Reinette Chatre <reinette.chatre@intel.com> Acked-by: Dave Hansen <dave.hansen@intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Minchan Kim <minchan@kernel.org> Cc: Huang Ying <ying.huang@intel.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-07 06:35:28 +08:00
put_page(page);
mm/huge_memory.c: don't split THP page when MADV_FREE syscall is called We don't need to split THP page when MADV_FREE syscall is called if [start, len] is aligned with THP size. The split could be done when VM decide to free it in reclaim path if memory pressure is heavy. With that, we could avoid unnecessary THP split. For the feature, this patch changes pte dirtness marking logic of THP. Now, it marks every ptes of pages dirty unconditionally in splitting, which makes MADV_FREE void. So, instead, this patch propagates pmd dirtiness to all pages via PG_dirty and restores pte dirtiness from PG_dirty. With this, if pmd is clean(ie, MADV_FREEed) when split happens(e,g, shrink_page_list), all of pages are clean too so we could discard them. Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Hugh Dickins <hughd@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "James E.J. Bottomley" <jejb@parisc-linux.org> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Shaohua Li <shli@kernel.org> Cc: <yalin.wang2010@gmail.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chen Gang <gang.chen.5i5j@gmail.com> Cc: Chris Zankel <chris@zankel.net> Cc: Daniel Micay <danielmicay@gmail.com> Cc: Darrick J. Wong <darrick.wong@oracle.com> Cc: David S. Miller <davem@davemloft.net> Cc: Helge Deller <deller@gmx.de> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: Jason Evans <je@fb.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mika Penttil <mika.penttila@nextfour.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Richard Henderson <rth@twiddle.net> Cc: Rik van Riel <riel@redhat.com> Cc: Roland Dreier <roland@kernel.org> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Shaohua Li <shli@kernel.org> Cc: Will Deacon <will.deacon@arm.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:55:42 +08:00
goto out_unlocked;
}
if (PageDirty(page))
ClearPageDirty(page);
unlock_page(page);
if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
pmdp_invalidate(vma, addr, pmd);
mm/huge_memory.c: don't split THP page when MADV_FREE syscall is called We don't need to split THP page when MADV_FREE syscall is called if [start, len] is aligned with THP size. The split could be done when VM decide to free it in reclaim path if memory pressure is heavy. With that, we could avoid unnecessary THP split. For the feature, this patch changes pte dirtness marking logic of THP. Now, it marks every ptes of pages dirty unconditionally in splitting, which makes MADV_FREE void. So, instead, this patch propagates pmd dirtiness to all pages via PG_dirty and restores pte dirtiness from PG_dirty. With this, if pmd is clean(ie, MADV_FREEed) when split happens(e,g, shrink_page_list), all of pages are clean too so we could discard them. Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Hugh Dickins <hughd@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "James E.J. Bottomley" <jejb@parisc-linux.org> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Shaohua Li <shli@kernel.org> Cc: <yalin.wang2010@gmail.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chen Gang <gang.chen.5i5j@gmail.com> Cc: Chris Zankel <chris@zankel.net> Cc: Daniel Micay <danielmicay@gmail.com> Cc: Darrick J. Wong <darrick.wong@oracle.com> Cc: David S. Miller <davem@davemloft.net> Cc: Helge Deller <deller@gmx.de> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: Jason Evans <je@fb.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mika Penttil <mika.penttila@nextfour.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Richard Henderson <rth@twiddle.net> Cc: Rik van Riel <riel@redhat.com> Cc: Roland Dreier <roland@kernel.org> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Shaohua Li <shli@kernel.org> Cc: Will Deacon <will.deacon@arm.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:55:42 +08:00
orig_pmd = pmd_mkold(orig_pmd);
orig_pmd = pmd_mkclean(orig_pmd);
set_pmd_at(mm, addr, pmd, orig_pmd);
tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
}
mark_page_lazyfree(page);
ret = true;
mm/huge_memory.c: don't split THP page when MADV_FREE syscall is called We don't need to split THP page when MADV_FREE syscall is called if [start, len] is aligned with THP size. The split could be done when VM decide to free it in reclaim path if memory pressure is heavy. With that, we could avoid unnecessary THP split. For the feature, this patch changes pte dirtness marking logic of THP. Now, it marks every ptes of pages dirty unconditionally in splitting, which makes MADV_FREE void. So, instead, this patch propagates pmd dirtiness to all pages via PG_dirty and restores pte dirtiness from PG_dirty. With this, if pmd is clean(ie, MADV_FREEed) when split happens(e,g, shrink_page_list), all of pages are clean too so we could discard them. Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Hugh Dickins <hughd@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "James E.J. Bottomley" <jejb@parisc-linux.org> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Shaohua Li <shli@kernel.org> Cc: <yalin.wang2010@gmail.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chen Gang <gang.chen.5i5j@gmail.com> Cc: Chris Zankel <chris@zankel.net> Cc: Daniel Micay <danielmicay@gmail.com> Cc: Darrick J. Wong <darrick.wong@oracle.com> Cc: David S. Miller <davem@davemloft.net> Cc: Helge Deller <deller@gmx.de> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: Jason Evans <je@fb.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mika Penttil <mika.penttila@nextfour.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Richard Henderson <rth@twiddle.net> Cc: Rik van Riel <riel@redhat.com> Cc: Roland Dreier <roland@kernel.org> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Shaohua Li <shli@kernel.org> Cc: Will Deacon <will.deacon@arm.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:55:42 +08:00
out:
spin_unlock(ptl);
out_unlocked:
return ret;
}
static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
{
pgtable_t pgtable;
pgtable = pgtable_trans_huge_withdraw(mm, pmd);
pte_free(mm, pgtable);
atomic_long_dec(&mm->nr_ptes);
}
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
pmd_t *pmd, unsigned long addr)
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
{
pmd_t orig_pmd;
mm, thp: change pmd_trans_huge_lock() to return taken lock With split ptlock it's important to know which lock pmd_trans_huge_lock() took. This patch adds one more parameter to the function to return the lock. In most places migration to new api is trivial. Exception is move_huge_pmd(): we need to take two locks if pmd tables are different. Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Alex Thorlton <athorlton@sgi.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: "Eric W . Biederman" <ebiederm@xmission.com> Cc: "Paul E . McKenney" <paulmck@linux.vnet.ibm.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andi Kleen <ak@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Dave Jones <davej@redhat.com> Cc: David Howells <dhowells@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kees Cook <keescook@chromium.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Robin Holt <robinmholt@gmail.com> Cc: Sedat Dilek <sedat.dilek@gmail.com> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-11-15 06:30:54 +08:00
spinlock_t *ptl;
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
ptl = __pmd_trans_huge_lock(pmd, vma);
if (!ptl)
return 0;
/*
* For architectures like ppc64 we look at deposited pgtable
* when calling pmdp_huge_get_and_clear. So do the
* pgtable_trans_huge_withdraw after finishing pmdp related
* operations.
*/
orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
tlb->fullmm);
tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
if (vma_is_dax(vma)) {
if (arch_needs_pgtable_deposit())
zap_deposited_table(tlb->mm, pmd);
spin_unlock(ptl);
if (is_huge_zero_pmd(orig_pmd))
tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
} else if (is_huge_zero_pmd(orig_pmd)) {
zap_deposited_table(tlb->mm, pmd);
spin_unlock(ptl);
tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
} else {
mm: thp: enable thp migration in generic path Add thp migration's core code, including conversions between a PMD entry and a swap entry, setting PMD migration entry, removing PMD migration entry, and waiting on PMD migration entries. This patch makes it possible to support thp migration. If you fail to allocate a destination page as a thp, you just split the source thp as we do now, and then enter the normal page migration. If you succeed to allocate destination thp, you enter thp migration. Subsequent patches actually enable thp migration for each caller of page migration by allowing its get_new_page() callback to allocate thps. [zi.yan@cs.rutgers.edu: fix gcc-4.9.0 -Wmissing-braces warning] Link: http://lkml.kernel.org/r/A0ABA698-7486-46C3-B209-E95A9048B22C@cs.rutgers.edu [akpm@linux-foundation.org: fix x86_64 allnoconfig warning] Signed-off-by: Zi Yan <zi.yan@cs.rutgers.edu> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: David Nellans <dnellans@nvidia.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-09 07:10:57 +08:00
struct page *page = NULL;
int flush_needed = 1;
if (pmd_present(orig_pmd)) {
page = pmd_page(orig_pmd);
page_remove_rmap(page, true);
VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
VM_BUG_ON_PAGE(!PageHead(page), page);
} else if (thp_migration_supported()) {
swp_entry_t entry;
VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
entry = pmd_to_swp_entry(orig_pmd);
page = pfn_to_page(swp_offset(entry));
flush_needed = 0;
} else
WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
if (PageAnon(page)) {
zap_deposited_table(tlb->mm, pmd);
add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
} else {
if (arch_needs_pgtable_deposit())
zap_deposited_table(tlb->mm, pmd);
add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR);
}
mm: thp: enable thp migration in generic path Add thp migration's core code, including conversions between a PMD entry and a swap entry, setting PMD migration entry, removing PMD migration entry, and waiting on PMD migration entries. This patch makes it possible to support thp migration. If you fail to allocate a destination page as a thp, you just split the source thp as we do now, and then enter the normal page migration. If you succeed to allocate destination thp, you enter thp migration. Subsequent patches actually enable thp migration for each caller of page migration by allowing its get_new_page() callback to allocate thps. [zi.yan@cs.rutgers.edu: fix gcc-4.9.0 -Wmissing-braces warning] Link: http://lkml.kernel.org/r/A0ABA698-7486-46C3-B209-E95A9048B22C@cs.rutgers.edu [akpm@linux-foundation.org: fix x86_64 allnoconfig warning] Signed-off-by: Zi Yan <zi.yan@cs.rutgers.edu> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: David Nellans <dnellans@nvidia.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-09 07:10:57 +08:00
spin_unlock(ptl);
mm: thp: enable thp migration in generic path Add thp migration's core code, including conversions between a PMD entry and a swap entry, setting PMD migration entry, removing PMD migration entry, and waiting on PMD migration entries. This patch makes it possible to support thp migration. If you fail to allocate a destination page as a thp, you just split the source thp as we do now, and then enter the normal page migration. If you succeed to allocate destination thp, you enter thp migration. Subsequent patches actually enable thp migration for each caller of page migration by allowing its get_new_page() callback to allocate thps. [zi.yan@cs.rutgers.edu: fix gcc-4.9.0 -Wmissing-braces warning] Link: http://lkml.kernel.org/r/A0ABA698-7486-46C3-B209-E95A9048B22C@cs.rutgers.edu [akpm@linux-foundation.org: fix x86_64 allnoconfig warning] Signed-off-by: Zi Yan <zi.yan@cs.rutgers.edu> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: David Nellans <dnellans@nvidia.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-09 07:10:57 +08:00
if (flush_needed)
tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
}
return 1;
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
}
#ifndef pmd_move_must_withdraw
static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
spinlock_t *old_pmd_ptl,
struct vm_area_struct *vma)
{
/*
* With split pmd lock we also need to move preallocated
* PTE page table if new_pmd is on different PMD page table.
*
* We also don't deposit and withdraw tables for file pages.
*/
return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
}
#endif
static pmd_t move_soft_dirty_pmd(pmd_t pmd)
{
#ifdef CONFIG_MEM_SOFT_DIRTY
if (unlikely(is_pmd_migration_entry(pmd)))
pmd = pmd_swp_mksoft_dirty(pmd);
else if (pmd_present(pmd))
pmd = pmd_mksoft_dirty(pmd);
#endif
return pmd;
}
bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
thp: mremap support and TLB optimization This adds THP support to mremap (decreases the number of split_huge_page() calls). Here are also some benchmarks with a proggy like this: === #define _GNU_SOURCE #include <sys/mman.h> #include <stdlib.h> #include <stdio.h> #include <string.h> #include <sys/time.h> #define SIZE (5UL*1024*1024*1024) int main() { static struct timeval oldstamp, newstamp; long diffsec; char *p, *p2, *p3, *p4; if (posix_memalign((void **)&p, 2*1024*1024, SIZE)) perror("memalign"), exit(1); if (posix_memalign((void **)&p2, 2*1024*1024, SIZE)) perror("memalign"), exit(1); if (posix_memalign((void **)&p3, 2*1024*1024, 4096)) perror("memalign"), exit(1); memset(p, 0xff, SIZE); memset(p2, 0xff, SIZE); memset(p3, 0x77, 4096); gettimeofday(&oldstamp, NULL); p4 = mremap(p, SIZE, SIZE, MREMAP_FIXED|MREMAP_MAYMOVE, p3); gettimeofday(&newstamp, NULL); diffsec = newstamp.tv_sec - oldstamp.tv_sec; diffsec = newstamp.tv_usec - oldstamp.tv_usec + 1000000 * diffsec; printf("usec %ld\n", diffsec); if (p == MAP_FAILED || p4 != p3) //if (p == MAP_FAILED) perror("mremap"), exit(1); if (memcmp(p4, p2, SIZE)) printf("mremap bug\n"), exit(1); printf("ok\n"); return 0; } === THP on Performance counter stats for './largepage13' (3 runs): 69195836 dTLB-loads ( +- 3.546% ) (scaled from 50.30%) 60708 dTLB-load-misses ( +- 11.776% ) (scaled from 52.62%) 676266476 dTLB-stores ( +- 5.654% ) (scaled from 69.54%) 29856 dTLB-store-misses ( +- 4.081% ) (scaled from 89.22%) 1055848782 iTLB-loads ( +- 4.526% ) (scaled from 80.18%) 8689 iTLB-load-misses ( +- 2.987% ) (scaled from 58.20%) 7.314454164 seconds time elapsed ( +- 0.023% ) THP off Performance counter stats for './largepage13' (3 runs): 1967379311 dTLB-loads ( +- 0.506% ) (scaled from 60.59%) 9238687 dTLB-load-misses ( +- 22.547% ) (scaled from 61.87%) 2014239444 dTLB-stores ( +- 0.692% ) (scaled from 60.40%) 3312335 dTLB-store-misses ( +- 7.304% ) (scaled from 67.60%) 6764372065 iTLB-loads ( +- 0.925% ) (scaled from 79.00%) 8202 iTLB-load-misses ( +- 0.475% ) (scaled from 70.55%) 9.693655243 seconds time elapsed ( +- 0.069% ) grep thp /proc/vmstat thp_fault_alloc 35849 thp_fault_fallback 0 thp_collapse_alloc 3 thp_collapse_alloc_failed 0 thp_split 0 thp_split 0 confirms no thp split despite plenty of hugepages allocated. The measurement of only the mremap time (so excluding the 3 long memset and final long 10GB memory accessing memcmp): THP on usec 14824 usec 14862 usec 14859 THP off usec 256416 usec 255981 usec 255847 With an older kernel without the mremap optimizations (the below patch optimizes the non THP version too). THP on usec 392107 usec 390237 usec 404124 THP off usec 444294 usec 445237 usec 445820 I guess with a threaded program that sends more IPI on large SMP it'd create an even larger difference. All debug options are off except DEBUG_VM to avoid skewing the results. The only problem for native 2M mremap like it happens above both the source and destination address must be 2M aligned or the hugepmd can't be moved without a split but that is an hardware limitation. [akpm@linux-foundation.org: coding-style nitpicking] Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Johannes Weiner <jweiner@redhat.com> Acked-by: Mel Gorman <mgorman@suse.de> Acked-by: Rik van Riel <riel@redhat.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-11-01 08:08:30 +08:00
unsigned long new_addr, unsigned long old_end,
mremap: fix race between mremap() and page cleanning Prior to 3.15, there was a race between zap_pte_range() and page_mkclean() where writes to a page could be lost. Dave Hansen discovered by inspection that there is a similar race between move_ptes() and page_mkclean(). We've been able to reproduce the issue by enlarging the race window with a msleep(), but have not been able to hit it without modifying the code. So, we think it's a real issue, but is difficult or impossible to hit in practice. The zap_pte_range() issue is fixed by commit 1cf35d47712d("mm: split 'tlb_flush_mmu()' into tlb flushing and memory freeing parts"). And this patch is to fix the race between page_mkclean() and mremap(). Here is one possible way to hit the race: suppose a process mmapped a file with READ | WRITE and SHARED, it has two threads and they are bound to 2 different CPUs, e.g. CPU1 and CPU2. mmap returned X, then thread 1 did a write to addr X so that CPU1 now has a writable TLB for addr X on it. Thread 2 starts mremaping from addr X to Y while thread 1 cleaned the page and then did another write to the old addr X again. The 2nd write from thread 1 could succeed but the value will get lost. thread 1 thread 2 (bound to CPU1) (bound to CPU2) 1: write 1 to addr X to get a writeable TLB on this CPU 2: mremap starts 3: move_ptes emptied PTE for addr X and setup new PTE for addr Y and then dropped PTL for X and Y 4: page laundering for N by doing fadvise FADV_DONTNEED. When done, pageframe N is deemed clean. 5: *write 2 to addr X 6: tlb flush for addr X 7: munmap (Y, pagesize) to make the page unmapped 8: fadvise with FADV_DONTNEED again to kick the page off the pagecache 9: pread the page from file to verify the value. If 1 is there, it means we have lost the written 2. *the write may or may not cause segmentation fault, it depends on if the TLB is still on the CPU. Please note that this is only one specific way of how the race could occur, it didn't mean that the race could only occur in exact the above config, e.g. more than 2 threads could be involved and fadvise() could be done in another thread, etc. For anonymous pages, they could race between mremap() and page reclaim: THP: a huge PMD is moved by mremap to a new huge PMD, then the new huge PMD gets unmapped/splitted/pagedout before the flush tlb happened for the old huge PMD in move_page_tables() and we could still write data to it. The normal anonymous page has similar situation. To fix this, check for any dirty PTE in move_ptes()/move_huge_pmd() and if any, did the flush before dropping the PTL. If we did the flush for every move_ptes()/move_huge_pmd() call then we do not need to do the flush in move_pages_tables() for the whole range. But if we didn't, we still need to do the whole range flush. Alternatively, we can track which part of the range is flushed in move_ptes()/move_huge_pmd() and which didn't to avoid flushing the whole range in move_page_tables(). But that would require multiple tlb flushes for the different sub-ranges and should be less efficient than the single whole range flush. KBuild test on my Sandybridge desktop doesn't show any noticeable change. v4.9-rc4: real 5m14.048s user 32m19.800s sys 4m50.320s With this commit: real 5m13.888s user 32m19.330s sys 4m51.200s Reported-by: Dave Hansen <dave.hansen@intel.com> Signed-off-by: Aaron Lu <aaron.lu@intel.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-11-10 17:16:33 +08:00
pmd_t *old_pmd, pmd_t *new_pmd, bool *need_flush)
thp: mremap support and TLB optimization This adds THP support to mremap (decreases the number of split_huge_page() calls). Here are also some benchmarks with a proggy like this: === #define _GNU_SOURCE #include <sys/mman.h> #include <stdlib.h> #include <stdio.h> #include <string.h> #include <sys/time.h> #define SIZE (5UL*1024*1024*1024) int main() { static struct timeval oldstamp, newstamp; long diffsec; char *p, *p2, *p3, *p4; if (posix_memalign((void **)&p, 2*1024*1024, SIZE)) perror("memalign"), exit(1); if (posix_memalign((void **)&p2, 2*1024*1024, SIZE)) perror("memalign"), exit(1); if (posix_memalign((void **)&p3, 2*1024*1024, 4096)) perror("memalign"), exit(1); memset(p, 0xff, SIZE); memset(p2, 0xff, SIZE); memset(p3, 0x77, 4096); gettimeofday(&oldstamp, NULL); p4 = mremap(p, SIZE, SIZE, MREMAP_FIXED|MREMAP_MAYMOVE, p3); gettimeofday(&newstamp, NULL); diffsec = newstamp.tv_sec - oldstamp.tv_sec; diffsec = newstamp.tv_usec - oldstamp.tv_usec + 1000000 * diffsec; printf("usec %ld\n", diffsec); if (p == MAP_FAILED || p4 != p3) //if (p == MAP_FAILED) perror("mremap"), exit(1); if (memcmp(p4, p2, SIZE)) printf("mremap bug\n"), exit(1); printf("ok\n"); return 0; } === THP on Performance counter stats for './largepage13' (3 runs): 69195836 dTLB-loads ( +- 3.546% ) (scaled from 50.30%) 60708 dTLB-load-misses ( +- 11.776% ) (scaled from 52.62%) 676266476 dTLB-stores ( +- 5.654% ) (scaled from 69.54%) 29856 dTLB-store-misses ( +- 4.081% ) (scaled from 89.22%) 1055848782 iTLB-loads ( +- 4.526% ) (scaled from 80.18%) 8689 iTLB-load-misses ( +- 2.987% ) (scaled from 58.20%) 7.314454164 seconds time elapsed ( +- 0.023% ) THP off Performance counter stats for './largepage13' (3 runs): 1967379311 dTLB-loads ( +- 0.506% ) (scaled from 60.59%) 9238687 dTLB-load-misses ( +- 22.547% ) (scaled from 61.87%) 2014239444 dTLB-stores ( +- 0.692% ) (scaled from 60.40%) 3312335 dTLB-store-misses ( +- 7.304% ) (scaled from 67.60%) 6764372065 iTLB-loads ( +- 0.925% ) (scaled from 79.00%) 8202 iTLB-load-misses ( +- 0.475% ) (scaled from 70.55%) 9.693655243 seconds time elapsed ( +- 0.069% ) grep thp /proc/vmstat thp_fault_alloc 35849 thp_fault_fallback 0 thp_collapse_alloc 3 thp_collapse_alloc_failed 0 thp_split 0 thp_split 0 confirms no thp split despite plenty of hugepages allocated. The measurement of only the mremap time (so excluding the 3 long memset and final long 10GB memory accessing memcmp): THP on usec 14824 usec 14862 usec 14859 THP off usec 256416 usec 255981 usec 255847 With an older kernel without the mremap optimizations (the below patch optimizes the non THP version too). THP on usec 392107 usec 390237 usec 404124 THP off usec 444294 usec 445237 usec 445820 I guess with a threaded program that sends more IPI on large SMP it'd create an even larger difference. All debug options are off except DEBUG_VM to avoid skewing the results. The only problem for native 2M mremap like it happens above both the source and destination address must be 2M aligned or the hugepmd can't be moved without a split but that is an hardware limitation. [akpm@linux-foundation.org: coding-style nitpicking] Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Johannes Weiner <jweiner@redhat.com> Acked-by: Mel Gorman <mgorman@suse.de> Acked-by: Rik van Riel <riel@redhat.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-11-01 08:08:30 +08:00
{
mm, thp: change pmd_trans_huge_lock() to return taken lock With split ptlock it's important to know which lock pmd_trans_huge_lock() took. This patch adds one more parameter to the function to return the lock. In most places migration to new api is trivial. Exception is move_huge_pmd(): we need to take two locks if pmd tables are different. Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Alex Thorlton <athorlton@sgi.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: "Eric W . Biederman" <ebiederm@xmission.com> Cc: "Paul E . McKenney" <paulmck@linux.vnet.ibm.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andi Kleen <ak@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Dave Jones <davej@redhat.com> Cc: David Howells <dhowells@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kees Cook <keescook@chromium.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Robin Holt <robinmholt@gmail.com> Cc: Sedat Dilek <sedat.dilek@gmail.com> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-11-15 06:30:54 +08:00
spinlock_t *old_ptl, *new_ptl;
thp: mremap support and TLB optimization This adds THP support to mremap (decreases the number of split_huge_page() calls). Here are also some benchmarks with a proggy like this: === #define _GNU_SOURCE #include <sys/mman.h> #include <stdlib.h> #include <stdio.h> #include <string.h> #include <sys/time.h> #define SIZE (5UL*1024*1024*1024) int main() { static struct timeval oldstamp, newstamp; long diffsec; char *p, *p2, *p3, *p4; if (posix_memalign((void **)&p, 2*1024*1024, SIZE)) perror("memalign"), exit(1); if (posix_memalign((void **)&p2, 2*1024*1024, SIZE)) perror("memalign"), exit(1); if (posix_memalign((void **)&p3, 2*1024*1024, 4096)) perror("memalign"), exit(1); memset(p, 0xff, SIZE); memset(p2, 0xff, SIZE); memset(p3, 0x77, 4096); gettimeofday(&oldstamp, NULL); p4 = mremap(p, SIZE, SIZE, MREMAP_FIXED|MREMAP_MAYMOVE, p3); gettimeofday(&newstamp, NULL); diffsec = newstamp.tv_sec - oldstamp.tv_sec; diffsec = newstamp.tv_usec - oldstamp.tv_usec + 1000000 * diffsec; printf("usec %ld\n", diffsec); if (p == MAP_FAILED || p4 != p3) //if (p == MAP_FAILED) perror("mremap"), exit(1); if (memcmp(p4, p2, SIZE)) printf("mremap bug\n"), exit(1); printf("ok\n"); return 0; } === THP on Performance counter stats for './largepage13' (3 runs): 69195836 dTLB-loads ( +- 3.546% ) (scaled from 50.30%) 60708 dTLB-load-misses ( +- 11.776% ) (scaled from 52.62%) 676266476 dTLB-stores ( +- 5.654% ) (scaled from 69.54%) 29856 dTLB-store-misses ( +- 4.081% ) (scaled from 89.22%) 1055848782 iTLB-loads ( +- 4.526% ) (scaled from 80.18%) 8689 iTLB-load-misses ( +- 2.987% ) (scaled from 58.20%) 7.314454164 seconds time elapsed ( +- 0.023% ) THP off Performance counter stats for './largepage13' (3 runs): 1967379311 dTLB-loads ( +- 0.506% ) (scaled from 60.59%) 9238687 dTLB-load-misses ( +- 22.547% ) (scaled from 61.87%) 2014239444 dTLB-stores ( +- 0.692% ) (scaled from 60.40%) 3312335 dTLB-store-misses ( +- 7.304% ) (scaled from 67.60%) 6764372065 iTLB-loads ( +- 0.925% ) (scaled from 79.00%) 8202 iTLB-load-misses ( +- 0.475% ) (scaled from 70.55%) 9.693655243 seconds time elapsed ( +- 0.069% ) grep thp /proc/vmstat thp_fault_alloc 35849 thp_fault_fallback 0 thp_collapse_alloc 3 thp_collapse_alloc_failed 0 thp_split 0 thp_split 0 confirms no thp split despite plenty of hugepages allocated. The measurement of only the mremap time (so excluding the 3 long memset and final long 10GB memory accessing memcmp): THP on usec 14824 usec 14862 usec 14859 THP off usec 256416 usec 255981 usec 255847 With an older kernel without the mremap optimizations (the below patch optimizes the non THP version too). THP on usec 392107 usec 390237 usec 404124 THP off usec 444294 usec 445237 usec 445820 I guess with a threaded program that sends more IPI on large SMP it'd create an even larger difference. All debug options are off except DEBUG_VM to avoid skewing the results. The only problem for native 2M mremap like it happens above both the source and destination address must be 2M aligned or the hugepmd can't be moved without a split but that is an hardware limitation. [akpm@linux-foundation.org: coding-style nitpicking] Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Johannes Weiner <jweiner@redhat.com> Acked-by: Mel Gorman <mgorman@suse.de> Acked-by: Rik van Riel <riel@redhat.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-11-01 08:08:30 +08:00
pmd_t pmd;
struct mm_struct *mm = vma->vm_mm;
mremap: fix race between mremap() and page cleanning Prior to 3.15, there was a race between zap_pte_range() and page_mkclean() where writes to a page could be lost. Dave Hansen discovered by inspection that there is a similar race between move_ptes() and page_mkclean(). We've been able to reproduce the issue by enlarging the race window with a msleep(), but have not been able to hit it without modifying the code. So, we think it's a real issue, but is difficult or impossible to hit in practice. The zap_pte_range() issue is fixed by commit 1cf35d47712d("mm: split 'tlb_flush_mmu()' into tlb flushing and memory freeing parts"). And this patch is to fix the race between page_mkclean() and mremap(). Here is one possible way to hit the race: suppose a process mmapped a file with READ | WRITE and SHARED, it has two threads and they are bound to 2 different CPUs, e.g. CPU1 and CPU2. mmap returned X, then thread 1 did a write to addr X so that CPU1 now has a writable TLB for addr X on it. Thread 2 starts mremaping from addr X to Y while thread 1 cleaned the page and then did another write to the old addr X again. The 2nd write from thread 1 could succeed but the value will get lost. thread 1 thread 2 (bound to CPU1) (bound to CPU2) 1: write 1 to addr X to get a writeable TLB on this CPU 2: mremap starts 3: move_ptes emptied PTE for addr X and setup new PTE for addr Y and then dropped PTL for X and Y 4: page laundering for N by doing fadvise FADV_DONTNEED. When done, pageframe N is deemed clean. 5: *write 2 to addr X 6: tlb flush for addr X 7: munmap (Y, pagesize) to make the page unmapped 8: fadvise with FADV_DONTNEED again to kick the page off the pagecache 9: pread the page from file to verify the value. If 1 is there, it means we have lost the written 2. *the write may or may not cause segmentation fault, it depends on if the TLB is still on the CPU. Please note that this is only one specific way of how the race could occur, it didn't mean that the race could only occur in exact the above config, e.g. more than 2 threads could be involved and fadvise() could be done in another thread, etc. For anonymous pages, they could race between mremap() and page reclaim: THP: a huge PMD is moved by mremap to a new huge PMD, then the new huge PMD gets unmapped/splitted/pagedout before the flush tlb happened for the old huge PMD in move_page_tables() and we could still write data to it. The normal anonymous page has similar situation. To fix this, check for any dirty PTE in move_ptes()/move_huge_pmd() and if any, did the flush before dropping the PTL. If we did the flush for every move_ptes()/move_huge_pmd() call then we do not need to do the flush in move_pages_tables() for the whole range. But if we didn't, we still need to do the whole range flush. Alternatively, we can track which part of the range is flushed in move_ptes()/move_huge_pmd() and which didn't to avoid flushing the whole range in move_page_tables(). But that would require multiple tlb flushes for the different sub-ranges and should be less efficient than the single whole range flush. KBuild test on my Sandybridge desktop doesn't show any noticeable change. v4.9-rc4: real 5m14.048s user 32m19.800s sys 4m50.320s With this commit: real 5m13.888s user 32m19.330s sys 4m51.200s Reported-by: Dave Hansen <dave.hansen@intel.com> Signed-off-by: Aaron Lu <aaron.lu@intel.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-11-10 17:16:33 +08:00
bool force_flush = false;
thp: mremap support and TLB optimization This adds THP support to mremap (decreases the number of split_huge_page() calls). Here are also some benchmarks with a proggy like this: === #define _GNU_SOURCE #include <sys/mman.h> #include <stdlib.h> #include <stdio.h> #include <string.h> #include <sys/time.h> #define SIZE (5UL*1024*1024*1024) int main() { static struct timeval oldstamp, newstamp; long diffsec; char *p, *p2, *p3, *p4; if (posix_memalign((void **)&p, 2*1024*1024, SIZE)) perror("memalign"), exit(1); if (posix_memalign((void **)&p2, 2*1024*1024, SIZE)) perror("memalign"), exit(1); if (posix_memalign((void **)&p3, 2*1024*1024, 4096)) perror("memalign"), exit(1); memset(p, 0xff, SIZE); memset(p2, 0xff, SIZE); memset(p3, 0x77, 4096); gettimeofday(&oldstamp, NULL); p4 = mremap(p, SIZE, SIZE, MREMAP_FIXED|MREMAP_MAYMOVE, p3); gettimeofday(&newstamp, NULL); diffsec = newstamp.tv_sec - oldstamp.tv_sec; diffsec = newstamp.tv_usec - oldstamp.tv_usec + 1000000 * diffsec; printf("usec %ld\n", diffsec); if (p == MAP_FAILED || p4 != p3) //if (p == MAP_FAILED) perror("mremap"), exit(1); if (memcmp(p4, p2, SIZE)) printf("mremap bug\n"), exit(1); printf("ok\n"); return 0; } === THP on Performance counter stats for './largepage13' (3 runs): 69195836 dTLB-loads ( +- 3.546% ) (scaled from 50.30%) 60708 dTLB-load-misses ( +- 11.776% ) (scaled from 52.62%) 676266476 dTLB-stores ( +- 5.654% ) (scaled from 69.54%) 29856 dTLB-store-misses ( +- 4.081% ) (scaled from 89.22%) 1055848782 iTLB-loads ( +- 4.526% ) (scaled from 80.18%) 8689 iTLB-load-misses ( +- 2.987% ) (scaled from 58.20%) 7.314454164 seconds time elapsed ( +- 0.023% ) THP off Performance counter stats for './largepage13' (3 runs): 1967379311 dTLB-loads ( +- 0.506% ) (scaled from 60.59%) 9238687 dTLB-load-misses ( +- 22.547% ) (scaled from 61.87%) 2014239444 dTLB-stores ( +- 0.692% ) (scaled from 60.40%) 3312335 dTLB-store-misses ( +- 7.304% ) (scaled from 67.60%) 6764372065 iTLB-loads ( +- 0.925% ) (scaled from 79.00%) 8202 iTLB-load-misses ( +- 0.475% ) (scaled from 70.55%) 9.693655243 seconds time elapsed ( +- 0.069% ) grep thp /proc/vmstat thp_fault_alloc 35849 thp_fault_fallback 0 thp_collapse_alloc 3 thp_collapse_alloc_failed 0 thp_split 0 thp_split 0 confirms no thp split despite plenty of hugepages allocated. The measurement of only the mremap time (so excluding the 3 long memset and final long 10GB memory accessing memcmp): THP on usec 14824 usec 14862 usec 14859 THP off usec 256416 usec 255981 usec 255847 With an older kernel without the mremap optimizations (the below patch optimizes the non THP version too). THP on usec 392107 usec 390237 usec 404124 THP off usec 444294 usec 445237 usec 445820 I guess with a threaded program that sends more IPI on large SMP it'd create an even larger difference. All debug options are off except DEBUG_VM to avoid skewing the results. The only problem for native 2M mremap like it happens above both the source and destination address must be 2M aligned or the hugepmd can't be moved without a split but that is an hardware limitation. [akpm@linux-foundation.org: coding-style nitpicking] Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Johannes Weiner <jweiner@redhat.com> Acked-by: Mel Gorman <mgorman@suse.de> Acked-by: Rik van Riel <riel@redhat.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-11-01 08:08:30 +08:00
if ((old_addr & ~HPAGE_PMD_MASK) ||
(new_addr & ~HPAGE_PMD_MASK) ||
old_end - old_addr < HPAGE_PMD_SIZE)
return false;
thp: mremap support and TLB optimization This adds THP support to mremap (decreases the number of split_huge_page() calls). Here are also some benchmarks with a proggy like this: === #define _GNU_SOURCE #include <sys/mman.h> #include <stdlib.h> #include <stdio.h> #include <string.h> #include <sys/time.h> #define SIZE (5UL*1024*1024*1024) int main() { static struct timeval oldstamp, newstamp; long diffsec; char *p, *p2, *p3, *p4; if (posix_memalign((void **)&p, 2*1024*1024, SIZE)) perror("memalign"), exit(1); if (posix_memalign((void **)&p2, 2*1024*1024, SIZE)) perror("memalign"), exit(1); if (posix_memalign((void **)&p3, 2*1024*1024, 4096)) perror("memalign"), exit(1); memset(p, 0xff, SIZE); memset(p2, 0xff, SIZE); memset(p3, 0x77, 4096); gettimeofday(&oldstamp, NULL); p4 = mremap(p, SIZE, SIZE, MREMAP_FIXED|MREMAP_MAYMOVE, p3); gettimeofday(&newstamp, NULL); diffsec = newstamp.tv_sec - oldstamp.tv_sec; diffsec = newstamp.tv_usec - oldstamp.tv_usec + 1000000 * diffsec; printf("usec %ld\n", diffsec); if (p == MAP_FAILED || p4 != p3) //if (p == MAP_FAILED) perror("mremap"), exit(1); if (memcmp(p4, p2, SIZE)) printf("mremap bug\n"), exit(1); printf("ok\n"); return 0; } === THP on Performance counter stats for './largepage13' (3 runs): 69195836 dTLB-loads ( +- 3.546% ) (scaled from 50.30%) 60708 dTLB-load-misses ( +- 11.776% ) (scaled from 52.62%) 676266476 dTLB-stores ( +- 5.654% ) (scaled from 69.54%) 29856 dTLB-store-misses ( +- 4.081% ) (scaled from 89.22%) 1055848782 iTLB-loads ( +- 4.526% ) (scaled from 80.18%) 8689 iTLB-load-misses ( +- 2.987% ) (scaled from 58.20%) 7.314454164 seconds time elapsed ( +- 0.023% ) THP off Performance counter stats for './largepage13' (3 runs): 1967379311 dTLB-loads ( +- 0.506% ) (scaled from 60.59%) 9238687 dTLB-load-misses ( +- 22.547% ) (scaled from 61.87%) 2014239444 dTLB-stores ( +- 0.692% ) (scaled from 60.40%) 3312335 dTLB-store-misses ( +- 7.304% ) (scaled from 67.60%) 6764372065 iTLB-loads ( +- 0.925% ) (scaled from 79.00%) 8202 iTLB-load-misses ( +- 0.475% ) (scaled from 70.55%) 9.693655243 seconds time elapsed ( +- 0.069% ) grep thp /proc/vmstat thp_fault_alloc 35849 thp_fault_fallback 0 thp_collapse_alloc 3 thp_collapse_alloc_failed 0 thp_split 0 thp_split 0 confirms no thp split despite plenty of hugepages allocated. The measurement of only the mremap time (so excluding the 3 long memset and final long 10GB memory accessing memcmp): THP on usec 14824 usec 14862 usec 14859 THP off usec 256416 usec 255981 usec 255847 With an older kernel without the mremap optimizations (the below patch optimizes the non THP version too). THP on usec 392107 usec 390237 usec 404124 THP off usec 444294 usec 445237 usec 445820 I guess with a threaded program that sends more IPI on large SMP it'd create an even larger difference. All debug options are off except DEBUG_VM to avoid skewing the results. The only problem for native 2M mremap like it happens above both the source and destination address must be 2M aligned or the hugepmd can't be moved without a split but that is an hardware limitation. [akpm@linux-foundation.org: coding-style nitpicking] Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Johannes Weiner <jweiner@redhat.com> Acked-by: Mel Gorman <mgorman@suse.de> Acked-by: Rik van Riel <riel@redhat.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-11-01 08:08:30 +08:00
/*
* The destination pmd shouldn't be established, free_pgtables()
* should have release it.
*/
if (WARN_ON(!pmd_none(*new_pmd))) {
VM_BUG_ON(pmd_trans_huge(*new_pmd));
return false;
thp: mremap support and TLB optimization This adds THP support to mremap (decreases the number of split_huge_page() calls). Here are also some benchmarks with a proggy like this: === #define _GNU_SOURCE #include <sys/mman.h> #include <stdlib.h> #include <stdio.h> #include <string.h> #include <sys/time.h> #define SIZE (5UL*1024*1024*1024) int main() { static struct timeval oldstamp, newstamp; long diffsec; char *p, *p2, *p3, *p4; if (posix_memalign((void **)&p, 2*1024*1024, SIZE)) perror("memalign"), exit(1); if (posix_memalign((void **)&p2, 2*1024*1024, SIZE)) perror("memalign"), exit(1); if (posix_memalign((void **)&p3, 2*1024*1024, 4096)) perror("memalign"), exit(1); memset(p, 0xff, SIZE); memset(p2, 0xff, SIZE); memset(p3, 0x77, 4096); gettimeofday(&oldstamp, NULL); p4 = mremap(p, SIZE, SIZE, MREMAP_FIXED|MREMAP_MAYMOVE, p3); gettimeofday(&newstamp, NULL); diffsec = newstamp.tv_sec - oldstamp.tv_sec; diffsec = newstamp.tv_usec - oldstamp.tv_usec + 1000000 * diffsec; printf("usec %ld\n", diffsec); if (p == MAP_FAILED || p4 != p3) //if (p == MAP_FAILED) perror("mremap"), exit(1); if (memcmp(p4, p2, SIZE)) printf("mremap bug\n"), exit(1); printf("ok\n"); return 0; } === THP on Performance counter stats for './largepage13' (3 runs): 69195836 dTLB-loads ( +- 3.546% ) (scaled from 50.30%) 60708 dTLB-load-misses ( +- 11.776% ) (scaled from 52.62%) 676266476 dTLB-stores ( +- 5.654% ) (scaled from 69.54%) 29856 dTLB-store-misses ( +- 4.081% ) (scaled from 89.22%) 1055848782 iTLB-loads ( +- 4.526% ) (scaled from 80.18%) 8689 iTLB-load-misses ( +- 2.987% ) (scaled from 58.20%) 7.314454164 seconds time elapsed ( +- 0.023% ) THP off Performance counter stats for './largepage13' (3 runs): 1967379311 dTLB-loads ( +- 0.506% ) (scaled from 60.59%) 9238687 dTLB-load-misses ( +- 22.547% ) (scaled from 61.87%) 2014239444 dTLB-stores ( +- 0.692% ) (scaled from 60.40%) 3312335 dTLB-store-misses ( +- 7.304% ) (scaled from 67.60%) 6764372065 iTLB-loads ( +- 0.925% ) (scaled from 79.00%) 8202 iTLB-load-misses ( +- 0.475% ) (scaled from 70.55%) 9.693655243 seconds time elapsed ( +- 0.069% ) grep thp /proc/vmstat thp_fault_alloc 35849 thp_fault_fallback 0 thp_collapse_alloc 3 thp_collapse_alloc_failed 0 thp_split 0 thp_split 0 confirms no thp split despite plenty of hugepages allocated. The measurement of only the mremap time (so excluding the 3 long memset and final long 10GB memory accessing memcmp): THP on usec 14824 usec 14862 usec 14859 THP off usec 256416 usec 255981 usec 255847 With an older kernel without the mremap optimizations (the below patch optimizes the non THP version too). THP on usec 392107 usec 390237 usec 404124 THP off usec 444294 usec 445237 usec 445820 I guess with a threaded program that sends more IPI on large SMP it'd create an even larger difference. All debug options are off except DEBUG_VM to avoid skewing the results. The only problem for native 2M mremap like it happens above both the source and destination address must be 2M aligned or the hugepmd can't be moved without a split but that is an hardware limitation. [akpm@linux-foundation.org: coding-style nitpicking] Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Johannes Weiner <jweiner@redhat.com> Acked-by: Mel Gorman <mgorman@suse.de> Acked-by: Rik van Riel <riel@redhat.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-11-01 08:08:30 +08:00
}
mm, thp: change pmd_trans_huge_lock() to return taken lock With split ptlock it's important to know which lock pmd_trans_huge_lock() took. This patch adds one more parameter to the function to return the lock. In most places migration to new api is trivial. Exception is move_huge_pmd(): we need to take two locks if pmd tables are different. Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Alex Thorlton <athorlton@sgi.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: "Eric W . Biederman" <ebiederm@xmission.com> Cc: "Paul E . McKenney" <paulmck@linux.vnet.ibm.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andi Kleen <ak@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Dave Jones <davej@redhat.com> Cc: David Howells <dhowells@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kees Cook <keescook@chromium.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Robin Holt <robinmholt@gmail.com> Cc: Sedat Dilek <sedat.dilek@gmail.com> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-11-15 06:30:54 +08:00
/*
* We don't have to worry about the ordering of src and dst
* ptlocks because exclusive mmap_sem prevents deadlock.
*/
old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
if (old_ptl) {
mm, thp: change pmd_trans_huge_lock() to return taken lock With split ptlock it's important to know which lock pmd_trans_huge_lock() took. This patch adds one more parameter to the function to return the lock. In most places migration to new api is trivial. Exception is move_huge_pmd(): we need to take two locks if pmd tables are different. Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Alex Thorlton <athorlton@sgi.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: "Eric W . Biederman" <ebiederm@xmission.com> Cc: "Paul E . McKenney" <paulmck@linux.vnet.ibm.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andi Kleen <ak@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Dave Jones <davej@redhat.com> Cc: David Howells <dhowells@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kees Cook <keescook@chromium.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Robin Holt <robinmholt@gmail.com> Cc: Sedat Dilek <sedat.dilek@gmail.com> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-11-15 06:30:54 +08:00
new_ptl = pmd_lockptr(mm, new_pmd);
if (new_ptl != old_ptl)
spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
if (pmd_present(pmd) && pmd_dirty(pmd))
force_flush = true;
VM_BUG_ON(!pmd_none(*new_pmd));
if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
pgtable_t pgtable;
pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
}
pmd = move_soft_dirty_pmd(pmd);
set_pmd_at(mm, new_addr, new_pmd, pmd);
if (new_ptl != old_ptl)
spin_unlock(new_ptl);
mremap: fix race between mremap() and page cleanning Prior to 3.15, there was a race between zap_pte_range() and page_mkclean() where writes to a page could be lost. Dave Hansen discovered by inspection that there is a similar race between move_ptes() and page_mkclean(). We've been able to reproduce the issue by enlarging the race window with a msleep(), but have not been able to hit it without modifying the code. So, we think it's a real issue, but is difficult or impossible to hit in practice. The zap_pte_range() issue is fixed by commit 1cf35d47712d("mm: split 'tlb_flush_mmu()' into tlb flushing and memory freeing parts"). And this patch is to fix the race between page_mkclean() and mremap(). Here is one possible way to hit the race: suppose a process mmapped a file with READ | WRITE and SHARED, it has two threads and they are bound to 2 different CPUs, e.g. CPU1 and CPU2. mmap returned X, then thread 1 did a write to addr X so that CPU1 now has a writable TLB for addr X on it. Thread 2 starts mremaping from addr X to Y while thread 1 cleaned the page and then did another write to the old addr X again. The 2nd write from thread 1 could succeed but the value will get lost. thread 1 thread 2 (bound to CPU1) (bound to CPU2) 1: write 1 to addr X to get a writeable TLB on this CPU 2: mremap starts 3: move_ptes emptied PTE for addr X and setup new PTE for addr Y and then dropped PTL for X and Y 4: page laundering for N by doing fadvise FADV_DONTNEED. When done, pageframe N is deemed clean. 5: *write 2 to addr X 6: tlb flush for addr X 7: munmap (Y, pagesize) to make the page unmapped 8: fadvise with FADV_DONTNEED again to kick the page off the pagecache 9: pread the page from file to verify the value. If 1 is there, it means we have lost the written 2. *the write may or may not cause segmentation fault, it depends on if the TLB is still on the CPU. Please note that this is only one specific way of how the race could occur, it didn't mean that the race could only occur in exact the above config, e.g. more than 2 threads could be involved and fadvise() could be done in another thread, etc. For anonymous pages, they could race between mremap() and page reclaim: THP: a huge PMD is moved by mremap to a new huge PMD, then the new huge PMD gets unmapped/splitted/pagedout before the flush tlb happened for the old huge PMD in move_page_tables() and we could still write data to it. The normal anonymous page has similar situation. To fix this, check for any dirty PTE in move_ptes()/move_huge_pmd() and if any, did the flush before dropping the PTL. If we did the flush for every move_ptes()/move_huge_pmd() call then we do not need to do the flush in move_pages_tables() for the whole range. But if we didn't, we still need to do the whole range flush. Alternatively, we can track which part of the range is flushed in move_ptes()/move_huge_pmd() and which didn't to avoid flushing the whole range in move_page_tables(). But that would require multiple tlb flushes for the different sub-ranges and should be less efficient than the single whole range flush. KBuild test on my Sandybridge desktop doesn't show any noticeable change. v4.9-rc4: real 5m14.048s user 32m19.800s sys 4m50.320s With this commit: real 5m13.888s user 32m19.330s sys 4m51.200s Reported-by: Dave Hansen <dave.hansen@intel.com> Signed-off-by: Aaron Lu <aaron.lu@intel.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-11-10 17:16:33 +08:00
if (force_flush)
flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
else
*need_flush = true;
mm, thp: change pmd_trans_huge_lock() to return taken lock With split ptlock it's important to know which lock pmd_trans_huge_lock() took. This patch adds one more parameter to the function to return the lock. In most places migration to new api is trivial. Exception is move_huge_pmd(): we need to take two locks if pmd tables are different. Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Alex Thorlton <athorlton@sgi.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: "Eric W . Biederman" <ebiederm@xmission.com> Cc: "Paul E . McKenney" <paulmck@linux.vnet.ibm.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andi Kleen <ak@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Dave Jones <davej@redhat.com> Cc: David Howells <dhowells@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kees Cook <keescook@chromium.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Robin Holt <robinmholt@gmail.com> Cc: Sedat Dilek <sedat.dilek@gmail.com> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-11-15 06:30:54 +08:00
spin_unlock(old_ptl);
return true;
thp: mremap support and TLB optimization This adds THP support to mremap (decreases the number of split_huge_page() calls). Here are also some benchmarks with a proggy like this: === #define _GNU_SOURCE #include <sys/mman.h> #include <stdlib.h> #include <stdio.h> #include <string.h> #include <sys/time.h> #define SIZE (5UL*1024*1024*1024) int main() { static struct timeval oldstamp, newstamp; long diffsec; char *p, *p2, *p3, *p4; if (posix_memalign((void **)&p, 2*1024*1024, SIZE)) perror("memalign"), exit(1); if (posix_memalign((void **)&p2, 2*1024*1024, SIZE)) perror("memalign"), exit(1); if (posix_memalign((void **)&p3, 2*1024*1024, 4096)) perror("memalign"), exit(1); memset(p, 0xff, SIZE); memset(p2, 0xff, SIZE); memset(p3, 0x77, 4096); gettimeofday(&oldstamp, NULL); p4 = mremap(p, SIZE, SIZE, MREMAP_FIXED|MREMAP_MAYMOVE, p3); gettimeofday(&newstamp, NULL); diffsec = newstamp.tv_sec - oldstamp.tv_sec; diffsec = newstamp.tv_usec - oldstamp.tv_usec + 1000000 * diffsec; printf("usec %ld\n", diffsec); if (p == MAP_FAILED || p4 != p3) //if (p == MAP_FAILED) perror("mremap"), exit(1); if (memcmp(p4, p2, SIZE)) printf("mremap bug\n"), exit(1); printf("ok\n"); return 0; } === THP on Performance counter stats for './largepage13' (3 runs): 69195836 dTLB-loads ( +- 3.546% ) (scaled from 50.30%) 60708 dTLB-load-misses ( +- 11.776% ) (scaled from 52.62%) 676266476 dTLB-stores ( +- 5.654% ) (scaled from 69.54%) 29856 dTLB-store-misses ( +- 4.081% ) (scaled from 89.22%) 1055848782 iTLB-loads ( +- 4.526% ) (scaled from 80.18%) 8689 iTLB-load-misses ( +- 2.987% ) (scaled from 58.20%) 7.314454164 seconds time elapsed ( +- 0.023% ) THP off Performance counter stats for './largepage13' (3 runs): 1967379311 dTLB-loads ( +- 0.506% ) (scaled from 60.59%) 9238687 dTLB-load-misses ( +- 22.547% ) (scaled from 61.87%) 2014239444 dTLB-stores ( +- 0.692% ) (scaled from 60.40%) 3312335 dTLB-store-misses ( +- 7.304% ) (scaled from 67.60%) 6764372065 iTLB-loads ( +- 0.925% ) (scaled from 79.00%) 8202 iTLB-load-misses ( +- 0.475% ) (scaled from 70.55%) 9.693655243 seconds time elapsed ( +- 0.069% ) grep thp /proc/vmstat thp_fault_alloc 35849 thp_fault_fallback 0 thp_collapse_alloc 3 thp_collapse_alloc_failed 0 thp_split 0 thp_split 0 confirms no thp split despite plenty of hugepages allocated. The measurement of only the mremap time (so excluding the 3 long memset and final long 10GB memory accessing memcmp): THP on usec 14824 usec 14862 usec 14859 THP off usec 256416 usec 255981 usec 255847 With an older kernel without the mremap optimizations (the below patch optimizes the non THP version too). THP on usec 392107 usec 390237 usec 404124 THP off usec 444294 usec 445237 usec 445820 I guess with a threaded program that sends more IPI on large SMP it'd create an even larger difference. All debug options are off except DEBUG_VM to avoid skewing the results. The only problem for native 2M mremap like it happens above both the source and destination address must be 2M aligned or the hugepmd can't be moved without a split but that is an hardware limitation. [akpm@linux-foundation.org: coding-style nitpicking] Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Johannes Weiner <jweiner@redhat.com> Acked-by: Mel Gorman <mgorman@suse.de> Acked-by: Rik van Riel <riel@redhat.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-11-01 08:08:30 +08:00
}
return false;
thp: mremap support and TLB optimization This adds THP support to mremap (decreases the number of split_huge_page() calls). Here are also some benchmarks with a proggy like this: === #define _GNU_SOURCE #include <sys/mman.h> #include <stdlib.h> #include <stdio.h> #include <string.h> #include <sys/time.h> #define SIZE (5UL*1024*1024*1024) int main() { static struct timeval oldstamp, newstamp; long diffsec; char *p, *p2, *p3, *p4; if (posix_memalign((void **)&p, 2*1024*1024, SIZE)) perror("memalign"), exit(1); if (posix_memalign((void **)&p2, 2*1024*1024, SIZE)) perror("memalign"), exit(1); if (posix_memalign((void **)&p3, 2*1024*1024, 4096)) perror("memalign"), exit(1); memset(p, 0xff, SIZE); memset(p2, 0xff, SIZE); memset(p3, 0x77, 4096); gettimeofday(&oldstamp, NULL); p4 = mremap(p, SIZE, SIZE, MREMAP_FIXED|MREMAP_MAYMOVE, p3); gettimeofday(&newstamp, NULL); diffsec = newstamp.tv_sec - oldstamp.tv_sec; diffsec = newstamp.tv_usec - oldstamp.tv_usec + 1000000 * diffsec; printf("usec %ld\n", diffsec); if (p == MAP_FAILED || p4 != p3) //if (p == MAP_FAILED) perror("mremap"), exit(1); if (memcmp(p4, p2, SIZE)) printf("mremap bug\n"), exit(1); printf("ok\n"); return 0; } === THP on Performance counter stats for './largepage13' (3 runs): 69195836 dTLB-loads ( +- 3.546% ) (scaled from 50.30%) 60708 dTLB-load-misses ( +- 11.776% ) (scaled from 52.62%) 676266476 dTLB-stores ( +- 5.654% ) (scaled from 69.54%) 29856 dTLB-store-misses ( +- 4.081% ) (scaled from 89.22%) 1055848782 iTLB-loads ( +- 4.526% ) (scaled from 80.18%) 8689 iTLB-load-misses ( +- 2.987% ) (scaled from 58.20%) 7.314454164 seconds time elapsed ( +- 0.023% ) THP off Performance counter stats for './largepage13' (3 runs): 1967379311 dTLB-loads ( +- 0.506% ) (scaled from 60.59%) 9238687 dTLB-load-misses ( +- 22.547% ) (scaled from 61.87%) 2014239444 dTLB-stores ( +- 0.692% ) (scaled from 60.40%) 3312335 dTLB-store-misses ( +- 7.304% ) (scaled from 67.60%) 6764372065 iTLB-loads ( +- 0.925% ) (scaled from 79.00%) 8202 iTLB-load-misses ( +- 0.475% ) (scaled from 70.55%) 9.693655243 seconds time elapsed ( +- 0.069% ) grep thp /proc/vmstat thp_fault_alloc 35849 thp_fault_fallback 0 thp_collapse_alloc 3 thp_collapse_alloc_failed 0 thp_split 0 thp_split 0 confirms no thp split despite plenty of hugepages allocated. The measurement of only the mremap time (so excluding the 3 long memset and final long 10GB memory accessing memcmp): THP on usec 14824 usec 14862 usec 14859 THP off usec 256416 usec 255981 usec 255847 With an older kernel without the mremap optimizations (the below patch optimizes the non THP version too). THP on usec 392107 usec 390237 usec 404124 THP off usec 444294 usec 445237 usec 445820 I guess with a threaded program that sends more IPI on large SMP it'd create an even larger difference. All debug options are off except DEBUG_VM to avoid skewing the results. The only problem for native 2M mremap like it happens above both the source and destination address must be 2M aligned or the hugepmd can't be moved without a split but that is an hardware limitation. [akpm@linux-foundation.org: coding-style nitpicking] Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Johannes Weiner <jweiner@redhat.com> Acked-by: Mel Gorman <mgorman@suse.de> Acked-by: Rik van Riel <riel@redhat.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-11-01 08:08:30 +08:00
}
/*
* Returns
* - 0 if PMD could not be locked
* - 1 if PMD was locked but protections unchange and TLB flush unnecessary
* - HPAGE_PMD_NR is protections changed and TLB flush necessary
*/
int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
unsigned long addr, pgprot_t newprot, int prot_numa)
{
struct mm_struct *mm = vma->vm_mm;
mm, thp: change pmd_trans_huge_lock() to return taken lock With split ptlock it's important to know which lock pmd_trans_huge_lock() took. This patch adds one more parameter to the function to return the lock. In most places migration to new api is trivial. Exception is move_huge_pmd(): we need to take two locks if pmd tables are different. Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Alex Thorlton <athorlton@sgi.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: "Eric W . Biederman" <ebiederm@xmission.com> Cc: "Paul E . McKenney" <paulmck@linux.vnet.ibm.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andi Kleen <ak@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Dave Jones <davej@redhat.com> Cc: David Howells <dhowells@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kees Cook <keescook@chromium.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Robin Holt <robinmholt@gmail.com> Cc: Sedat Dilek <sedat.dilek@gmail.com> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-11-15 06:30:54 +08:00
spinlock_t *ptl;
pmd_t entry;
bool preserve_write;
int ret;
ptl = __pmd_trans_huge_lock(pmd, vma);
if (!ptl)
return 0;
preserve_write = prot_numa && pmd_write(*pmd);
ret = 1;
mm: thp: check pmd migration entry in common path When THP migration is being used, memory management code needs to handle pmd migration entries properly. This patch uses !pmd_present() or is_swap_pmd() (depending on whether pmd_none() needs separate code or not) to check pmd migration entries at the places where a pmd entry is present. Since pmd-related code uses split_huge_page(), split_huge_pmd(), pmd_trans_huge(), pmd_trans_unstable(), or pmd_none_or_trans_huge_or_clear_bad(), this patch: 1. adds pmd migration entry split code in split_huge_pmd(), 2. takes care of pmd migration entries whenever pmd_trans_huge() is present, 3. makes pmd_none_or_trans_huge_or_clear_bad() pmd migration entry aware. Since split_huge_page() uses split_huge_pmd() and pmd_trans_unstable() is equivalent to pmd_none_or_trans_huge_or_clear_bad(), we do not change them. Until this commit, a pmd entry should be: 1. pointing to a pte page, 2. is_swap_pmd(), 3. pmd_trans_huge(), 4. pmd_devmap(), or 5. pmd_none(). Signed-off-by: Zi Yan <zi.yan@cs.rutgers.edu> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: David Nellans <dnellans@nvidia.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-09 07:11:01 +08:00
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
if (is_swap_pmd(*pmd)) {
swp_entry_t entry = pmd_to_swp_entry(*pmd);
VM_BUG_ON(!is_pmd_migration_entry(*pmd));
if (is_write_migration_entry(entry)) {
pmd_t newpmd;
/*
* A protection check is difficult so
* just be safe and disable write
*/
make_migration_entry_read(&entry);
newpmd = swp_entry_to_pmd(entry);
if (pmd_swp_soft_dirty(*pmd))
newpmd = pmd_swp_mksoft_dirty(newpmd);
mm: thp: check pmd migration entry in common path When THP migration is being used, memory management code needs to handle pmd migration entries properly. This patch uses !pmd_present() or is_swap_pmd() (depending on whether pmd_none() needs separate code or not) to check pmd migration entries at the places where a pmd entry is present. Since pmd-related code uses split_huge_page(), split_huge_pmd(), pmd_trans_huge(), pmd_trans_unstable(), or pmd_none_or_trans_huge_or_clear_bad(), this patch: 1. adds pmd migration entry split code in split_huge_pmd(), 2. takes care of pmd migration entries whenever pmd_trans_huge() is present, 3. makes pmd_none_or_trans_huge_or_clear_bad() pmd migration entry aware. Since split_huge_page() uses split_huge_pmd() and pmd_trans_unstable() is equivalent to pmd_none_or_trans_huge_or_clear_bad(), we do not change them. Until this commit, a pmd entry should be: 1. pointing to a pte page, 2. is_swap_pmd(), 3. pmd_trans_huge(), 4. pmd_devmap(), or 5. pmd_none(). Signed-off-by: Zi Yan <zi.yan@cs.rutgers.edu> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: David Nellans <dnellans@nvidia.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-09 07:11:01 +08:00
set_pmd_at(mm, addr, pmd, newpmd);
}
goto unlock;
}
#endif
/*
* Avoid trapping faults against the zero page. The read-only
* data is likely to be read-cached on the local CPU and
* local/remote hits to the zero page are not interesting.
*/
if (prot_numa && is_huge_zero_pmd(*pmd))
goto unlock;
if (prot_numa && pmd_protnone(*pmd))
goto unlock;
/*
* In case prot_numa, we are under down_read(mmap_sem). It's critical
* to not clear pmd intermittently to avoid race with MADV_DONTNEED
* which is also under down_read(mmap_sem):
*
* CPU0: CPU1:
* change_huge_pmd(prot_numa=1)
* pmdp_huge_get_and_clear_notify()
* madvise_dontneed()
* zap_pmd_range()
* pmd_trans_huge(*pmd) == 0 (without ptl)
* // skip the pmd
* set_pmd_at();
* // pmd is re-established
*
* The race makes MADV_DONTNEED miss the huge pmd and don't clear it
* which may break userspace.
*
* pmdp_invalidate() is required to make sure we don't miss
* dirty/young flags set by hardware.
*/
entry = *pmd;
pmdp_invalidate(vma, addr, pmd);
/*
* Recover dirty/young flags. It relies on pmdp_invalidate to not
* corrupt them.
*/
if (pmd_dirty(*pmd))
entry = pmd_mkdirty(entry);
if (pmd_young(*pmd))
entry = pmd_mkyoung(entry);
entry = pmd_modify(entry, newprot);
if (preserve_write)
entry = pmd_mk_savedwrite(entry);
ret = HPAGE_PMD_NR;
set_pmd_at(mm, addr, pmd, entry);
BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
unlock:
spin_unlock(ptl);
return ret;
}
/*
* Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
*
* Note that if it returns page table lock pointer, this routine returns without
* unlocking page table lock. So callers must unlock it.
*/
spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
{
spinlock_t *ptl;
ptl = pmd_lock(vma->vm_mm, pmd);
mm: thp: check pmd migration entry in common path When THP migration is being used, memory management code needs to handle pmd migration entries properly. This patch uses !pmd_present() or is_swap_pmd() (depending on whether pmd_none() needs separate code or not) to check pmd migration entries at the places where a pmd entry is present. Since pmd-related code uses split_huge_page(), split_huge_pmd(), pmd_trans_huge(), pmd_trans_unstable(), or pmd_none_or_trans_huge_or_clear_bad(), this patch: 1. adds pmd migration entry split code in split_huge_pmd(), 2. takes care of pmd migration entries whenever pmd_trans_huge() is present, 3. makes pmd_none_or_trans_huge_or_clear_bad() pmd migration entry aware. Since split_huge_page() uses split_huge_pmd() and pmd_trans_unstable() is equivalent to pmd_none_or_trans_huge_or_clear_bad(), we do not change them. Until this commit, a pmd entry should be: 1. pointing to a pte page, 2. is_swap_pmd(), 3. pmd_trans_huge(), 4. pmd_devmap(), or 5. pmd_none(). Signed-off-by: Zi Yan <zi.yan@cs.rutgers.edu> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: David Nellans <dnellans@nvidia.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-09 07:11:01 +08:00
if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
pmd_devmap(*pmd)))
return ptl;
spin_unlock(ptl);
return NULL;
}
mm, x86: add support for PUD-sized transparent hugepages The current transparent hugepage code only supports PMDs. This patch adds support for transparent use of PUDs with DAX. It does not include support for anonymous pages. x86 support code also added. Most of this patch simply parallels the work that was done for huge PMDs. The only major difference is how the new ->pud_entry method in mm_walk works. The ->pmd_entry method replaces the ->pte_entry method, whereas the ->pud_entry method works along with either ->pmd_entry or ->pte_entry. The pagewalk code takes care of locking the PUD before calling ->pud_walk, so handlers do not need to worry whether the PUD is stable. [dave.jiang@intel.com: fix SMP x86 32bit build for native_pud_clear()] Link: http://lkml.kernel.org/r/148719066814.31111.3239231168815337012.stgit@djiang5-desk3.ch.intel.com [dave.jiang@intel.com: native_pud_clear missing on i386 build] Link: http://lkml.kernel.org/r/148640375195.69754.3315433724330910314.stgit@djiang5-desk3.ch.intel.com Link: http://lkml.kernel.org/r/148545059381.17912.8602162635537598445.stgit@djiang5-desk3.ch.intel.com Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com> Signed-off-by: Dave Jiang <dave.jiang@intel.com> Tested-by: Alexander Kapshuk <alexander.kapshuk@gmail.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Jan Kara <jack@suse.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Nilesh Choudhury <nilesh.choudhury@oracle.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-25 06:57:02 +08:00
/*
* Returns true if a given pud maps a thp, false otherwise.
*
* Note that if it returns true, this routine returns without unlocking page
* table lock. So callers must unlock it.
*/
spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
{
spinlock_t *ptl;
ptl = pud_lock(vma->vm_mm, pud);
if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
return ptl;
spin_unlock(ptl);
return NULL;
}
#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
pud_t *pud, unsigned long addr)
{
pud_t orig_pud;
spinlock_t *ptl;
ptl = __pud_trans_huge_lock(pud, vma);
if (!ptl)
return 0;
/*
* For architectures like ppc64 we look at deposited pgtable
* when calling pudp_huge_get_and_clear. So do the
* pgtable_trans_huge_withdraw after finishing pudp related
* operations.
*/
orig_pud = pudp_huge_get_and_clear_full(tlb->mm, addr, pud,
tlb->fullmm);
tlb_remove_pud_tlb_entry(tlb, pud, addr);
if (vma_is_dax(vma)) {
spin_unlock(ptl);
/* No zero page support yet */
} else {
/* No support for anonymous PUD pages yet */
BUG();
}
return 1;
}
static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
unsigned long haddr)
{
VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
count_vm_event(THP_SPLIT_PUD);
mm, x86: add support for PUD-sized transparent hugepages The current transparent hugepage code only supports PMDs. This patch adds support for transparent use of PUDs with DAX. It does not include support for anonymous pages. x86 support code also added. Most of this patch simply parallels the work that was done for huge PMDs. The only major difference is how the new ->pud_entry method in mm_walk works. The ->pmd_entry method replaces the ->pte_entry method, whereas the ->pud_entry method works along with either ->pmd_entry or ->pte_entry. The pagewalk code takes care of locking the PUD before calling ->pud_walk, so handlers do not need to worry whether the PUD is stable. [dave.jiang@intel.com: fix SMP x86 32bit build for native_pud_clear()] Link: http://lkml.kernel.org/r/148719066814.31111.3239231168815337012.stgit@djiang5-desk3.ch.intel.com [dave.jiang@intel.com: native_pud_clear missing on i386 build] Link: http://lkml.kernel.org/r/148640375195.69754.3315433724330910314.stgit@djiang5-desk3.ch.intel.com Link: http://lkml.kernel.org/r/148545059381.17912.8602162635537598445.stgit@djiang5-desk3.ch.intel.com Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com> Signed-off-by: Dave Jiang <dave.jiang@intel.com> Tested-by: Alexander Kapshuk <alexander.kapshuk@gmail.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Jan Kara <jack@suse.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Nilesh Choudhury <nilesh.choudhury@oracle.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-25 06:57:02 +08:00
pudp_huge_clear_flush_notify(vma, haddr, pud);
}
void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
unsigned long address)
{
spinlock_t *ptl;
struct mm_struct *mm = vma->vm_mm;
unsigned long haddr = address & HPAGE_PUD_MASK;
mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PUD_SIZE);
ptl = pud_lock(mm, pud);
if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
goto out;
__split_huge_pud_locked(vma, pud, haddr);
out:
spin_unlock(ptl);
mm/mmu_notifier: avoid call to invalidate_range() in range_end() This is an optimization patch that only affect mmu_notifier users which rely on the invalidate_range() callback. This patch avoids calling that callback twice in a row from inside __mmu_notifier_invalidate_range_end Existing pattern (before this patch): mmu_notifier_invalidate_range_start() pte/pmd/pud_clear_flush_notify() mmu_notifier_invalidate_range() mmu_notifier_invalidate_range_end() mmu_notifier_invalidate_range() New pattern (after this patch): mmu_notifier_invalidate_range_start() pte/pmd/pud_clear_flush_notify() mmu_notifier_invalidate_range() mmu_notifier_invalidate_range_only_end() We call the invalidate_range callback after clearing the page table under the page table lock and we skip the call to invalidate_range inside the __mmu_notifier_invalidate_range_end() function. Idea from Andrea Arcangeli Link: http://lkml.kernel.org/r/20171017031003.7481-3-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Joerg Roedel <jroedel@suse.de> Cc: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Alistair Popple <alistair@popple.id.au> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Andrew Donnellan <andrew.donnellan@au1.ibm.com> Cc: Nadav Amit <nadav.amit@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-16 09:34:11 +08:00
/*
* No need to double call mmu_notifier->invalidate_range() callback as
* the above pudp_huge_clear_flush_notify() did already call it.
*/
mmu_notifier_invalidate_range_only_end(mm, haddr, haddr +
HPAGE_PUD_SIZE);
mm, x86: add support for PUD-sized transparent hugepages The current transparent hugepage code only supports PMDs. This patch adds support for transparent use of PUDs with DAX. It does not include support for anonymous pages. x86 support code also added. Most of this patch simply parallels the work that was done for huge PMDs. The only major difference is how the new ->pud_entry method in mm_walk works. The ->pmd_entry method replaces the ->pte_entry method, whereas the ->pud_entry method works along with either ->pmd_entry or ->pte_entry. The pagewalk code takes care of locking the PUD before calling ->pud_walk, so handlers do not need to worry whether the PUD is stable. [dave.jiang@intel.com: fix SMP x86 32bit build for native_pud_clear()] Link: http://lkml.kernel.org/r/148719066814.31111.3239231168815337012.stgit@djiang5-desk3.ch.intel.com [dave.jiang@intel.com: native_pud_clear missing on i386 build] Link: http://lkml.kernel.org/r/148640375195.69754.3315433724330910314.stgit@djiang5-desk3.ch.intel.com Link: http://lkml.kernel.org/r/148545059381.17912.8602162635537598445.stgit@djiang5-desk3.ch.intel.com Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com> Signed-off-by: Dave Jiang <dave.jiang@intel.com> Tested-by: Alexander Kapshuk <alexander.kapshuk@gmail.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Jan Kara <jack@suse.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Nilesh Choudhury <nilesh.choudhury@oracle.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-25 06:57:02 +08:00
}
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
unsigned long haddr, pmd_t *pmd)
{
struct mm_struct *mm = vma->vm_mm;
pgtable_t pgtable;
pmd_t _pmd;
int i;
mm/mmu_notifier: avoid double notification when it is useless This patch only affects users of mmu_notifier->invalidate_range callback which are device drivers related to ATS/PASID, CAPI, IOMMUv2, SVM ... and it is an optimization for those users. Everyone else is unaffected by it. When clearing a pte/pmd we are given a choice to notify the event under the page table lock (notify version of *_clear_flush helpers do call the mmu_notifier_invalidate_range). But that notification is not necessary in all cases. This patch removes almost all cases where it is useless to have a call to mmu_notifier_invalidate_range before mmu_notifier_invalidate_range_end. It also adds documentation in all those cases explaining why. Below is a more in depth analysis of why this is fine to do this: For secondary TLB (non CPU TLB) like IOMMU TLB or device TLB (when device use thing like ATS/PASID to get the IOMMU to walk the CPU page table to access a process virtual address space). There is only 2 cases when you need to notify those secondary TLB while holding page table lock when clearing a pte/pmd: A) page backing address is free before mmu_notifier_invalidate_range_end B) a page table entry is updated to point to a new page (COW, write fault on zero page, __replace_page(), ...) Case A is obvious you do not want to take the risk for the device to write to a page that might now be used by something completely different. Case B is more subtle. For correctness it requires the following sequence to happen: - take page table lock - clear page table entry and notify (pmd/pte_huge_clear_flush_notify()) - set page table entry to point to new page If clearing the page table entry is not followed by a notify before setting the new pte/pmd value then you can break memory model like C11 or C++11 for the device. Consider the following scenario (device use a feature similar to ATS/ PASID): Two address addrA and addrB such that |addrA - addrB| >= PAGE_SIZE we assume they are write protected for COW (other case of B apply too). [Time N] ----------------------------------------------------------------- CPU-thread-0 {try to write to addrA} CPU-thread-1 {try to write to addrB} CPU-thread-2 {} CPU-thread-3 {} DEV-thread-0 {read addrA and populate device TLB} DEV-thread-2 {read addrB and populate device TLB} [Time N+1] --------------------------------------------------------------- CPU-thread-0 {COW_step0: {mmu_notifier_invalidate_range_start(addrA)}} CPU-thread-1 {COW_step0: {mmu_notifier_invalidate_range_start(addrB)}} CPU-thread-2 {} CPU-thread-3 {} DEV-thread-0 {} DEV-thread-2 {} [Time N+2] --------------------------------------------------------------- CPU-thread-0 {COW_step1: {update page table point to new page for addrA}} CPU-thread-1 {COW_step1: {update page table point to new page for addrB}} CPU-thread-2 {} CPU-thread-3 {} DEV-thread-0 {} DEV-thread-2 {} [Time N+3] --------------------------------------------------------------- CPU-thread-0 {preempted} CPU-thread-1 {preempted} CPU-thread-2 {write to addrA which is a write to new page} CPU-thread-3 {} DEV-thread-0 {} DEV-thread-2 {} [Time N+3] --------------------------------------------------------------- CPU-thread-0 {preempted} CPU-thread-1 {preempted} CPU-thread-2 {} CPU-thread-3 {write to addrB which is a write to new page} DEV-thread-0 {} DEV-thread-2 {} [Time N+4] --------------------------------------------------------------- CPU-thread-0 {preempted} CPU-thread-1 {COW_step3: {mmu_notifier_invalidate_range_end(addrB)}} CPU-thread-2 {} CPU-thread-3 {} DEV-thread-0 {} DEV-thread-2 {} [Time N+5] --------------------------------------------------------------- CPU-thread-0 {preempted} CPU-thread-1 {} CPU-thread-2 {} CPU-thread-3 {} DEV-thread-0 {read addrA from old page} DEV-thread-2 {read addrB from new page} So here because at time N+2 the clear page table entry was not pair with a notification to invalidate the secondary TLB, the device see the new value for addrB before seing the new value for addrA. This break total memory ordering for the device. When changing a pte to write protect or to point to a new write protected page with same content (KSM) it is ok to delay invalidate_range callback to mmu_notifier_invalidate_range_end() outside the page table lock. This is true even if the thread doing page table update is preempted right after releasing page table lock before calling mmu_notifier_invalidate_range_end Thanks to Andrea for thinking of a problematic scenario for COW. [jglisse@redhat.com: v2] Link: http://lkml.kernel.org/r/20171017031003.7481-2-jglisse@redhat.com Link: http://lkml.kernel.org/r/20170901173011.10745-1-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Nadav Amit <nadav.amit@gmail.com> Cc: Joerg Roedel <jroedel@suse.de> Cc: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Alistair Popple <alistair@popple.id.au> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Andrew Donnellan <andrew.donnellan@au1.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-16 09:34:07 +08:00
/*
* Leave pmd empty until pte is filled note that it is fine to delay
* notification until mmu_notifier_invalidate_range_end() as we are
* replacing a zero pmd write protected page with a zero pte write
* protected page.
*
* See Documentation/vm/mmu_notifier.txt
*/
pmdp_huge_clear_flush(vma, haddr, pmd);
pgtable = pgtable_trans_huge_withdraw(mm, pmd);
pmd_populate(mm, &_pmd, pgtable);
for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
pte_t *pte, entry;
entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
entry = pte_mkspecial(entry);
pte = pte_offset_map(&_pmd, haddr);
VM_BUG_ON(!pte_none(*pte));
set_pte_at(mm, haddr, pte, entry);
pte_unmap(pte);
}
smp_wmb(); /* make pte visible before pmd */
pmd_populate(mm, pmd, pgtable);
}
static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
unsigned long haddr, bool freeze)
{
struct mm_struct *mm = vma->vm_mm;
struct page *page;
pgtable_t pgtable;
pmd_t _pmd;
mm: thp: check pmd migration entry in common path When THP migration is being used, memory management code needs to handle pmd migration entries properly. This patch uses !pmd_present() or is_swap_pmd() (depending on whether pmd_none() needs separate code or not) to check pmd migration entries at the places where a pmd entry is present. Since pmd-related code uses split_huge_page(), split_huge_pmd(), pmd_trans_huge(), pmd_trans_unstable(), or pmd_none_or_trans_huge_or_clear_bad(), this patch: 1. adds pmd migration entry split code in split_huge_pmd(), 2. takes care of pmd migration entries whenever pmd_trans_huge() is present, 3. makes pmd_none_or_trans_huge_or_clear_bad() pmd migration entry aware. Since split_huge_page() uses split_huge_pmd() and pmd_trans_unstable() is equivalent to pmd_none_or_trans_huge_or_clear_bad(), we do not change them. Until this commit, a pmd entry should be: 1. pointing to a pte page, 2. is_swap_pmd(), 3. pmd_trans_huge(), 4. pmd_devmap(), or 5. pmd_none(). Signed-off-by: Zi Yan <zi.yan@cs.rutgers.edu> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: David Nellans <dnellans@nvidia.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-09 07:11:01 +08:00
bool young, write, dirty, soft_dirty, pmd_migration = false;
unsigned long addr;
int i;
VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
mm: thp: check pmd migration entry in common path When THP migration is being used, memory management code needs to handle pmd migration entries properly. This patch uses !pmd_present() or is_swap_pmd() (depending on whether pmd_none() needs separate code or not) to check pmd migration entries at the places where a pmd entry is present. Since pmd-related code uses split_huge_page(), split_huge_pmd(), pmd_trans_huge(), pmd_trans_unstable(), or pmd_none_or_trans_huge_or_clear_bad(), this patch: 1. adds pmd migration entry split code in split_huge_pmd(), 2. takes care of pmd migration entries whenever pmd_trans_huge() is present, 3. makes pmd_none_or_trans_huge_or_clear_bad() pmd migration entry aware. Since split_huge_page() uses split_huge_pmd() and pmd_trans_unstable() is equivalent to pmd_none_or_trans_huge_or_clear_bad(), we do not change them. Until this commit, a pmd entry should be: 1. pointing to a pte page, 2. is_swap_pmd(), 3. pmd_trans_huge(), 4. pmd_devmap(), or 5. pmd_none(). Signed-off-by: Zi Yan <zi.yan@cs.rutgers.edu> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: David Nellans <dnellans@nvidia.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-09 07:11:01 +08:00
VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
&& !pmd_devmap(*pmd));
count_vm_event(THP_SPLIT_PMD);
if (!vma_is_anonymous(vma)) {
_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
/*
* We are going to unmap this huge page. So
* just go ahead and zap it
*/
if (arch_needs_pgtable_deposit())
zap_deposited_table(mm, pmd);
if (vma_is_dax(vma))
return;
page = pmd_page(_pmd);
if (!PageReferenced(page) && pmd_young(_pmd))
SetPageReferenced(page);
page_remove_rmap(page, true);
put_page(page);
add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR);
return;
} else if (is_huge_zero_pmd(*pmd)) {
mm/mmu_notifier: avoid call to invalidate_range() in range_end() This is an optimization patch that only affect mmu_notifier users which rely on the invalidate_range() callback. This patch avoids calling that callback twice in a row from inside __mmu_notifier_invalidate_range_end Existing pattern (before this patch): mmu_notifier_invalidate_range_start() pte/pmd/pud_clear_flush_notify() mmu_notifier_invalidate_range() mmu_notifier_invalidate_range_end() mmu_notifier_invalidate_range() New pattern (after this patch): mmu_notifier_invalidate_range_start() pte/pmd/pud_clear_flush_notify() mmu_notifier_invalidate_range() mmu_notifier_invalidate_range_only_end() We call the invalidate_range callback after clearing the page table under the page table lock and we skip the call to invalidate_range inside the __mmu_notifier_invalidate_range_end() function. Idea from Andrea Arcangeli Link: http://lkml.kernel.org/r/20171017031003.7481-3-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Joerg Roedel <jroedel@suse.de> Cc: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Alistair Popple <alistair@popple.id.au> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Andrew Donnellan <andrew.donnellan@au1.ibm.com> Cc: Nadav Amit <nadav.amit@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-16 09:34:11 +08:00
/*
* FIXME: Do we want to invalidate secondary mmu by calling
* mmu_notifier_invalidate_range() see comments below inside
* __split_huge_pmd() ?
*
* We are going from a zero huge page write protected to zero
* small page also write protected so it does not seems useful
* to invalidate secondary mmu at this time.
*/
return __split_huge_zero_page_pmd(vma, haddr, pmd);
}
mm: thp: check pmd migration entry in common path When THP migration is being used, memory management code needs to handle pmd migration entries properly. This patch uses !pmd_present() or is_swap_pmd() (depending on whether pmd_none() needs separate code or not) to check pmd migration entries at the places where a pmd entry is present. Since pmd-related code uses split_huge_page(), split_huge_pmd(), pmd_trans_huge(), pmd_trans_unstable(), or pmd_none_or_trans_huge_or_clear_bad(), this patch: 1. adds pmd migration entry split code in split_huge_pmd(), 2. takes care of pmd migration entries whenever pmd_trans_huge() is present, 3. makes pmd_none_or_trans_huge_or_clear_bad() pmd migration entry aware. Since split_huge_page() uses split_huge_pmd() and pmd_trans_unstable() is equivalent to pmd_none_or_trans_huge_or_clear_bad(), we do not change them. Until this commit, a pmd entry should be: 1. pointing to a pte page, 2. is_swap_pmd(), 3. pmd_trans_huge(), 4. pmd_devmap(), or 5. pmd_none(). Signed-off-by: Zi Yan <zi.yan@cs.rutgers.edu> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: David Nellans <dnellans@nvidia.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-09 07:11:01 +08:00
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
pmd_migration = is_pmd_migration_entry(*pmd);
if (pmd_migration) {
swp_entry_t entry;
entry = pmd_to_swp_entry(*pmd);
page = pfn_to_page(swp_offset(entry));
} else
#endif
page = pmd_page(*pmd);
VM_BUG_ON_PAGE(!page_count(page), page);
2016-03-18 05:19:26 +08:00
page_ref_add(page, HPAGE_PMD_NR - 1);
write = pmd_write(*pmd);
young = pmd_young(*pmd);
mm/huge_memory.c: don't split THP page when MADV_FREE syscall is called We don't need to split THP page when MADV_FREE syscall is called if [start, len] is aligned with THP size. The split could be done when VM decide to free it in reclaim path if memory pressure is heavy. With that, we could avoid unnecessary THP split. For the feature, this patch changes pte dirtness marking logic of THP. Now, it marks every ptes of pages dirty unconditionally in splitting, which makes MADV_FREE void. So, instead, this patch propagates pmd dirtiness to all pages via PG_dirty and restores pte dirtiness from PG_dirty. With this, if pmd is clean(ie, MADV_FREEed) when split happens(e,g, shrink_page_list), all of pages are clean too so we could discard them. Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Hugh Dickins <hughd@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "James E.J. Bottomley" <jejb@parisc-linux.org> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Shaohua Li <shli@kernel.org> Cc: <yalin.wang2010@gmail.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chen Gang <gang.chen.5i5j@gmail.com> Cc: Chris Zankel <chris@zankel.net> Cc: Daniel Micay <danielmicay@gmail.com> Cc: Darrick J. Wong <darrick.wong@oracle.com> Cc: David S. Miller <davem@davemloft.net> Cc: Helge Deller <deller@gmx.de> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: Jason Evans <je@fb.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mika Penttil <mika.penttila@nextfour.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Richard Henderson <rth@twiddle.net> Cc: Rik van Riel <riel@redhat.com> Cc: Roland Dreier <roland@kernel.org> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Shaohua Li <shli@kernel.org> Cc: Will Deacon <will.deacon@arm.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:55:42 +08:00
dirty = pmd_dirty(*pmd);
soft_dirty: fix soft_dirty during THP split While adding proper userfaultfd_wp support with bits in pagetable and swap entry to avoid false positives WP userfaults through swap/fork/ KSM/etc, I've been adding a framework that mostly mirrors soft dirty. So I noticed in one place I had to add uffd_wp support to the pagetables that wasn't covered by soft_dirty and I think it should have. Example: in the THP migration code migrate_misplaced_transhuge_page() pmd_mkdirty is called unconditionally after mk_huge_pmd. entry = mk_huge_pmd(new_page, vma->vm_page_prot); entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); That sets soft dirty too (it's a false positive for soft dirty, the soft dirty bit could be more finegrained and transfer the bit like uffd_wp will do.. pmd/pte_uffd_wp() enforces the invariant that when it's set pmd/pte_write is not set). However in the THP split there's no unconditional pmd_mkdirty after mk_huge_pmd and pte_swp_mksoft_dirty isn't called after the migration entry is created. The code sets the dirty bit in the struct page instead of setting it in the pagetable (which is fully equivalent as far as the real dirty bit is concerned, as the whole point of pagetable bits is to be eventually flushed out of to the page, but that is not equivalent for the soft-dirty bit that gets lost in translation). This was found by code review only and totally untested as I'm working to actually replace soft dirty and I don't have time to test potential soft dirty bugfixes as well :). Transfer the soft_dirty from pmd to pte during THP splits. This fix avoids losing the soft_dirty bit and avoids userland memory corruption in the checkpoint. Fixes: eef1b3ba053aa6 ("thp: implement split_huge_pmd()") Link: http://lkml.kernel.org/r/1471610515-30229-2-git-send-email-aarcange@redhat.com Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Pavel Emelyanov <xemul@virtuozzo.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-08-26 06:16:57 +08:00
soft_dirty = pmd_soft_dirty(*pmd);
powerpc/mm: Fix Multi hit ERAT cause by recent THP update With ppc64 we use the deposited pgtable_t to store the hash pte slot information. We should not withdraw the deposited pgtable_t without marking the pmd none. This ensure that low level hash fault handling will skip this huge pte and we will handle them at upper levels. Recent change to pmd splitting changed the above in order to handle the race between pmd split and exit_mmap. The race is explained below. Consider following race: CPU0 CPU1 shrink_page_list() add_to_swap() split_huge_page_to_list() __split_huge_pmd_locked() pmdp_huge_clear_flush_notify() // pmd_none() == true exit_mmap() unmap_vmas() zap_pmd_range() // no action on pmd since pmd_none() == true pmd_populate() As result the THP will not be freed. The leak is detected by check_mm(): BUG: Bad rss-counter state mm:ffff880058d2e580 idx:1 val:512 The above required us to not mark pmd none during a pmd split. The fix for ppc is to clear the huge pte of _PAGE_USER, so that low level fault handling code skip this pte. At higher level we do take ptl lock. That should serialze us against the pmd split. Once the lock is acquired we do check the pmd again using pmd_same. That should always return false for us and hence we should retry the access. We do the pmd_same check in all case after taking plt with THP (do_huge_pmd_wp_page, do_huge_pmd_numa_page and huge_pmd_set_accessed) Also make sure we wait for irq disable section in other cpus to finish before flipping a huge pte entry with a regular pmd entry. Code paths like find_linux_pte_or_hugepte depend on irq disable to get a stable pte_t pointer. A parallel thp split need to make sure we don't convert a pmd pte to a regular pmd entry without waiting for the irq disable section to finish. Fixes: eef1b3ba053a ("thp: implement split_huge_pmd()") Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2016-02-09 09:20:31 +08:00
pmdp_huge_split_prepare(vma, haddr, pmd);
pgtable = pgtable_trans_huge_withdraw(mm, pmd);
pmd_populate(mm, &_pmd, pgtable);
for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
pte_t entry, *pte;
/*
* Note that NUMA hinting access restrictions are not
* transferred to avoid any possibility of altering
* permissions across VMAs.
*/
mm: thp: check pmd migration entry in common path When THP migration is being used, memory management code needs to handle pmd migration entries properly. This patch uses !pmd_present() or is_swap_pmd() (depending on whether pmd_none() needs separate code or not) to check pmd migration entries at the places where a pmd entry is present. Since pmd-related code uses split_huge_page(), split_huge_pmd(), pmd_trans_huge(), pmd_trans_unstable(), or pmd_none_or_trans_huge_or_clear_bad(), this patch: 1. adds pmd migration entry split code in split_huge_pmd(), 2. takes care of pmd migration entries whenever pmd_trans_huge() is present, 3. makes pmd_none_or_trans_huge_or_clear_bad() pmd migration entry aware. Since split_huge_page() uses split_huge_pmd() and pmd_trans_unstable() is equivalent to pmd_none_or_trans_huge_or_clear_bad(), we do not change them. Until this commit, a pmd entry should be: 1. pointing to a pte page, 2. is_swap_pmd(), 3. pmd_trans_huge(), 4. pmd_devmap(), or 5. pmd_none(). Signed-off-by: Zi Yan <zi.yan@cs.rutgers.edu> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: David Nellans <dnellans@nvidia.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-09 07:11:01 +08:00
if (freeze || pmd_migration) {
swp_entry_t swp_entry;
swp_entry = make_migration_entry(page + i, write);
entry = swp_entry_to_pte(swp_entry);
soft_dirty: fix soft_dirty during THP split While adding proper userfaultfd_wp support with bits in pagetable and swap entry to avoid false positives WP userfaults through swap/fork/ KSM/etc, I've been adding a framework that mostly mirrors soft dirty. So I noticed in one place I had to add uffd_wp support to the pagetables that wasn't covered by soft_dirty and I think it should have. Example: in the THP migration code migrate_misplaced_transhuge_page() pmd_mkdirty is called unconditionally after mk_huge_pmd. entry = mk_huge_pmd(new_page, vma->vm_page_prot); entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); That sets soft dirty too (it's a false positive for soft dirty, the soft dirty bit could be more finegrained and transfer the bit like uffd_wp will do.. pmd/pte_uffd_wp() enforces the invariant that when it's set pmd/pte_write is not set). However in the THP split there's no unconditional pmd_mkdirty after mk_huge_pmd and pte_swp_mksoft_dirty isn't called after the migration entry is created. The code sets the dirty bit in the struct page instead of setting it in the pagetable (which is fully equivalent as far as the real dirty bit is concerned, as the whole point of pagetable bits is to be eventually flushed out of to the page, but that is not equivalent for the soft-dirty bit that gets lost in translation). This was found by code review only and totally untested as I'm working to actually replace soft dirty and I don't have time to test potential soft dirty bugfixes as well :). Transfer the soft_dirty from pmd to pte during THP splits. This fix avoids losing the soft_dirty bit and avoids userland memory corruption in the checkpoint. Fixes: eef1b3ba053aa6 ("thp: implement split_huge_pmd()") Link: http://lkml.kernel.org/r/1471610515-30229-2-git-send-email-aarcange@redhat.com Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Pavel Emelyanov <xemul@virtuozzo.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-08-26 06:16:57 +08:00
if (soft_dirty)
entry = pte_swp_mksoft_dirty(entry);
} else {
entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
mm/huge_memory.c: don't split THP page when MADV_FREE syscall is called We don't need to split THP page when MADV_FREE syscall is called if [start, len] is aligned with THP size. The split could be done when VM decide to free it in reclaim path if memory pressure is heavy. With that, we could avoid unnecessary THP split. For the feature, this patch changes pte dirtness marking logic of THP. Now, it marks every ptes of pages dirty unconditionally in splitting, which makes MADV_FREE void. So, instead, this patch propagates pmd dirtiness to all pages via PG_dirty and restores pte dirtiness from PG_dirty. With this, if pmd is clean(ie, MADV_FREEed) when split happens(e,g, shrink_page_list), all of pages are clean too so we could discard them. Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Hugh Dickins <hughd@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "James E.J. Bottomley" <jejb@parisc-linux.org> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Shaohua Li <shli@kernel.org> Cc: <yalin.wang2010@gmail.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chen Gang <gang.chen.5i5j@gmail.com> Cc: Chris Zankel <chris@zankel.net> Cc: Daniel Micay <danielmicay@gmail.com> Cc: Darrick J. Wong <darrick.wong@oracle.com> Cc: David S. Miller <davem@davemloft.net> Cc: Helge Deller <deller@gmx.de> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: Jason Evans <je@fb.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mika Penttil <mika.penttila@nextfour.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Richard Henderson <rth@twiddle.net> Cc: Rik van Riel <riel@redhat.com> Cc: Roland Dreier <roland@kernel.org> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Shaohua Li <shli@kernel.org> Cc: Will Deacon <will.deacon@arm.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:55:42 +08:00
entry = maybe_mkwrite(entry, vma);
if (!write)
entry = pte_wrprotect(entry);
if (!young)
entry = pte_mkold(entry);
soft_dirty: fix soft_dirty during THP split While adding proper userfaultfd_wp support with bits in pagetable and swap entry to avoid false positives WP userfaults through swap/fork/ KSM/etc, I've been adding a framework that mostly mirrors soft dirty. So I noticed in one place I had to add uffd_wp support to the pagetables that wasn't covered by soft_dirty and I think it should have. Example: in the THP migration code migrate_misplaced_transhuge_page() pmd_mkdirty is called unconditionally after mk_huge_pmd. entry = mk_huge_pmd(new_page, vma->vm_page_prot); entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); That sets soft dirty too (it's a false positive for soft dirty, the soft dirty bit could be more finegrained and transfer the bit like uffd_wp will do.. pmd/pte_uffd_wp() enforces the invariant that when it's set pmd/pte_write is not set). However in the THP split there's no unconditional pmd_mkdirty after mk_huge_pmd and pte_swp_mksoft_dirty isn't called after the migration entry is created. The code sets the dirty bit in the struct page instead of setting it in the pagetable (which is fully equivalent as far as the real dirty bit is concerned, as the whole point of pagetable bits is to be eventually flushed out of to the page, but that is not equivalent for the soft-dirty bit that gets lost in translation). This was found by code review only and totally untested as I'm working to actually replace soft dirty and I don't have time to test potential soft dirty bugfixes as well :). Transfer the soft_dirty from pmd to pte during THP splits. This fix avoids losing the soft_dirty bit and avoids userland memory corruption in the checkpoint. Fixes: eef1b3ba053aa6 ("thp: implement split_huge_pmd()") Link: http://lkml.kernel.org/r/1471610515-30229-2-git-send-email-aarcange@redhat.com Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Pavel Emelyanov <xemul@virtuozzo.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-08-26 06:16:57 +08:00
if (soft_dirty)
entry = pte_mksoft_dirty(entry);
}
mm/huge_memory.c: don't split THP page when MADV_FREE syscall is called We don't need to split THP page when MADV_FREE syscall is called if [start, len] is aligned with THP size. The split could be done when VM decide to free it in reclaim path if memory pressure is heavy. With that, we could avoid unnecessary THP split. For the feature, this patch changes pte dirtness marking logic of THP. Now, it marks every ptes of pages dirty unconditionally in splitting, which makes MADV_FREE void. So, instead, this patch propagates pmd dirtiness to all pages via PG_dirty and restores pte dirtiness from PG_dirty. With this, if pmd is clean(ie, MADV_FREEed) when split happens(e,g, shrink_page_list), all of pages are clean too so we could discard them. Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Hugh Dickins <hughd@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "James E.J. Bottomley" <jejb@parisc-linux.org> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Shaohua Li <shli@kernel.org> Cc: <yalin.wang2010@gmail.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chen Gang <gang.chen.5i5j@gmail.com> Cc: Chris Zankel <chris@zankel.net> Cc: Daniel Micay <danielmicay@gmail.com> Cc: Darrick J. Wong <darrick.wong@oracle.com> Cc: David S. Miller <davem@davemloft.net> Cc: Helge Deller <deller@gmx.de> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: Jason Evans <je@fb.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mika Penttil <mika.penttila@nextfour.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Richard Henderson <rth@twiddle.net> Cc: Rik van Riel <riel@redhat.com> Cc: Roland Dreier <roland@kernel.org> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Shaohua Li <shli@kernel.org> Cc: Will Deacon <will.deacon@arm.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:55:42 +08:00
if (dirty)
SetPageDirty(page + i);
pte = pte_offset_map(&_pmd, addr);
BUG_ON(!pte_none(*pte));
set_pte_at(mm, addr, pte, entry);
atomic_inc(&page[i]._mapcount);
pte_unmap(pte);
}
/*
* Set PG_double_map before dropping compound_mapcount to avoid
* false-negative page_mapped().
*/
if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
for (i = 0; i < HPAGE_PMD_NR; i++)
atomic_inc(&page[i]._mapcount);
}
if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
/* Last compound_mapcount is gone. */
__dec_node_page_state(page, NR_ANON_THPS);
if (TestClearPageDoubleMap(page)) {
/* No need in mapcount reference anymore */
for (i = 0; i < HPAGE_PMD_NR; i++)
atomic_dec(&page[i]._mapcount);
}
}
smp_wmb(); /* make pte visible before pmd */
thp: reintroduce split_huge_page() This patch adds implementation of split_huge_page() for new refcountings. Unlike previous implementation, new split_huge_page() can fail if somebody holds GUP pin on the page. It also means that pin on page would prevent it from bening split under you. It makes situation in many places much cleaner. The basic scheme of split_huge_page(): - Check that sum of mapcounts of all subpage is equal to page_count() plus one (caller pin). Foll off with -EBUSY. This way we can avoid useless PMD-splits. - Freeze the page counters by splitting all PMD and setup migration PTEs. - Re-check sum of mapcounts against page_count(). Page's counts are stable now. -EBUSY if page is pinned. - Split compound page. - Unfreeze the page by removing migration entries. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:10 +08:00
/*
* Up to this point the pmd is present and huge and userland has the
* whole access to the hugepage during the split (which happens in
* place). If we overwrite the pmd with the not-huge version pointing
* to the pte here (which of course we could if all CPUs were bug
* free), userland could trigger a small page size TLB miss on the
* small sized TLB while the hugepage TLB entry is still established in
* the huge TLB. Some CPU doesn't like that.
* See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
* 383 on page 93. Intel should be safe but is also warns that it's
* only safe if the permission and cache attributes of the two entries
* loaded in the two TLB is identical (which should be the case here).
* But it is generally safer to never allow small and huge TLB entries
* for the same virtual address to be loaded simultaneously. So instead
* of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
* current pmd notpresent (atomically because here the pmd_trans_huge
* and pmd_trans_splitting must remain set at all times on the pmd
* until the split is complete for this pmd), then we flush the SMP TLB
* and finally we write the non-huge version of the pmd entry with
* pmd_populate.
*/
pmdp_invalidate(vma, haddr, pmd);
pmd_populate(mm, pmd, pgtable);
thp: reintroduce split_huge_page() This patch adds implementation of split_huge_page() for new refcountings. Unlike previous implementation, new split_huge_page() can fail if somebody holds GUP pin on the page. It also means that pin on page would prevent it from bening split under you. It makes situation in many places much cleaner. The basic scheme of split_huge_page(): - Check that sum of mapcounts of all subpage is equal to page_count() plus one (caller pin). Foll off with -EBUSY. This way we can avoid useless PMD-splits. - Freeze the page counters by splitting all PMD and setup migration PTEs. - Re-check sum of mapcounts against page_count(). Page's counts are stable now. -EBUSY if page is pinned. - Split compound page. - Unfreeze the page by removing migration entries. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:10 +08:00
if (freeze) {
for (i = 0; i < HPAGE_PMD_NR; i++) {
thp: reintroduce split_huge_page() This patch adds implementation of split_huge_page() for new refcountings. Unlike previous implementation, new split_huge_page() can fail if somebody holds GUP pin on the page. It also means that pin on page would prevent it from bening split under you. It makes situation in many places much cleaner. The basic scheme of split_huge_page(): - Check that sum of mapcounts of all subpage is equal to page_count() plus one (caller pin). Foll off with -EBUSY. This way we can avoid useless PMD-splits. - Freeze the page counters by splitting all PMD and setup migration PTEs. - Re-check sum of mapcounts against page_count(). Page's counts are stable now. -EBUSY if page is pinned. - Split compound page. - Unfreeze the page by removing migration entries. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:10 +08:00
page_remove_rmap(page + i, false);
put_page(page + i);
}
}
}
void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
mm: thp: move pmd check inside ptl for freeze_page() I found a race condition triggering VM_BUG_ON() in freeze_page(), when running a testcase with 3 processes: - process 1: keep writing thp, - process 2: keep clearing soft-dirty bits from virtual address of process 1 - process 3: call migratepages for process 1, The kernel message is like this: kernel BUG at /src/linux-dev/mm/huge_memory.c:3096! invalid opcode: 0000 [#1] SMP Modules linked in: cfg80211 rfkill crc32c_intel ppdev serio_raw pcspkr virtio_balloon virtio_console parport_pc parport pvpanic acpi_cpufreq tpm_tis tpm i2c_piix4 virtio_blk virtio_net ata_generic pata_acpi floppy virtio_pci virtio_ring virtio CPU: 0 PID: 28863 Comm: migratepages Not tainted 4.6.0-v4.6-160602-0827-+ #2 Hardware name: Bochs Bochs, BIOS Bochs 01/01/2011 task: ffff880037320000 ti: ffff88007cdd0000 task.ti: ffff88007cdd0000 RIP: 0010:[<ffffffff811f8e06>] [<ffffffff811f8e06>] split_huge_page_to_list+0x496/0x590 RSP: 0018:ffff88007cdd3b70 EFLAGS: 00010202 RAX: 0000000000000001 RBX: ffff88007c7b88c0 RCX: 0000000000000000 RDX: 0000000000000000 RSI: 0000000700000200 RDI: ffffea0003188000 RBP: ffff88007cdd3bb8 R08: 0000000000000001 R09: 00003ffffffff000 R10: ffff880000000000 R11: ffffc000001fffff R12: ffffea0003188000 R13: ffffea0003188000 R14: 0000000000000000 R15: 0400000000000080 FS: 00007f8ec241d740(0000) GS:ffff88007dc00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f8ec1f3ed20 CR3: 000000003707b000 CR4: 00000000000006f0 Call Trace: ? list_del+0xd/0x30 queue_pages_pte_range+0x4d1/0x590 __walk_page_range+0x204/0x4e0 walk_page_range+0x71/0xf0 queue_pages_range+0x75/0x90 ? queue_pages_hugetlb+0x190/0x190 ? new_node_page+0xc0/0xc0 ? change_prot_numa+0x40/0x40 migrate_to_node+0x71/0xd0 do_migrate_pages+0x1c3/0x210 SyS_migrate_pages+0x261/0x290 entry_SYSCALL_64_fastpath+0x1a/0xa4 Code: e8 b0 87 fb ff 0f 0b 48 c7 c6 30 32 9f 81 e8 a2 87 fb ff 0f 0b 48 c7 c6 b8 46 9f 81 e8 94 87 fb ff 0f 0b 85 c0 0f 84 3e fd ff ff <0f> 0b 85 c0 0f 85 a6 00 00 00 48 8b 75 c0 4c 89 f7 41 be f0 ff RIP split_huge_page_to_list+0x496/0x590 I'm not sure of the full scenario of the reproduction, but my debug showed that split_huge_pmd_address(freeze=true) returned without running main code of pmd splitting because pmd_present(*pmd) in precheck somehow returned 0. If this happens, the subsequent try_to_unmap() fails and returns non-zero (because page_mapcount() still > 0), and finally VM_BUG_ON() fires. This patch tries to fix it by prechecking pmd state inside ptl. Link: http://lkml.kernel.org/r/1466990929-7452-1-git-send-email-n-horiguchi@ah.jp.nec.com Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-15 03:07:32 +08:00
unsigned long address, bool freeze, struct page *page)
{
spinlock_t *ptl;
struct mm_struct *mm = vma->vm_mm;
unsigned long haddr = address & HPAGE_PMD_MASK;
mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
ptl = pmd_lock(mm, pmd);
mm: thp: move pmd check inside ptl for freeze_page() I found a race condition triggering VM_BUG_ON() in freeze_page(), when running a testcase with 3 processes: - process 1: keep writing thp, - process 2: keep clearing soft-dirty bits from virtual address of process 1 - process 3: call migratepages for process 1, The kernel message is like this: kernel BUG at /src/linux-dev/mm/huge_memory.c:3096! invalid opcode: 0000 [#1] SMP Modules linked in: cfg80211 rfkill crc32c_intel ppdev serio_raw pcspkr virtio_balloon virtio_console parport_pc parport pvpanic acpi_cpufreq tpm_tis tpm i2c_piix4 virtio_blk virtio_net ata_generic pata_acpi floppy virtio_pci virtio_ring virtio CPU: 0 PID: 28863 Comm: migratepages Not tainted 4.6.0-v4.6-160602-0827-+ #2 Hardware name: Bochs Bochs, BIOS Bochs 01/01/2011 task: ffff880037320000 ti: ffff88007cdd0000 task.ti: ffff88007cdd0000 RIP: 0010:[<ffffffff811f8e06>] [<ffffffff811f8e06>] split_huge_page_to_list+0x496/0x590 RSP: 0018:ffff88007cdd3b70 EFLAGS: 00010202 RAX: 0000000000000001 RBX: ffff88007c7b88c0 RCX: 0000000000000000 RDX: 0000000000000000 RSI: 0000000700000200 RDI: ffffea0003188000 RBP: ffff88007cdd3bb8 R08: 0000000000000001 R09: 00003ffffffff000 R10: ffff880000000000 R11: ffffc000001fffff R12: ffffea0003188000 R13: ffffea0003188000 R14: 0000000000000000 R15: 0400000000000080 FS: 00007f8ec241d740(0000) GS:ffff88007dc00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f8ec1f3ed20 CR3: 000000003707b000 CR4: 00000000000006f0 Call Trace: ? list_del+0xd/0x30 queue_pages_pte_range+0x4d1/0x590 __walk_page_range+0x204/0x4e0 walk_page_range+0x71/0xf0 queue_pages_range+0x75/0x90 ? queue_pages_hugetlb+0x190/0x190 ? new_node_page+0xc0/0xc0 ? change_prot_numa+0x40/0x40 migrate_to_node+0x71/0xd0 do_migrate_pages+0x1c3/0x210 SyS_migrate_pages+0x261/0x290 entry_SYSCALL_64_fastpath+0x1a/0xa4 Code: e8 b0 87 fb ff 0f 0b 48 c7 c6 30 32 9f 81 e8 a2 87 fb ff 0f 0b 48 c7 c6 b8 46 9f 81 e8 94 87 fb ff 0f 0b 85 c0 0f 84 3e fd ff ff <0f> 0b 85 c0 0f 85 a6 00 00 00 48 8b 75 c0 4c 89 f7 41 be f0 ff RIP split_huge_page_to_list+0x496/0x590 I'm not sure of the full scenario of the reproduction, but my debug showed that split_huge_pmd_address(freeze=true) returned without running main code of pmd splitting because pmd_present(*pmd) in precheck somehow returned 0. If this happens, the subsequent try_to_unmap() fails and returns non-zero (because page_mapcount() still > 0), and finally VM_BUG_ON() fires. This patch tries to fix it by prechecking pmd state inside ptl. Link: http://lkml.kernel.org/r/1466990929-7452-1-git-send-email-n-horiguchi@ah.jp.nec.com Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-15 03:07:32 +08:00
/*
* If caller asks to setup a migration entries, we need a page to check
* pmd against. Otherwise we can end up replacing wrong page.
*/
VM_BUG_ON(freeze && !page);
if (page && page != pmd_page(*pmd))
goto out;
if (pmd_trans_huge(*pmd)) {
mm: thp: move pmd check inside ptl for freeze_page() I found a race condition triggering VM_BUG_ON() in freeze_page(), when running a testcase with 3 processes: - process 1: keep writing thp, - process 2: keep clearing soft-dirty bits from virtual address of process 1 - process 3: call migratepages for process 1, The kernel message is like this: kernel BUG at /src/linux-dev/mm/huge_memory.c:3096! invalid opcode: 0000 [#1] SMP Modules linked in: cfg80211 rfkill crc32c_intel ppdev serio_raw pcspkr virtio_balloon virtio_console parport_pc parport pvpanic acpi_cpufreq tpm_tis tpm i2c_piix4 virtio_blk virtio_net ata_generic pata_acpi floppy virtio_pci virtio_ring virtio CPU: 0 PID: 28863 Comm: migratepages Not tainted 4.6.0-v4.6-160602-0827-+ #2 Hardware name: Bochs Bochs, BIOS Bochs 01/01/2011 task: ffff880037320000 ti: ffff88007cdd0000 task.ti: ffff88007cdd0000 RIP: 0010:[<ffffffff811f8e06>] [<ffffffff811f8e06>] split_huge_page_to_list+0x496/0x590 RSP: 0018:ffff88007cdd3b70 EFLAGS: 00010202 RAX: 0000000000000001 RBX: ffff88007c7b88c0 RCX: 0000000000000000 RDX: 0000000000000000 RSI: 0000000700000200 RDI: ffffea0003188000 RBP: ffff88007cdd3bb8 R08: 0000000000000001 R09: 00003ffffffff000 R10: ffff880000000000 R11: ffffc000001fffff R12: ffffea0003188000 R13: ffffea0003188000 R14: 0000000000000000 R15: 0400000000000080 FS: 00007f8ec241d740(0000) GS:ffff88007dc00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f8ec1f3ed20 CR3: 000000003707b000 CR4: 00000000000006f0 Call Trace: ? list_del+0xd/0x30 queue_pages_pte_range+0x4d1/0x590 __walk_page_range+0x204/0x4e0 walk_page_range+0x71/0xf0 queue_pages_range+0x75/0x90 ? queue_pages_hugetlb+0x190/0x190 ? new_node_page+0xc0/0xc0 ? change_prot_numa+0x40/0x40 migrate_to_node+0x71/0xd0 do_migrate_pages+0x1c3/0x210 SyS_migrate_pages+0x261/0x290 entry_SYSCALL_64_fastpath+0x1a/0xa4 Code: e8 b0 87 fb ff 0f 0b 48 c7 c6 30 32 9f 81 e8 a2 87 fb ff 0f 0b 48 c7 c6 b8 46 9f 81 e8 94 87 fb ff 0f 0b 85 c0 0f 84 3e fd ff ff <0f> 0b 85 c0 0f 85 a6 00 00 00 48 8b 75 c0 4c 89 f7 41 be f0 ff RIP split_huge_page_to_list+0x496/0x590 I'm not sure of the full scenario of the reproduction, but my debug showed that split_huge_pmd_address(freeze=true) returned without running main code of pmd splitting because pmd_present(*pmd) in precheck somehow returned 0. If this happens, the subsequent try_to_unmap() fails and returns non-zero (because page_mapcount() still > 0), and finally VM_BUG_ON() fires. This patch tries to fix it by prechecking pmd state inside ptl. Link: http://lkml.kernel.org/r/1466990929-7452-1-git-send-email-n-horiguchi@ah.jp.nec.com Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-15 03:07:32 +08:00
page = pmd_page(*pmd);
if (PageMlocked(page))
thp: fix deadlock in split_huge_pmd() split_huge_pmd() tries to munlock page with munlock_vma_page(). That requires the page to locked. If the is locked by caller, we would get a deadlock: Unable to find swap-space signature INFO: task trinity-c85:1907 blocked for more than 120 seconds. Not tainted 4.4.0-00032-gf19d0bdced41-dirty #1606 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. trinity-c85 D ffff88084d997608 0 1907 309 0x00000000 Call Trace: schedule+0x9f/0x1c0 schedule_timeout+0x48e/0x600 io_schedule_timeout+0x1c3/0x390 bit_wait_io+0x29/0xd0 __wait_on_bit_lock+0x94/0x140 __lock_page+0x1d4/0x280 __split_huge_pmd+0x5a8/0x10f0 split_huge_pmd_address+0x1d9/0x230 try_to_unmap_one+0x540/0xc70 rmap_walk_anon+0x284/0x810 rmap_walk_locked+0x11e/0x190 try_to_unmap+0x1b1/0x4b0 split_huge_page_to_list+0x49d/0x18a0 follow_page_mask+0xa36/0xea0 SyS_move_pages+0xaf3/0x1570 entry_SYSCALL_64_fastpath+0x12/0x6b 2 locks held by trinity-c85/1907: #0: (&mm->mmap_sem){++++++}, at: SyS_move_pages+0x933/0x1570 #1: (&anon_vma->rwsem){++++..}, at: split_huge_page_to_list+0x402/0x18a0 I don't think the deadlock is triggerable without split_huge_page() simplifilcation patchset. But munlock_vma_page() here is wrong: we want to munlock the page unconditionally, no need in rmap lookup, that munlock_vma_page() does. Let's use clear_page_mlock() instead. It can be called under ptl. Fixes: e90309c9f772 ("thp: allow mlocked THP again") Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-18 05:20:13 +08:00
clear_page_mlock(page);
mm: thp: check pmd migration entry in common path When THP migration is being used, memory management code needs to handle pmd migration entries properly. This patch uses !pmd_present() or is_swap_pmd() (depending on whether pmd_none() needs separate code or not) to check pmd migration entries at the places where a pmd entry is present. Since pmd-related code uses split_huge_page(), split_huge_pmd(), pmd_trans_huge(), pmd_trans_unstable(), or pmd_none_or_trans_huge_or_clear_bad(), this patch: 1. adds pmd migration entry split code in split_huge_pmd(), 2. takes care of pmd migration entries whenever pmd_trans_huge() is present, 3. makes pmd_none_or_trans_huge_or_clear_bad() pmd migration entry aware. Since split_huge_page() uses split_huge_pmd() and pmd_trans_unstable() is equivalent to pmd_none_or_trans_huge_or_clear_bad(), we do not change them. Until this commit, a pmd entry should be: 1. pointing to a pte page, 2. is_swap_pmd(), 3. pmd_trans_huge(), 4. pmd_devmap(), or 5. pmd_none(). Signed-off-by: Zi Yan <zi.yan@cs.rutgers.edu> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: David Nellans <dnellans@nvidia.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-09 07:11:01 +08:00
} else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
thp: allow mlocked THP again Before THP refcounting rework, THP was not allowed to cross VMA boundary. So, if we have THP and we split it, PG_mlocked can be safely transferred to small pages. With new THP refcounting and naive approach to mlocking we can end up with this scenario: 1. we have a mlocked THP, which belong to one VM_LOCKED VMA. 2. the process does munlock() on the *part* of the THP: - the VMA is split into two, one of them VM_LOCKED; - huge PMD split into PTE table; - THP is still mlocked; 3. split_huge_page(): - it transfers PG_mlocked to *all* small pages regrardless if it blong to any VM_LOCKED VMA. We probably could munlock() all small pages on split_huge_page(), but I think we have accounting issue already on step two. Instead of forbidding mlocked pages altogether, we just avoid mlocking PTE-mapped THPs and munlock THPs on split_huge_pmd(). This means PTE-mapped THPs will be on normal lru lists and will be split under memory pressure by vmscan. After the split vmscan will detect unevictable small pages and mlock them. With this approach we shouldn't hit situation like described above. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:33 +08:00
goto out;
__split_huge_pmd_locked(vma, pmd, haddr, freeze);
thp: allow mlocked THP again Before THP refcounting rework, THP was not allowed to cross VMA boundary. So, if we have THP and we split it, PG_mlocked can be safely transferred to small pages. With new THP refcounting and naive approach to mlocking we can end up with this scenario: 1. we have a mlocked THP, which belong to one VM_LOCKED VMA. 2. the process does munlock() on the *part* of the THP: - the VMA is split into two, one of them VM_LOCKED; - huge PMD split into PTE table; - THP is still mlocked; 3. split_huge_page(): - it transfers PG_mlocked to *all* small pages regrardless if it blong to any VM_LOCKED VMA. We probably could munlock() all small pages on split_huge_page(), but I think we have accounting issue already on step two. Instead of forbidding mlocked pages altogether, we just avoid mlocking PTE-mapped THPs and munlock THPs on split_huge_pmd(). This means PTE-mapped THPs will be on normal lru lists and will be split under memory pressure by vmscan. After the split vmscan will detect unevictable small pages and mlock them. With this approach we shouldn't hit situation like described above. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:33 +08:00
out:
spin_unlock(ptl);
mm/mmu_notifier: avoid call to invalidate_range() in range_end() This is an optimization patch that only affect mmu_notifier users which rely on the invalidate_range() callback. This patch avoids calling that callback twice in a row from inside __mmu_notifier_invalidate_range_end Existing pattern (before this patch): mmu_notifier_invalidate_range_start() pte/pmd/pud_clear_flush_notify() mmu_notifier_invalidate_range() mmu_notifier_invalidate_range_end() mmu_notifier_invalidate_range() New pattern (after this patch): mmu_notifier_invalidate_range_start() pte/pmd/pud_clear_flush_notify() mmu_notifier_invalidate_range() mmu_notifier_invalidate_range_only_end() We call the invalidate_range callback after clearing the page table under the page table lock and we skip the call to invalidate_range inside the __mmu_notifier_invalidate_range_end() function. Idea from Andrea Arcangeli Link: http://lkml.kernel.org/r/20171017031003.7481-3-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Joerg Roedel <jroedel@suse.de> Cc: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Alistair Popple <alistair@popple.id.au> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Andrew Donnellan <andrew.donnellan@au1.ibm.com> Cc: Nadav Amit <nadav.amit@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-16 09:34:11 +08:00
/*
* No need to double call mmu_notifier->invalidate_range() callback.
* They are 3 cases to consider inside __split_huge_pmd_locked():
* 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
* 2) __split_huge_zero_page_pmd() read only zero page and any write
* fault will trigger a flush_notify before pointing to a new page
* (it is fine if the secondary mmu keeps pointing to the old zero
* page in the meantime)
* 3) Split a huge pmd into pte pointing to the same page. No need
* to invalidate secondary tlb entry they are all still valid.
* any further changes to individual pte will notify. So no need
* to call mmu_notifier->invalidate_range()
*/
mmu_notifier_invalidate_range_only_end(mm, haddr, haddr +
HPAGE_PMD_SIZE);
}
void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
bool freeze, struct page *page)
{
mm: let mm_find_pmd fix buggy race with THP fault Trinity has reported: BUG: unable to handle kernel NULL pointer dereference at 0000000000000018 IP: __lock_acquire (kernel/locking/lockdep.c:3070 (discriminator 1)) CPU: 6 PID: 16173 Comm: trinity-c364 Tainted: G W 3.15.0-rc1-next-20140415-sasha-00020-gaa90d09 #398 lock_acquire (arch/x86/include/asm/current.h:14 kernel/locking/lockdep.c:3602) _raw_spin_lock (include/linux/spinlock_api_smp.h:143 kernel/locking/spinlock.c:151) remove_migration_pte (mm/migrate.c:137) rmap_walk (mm/rmap.c:1628 mm/rmap.c:1699) remove_migration_ptes (mm/migrate.c:224) migrate_pages (mm/migrate.c:922 mm/migrate.c:960 mm/migrate.c:1126) migrate_misplaced_page (mm/migrate.c:1733) __handle_mm_fault (mm/memory.c:3762 mm/memory.c:3812 mm/memory.c:3925) handle_mm_fault (mm/memory.c:3948) __get_user_pages (mm/memory.c:1851) __mlock_vma_pages_range (mm/mlock.c:255) __mm_populate (mm/mlock.c:711) SyS_mlockall (include/linux/mm.h:1799 mm/mlock.c:817 mm/mlock.c:791) I believe this comes about because, whereas collapsing and splitting THP functions take anon_vma lock in write mode (which excludes concurrent rmap walks), faulting THP functions (write protection and misplaced NUMA) do not - and mostly they do not need to. But they do use a pmdp_clear_flush(), set_pmd_at() sequence which, for an instant (indeed, for a long instant, given the inter-CPU TLB flush in there), leaves *pmd neither present not trans_huge. Which can confuse a concurrent rmap walk, as when removing migration ptes, seen in the dumped trace. Although that rmap walk has a 4k page to insert, anon_vmas containing THPs are in no way segregated from 4k-page anon_vmas, so the 4k-intent mm_find_pmd() does need to cope with that instant when a trans_huge pmd is temporarily absent. I don't think we need strengthen the locking at the THP end: it's easily handled with an ACCESS_ONCE() before testing both conditions. And since mm_find_pmd() had only one caller who wanted a THP rather than a pmd, let's slightly repurpose it to fail when it hits a THP or non-present pmd, and open code split_huge_page_address() again. Signed-off-by: Hugh Dickins <hughd@google.com> Reported-by: Sasha Levin <sasha.levin@oracle.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Konstantin Khlebnikov <koct9i@gmail.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Bob Liu <bob.liu@oracle.com> Cc: Christoph Lameter <cl@gentwo.org> Cc: Dave Jones <davej@redhat.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-24 04:22:05 +08:00
pgd_t *pgd;
p4d_t *p4d;
mm: let mm_find_pmd fix buggy race with THP fault Trinity has reported: BUG: unable to handle kernel NULL pointer dereference at 0000000000000018 IP: __lock_acquire (kernel/locking/lockdep.c:3070 (discriminator 1)) CPU: 6 PID: 16173 Comm: trinity-c364 Tainted: G W 3.15.0-rc1-next-20140415-sasha-00020-gaa90d09 #398 lock_acquire (arch/x86/include/asm/current.h:14 kernel/locking/lockdep.c:3602) _raw_spin_lock (include/linux/spinlock_api_smp.h:143 kernel/locking/spinlock.c:151) remove_migration_pte (mm/migrate.c:137) rmap_walk (mm/rmap.c:1628 mm/rmap.c:1699) remove_migration_ptes (mm/migrate.c:224) migrate_pages (mm/migrate.c:922 mm/migrate.c:960 mm/migrate.c:1126) migrate_misplaced_page (mm/migrate.c:1733) __handle_mm_fault (mm/memory.c:3762 mm/memory.c:3812 mm/memory.c:3925) handle_mm_fault (mm/memory.c:3948) __get_user_pages (mm/memory.c:1851) __mlock_vma_pages_range (mm/mlock.c:255) __mm_populate (mm/mlock.c:711) SyS_mlockall (include/linux/mm.h:1799 mm/mlock.c:817 mm/mlock.c:791) I believe this comes about because, whereas collapsing and splitting THP functions take anon_vma lock in write mode (which excludes concurrent rmap walks), faulting THP functions (write protection and misplaced NUMA) do not - and mostly they do not need to. But they do use a pmdp_clear_flush(), set_pmd_at() sequence which, for an instant (indeed, for a long instant, given the inter-CPU TLB flush in there), leaves *pmd neither present not trans_huge. Which can confuse a concurrent rmap walk, as when removing migration ptes, seen in the dumped trace. Although that rmap walk has a 4k page to insert, anon_vmas containing THPs are in no way segregated from 4k-page anon_vmas, so the 4k-intent mm_find_pmd() does need to cope with that instant when a trans_huge pmd is temporarily absent. I don't think we need strengthen the locking at the THP end: it's easily handled with an ACCESS_ONCE() before testing both conditions. And since mm_find_pmd() had only one caller who wanted a THP rather than a pmd, let's slightly repurpose it to fail when it hits a THP or non-present pmd, and open code split_huge_page_address() again. Signed-off-by: Hugh Dickins <hughd@google.com> Reported-by: Sasha Levin <sasha.levin@oracle.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Konstantin Khlebnikov <koct9i@gmail.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Bob Liu <bob.liu@oracle.com> Cc: Christoph Lameter <cl@gentwo.org> Cc: Dave Jones <davej@redhat.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-24 04:22:05 +08:00
pud_t *pud;
pmd_t *pmd;
pgd = pgd_offset(vma->vm_mm, address);
mm: let mm_find_pmd fix buggy race with THP fault Trinity has reported: BUG: unable to handle kernel NULL pointer dereference at 0000000000000018 IP: __lock_acquire (kernel/locking/lockdep.c:3070 (discriminator 1)) CPU: 6 PID: 16173 Comm: trinity-c364 Tainted: G W 3.15.0-rc1-next-20140415-sasha-00020-gaa90d09 #398 lock_acquire (arch/x86/include/asm/current.h:14 kernel/locking/lockdep.c:3602) _raw_spin_lock (include/linux/spinlock_api_smp.h:143 kernel/locking/spinlock.c:151) remove_migration_pte (mm/migrate.c:137) rmap_walk (mm/rmap.c:1628 mm/rmap.c:1699) remove_migration_ptes (mm/migrate.c:224) migrate_pages (mm/migrate.c:922 mm/migrate.c:960 mm/migrate.c:1126) migrate_misplaced_page (mm/migrate.c:1733) __handle_mm_fault (mm/memory.c:3762 mm/memory.c:3812 mm/memory.c:3925) handle_mm_fault (mm/memory.c:3948) __get_user_pages (mm/memory.c:1851) __mlock_vma_pages_range (mm/mlock.c:255) __mm_populate (mm/mlock.c:711) SyS_mlockall (include/linux/mm.h:1799 mm/mlock.c:817 mm/mlock.c:791) I believe this comes about because, whereas collapsing and splitting THP functions take anon_vma lock in write mode (which excludes concurrent rmap walks), faulting THP functions (write protection and misplaced NUMA) do not - and mostly they do not need to. But they do use a pmdp_clear_flush(), set_pmd_at() sequence which, for an instant (indeed, for a long instant, given the inter-CPU TLB flush in there), leaves *pmd neither present not trans_huge. Which can confuse a concurrent rmap walk, as when removing migration ptes, seen in the dumped trace. Although that rmap walk has a 4k page to insert, anon_vmas containing THPs are in no way segregated from 4k-page anon_vmas, so the 4k-intent mm_find_pmd() does need to cope with that instant when a trans_huge pmd is temporarily absent. I don't think we need strengthen the locking at the THP end: it's easily handled with an ACCESS_ONCE() before testing both conditions. And since mm_find_pmd() had only one caller who wanted a THP rather than a pmd, let's slightly repurpose it to fail when it hits a THP or non-present pmd, and open code split_huge_page_address() again. Signed-off-by: Hugh Dickins <hughd@google.com> Reported-by: Sasha Levin <sasha.levin@oracle.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Konstantin Khlebnikov <koct9i@gmail.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Bob Liu <bob.liu@oracle.com> Cc: Christoph Lameter <cl@gentwo.org> Cc: Dave Jones <davej@redhat.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-24 04:22:05 +08:00
if (!pgd_present(*pgd))
return;
p4d = p4d_offset(pgd, address);
if (!p4d_present(*p4d))
return;
pud = pud_offset(p4d, address);
mm: let mm_find_pmd fix buggy race with THP fault Trinity has reported: BUG: unable to handle kernel NULL pointer dereference at 0000000000000018 IP: __lock_acquire (kernel/locking/lockdep.c:3070 (discriminator 1)) CPU: 6 PID: 16173 Comm: trinity-c364 Tainted: G W 3.15.0-rc1-next-20140415-sasha-00020-gaa90d09 #398 lock_acquire (arch/x86/include/asm/current.h:14 kernel/locking/lockdep.c:3602) _raw_spin_lock (include/linux/spinlock_api_smp.h:143 kernel/locking/spinlock.c:151) remove_migration_pte (mm/migrate.c:137) rmap_walk (mm/rmap.c:1628 mm/rmap.c:1699) remove_migration_ptes (mm/migrate.c:224) migrate_pages (mm/migrate.c:922 mm/migrate.c:960 mm/migrate.c:1126) migrate_misplaced_page (mm/migrate.c:1733) __handle_mm_fault (mm/memory.c:3762 mm/memory.c:3812 mm/memory.c:3925) handle_mm_fault (mm/memory.c:3948) __get_user_pages (mm/memory.c:1851) __mlock_vma_pages_range (mm/mlock.c:255) __mm_populate (mm/mlock.c:711) SyS_mlockall (include/linux/mm.h:1799 mm/mlock.c:817 mm/mlock.c:791) I believe this comes about because, whereas collapsing and splitting THP functions take anon_vma lock in write mode (which excludes concurrent rmap walks), faulting THP functions (write protection and misplaced NUMA) do not - and mostly they do not need to. But they do use a pmdp_clear_flush(), set_pmd_at() sequence which, for an instant (indeed, for a long instant, given the inter-CPU TLB flush in there), leaves *pmd neither present not trans_huge. Which can confuse a concurrent rmap walk, as when removing migration ptes, seen in the dumped trace. Although that rmap walk has a 4k page to insert, anon_vmas containing THPs are in no way segregated from 4k-page anon_vmas, so the 4k-intent mm_find_pmd() does need to cope with that instant when a trans_huge pmd is temporarily absent. I don't think we need strengthen the locking at the THP end: it's easily handled with an ACCESS_ONCE() before testing both conditions. And since mm_find_pmd() had only one caller who wanted a THP rather than a pmd, let's slightly repurpose it to fail when it hits a THP or non-present pmd, and open code split_huge_page_address() again. Signed-off-by: Hugh Dickins <hughd@google.com> Reported-by: Sasha Levin <sasha.levin@oracle.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Konstantin Khlebnikov <koct9i@gmail.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Bob Liu <bob.liu@oracle.com> Cc: Christoph Lameter <cl@gentwo.org> Cc: Dave Jones <davej@redhat.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-24 04:22:05 +08:00
if (!pud_present(*pud))
return;
pmd = pmd_offset(pud, address);
mm: thp: move pmd check inside ptl for freeze_page() I found a race condition triggering VM_BUG_ON() in freeze_page(), when running a testcase with 3 processes: - process 1: keep writing thp, - process 2: keep clearing soft-dirty bits from virtual address of process 1 - process 3: call migratepages for process 1, The kernel message is like this: kernel BUG at /src/linux-dev/mm/huge_memory.c:3096! invalid opcode: 0000 [#1] SMP Modules linked in: cfg80211 rfkill crc32c_intel ppdev serio_raw pcspkr virtio_balloon virtio_console parport_pc parport pvpanic acpi_cpufreq tpm_tis tpm i2c_piix4 virtio_blk virtio_net ata_generic pata_acpi floppy virtio_pci virtio_ring virtio CPU: 0 PID: 28863 Comm: migratepages Not tainted 4.6.0-v4.6-160602-0827-+ #2 Hardware name: Bochs Bochs, BIOS Bochs 01/01/2011 task: ffff880037320000 ti: ffff88007cdd0000 task.ti: ffff88007cdd0000 RIP: 0010:[<ffffffff811f8e06>] [<ffffffff811f8e06>] split_huge_page_to_list+0x496/0x590 RSP: 0018:ffff88007cdd3b70 EFLAGS: 00010202 RAX: 0000000000000001 RBX: ffff88007c7b88c0 RCX: 0000000000000000 RDX: 0000000000000000 RSI: 0000000700000200 RDI: ffffea0003188000 RBP: ffff88007cdd3bb8 R08: 0000000000000001 R09: 00003ffffffff000 R10: ffff880000000000 R11: ffffc000001fffff R12: ffffea0003188000 R13: ffffea0003188000 R14: 0000000000000000 R15: 0400000000000080 FS: 00007f8ec241d740(0000) GS:ffff88007dc00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f8ec1f3ed20 CR3: 000000003707b000 CR4: 00000000000006f0 Call Trace: ? list_del+0xd/0x30 queue_pages_pte_range+0x4d1/0x590 __walk_page_range+0x204/0x4e0 walk_page_range+0x71/0xf0 queue_pages_range+0x75/0x90 ? queue_pages_hugetlb+0x190/0x190 ? new_node_page+0xc0/0xc0 ? change_prot_numa+0x40/0x40 migrate_to_node+0x71/0xd0 do_migrate_pages+0x1c3/0x210 SyS_migrate_pages+0x261/0x290 entry_SYSCALL_64_fastpath+0x1a/0xa4 Code: e8 b0 87 fb ff 0f 0b 48 c7 c6 30 32 9f 81 e8 a2 87 fb ff 0f 0b 48 c7 c6 b8 46 9f 81 e8 94 87 fb ff 0f 0b 85 c0 0f 84 3e fd ff ff <0f> 0b 85 c0 0f 85 a6 00 00 00 48 8b 75 c0 4c 89 f7 41 be f0 ff RIP split_huge_page_to_list+0x496/0x590 I'm not sure of the full scenario of the reproduction, but my debug showed that split_huge_pmd_address(freeze=true) returned without running main code of pmd splitting because pmd_present(*pmd) in precheck somehow returned 0. If this happens, the subsequent try_to_unmap() fails and returns non-zero (because page_mapcount() still > 0), and finally VM_BUG_ON() fires. This patch tries to fix it by prechecking pmd state inside ptl. Link: http://lkml.kernel.org/r/1466990929-7452-1-git-send-email-n-horiguchi@ah.jp.nec.com Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-15 03:07:32 +08:00
__split_huge_pmd(vma, pmd, address, freeze, page);
}
void vma_adjust_trans_huge(struct vm_area_struct *vma,
unsigned long start,
unsigned long end,
long adjust_next)
{
/*
* If the new start address isn't hpage aligned and it could
* previously contain an hugepage: check if we need to split
* an huge pmd.
*/
if (start & ~HPAGE_PMD_MASK &&
(start & HPAGE_PMD_MASK) >= vma->vm_start &&
(start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
split_huge_pmd_address(vma, start, false, NULL);
/*
* If the new end address isn't hpage aligned and it could
* previously contain an hugepage: check if we need to split
* an huge pmd.
*/
if (end & ~HPAGE_PMD_MASK &&
(end & HPAGE_PMD_MASK) >= vma->vm_start &&
(end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
split_huge_pmd_address(vma, end, false, NULL);
/*
* If we're also updating the vma->vm_next->vm_start, if the new
* vm_next->vm_start isn't page aligned and it could previously
* contain an hugepage: check if we need to split an huge pmd.
*/
if (adjust_next > 0) {
struct vm_area_struct *next = vma->vm_next;
unsigned long nstart = next->vm_start;
nstart += adjust_next << PAGE_SHIFT;
if (nstart & ~HPAGE_PMD_MASK &&
(nstart & HPAGE_PMD_MASK) >= next->vm_start &&
(nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
split_huge_pmd_address(next, nstart, false, NULL);
}
}
thp: reintroduce split_huge_page() This patch adds implementation of split_huge_page() for new refcountings. Unlike previous implementation, new split_huge_page() can fail if somebody holds GUP pin on the page. It also means that pin on page would prevent it from bening split under you. It makes situation in many places much cleaner. The basic scheme of split_huge_page(): - Check that sum of mapcounts of all subpage is equal to page_count() plus one (caller pin). Foll off with -EBUSY. This way we can avoid useless PMD-splits. - Freeze the page counters by splitting all PMD and setup migration PTEs. - Re-check sum of mapcounts against page_count(). Page's counts are stable now. -EBUSY if page is pinned. - Split compound page. - Unfreeze the page by removing migration entries. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:10 +08:00
static void freeze_page(struct page *page)
thp: reintroduce split_huge_page() This patch adds implementation of split_huge_page() for new refcountings. Unlike previous implementation, new split_huge_page() can fail if somebody holds GUP pin on the page. It also means that pin on page would prevent it from bening split under you. It makes situation in many places much cleaner. The basic scheme of split_huge_page(): - Check that sum of mapcounts of all subpage is equal to page_count() plus one (caller pin). Foll off with -EBUSY. This way we can avoid useless PMD-splits. - Freeze the page counters by splitting all PMD and setup migration PTEs. - Re-check sum of mapcounts against page_count(). Page's counts are stable now. -EBUSY if page is pinned. - Split compound page. - Unfreeze the page by removing migration entries. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:10 +08:00
{
enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
bool unmap_success;
thp: reintroduce split_huge_page() This patch adds implementation of split_huge_page() for new refcountings. Unlike previous implementation, new split_huge_page() can fail if somebody holds GUP pin on the page. It also means that pin on page would prevent it from bening split under you. It makes situation in many places much cleaner. The basic scheme of split_huge_page(): - Check that sum of mapcounts of all subpage is equal to page_count() plus one (caller pin). Foll off with -EBUSY. This way we can avoid useless PMD-splits. - Freeze the page counters by splitting all PMD and setup migration PTEs. - Re-check sum of mapcounts against page_count(). Page's counts are stable now. -EBUSY if page is pinned. - Split compound page. - Unfreeze the page by removing migration entries. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:10 +08:00
VM_BUG_ON_PAGE(!PageHead(page), page);
if (PageAnon(page))
mm: thp: introduce separate TTU flag for thp freezing TTU_MIGRATION is used to convert pte into migration entry until thp split completes. This behavior conflicts with thp migration added later patches, so let's introduce a new TTU flag specifically for freezing. try_to_unmap() is used both for thp split (via freeze_page()) and page migration (via __unmap_and_move()). In freeze_page(), ttu_flag given for head page is like below (assuming anonymous thp): (TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS | TTU_RMAP_LOCKED | \ TTU_MIGRATION | TTU_SPLIT_HUGE_PMD) and ttu_flag given for tail pages is: (TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS | TTU_RMAP_LOCKED | \ TTU_MIGRATION) __unmap_and_move() calls try_to_unmap() with ttu_flag: (TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS) Now I'm trying to insert a branch for thp migration at the top of try_to_unmap_one() like below static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma, unsigned long address, void *arg) { ... /* PMD-mapped THP migration entry */ if (!pvmw.pte && (flags & TTU_MIGRATION)) { if (!PageAnon(page)) continue; set_pmd_migration_entry(&pvmw, page); continue; } ... } so try_to_unmap() for tail pages called by thp split can go into thp migration code path (which converts *pmd* into migration entry), while the expectation is to freeze thp (which converts *pte* into migration entry.) I detected this failure as a "bad page state" error in a testcase where split_huge_page() is called from queue_pages_pte_range(). Link: http://lkml.kernel.org/r/20170717193955.20207-4-zi.yan@sent.com Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Zi Yan <zi.yan@cs.rutgers.edu> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: David Nellans <dnellans@nvidia.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-09 07:10:49 +08:00
ttu_flags |= TTU_SPLIT_FREEZE;
unmap_success = try_to_unmap(page, ttu_flags);
VM_BUG_ON_PAGE(!unmap_success, page);
thp: reintroduce split_huge_page() This patch adds implementation of split_huge_page() for new refcountings. Unlike previous implementation, new split_huge_page() can fail if somebody holds GUP pin on the page. It also means that pin on page would prevent it from bening split under you. It makes situation in many places much cleaner. The basic scheme of split_huge_page(): - Check that sum of mapcounts of all subpage is equal to page_count() plus one (caller pin). Foll off with -EBUSY. This way we can avoid useless PMD-splits. - Freeze the page counters by splitting all PMD and setup migration PTEs. - Re-check sum of mapcounts against page_count(). Page's counts are stable now. -EBUSY if page is pinned. - Split compound page. - Unfreeze the page by removing migration entries. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:10 +08:00
}
static void unfreeze_page(struct page *page)
thp: reintroduce split_huge_page() This patch adds implementation of split_huge_page() for new refcountings. Unlike previous implementation, new split_huge_page() can fail if somebody holds GUP pin on the page. It also means that pin on page would prevent it from bening split under you. It makes situation in many places much cleaner. The basic scheme of split_huge_page(): - Check that sum of mapcounts of all subpage is equal to page_count() plus one (caller pin). Foll off with -EBUSY. This way we can avoid useless PMD-splits. - Freeze the page counters by splitting all PMD and setup migration PTEs. - Re-check sum of mapcounts against page_count(). Page's counts are stable now. -EBUSY if page is pinned. - Split compound page. - Unfreeze the page by removing migration entries. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:10 +08:00
{
int i;
if (PageTransHuge(page)) {
remove_migration_ptes(page, page, true);
} else {
for (i = 0; i < HPAGE_PMD_NR; i++)
remove_migration_ptes(page + i, page + i, true);
}
thp: reintroduce split_huge_page() This patch adds implementation of split_huge_page() for new refcountings. Unlike previous implementation, new split_huge_page() can fail if somebody holds GUP pin on the page. It also means that pin on page would prevent it from bening split under you. It makes situation in many places much cleaner. The basic scheme of split_huge_page(): - Check that sum of mapcounts of all subpage is equal to page_count() plus one (caller pin). Foll off with -EBUSY. This way we can avoid useless PMD-splits. - Freeze the page counters by splitting all PMD and setup migration PTEs. - Re-check sum of mapcounts against page_count(). Page's counts are stable now. -EBUSY if page is pinned. - Split compound page. - Unfreeze the page by removing migration entries. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:10 +08:00
}
static void __split_huge_page_tail(struct page *head, int tail,
thp: reintroduce split_huge_page() This patch adds implementation of split_huge_page() for new refcountings. Unlike previous implementation, new split_huge_page() can fail if somebody holds GUP pin on the page. It also means that pin on page would prevent it from bening split under you. It makes situation in many places much cleaner. The basic scheme of split_huge_page(): - Check that sum of mapcounts of all subpage is equal to page_count() plus one (caller pin). Foll off with -EBUSY. This way we can avoid useless PMD-splits. - Freeze the page counters by splitting all PMD and setup migration PTEs. - Re-check sum of mapcounts against page_count(). Page's counts are stable now. -EBUSY if page is pinned. - Split compound page. - Unfreeze the page by removing migration entries. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:10 +08:00
struct lruvec *lruvec, struct list_head *list)
{
struct page *page_tail = head + tail;
VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2016-03-18 05:19:26 +08:00
VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail);
thp: reintroduce split_huge_page() This patch adds implementation of split_huge_page() for new refcountings. Unlike previous implementation, new split_huge_page() can fail if somebody holds GUP pin on the page. It also means that pin on page would prevent it from bening split under you. It makes situation in many places much cleaner. The basic scheme of split_huge_page(): - Check that sum of mapcounts of all subpage is equal to page_count() plus one (caller pin). Foll off with -EBUSY. This way we can avoid useless PMD-splits. - Freeze the page counters by splitting all PMD and setup migration PTEs. - Re-check sum of mapcounts against page_count(). Page's counts are stable now. -EBUSY if page is pinned. - Split compound page. - Unfreeze the page by removing migration entries. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:10 +08:00
/*
* tail_page->_refcount is zero and not changing from under us. But
thp: reintroduce split_huge_page() This patch adds implementation of split_huge_page() for new refcountings. Unlike previous implementation, new split_huge_page() can fail if somebody holds GUP pin on the page. It also means that pin on page would prevent it from bening split under you. It makes situation in many places much cleaner. The basic scheme of split_huge_page(): - Check that sum of mapcounts of all subpage is equal to page_count() plus one (caller pin). Foll off with -EBUSY. This way we can avoid useless PMD-splits. - Freeze the page counters by splitting all PMD and setup migration PTEs. - Re-check sum of mapcounts against page_count(). Page's counts are stable now. -EBUSY if page is pinned. - Split compound page. - Unfreeze the page by removing migration entries. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:10 +08:00
* get_page_unless_zero() may be running from under us on the
* tail_page. If we used atomic_set() below instead of atomic_inc() or
* atomic_add(), we would then run atomic_set() concurrently with
thp: reintroduce split_huge_page() This patch adds implementation of split_huge_page() for new refcountings. Unlike previous implementation, new split_huge_page() can fail if somebody holds GUP pin on the page. It also means that pin on page would prevent it from bening split under you. It makes situation in many places much cleaner. The basic scheme of split_huge_page(): - Check that sum of mapcounts of all subpage is equal to page_count() plus one (caller pin). Foll off with -EBUSY. This way we can avoid useless PMD-splits. - Freeze the page counters by splitting all PMD and setup migration PTEs. - Re-check sum of mapcounts against page_count(). Page's counts are stable now. -EBUSY if page is pinned. - Split compound page. - Unfreeze the page by removing migration entries. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:10 +08:00
* get_page_unless_zero(), and atomic_set() is implemented in C not
* using locked ops. spin_unlock on x86 sometime uses locked ops
* because of PPro errata 66, 92, so unless somebody can guarantee
* atomic_set() here would be safe on all archs (and not only on x86),
* it's safer to use atomic_inc()/atomic_add().
thp: reintroduce split_huge_page() This patch adds implementation of split_huge_page() for new refcountings. Unlike previous implementation, new split_huge_page() can fail if somebody holds GUP pin on the page. It also means that pin on page would prevent it from bening split under you. It makes situation in many places much cleaner. The basic scheme of split_huge_page(): - Check that sum of mapcounts of all subpage is equal to page_count() plus one (caller pin). Foll off with -EBUSY. This way we can avoid useless PMD-splits. - Freeze the page counters by splitting all PMD and setup migration PTEs. - Re-check sum of mapcounts against page_count(). Page's counts are stable now. -EBUSY if page is pinned. - Split compound page. - Unfreeze the page by removing migration entries. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:10 +08:00
*/
mm, THP, swap: delay splitting THP during swap out Patch series "THP swap: Delay splitting THP during swapping out", v11. This patchset is to optimize the performance of Transparent Huge Page (THP) swap. Recently, the performance of the storage devices improved so fast that we cannot saturate the disk bandwidth with single logical CPU when do page swap out even on a high-end server machine. Because the performance of the storage device improved faster than that of single logical CPU. And it seems that the trend will not change in the near future. On the other hand, the THP becomes more and more popular because of increased memory size. So it becomes necessary to optimize THP swap performance. The advantages of the THP swap support include: - Batch the swap operations for the THP to reduce lock acquiring/releasing, including allocating/freeing the swap space, adding/deleting to/from the swap cache, and writing/reading the swap space, etc. This will help improve the performance of the THP swap. - The THP swap space read/write will be 2M sequential IO. It is particularly helpful for the swap read, which are usually 4k random IO. This will improve the performance of the THP swap too. - It will help the memory fragmentation, especially when the THP is heavily used by the applications. The 2M continuous pages will be free up after THP swapping out. - It will improve the THP utilization on the system with the swap turned on. Because the speed for khugepaged to collapse the normal pages into the THP is quite slow. After the THP is split during the swapping out, it will take quite long time for the normal pages to collapse back into the THP after being swapped in. The high THP utilization helps the efficiency of the page based memory management too. There are some concerns regarding THP swap in, mainly because possible enlarged read/write IO size (for swap in/out) may put more overhead on the storage device. To deal with that, the THP swap in should be turned on only when necessary. For example, it can be selected via "always/never/madvise" logic, to be turned on globally, turned off globally, or turned on only for VMA with MADV_HUGEPAGE, etc. This patchset is the first step for the THP swap support. The plan is to delay splitting THP step by step, finally avoid splitting THP during the THP swapping out and swap out/in the THP as a whole. As the first step, in this patchset, the splitting huge page is delayed from almost the first step of swapping out to after allocating the swap space for the THP and adding the THP into the swap cache. This will reduce lock acquiring/releasing for the locks used for the swap cache management. With the patchset, the swap out throughput improves 15.5% (from about 3.73GB/s to about 4.31GB/s) in the vm-scalability swap-w-seq test case with 8 processes. The test is done on a Xeon E5 v3 system. The swap device used is a RAM simulated PMEM (persistent memory) device. To test the sequential swapping out, the test case creates 8 processes, which sequentially allocate and write to the anonymous pages until the RAM and part of the swap device is used up. This patch (of 5): In this patch, splitting huge page is delayed from almost the first step of swapping out to after allocating the swap space for the THP (Transparent Huge Page) and adding the THP into the swap cache. This will batch the corresponding operation, thus improve THP swap out throughput. This is the first step for the THP swap optimization. The plan is to delay splitting the THP step by step and avoid splitting the THP finally. In this patch, one swap cluster is used to hold the contents of each THP swapped out. So, the size of the swap cluster is changed to that of the THP (Transparent Huge Page) on x86_64 architecture (512). For other architectures which want such THP swap optimization, ARCH_USES_THP_SWAP_CLUSTER needs to be selected in the Kconfig file for the architecture. In effect, this will enlarge swap cluster size by 2 times on x86_64. Which may make it harder to find a free cluster when the swap space becomes fragmented. So that, this may reduce the continuous swap space allocation and sequential write in theory. The performance test in 0day shows no regressions caused by this. In the future of THP swap optimization, some information of the swapped out THP (such as compound map count) will be recorded in the swap_cluster_info data structure. The mem cgroup swap accounting functions are enhanced to support charge or uncharge a swap cluster backing a THP as a whole. The swap cluster allocate/free functions are added to allocate/free a swap cluster for a THP. A fair simple algorithm is used for swap cluster allocation, that is, only the first swap device in priority list will be tried to allocate the swap cluster. The function will fail if the trying is not successful, and the caller will fallback to allocate a single swap slot instead. This works good enough for normal cases. If the difference of the number of the free swap clusters among multiple swap devices is significant, it is possible that some THPs are split earlier than necessary. For example, this could be caused by big size difference among multiple swap devices. The swap cache functions is enhanced to support add/delete THP to/from the swap cache as a set of (HPAGE_PMD_NR) sub-pages. This may be enhanced in the future with multi-order radix tree. But because we will split the THP soon during swapping out, that optimization doesn't make much sense for this first step. The THP splitting functions are enhanced to support to split THP in swap cache during swapping out. The page lock will be held during allocating the swap cluster, adding the THP into the swap cache and splitting the THP. So in the code path other than swapping out, if the THP need to be split, the PageSwapCache(THP) will be always false. The swap cluster is only available for SSD, so the THP swap optimization in this patchset has no effect for HDD. [ying.huang@intel.com: fix two issues in THP optimize patch] Link: http://lkml.kernel.org/r/87k25ed8zo.fsf@yhuang-dev.intel.com [hannes@cmpxchg.org: extensive cleanups and simplifications, reduce code size] Link: http://lkml.kernel.org/r/20170515112522.32457-2-ying.huang@intel.com Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Suggested-by: Andrew Morton <akpm@linux-foundation.org> [for config option] Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> [for changes in huge_memory.c and huge_mm.h] Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Ebru Akagunduz <ebru.akagunduz@gmail.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Cc: Hugh Dickins <hughd@google.com> Cc: Shaohua Li <shli@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-07 06:37:18 +08:00
if (PageAnon(head) && !PageSwapCache(head)) {
page_ref_inc(page_tail);
} else {
/* Additional pin to radix tree */
page_ref_add(page_tail, 2);
}
thp: reintroduce split_huge_page() This patch adds implementation of split_huge_page() for new refcountings. Unlike previous implementation, new split_huge_page() can fail if somebody holds GUP pin on the page. It also means that pin on page would prevent it from bening split under you. It makes situation in many places much cleaner. The basic scheme of split_huge_page(): - Check that sum of mapcounts of all subpage is equal to page_count() plus one (caller pin). Foll off with -EBUSY. This way we can avoid useless PMD-splits. - Freeze the page counters by splitting all PMD and setup migration PTEs. - Re-check sum of mapcounts against page_count(). Page's counts are stable now. -EBUSY if page is pinned. - Split compound page. - Unfreeze the page by removing migration entries. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:10 +08:00
page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
page_tail->flags |= (head->flags &
((1L << PG_referenced) |
(1L << PG_swapbacked) |
mm, THP, swap: delay splitting THP during swap out Patch series "THP swap: Delay splitting THP during swapping out", v11. This patchset is to optimize the performance of Transparent Huge Page (THP) swap. Recently, the performance of the storage devices improved so fast that we cannot saturate the disk bandwidth with single logical CPU when do page swap out even on a high-end server machine. Because the performance of the storage device improved faster than that of single logical CPU. And it seems that the trend will not change in the near future. On the other hand, the THP becomes more and more popular because of increased memory size. So it becomes necessary to optimize THP swap performance. The advantages of the THP swap support include: - Batch the swap operations for the THP to reduce lock acquiring/releasing, including allocating/freeing the swap space, adding/deleting to/from the swap cache, and writing/reading the swap space, etc. This will help improve the performance of the THP swap. - The THP swap space read/write will be 2M sequential IO. It is particularly helpful for the swap read, which are usually 4k random IO. This will improve the performance of the THP swap too. - It will help the memory fragmentation, especially when the THP is heavily used by the applications. The 2M continuous pages will be free up after THP swapping out. - It will improve the THP utilization on the system with the swap turned on. Because the speed for khugepaged to collapse the normal pages into the THP is quite slow. After the THP is split during the swapping out, it will take quite long time for the normal pages to collapse back into the THP after being swapped in. The high THP utilization helps the efficiency of the page based memory management too. There are some concerns regarding THP swap in, mainly because possible enlarged read/write IO size (for swap in/out) may put more overhead on the storage device. To deal with that, the THP swap in should be turned on only when necessary. For example, it can be selected via "always/never/madvise" logic, to be turned on globally, turned off globally, or turned on only for VMA with MADV_HUGEPAGE, etc. This patchset is the first step for the THP swap support. The plan is to delay splitting THP step by step, finally avoid splitting THP during the THP swapping out and swap out/in the THP as a whole. As the first step, in this patchset, the splitting huge page is delayed from almost the first step of swapping out to after allocating the swap space for the THP and adding the THP into the swap cache. This will reduce lock acquiring/releasing for the locks used for the swap cache management. With the patchset, the swap out throughput improves 15.5% (from about 3.73GB/s to about 4.31GB/s) in the vm-scalability swap-w-seq test case with 8 processes. The test is done on a Xeon E5 v3 system. The swap device used is a RAM simulated PMEM (persistent memory) device. To test the sequential swapping out, the test case creates 8 processes, which sequentially allocate and write to the anonymous pages until the RAM and part of the swap device is used up. This patch (of 5): In this patch, splitting huge page is delayed from almost the first step of swapping out to after allocating the swap space for the THP (Transparent Huge Page) and adding the THP into the swap cache. This will batch the corresponding operation, thus improve THP swap out throughput. This is the first step for the THP swap optimization. The plan is to delay splitting the THP step by step and avoid splitting the THP finally. In this patch, one swap cluster is used to hold the contents of each THP swapped out. So, the size of the swap cluster is changed to that of the THP (Transparent Huge Page) on x86_64 architecture (512). For other architectures which want such THP swap optimization, ARCH_USES_THP_SWAP_CLUSTER needs to be selected in the Kconfig file for the architecture. In effect, this will enlarge swap cluster size by 2 times on x86_64. Which may make it harder to find a free cluster when the swap space becomes fragmented. So that, this may reduce the continuous swap space allocation and sequential write in theory. The performance test in 0day shows no regressions caused by this. In the future of THP swap optimization, some information of the swapped out THP (such as compound map count) will be recorded in the swap_cluster_info data structure. The mem cgroup swap accounting functions are enhanced to support charge or uncharge a swap cluster backing a THP as a whole. The swap cluster allocate/free functions are added to allocate/free a swap cluster for a THP. A fair simple algorithm is used for swap cluster allocation, that is, only the first swap device in priority list will be tried to allocate the swap cluster. The function will fail if the trying is not successful, and the caller will fallback to allocate a single swap slot instead. This works good enough for normal cases. If the difference of the number of the free swap clusters among multiple swap devices is significant, it is possible that some THPs are split earlier than necessary. For example, this could be caused by big size difference among multiple swap devices. The swap cache functions is enhanced to support add/delete THP to/from the swap cache as a set of (HPAGE_PMD_NR) sub-pages. This may be enhanced in the future with multi-order radix tree. But because we will split the THP soon during swapping out, that optimization doesn't make much sense for this first step. The THP splitting functions are enhanced to support to split THP in swap cache during swapping out. The page lock will be held during allocating the swap cluster, adding the THP into the swap cache and splitting the THP. So in the code path other than swapping out, if the THP need to be split, the PageSwapCache(THP) will be always false. The swap cluster is only available for SSD, so the THP swap optimization in this patchset has no effect for HDD. [ying.huang@intel.com: fix two issues in THP optimize patch] Link: http://lkml.kernel.org/r/87k25ed8zo.fsf@yhuang-dev.intel.com [hannes@cmpxchg.org: extensive cleanups and simplifications, reduce code size] Link: http://lkml.kernel.org/r/20170515112522.32457-2-ying.huang@intel.com Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Suggested-by: Andrew Morton <akpm@linux-foundation.org> [for config option] Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> [for changes in huge_memory.c and huge_mm.h] Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Ebru Akagunduz <ebru.akagunduz@gmail.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Cc: Hugh Dickins <hughd@google.com> Cc: Shaohua Li <shli@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-07 06:37:18 +08:00
(1L << PG_swapcache) |
thp: reintroduce split_huge_page() This patch adds implementation of split_huge_page() for new refcountings. Unlike previous implementation, new split_huge_page() can fail if somebody holds GUP pin on the page. It also means that pin on page would prevent it from bening split under you. It makes situation in many places much cleaner. The basic scheme of split_huge_page(): - Check that sum of mapcounts of all subpage is equal to page_count() plus one (caller pin). Foll off with -EBUSY. This way we can avoid useless PMD-splits. - Freeze the page counters by splitting all PMD and setup migration PTEs. - Re-check sum of mapcounts against page_count(). Page's counts are stable now. -EBUSY if page is pinned. - Split compound page. - Unfreeze the page by removing migration entries. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:10 +08:00
(1L << PG_mlocked) |
(1L << PG_uptodate) |
(1L << PG_active) |
(1L << PG_locked) |
mm/huge_memory.c: don't split THP page when MADV_FREE syscall is called We don't need to split THP page when MADV_FREE syscall is called if [start, len] is aligned with THP size. The split could be done when VM decide to free it in reclaim path if memory pressure is heavy. With that, we could avoid unnecessary THP split. For the feature, this patch changes pte dirtness marking logic of THP. Now, it marks every ptes of pages dirty unconditionally in splitting, which makes MADV_FREE void. So, instead, this patch propagates pmd dirtiness to all pages via PG_dirty and restores pte dirtiness from PG_dirty. With this, if pmd is clean(ie, MADV_FREEed) when split happens(e,g, shrink_page_list), all of pages are clean too so we could discard them. Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Hugh Dickins <hughd@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "James E.J. Bottomley" <jejb@parisc-linux.org> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Shaohua Li <shli@kernel.org> Cc: <yalin.wang2010@gmail.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chen Gang <gang.chen.5i5j@gmail.com> Cc: Chris Zankel <chris@zankel.net> Cc: Daniel Micay <danielmicay@gmail.com> Cc: Darrick J. Wong <darrick.wong@oracle.com> Cc: David S. Miller <davem@davemloft.net> Cc: Helge Deller <deller@gmx.de> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: Jason Evans <je@fb.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mika Penttil <mika.penttila@nextfour.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Richard Henderson <rth@twiddle.net> Cc: Rik van Riel <riel@redhat.com> Cc: Roland Dreier <roland@kernel.org> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Shaohua Li <shli@kernel.org> Cc: Will Deacon <will.deacon@arm.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:55:42 +08:00
(1L << PG_unevictable) |
(1L << PG_dirty)));
thp: reintroduce split_huge_page() This patch adds implementation of split_huge_page() for new refcountings. Unlike previous implementation, new split_huge_page() can fail if somebody holds GUP pin on the page. It also means that pin on page would prevent it from bening split under you. It makes situation in many places much cleaner. The basic scheme of split_huge_page(): - Check that sum of mapcounts of all subpage is equal to page_count() plus one (caller pin). Foll off with -EBUSY. This way we can avoid useless PMD-splits. - Freeze the page counters by splitting all PMD and setup migration PTEs. - Re-check sum of mapcounts against page_count(). Page's counts are stable now. -EBUSY if page is pinned. - Split compound page. - Unfreeze the page by removing migration entries. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:10 +08:00
/*
* After clearing PageTail the gup refcount can be released.
* Page flags also must be visible before we make the page non-compound.
*/
smp_wmb();
clear_compound_head(page_tail);
if (page_is_young(head))
set_page_young(page_tail);
if (page_is_idle(head))
set_page_idle(page_tail);
/* ->mapping in first tail page is compound_mapcount */
thp: introduce deferred_split_huge_page() Currently we don't split huge page on partial unmap. It's not an ideal situation. It can lead to memory overhead. Furtunately, we can detect partial unmap on page_remove_rmap(). But we cannot call split_huge_page() from there due to locking context. It's also counterproductive to do directly from munmap() codepath: in many cases we will hit this from exit(2) and splitting the huge page just to free it up in small pages is not what we really want. The patch introduce deferred_split_huge_page() which put the huge page into queue for splitting. The splitting itself will happen when we get memory pressure via shrinker interface. The page will be dropped from list on freeing through compound page destructor. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:17 +08:00
VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
thp: reintroduce split_huge_page() This patch adds implementation of split_huge_page() for new refcountings. Unlike previous implementation, new split_huge_page() can fail if somebody holds GUP pin on the page. It also means that pin on page would prevent it from bening split under you. It makes situation in many places much cleaner. The basic scheme of split_huge_page(): - Check that sum of mapcounts of all subpage is equal to page_count() plus one (caller pin). Foll off with -EBUSY. This way we can avoid useless PMD-splits. - Freeze the page counters by splitting all PMD and setup migration PTEs. - Re-check sum of mapcounts against page_count(). Page's counts are stable now. -EBUSY if page is pinned. - Split compound page. - Unfreeze the page by removing migration entries. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:10 +08:00
page_tail);
page_tail->mapping = head->mapping;
page_tail->index = head->index + tail;
page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
lru_add_page_tail(head, page_tail, lruvec, list);
}
static void __split_huge_page(struct page *page, struct list_head *list,
unsigned long flags)
thp: reintroduce split_huge_page() This patch adds implementation of split_huge_page() for new refcountings. Unlike previous implementation, new split_huge_page() can fail if somebody holds GUP pin on the page. It also means that pin on page would prevent it from bening split under you. It makes situation in many places much cleaner. The basic scheme of split_huge_page(): - Check that sum of mapcounts of all subpage is equal to page_count() plus one (caller pin). Foll off with -EBUSY. This way we can avoid useless PMD-splits. - Freeze the page counters by splitting all PMD and setup migration PTEs. - Re-check sum of mapcounts against page_count(). Page's counts are stable now. -EBUSY if page is pinned. - Split compound page. - Unfreeze the page by removing migration entries. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:10 +08:00
{
struct page *head = compound_head(page);
struct zone *zone = page_zone(head);
struct lruvec *lruvec;
pgoff_t end = -1;
int i;
thp: reintroduce split_huge_page() This patch adds implementation of split_huge_page() for new refcountings. Unlike previous implementation, new split_huge_page() can fail if somebody holds GUP pin on the page. It also means that pin on page would prevent it from bening split under you. It makes situation in many places much cleaner. The basic scheme of split_huge_page(): - Check that sum of mapcounts of all subpage is equal to page_count() plus one (caller pin). Foll off with -EBUSY. This way we can avoid useless PMD-splits. - Freeze the page counters by splitting all PMD and setup migration PTEs. - Re-check sum of mapcounts against page_count(). Page's counts are stable now. -EBUSY if page is pinned. - Split compound page. - Unfreeze the page by removing migration entries. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:10 +08:00
mm, vmscan: move LRU lists to node This moves the LRU lists from the zone to the node and related data such as counters, tracing, congestion tracking and writeback tracking. Unfortunately, due to reclaim and compaction retry logic, it is necessary to account for the number of LRU pages on both zone and node logic. Most reclaim logic is based on the node counters but the retry logic uses the zone counters which do not distinguish inactive and active sizes. It would be possible to leave the LRU counters on a per-zone basis but it's a heavier calculation across multiple cache lines that is much more frequent than the retry checks. Other than the LRU counters, this is mostly a mechanical patch but note that it introduces a number of anomalies. For example, the scans are per-zone but using per-node counters. We also mark a node as congested when a zone is congested. This causes weird problems that are fixed later but is easier to review. In the event that there is excessive overhead on 32-bit systems due to the nodes being on LRU then there are two potential solutions 1. Long-term isolation of highmem pages when reclaim is lowmem When pages are skipped, they are immediately added back onto the LRU list. If lowmem reclaim persisted for long periods of time, the same highmem pages get continually scanned. The idea would be that lowmem keeps those pages on a separate list until a reclaim for highmem pages arrives that splices the highmem pages back onto the LRU. It potentially could be implemented similar to the UNEVICTABLE list. That would reduce the skip rate with the potential corner case is that highmem pages have to be scanned and reclaimed to free lowmem slab pages. 2. Linear scan lowmem pages if the initial LRU shrink fails This will break LRU ordering but may be preferable and faster during memory pressure than skipping LRU pages. Link: http://lkml.kernel.org/r/1467970510-21195-4-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-29 06:45:31 +08:00
lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
thp: reintroduce split_huge_page() This patch adds implementation of split_huge_page() for new refcountings. Unlike previous implementation, new split_huge_page() can fail if somebody holds GUP pin on the page. It also means that pin on page would prevent it from bening split under you. It makes situation in many places much cleaner. The basic scheme of split_huge_page(): - Check that sum of mapcounts of all subpage is equal to page_count() plus one (caller pin). Foll off with -EBUSY. This way we can avoid useless PMD-splits. - Freeze the page counters by splitting all PMD and setup migration PTEs. - Re-check sum of mapcounts against page_count(). Page's counts are stable now. -EBUSY if page is pinned. - Split compound page. - Unfreeze the page by removing migration entries. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:10 +08:00
/* complete memcg works before add pages to LRU */
mem_cgroup_split_huge_fixup(head);
if (!PageAnon(page))
end = DIV_ROUND_UP(i_size_read(head->mapping->host), PAGE_SIZE);
for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
__split_huge_page_tail(head, i, lruvec, list);
/* Some pages can be beyond i_size: drop them from page cache */
if (head[i].index >= end) {
__ClearPageDirty(head + i);
__delete_from_page_cache(head + i, NULL);
if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
shmem_uncharge(head->mapping->host, 1);
put_page(head + i);
}
}
thp: reintroduce split_huge_page() This patch adds implementation of split_huge_page() for new refcountings. Unlike previous implementation, new split_huge_page() can fail if somebody holds GUP pin on the page. It also means that pin on page would prevent it from bening split under you. It makes situation in many places much cleaner. The basic scheme of split_huge_page(): - Check that sum of mapcounts of all subpage is equal to page_count() plus one (caller pin). Foll off with -EBUSY. This way we can avoid useless PMD-splits. - Freeze the page counters by splitting all PMD and setup migration PTEs. - Re-check sum of mapcounts against page_count(). Page's counts are stable now. -EBUSY if page is pinned. - Split compound page. - Unfreeze the page by removing migration entries. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:10 +08:00
ClearPageCompound(head);
/* See comment in __split_huge_page_tail() */
if (PageAnon(head)) {
mm, THP, swap: delay splitting THP during swap out Patch series "THP swap: Delay splitting THP during swapping out", v11. This patchset is to optimize the performance of Transparent Huge Page (THP) swap. Recently, the performance of the storage devices improved so fast that we cannot saturate the disk bandwidth with single logical CPU when do page swap out even on a high-end server machine. Because the performance of the storage device improved faster than that of single logical CPU. And it seems that the trend will not change in the near future. On the other hand, the THP becomes more and more popular because of increased memory size. So it becomes necessary to optimize THP swap performance. The advantages of the THP swap support include: - Batch the swap operations for the THP to reduce lock acquiring/releasing, including allocating/freeing the swap space, adding/deleting to/from the swap cache, and writing/reading the swap space, etc. This will help improve the performance of the THP swap. - The THP swap space read/write will be 2M sequential IO. It is particularly helpful for the swap read, which are usually 4k random IO. This will improve the performance of the THP swap too. - It will help the memory fragmentation, especially when the THP is heavily used by the applications. The 2M continuous pages will be free up after THP swapping out. - It will improve the THP utilization on the system with the swap turned on. Because the speed for khugepaged to collapse the normal pages into the THP is quite slow. After the THP is split during the swapping out, it will take quite long time for the normal pages to collapse back into the THP after being swapped in. The high THP utilization helps the efficiency of the page based memory management too. There are some concerns regarding THP swap in, mainly because possible enlarged read/write IO size (for swap in/out) may put more overhead on the storage device. To deal with that, the THP swap in should be turned on only when necessary. For example, it can be selected via "always/never/madvise" logic, to be turned on globally, turned off globally, or turned on only for VMA with MADV_HUGEPAGE, etc. This patchset is the first step for the THP swap support. The plan is to delay splitting THP step by step, finally avoid splitting THP during the THP swapping out and swap out/in the THP as a whole. As the first step, in this patchset, the splitting huge page is delayed from almost the first step of swapping out to after allocating the swap space for the THP and adding the THP into the swap cache. This will reduce lock acquiring/releasing for the locks used for the swap cache management. With the patchset, the swap out throughput improves 15.5% (from about 3.73GB/s to about 4.31GB/s) in the vm-scalability swap-w-seq test case with 8 processes. The test is done on a Xeon E5 v3 system. The swap device used is a RAM simulated PMEM (persistent memory) device. To test the sequential swapping out, the test case creates 8 processes, which sequentially allocate and write to the anonymous pages until the RAM and part of the swap device is used up. This patch (of 5): In this patch, splitting huge page is delayed from almost the first step of swapping out to after allocating the swap space for the THP (Transparent Huge Page) and adding the THP into the swap cache. This will batch the corresponding operation, thus improve THP swap out throughput. This is the first step for the THP swap optimization. The plan is to delay splitting the THP step by step and avoid splitting the THP finally. In this patch, one swap cluster is used to hold the contents of each THP swapped out. So, the size of the swap cluster is changed to that of the THP (Transparent Huge Page) on x86_64 architecture (512). For other architectures which want such THP swap optimization, ARCH_USES_THP_SWAP_CLUSTER needs to be selected in the Kconfig file for the architecture. In effect, this will enlarge swap cluster size by 2 times on x86_64. Which may make it harder to find a free cluster when the swap space becomes fragmented. So that, this may reduce the continuous swap space allocation and sequential write in theory. The performance test in 0day shows no regressions caused by this. In the future of THP swap optimization, some information of the swapped out THP (such as compound map count) will be recorded in the swap_cluster_info data structure. The mem cgroup swap accounting functions are enhanced to support charge or uncharge a swap cluster backing a THP as a whole. The swap cluster allocate/free functions are added to allocate/free a swap cluster for a THP. A fair simple algorithm is used for swap cluster allocation, that is, only the first swap device in priority list will be tried to allocate the swap cluster. The function will fail if the trying is not successful, and the caller will fallback to allocate a single swap slot instead. This works good enough for normal cases. If the difference of the number of the free swap clusters among multiple swap devices is significant, it is possible that some THPs are split earlier than necessary. For example, this could be caused by big size difference among multiple swap devices. The swap cache functions is enhanced to support add/delete THP to/from the swap cache as a set of (HPAGE_PMD_NR) sub-pages. This may be enhanced in the future with multi-order radix tree. But because we will split the THP soon during swapping out, that optimization doesn't make much sense for this first step. The THP splitting functions are enhanced to support to split THP in swap cache during swapping out. The page lock will be held during allocating the swap cluster, adding the THP into the swap cache and splitting the THP. So in the code path other than swapping out, if the THP need to be split, the PageSwapCache(THP) will be always false. The swap cluster is only available for SSD, so the THP swap optimization in this patchset has no effect for HDD. [ying.huang@intel.com: fix two issues in THP optimize patch] Link: http://lkml.kernel.org/r/87k25ed8zo.fsf@yhuang-dev.intel.com [hannes@cmpxchg.org: extensive cleanups and simplifications, reduce code size] Link: http://lkml.kernel.org/r/20170515112522.32457-2-ying.huang@intel.com Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Suggested-by: Andrew Morton <akpm@linux-foundation.org> [for config option] Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> [for changes in huge_memory.c and huge_mm.h] Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Ebru Akagunduz <ebru.akagunduz@gmail.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Cc: Hugh Dickins <hughd@google.com> Cc: Shaohua Li <shli@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-07 06:37:18 +08:00
/* Additional pin to radix tree of swap cache */
if (PageSwapCache(head))
page_ref_add(head, 2);
else
page_ref_inc(head);
} else {
/* Additional pin to radix tree */
page_ref_add(head, 2);
spin_unlock(&head->mapping->tree_lock);
}
spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
thp: reintroduce split_huge_page() This patch adds implementation of split_huge_page() for new refcountings. Unlike previous implementation, new split_huge_page() can fail if somebody holds GUP pin on the page. It also means that pin on page would prevent it from bening split under you. It makes situation in many places much cleaner. The basic scheme of split_huge_page(): - Check that sum of mapcounts of all subpage is equal to page_count() plus one (caller pin). Foll off with -EBUSY. This way we can avoid useless PMD-splits. - Freeze the page counters by splitting all PMD and setup migration PTEs. - Re-check sum of mapcounts against page_count(). Page's counts are stable now. -EBUSY if page is pinned. - Split compound page. - Unfreeze the page by removing migration entries. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:10 +08:00
unfreeze_page(head);
thp: reintroduce split_huge_page() This patch adds implementation of split_huge_page() for new refcountings. Unlike previous implementation, new split_huge_page() can fail if somebody holds GUP pin on the page. It also means that pin on page would prevent it from bening split under you. It makes situation in many places much cleaner. The basic scheme of split_huge_page(): - Check that sum of mapcounts of all subpage is equal to page_count() plus one (caller pin). Foll off with -EBUSY. This way we can avoid useless PMD-splits. - Freeze the page counters by splitting all PMD and setup migration PTEs. - Re-check sum of mapcounts against page_count(). Page's counts are stable now. -EBUSY if page is pinned. - Split compound page. - Unfreeze the page by removing migration entries. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:10 +08:00
for (i = 0; i < HPAGE_PMD_NR; i++) {
struct page *subpage = head + i;
if (subpage == page)
continue;
unlock_page(subpage);
/*
* Subpages may be freed if there wasn't any mapping
* like if add_to_swap() is running on a lru page that
* had its mapping zapped. And freeing these pages
* requires taking the lru_lock so we do the put_page
* of the tail pages after the split is complete.
*/
put_page(subpage);
}
}
int total_mapcount(struct page *page)
{
int i, compound, ret;
VM_BUG_ON_PAGE(PageTail(page), page);
if (likely(!PageCompound(page)))
return atomic_read(&page->_mapcount) + 1;
compound = compound_mapcount(page);
if (PageHuge(page))
return compound;
ret = compound;
for (i = 0; i < HPAGE_PMD_NR; i++)
ret += atomic_read(&page[i]._mapcount) + 1;
/* File pages has compound_mapcount included in _mapcount */
if (!PageAnon(page))
return ret - compound * HPAGE_PMD_NR;
if (PageDoubleMap(page))
ret -= HPAGE_PMD_NR;
return ret;
}
mm: thp: calculate the mapcount correctly for THP pages during WP faults This will provide fully accuracy to the mapcount calculation in the write protect faults, so page pinning will not get broken by false positive copy-on-writes. total_mapcount() isn't the right calculation needed in reuse_swap_page(), so this introduces a page_trans_huge_mapcount() that is effectively the full accurate return value for page_mapcount() if dealing with Transparent Hugepages, however we only use the page_trans_huge_mapcount() during COW faults where it strictly needed, due to its higher runtime cost. This also provide at practical zero cost the total_mapcount information which is needed to know if we can still relocate the page anon_vma to the local vma. If page_trans_huge_mapcount() returns 1 we can reuse the page no matter if it's a pte or a pmd_trans_huge triggering the fault, but we can only relocate the page anon_vma to the local vma->anon_vma if we're sure it's only this "vma" mapping the whole THP physical range. Kirill A. Shutemov discovered the problem with moving the page anon_vma to the local vma->anon_vma in a previous version of this patch and another problem in the way page_move_anon_rmap() was called. Andrew Morton discovered that CONFIG_SWAP=n wouldn't build in a previous version, because reuse_swap_page must be a macro to call page_trans_huge_mapcount from swap.h, so this uses a macro again instead of an inline function. With this change at least it's a less dangerous usage than it was before, because "page" is used only once now, while with the previous code reuse_swap_page(page++) would have called page_mapcount on page+1 and it would have increased page twice instead of just once. Dean Luick noticed an uninitialized variable that could result in a rmap inefficiency for the non-THP case in a previous version. Mike Marciniszyn said: : Our RDMA tests are seeing an issue with memory locking that bisects to : commit 61f5d698cc97 ("mm: re-enable THP") : : The test program registers two rather large MRs (512M) and RDMA : writes data to a passive peer using the first and RDMA reads it back : into the second MR and compares that data. The sizes are chosen randomly : between 0 and 1024 bytes. : : The test will get through a few (<= 4 iterations) and then gets a : compare error. : : Tracing indicates the kernel logical addresses associated with the individual : pages at registration ARE correct , the data in the "RDMA read response only" : packets ARE correct. : : The "corruption" occurs when the packet crosse two pages that are not physically : contiguous. The second page reads back as zero in the program. : : It looks like the user VA at the point of the compare error no longer points to : the same physical address as was registered. : : This patch totally resolves the issue! Link: http://lkml.kernel.org/r/1462547040-1737-2-git-send-email-aarcange@redhat.com Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Reviewed-by: "Kirill A. Shutemov" <kirill@shutemov.name> Reviewed-by: Dean Luick <dean.luick@intel.com> Tested-by: Alex Williamson <alex.williamson@redhat.com> Tested-by: Mike Marciniszyn <mike.marciniszyn@intel.com> Tested-by: Josh Collier <josh.d.collier@intel.com> Cc: Marc Haber <mh+linux-kernel@zugschlus.de> Cc: <stable@vger.kernel.org> [4.5] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-13 06:42:25 +08:00
/*
* This calculates accurately how many mappings a transparent hugepage
* has (unlike page_mapcount() which isn't fully accurate). This full
* accuracy is primarily needed to know if copy-on-write faults can
* reuse the page and change the mapping to read-write instead of
* copying them. At the same time this returns the total_mapcount too.
*
* The function returns the highest mapcount any one of the subpages
* has. If the return value is one, even if different processes are
* mapping different subpages of the transparent hugepage, they can
* all reuse it, because each process is reusing a different subpage.
*
* The total_mapcount is instead counting all virtual mappings of the
* subpages. If the total_mapcount is equal to "one", it tells the
* caller all mappings belong to the same "mm" and in turn the
* anon_vma of the transparent hugepage can become the vma->anon_vma
* local one as no other process may be mapping any of the subpages.
*
* It would be more accurate to replace page_mapcount() with
* page_trans_huge_mapcount(), however we only use
* page_trans_huge_mapcount() in the copy-on-write faults where we
* need full accuracy to avoid breaking page pinning, because
* page_trans_huge_mapcount() is slower than page_mapcount().
*/
int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
{
int i, ret, _total_mapcount, mapcount;
/* hugetlbfs shouldn't call it */
VM_BUG_ON_PAGE(PageHuge(page), page);
if (likely(!PageTransCompound(page))) {
mapcount = atomic_read(&page->_mapcount) + 1;
if (total_mapcount)
*total_mapcount = mapcount;
return mapcount;
}
page = compound_head(page);
_total_mapcount = ret = 0;
for (i = 0; i < HPAGE_PMD_NR; i++) {
mapcount = atomic_read(&page[i]._mapcount) + 1;
ret = max(ret, mapcount);
_total_mapcount += mapcount;
}
if (PageDoubleMap(page)) {
ret -= 1;
_total_mapcount -= HPAGE_PMD_NR;
}
mapcount = compound_mapcount(page);
ret += mapcount;
_total_mapcount += mapcount;
if (total_mapcount)
*total_mapcount = _total_mapcount;
return ret;
}
mm, THP, swap: check whether THP can be split firstly To swap out THP (Transparent Huage Page), before splitting the THP, the swap cluster will be allocated and the THP will be added into the swap cache. But it is possible that the THP cannot be split, so that we must delete the THP from the swap cache and free the swap cluster. To avoid that, in this patch, whether the THP can be split is checked firstly. The check can only be done racy, but it is good enough for most cases. With the patch, the swap out throughput improves 3.6% (from about 4.16GB/s to about 4.31GB/s) in the vm-scalability swap-w-seq test case with 8 processes. The test is done on a Xeon E5 v3 system. The swap device used is a RAM simulated PMEM (persistent memory) device. To test the sequential swapping out, the test case creates 8 processes, which sequentially allocate and write to the anonymous pages until the RAM and part of the swap device is used up. Link: http://lkml.kernel.org/r/20170515112522.32457-5-ying.huang@intel.com Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> [for can_split_huge_page()] Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Ebru Akagunduz <ebru.akagunduz@gmail.com> Cc: Hugh Dickins <hughd@google.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@redhat.com> Cc: Shaohua Li <shli@kernel.org> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-07 06:37:28 +08:00
/* Racy check whether the huge page can be split */
bool can_split_huge_page(struct page *page, int *pextra_pins)
{
int extra_pins;
/* Additional pins from radix tree */
if (PageAnon(page))
extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
else
extra_pins = HPAGE_PMD_NR;
if (pextra_pins)
*pextra_pins = extra_pins;
return total_mapcount(page) == page_count(page) - extra_pins - 1;
}
thp: reintroduce split_huge_page() This patch adds implementation of split_huge_page() for new refcountings. Unlike previous implementation, new split_huge_page() can fail if somebody holds GUP pin on the page. It also means that pin on page would prevent it from bening split under you. It makes situation in many places much cleaner. The basic scheme of split_huge_page(): - Check that sum of mapcounts of all subpage is equal to page_count() plus one (caller pin). Foll off with -EBUSY. This way we can avoid useless PMD-splits. - Freeze the page counters by splitting all PMD and setup migration PTEs. - Re-check sum of mapcounts against page_count(). Page's counts are stable now. -EBUSY if page is pinned. - Split compound page. - Unfreeze the page by removing migration entries. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:10 +08:00
/*
* This function splits huge page into normal pages. @page can point to any
* subpage of huge page to split. Split doesn't change the position of @page.
*
* Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
* The huge page must be locked.
*
* If @list is null, tail pages will be added to LRU list, otherwise, to @list.
*
* Both head page and tail pages will inherit mapping, flags, and so on from
* the hugepage.
*
* GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
* they are not mapped.
*
* Returns 0 if the hugepage is split successfully.
* Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
* us.
*/
int split_huge_page_to_list(struct page *page, struct list_head *list)
{
struct page *head = compound_head(page);
struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
struct anon_vma *anon_vma = NULL;
struct address_space *mapping = NULL;
int count, mapcount, extra_pins, ret;
bool mlocked;
thp: fix interrupt unsafe locking in split_huge_page() split_queue_lock can be taken from interrupt context in some cases, but I forgot to convert locking in split_huge_page() to interrupt-safe primitives. Let's fix this. lockdep output: ====================================================== [ INFO: SOFTIRQ-safe -> SOFTIRQ-unsafe lock order detected ] 4.4.0+ #259 Tainted: G W ------------------------------------------------------ syz-executor/18183 [HC0[0]:SC0[2]:HE0:SE0] is trying to acquire: (split_queue_lock){+.+...}, at: free_transhuge_page+0x24/0x90 mm/huge_memory.c:3436 and this task is already holding: (slock-AF_INET){+.-...}, at: spin_lock_bh include/linux/spinlock.h:307 (slock-AF_INET){+.-...}, at: lock_sock_fast+0x45/0x120 net/core/sock.c:2462 which would create a new lock dependency: (slock-AF_INET){+.-...} -> (split_queue_lock){+.+...} but this new dependency connects a SOFTIRQ-irq-safe lock: (slock-AF_INET){+.-...} ... which became SOFTIRQ-irq-safe at: mark_irqflags kernel/locking/lockdep.c:2799 __lock_acquire+0xfd8/0x4700 kernel/locking/lockdep.c:3162 lock_acquire+0x1dc/0x430 kernel/locking/lockdep.c:3585 __raw_spin_lock include/linux/spinlock_api_smp.h:144 _raw_spin_lock+0x33/0x50 kernel/locking/spinlock.c:151 spin_lock include/linux/spinlock.h:302 udp_queue_rcv_skb+0x781/0x1550 net/ipv4/udp.c:1680 flush_stack+0x50/0x330 net/ipv6/udp.c:799 __udp4_lib_mcast_deliver+0x694/0x7f0 net/ipv4/udp.c:1798 __udp4_lib_rcv+0x17dc/0x23e0 net/ipv4/udp.c:1888 udp_rcv+0x21/0x30 net/ipv4/udp.c:2108 ip_local_deliver_finish+0x2b3/0xa50 net/ipv4/ip_input.c:216 NF_HOOK_THRESH include/linux/netfilter.h:226 NF_HOOK include/linux/netfilter.h:249 ip_local_deliver+0x1c4/0x2f0 net/ipv4/ip_input.c:257 dst_input include/net/dst.h:498 ip_rcv_finish+0x5ec/0x1730 net/ipv4/ip_input.c:365 NF_HOOK_THRESH include/linux/netfilter.h:226 NF_HOOK include/linux/netfilter.h:249 ip_rcv+0x963/0x1080 net/ipv4/ip_input.c:455 __netif_receive_skb_core+0x1620/0x2f80 net/core/dev.c:4154 __netif_receive_skb+0x2a/0x160 net/core/dev.c:4189 netif_receive_skb_internal+0x1b5/0x390 net/core/dev.c:4217 napi_skb_finish net/core/dev.c:4542 napi_gro_receive+0x2bd/0x3c0 net/core/dev.c:4572 e1000_clean_rx_irq+0x4e2/0x1100 drivers/net/ethernet/intel/e1000e/netdev.c:1038 e1000_clean+0xa08/0x24a0 drivers/net/ethernet/intel/e1000/e1000_main.c:3819 napi_poll net/core/dev.c:5074 net_rx_action+0x7eb/0xdf0 net/core/dev.c:5139 __do_softirq+0x26a/0x920 kernel/softirq.c:273 invoke_softirq kernel/softirq.c:350 irq_exit+0x18f/0x1d0 kernel/softirq.c:391 exiting_irq ./arch/x86/include/asm/apic.h:659 do_IRQ+0x86/0x1a0 arch/x86/kernel/irq.c:252 ret_from_intr+0x0/0x20 arch/x86/entry/entry_64.S:520 arch_safe_halt ./arch/x86/include/asm/paravirt.h:117 default_idle+0x52/0x2e0 arch/x86/kernel/process.c:304 arch_cpu_idle+0xa/0x10 arch/x86/kernel/process.c:295 default_idle_call+0x48/0xa0 kernel/sched/idle.c:92 cpuidle_idle_call kernel/sched/idle.c:156 cpu_idle_loop kernel/sched/idle.c:252 cpu_startup_entry+0x554/0x710 kernel/sched/idle.c:300 rest_init+0x192/0x1a0 init/main.c:412 start_kernel+0x678/0x69e init/main.c:683 x86_64_start_reservations+0x2a/0x2c arch/x86/kernel/head64.c:195 x86_64_start_kernel+0x158/0x167 arch/x86/kernel/head64.c:184 to a SOFTIRQ-irq-unsafe lock: (split_queue_lock){+.+...} which became SOFTIRQ-irq-unsafe at: mark_irqflags kernel/locking/lockdep.c:2817 __lock_acquire+0x146e/0x4700 kernel/locking/lockdep.c:3162 lock_acquire+0x1dc/0x430 kernel/locking/lockdep.c:3585 __raw_spin_lock include/linux/spinlock_api_smp.h:144 _raw_spin_lock+0x33/0x50 kernel/locking/spinlock.c:151 spin_lock include/linux/spinlock.h:302 split_huge_page_to_list+0xcc0/0x1c50 mm/huge_memory.c:3399 split_huge_page include/linux/huge_mm.h:99 queue_pages_pte_range+0xa38/0xef0 mm/mempolicy.c:507 walk_pmd_range mm/pagewalk.c:50 walk_pud_range mm/pagewalk.c:90 walk_pgd_range mm/pagewalk.c:116 __walk_page_range+0x653/0xcd0 mm/pagewalk.c:204 walk_page_range+0xfe/0x2b0 mm/pagewalk.c:281 queue_pages_range+0xfb/0x130 mm/mempolicy.c:687 migrate_to_node mm/mempolicy.c:1004 do_migrate_pages+0x370/0x4e0 mm/mempolicy.c:1109 SYSC_migrate_pages mm/mempolicy.c:1453 SyS_migrate_pages+0x640/0x730 mm/mempolicy.c:1374 entry_SYSCALL_64_fastpath+0x16/0x7a arch/x86/entry/entry_64.S:185 other info that might help us debug this: Possible interrupt unsafe locking scenario: CPU0 CPU1 ---- ---- lock(split_queue_lock); local_irq_disable(); lock(slock-AF_INET); lock(split_queue_lock); <Interrupt> lock(slock-AF_INET); Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reported-by: Dmitry Vyukov <dvyukov@google.com> Acked-by: David Rientjes <rientjes@google.com> Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-21 06:58:09 +08:00
unsigned long flags;
thp: reintroduce split_huge_page() This patch adds implementation of split_huge_page() for new refcountings. Unlike previous implementation, new split_huge_page() can fail if somebody holds GUP pin on the page. It also means that pin on page would prevent it from bening split under you. It makes situation in many places much cleaner. The basic scheme of split_huge_page(): - Check that sum of mapcounts of all subpage is equal to page_count() plus one (caller pin). Foll off with -EBUSY. This way we can avoid useless PMD-splits. - Freeze the page counters by splitting all PMD and setup migration PTEs. - Re-check sum of mapcounts against page_count(). Page's counts are stable now. -EBUSY if page is pinned. - Split compound page. - Unfreeze the page by removing migration entries. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:10 +08:00
VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
VM_BUG_ON_PAGE(!PageLocked(page), page);
VM_BUG_ON_PAGE(!PageCompound(page), page);
if (PageWriteback(page))
return -EBUSY;
if (PageAnon(head)) {
/*
* The caller does not necessarily hold an mmap_sem that would
* prevent the anon_vma disappearing so we first we take a
* reference to it and then lock the anon_vma for write. This
* is similar to page_lock_anon_vma_read except the write lock
* is taken to serialise against parallel split or collapse
* operations.
*/
anon_vma = page_get_anon_vma(head);
if (!anon_vma) {
ret = -EBUSY;
goto out;
}
mapping = NULL;
anon_vma_lock_write(anon_vma);
} else {
mapping = head->mapping;
/* Truncated ? */
if (!mapping) {
ret = -EBUSY;
goto out;
}
anon_vma = NULL;
i_mmap_lock_read(mapping);
thp: reintroduce split_huge_page() This patch adds implementation of split_huge_page() for new refcountings. Unlike previous implementation, new split_huge_page() can fail if somebody holds GUP pin on the page. It also means that pin on page would prevent it from bening split under you. It makes situation in many places much cleaner. The basic scheme of split_huge_page(): - Check that sum of mapcounts of all subpage is equal to page_count() plus one (caller pin). Foll off with -EBUSY. This way we can avoid useless PMD-splits. - Freeze the page counters by splitting all PMD and setup migration PTEs. - Re-check sum of mapcounts against page_count(). Page's counts are stable now. -EBUSY if page is pinned. - Split compound page. - Unfreeze the page by removing migration entries. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:10 +08:00
}
/*
* Racy check if we can split the page, before freeze_page() will
* split PMDs
*/
mm, THP, swap: check whether THP can be split firstly To swap out THP (Transparent Huage Page), before splitting the THP, the swap cluster will be allocated and the THP will be added into the swap cache. But it is possible that the THP cannot be split, so that we must delete the THP from the swap cache and free the swap cluster. To avoid that, in this patch, whether the THP can be split is checked firstly. The check can only be done racy, but it is good enough for most cases. With the patch, the swap out throughput improves 3.6% (from about 4.16GB/s to about 4.31GB/s) in the vm-scalability swap-w-seq test case with 8 processes. The test is done on a Xeon E5 v3 system. The swap device used is a RAM simulated PMEM (persistent memory) device. To test the sequential swapping out, the test case creates 8 processes, which sequentially allocate and write to the anonymous pages until the RAM and part of the swap device is used up. Link: http://lkml.kernel.org/r/20170515112522.32457-5-ying.huang@intel.com Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> [for can_split_huge_page()] Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Ebru Akagunduz <ebru.akagunduz@gmail.com> Cc: Hugh Dickins <hughd@google.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@redhat.com> Cc: Shaohua Li <shli@kernel.org> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-07 06:37:28 +08:00
if (!can_split_huge_page(head, &extra_pins)) {
thp: reintroduce split_huge_page() This patch adds implementation of split_huge_page() for new refcountings. Unlike previous implementation, new split_huge_page() can fail if somebody holds GUP pin on the page. It also means that pin on page would prevent it from bening split under you. It makes situation in many places much cleaner. The basic scheme of split_huge_page(): - Check that sum of mapcounts of all subpage is equal to page_count() plus one (caller pin). Foll off with -EBUSY. This way we can avoid useless PMD-splits. - Freeze the page counters by splitting all PMD and setup migration PTEs. - Re-check sum of mapcounts against page_count(). Page's counts are stable now. -EBUSY if page is pinned. - Split compound page. - Unfreeze the page by removing migration entries. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:10 +08:00
ret = -EBUSY;
goto out_unlock;
}
mlocked = PageMlocked(page);
freeze_page(head);
thp: reintroduce split_huge_page() This patch adds implementation of split_huge_page() for new refcountings. Unlike previous implementation, new split_huge_page() can fail if somebody holds GUP pin on the page. It also means that pin on page would prevent it from bening split under you. It makes situation in many places much cleaner. The basic scheme of split_huge_page(): - Check that sum of mapcounts of all subpage is equal to page_count() plus one (caller pin). Foll off with -EBUSY. This way we can avoid useless PMD-splits. - Freeze the page counters by splitting all PMD and setup migration PTEs. - Re-check sum of mapcounts against page_count(). Page's counts are stable now. -EBUSY if page is pinned. - Split compound page. - Unfreeze the page by removing migration entries. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:10 +08:00
VM_BUG_ON_PAGE(compound_mapcount(head), head);
/* Make sure the page is not on per-CPU pagevec as it takes pin */
if (mlocked)
lru_add_drain();
/* prevent PageLRU to go away from under us, and freeze lru stats */
spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
if (mapping) {
void **pslot;
spin_lock(&mapping->tree_lock);
pslot = radix_tree_lookup_slot(&mapping->page_tree,
page_index(head));
/*
* Check if the head page is present in radix tree.
* We assume all tail are present too, if head is there.
*/
if (radix_tree_deref_slot_protected(pslot,
&mapping->tree_lock) != head)
goto fail;
}
/* Prevent deferred_split_scan() touching ->_refcount */
spin_lock(&pgdata->split_queue_lock);
thp: reintroduce split_huge_page() This patch adds implementation of split_huge_page() for new refcountings. Unlike previous implementation, new split_huge_page() can fail if somebody holds GUP pin on the page. It also means that pin on page would prevent it from bening split under you. It makes situation in many places much cleaner. The basic scheme of split_huge_page(): - Check that sum of mapcounts of all subpage is equal to page_count() plus one (caller pin). Foll off with -EBUSY. This way we can avoid useless PMD-splits. - Freeze the page counters by splitting all PMD and setup migration PTEs. - Re-check sum of mapcounts against page_count(). Page's counts are stable now. -EBUSY if page is pinned. - Split compound page. - Unfreeze the page by removing migration entries. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:10 +08:00
count = page_count(head);
mapcount = total_mapcount(head);
if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
thp: introduce deferred_split_huge_page() Currently we don't split huge page on partial unmap. It's not an ideal situation. It can lead to memory overhead. Furtunately, we can detect partial unmap on page_remove_rmap(). But we cannot call split_huge_page() from there due to locking context. It's also counterproductive to do directly from munmap() codepath: in many cases we will hit this from exit(2) and splitting the huge page just to free it up in small pages is not what we really want. The patch introduce deferred_split_huge_page() which put the huge page into queue for splitting. The splitting itself will happen when we get memory pressure via shrinker interface. The page will be dropped from list on freeing through compound page destructor. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:17 +08:00
if (!list_empty(page_deferred_list(head))) {
pgdata->split_queue_len--;
thp: introduce deferred_split_huge_page() Currently we don't split huge page on partial unmap. It's not an ideal situation. It can lead to memory overhead. Furtunately, we can detect partial unmap on page_remove_rmap(). But we cannot call split_huge_page() from there due to locking context. It's also counterproductive to do directly from munmap() codepath: in many cases we will hit this from exit(2) and splitting the huge page just to free it up in small pages is not what we really want. The patch introduce deferred_split_huge_page() which put the huge page into queue for splitting. The splitting itself will happen when we get memory pressure via shrinker interface. The page will be dropped from list on freeing through compound page destructor. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:17 +08:00
list_del(page_deferred_list(head));
}
if (mapping)
__dec_node_page_state(page, NR_SHMEM_THPS);
spin_unlock(&pgdata->split_queue_lock);
__split_huge_page(page, list, flags);
if (PageSwapCache(head)) {
swp_entry_t entry = { .val = page_private(head) };
ret = split_swap_cluster(entry);
} else
ret = 0;
thp: reintroduce split_huge_page() This patch adds implementation of split_huge_page() for new refcountings. Unlike previous implementation, new split_huge_page() can fail if somebody holds GUP pin on the page. It also means that pin on page would prevent it from bening split under you. It makes situation in many places much cleaner. The basic scheme of split_huge_page(): - Check that sum of mapcounts of all subpage is equal to page_count() plus one (caller pin). Foll off with -EBUSY. This way we can avoid useless PMD-splits. - Freeze the page counters by splitting all PMD and setup migration PTEs. - Re-check sum of mapcounts against page_count(). Page's counts are stable now. -EBUSY if page is pinned. - Split compound page. - Unfreeze the page by removing migration entries. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:10 +08:00
} else {
if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
pr_alert("total_mapcount: %u, page_count(): %u\n",
mapcount, count);
if (PageTail(page))
dump_page(head, NULL);
dump_page(page, "total_mapcount(head) > 0");
BUG();
}
spin_unlock(&pgdata->split_queue_lock);
fail: if (mapping)
spin_unlock(&mapping->tree_lock);
spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
unfreeze_page(head);
thp: reintroduce split_huge_page() This patch adds implementation of split_huge_page() for new refcountings. Unlike previous implementation, new split_huge_page() can fail if somebody holds GUP pin on the page. It also means that pin on page would prevent it from bening split under you. It makes situation in many places much cleaner. The basic scheme of split_huge_page(): - Check that sum of mapcounts of all subpage is equal to page_count() plus one (caller pin). Foll off with -EBUSY. This way we can avoid useless PMD-splits. - Freeze the page counters by splitting all PMD and setup migration PTEs. - Re-check sum of mapcounts against page_count(). Page's counts are stable now. -EBUSY if page is pinned. - Split compound page. - Unfreeze the page by removing migration entries. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:10 +08:00
ret = -EBUSY;
}
out_unlock:
if (anon_vma) {
anon_vma_unlock_write(anon_vma);
put_anon_vma(anon_vma);
}
if (mapping)
i_mmap_unlock_read(mapping);
thp: reintroduce split_huge_page() This patch adds implementation of split_huge_page() for new refcountings. Unlike previous implementation, new split_huge_page() can fail if somebody holds GUP pin on the page. It also means that pin on page would prevent it from bening split under you. It makes situation in many places much cleaner. The basic scheme of split_huge_page(): - Check that sum of mapcounts of all subpage is equal to page_count() plus one (caller pin). Foll off with -EBUSY. This way we can avoid useless PMD-splits. - Freeze the page counters by splitting all PMD and setup migration PTEs. - Re-check sum of mapcounts against page_count(). Page's counts are stable now. -EBUSY if page is pinned. - Split compound page. - Unfreeze the page by removing migration entries. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:10 +08:00
out:
count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
return ret;
}
thp: introduce deferred_split_huge_page() Currently we don't split huge page on partial unmap. It's not an ideal situation. It can lead to memory overhead. Furtunately, we can detect partial unmap on page_remove_rmap(). But we cannot call split_huge_page() from there due to locking context. It's also counterproductive to do directly from munmap() codepath: in many cases we will hit this from exit(2) and splitting the huge page just to free it up in small pages is not what we really want. The patch introduce deferred_split_huge_page() which put the huge page into queue for splitting. The splitting itself will happen when we get memory pressure via shrinker interface. The page will be dropped from list on freeing through compound page destructor. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:17 +08:00
void free_transhuge_page(struct page *page)
{
struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
thp: introduce deferred_split_huge_page() Currently we don't split huge page on partial unmap. It's not an ideal situation. It can lead to memory overhead. Furtunately, we can detect partial unmap on page_remove_rmap(). But we cannot call split_huge_page() from there due to locking context. It's also counterproductive to do directly from munmap() codepath: in many cases we will hit this from exit(2) and splitting the huge page just to free it up in small pages is not what we really want. The patch introduce deferred_split_huge_page() which put the huge page into queue for splitting. The splitting itself will happen when we get memory pressure via shrinker interface. The page will be dropped from list on freeing through compound page destructor. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:17 +08:00
unsigned long flags;
spin_lock_irqsave(&pgdata->split_queue_lock, flags);
thp: introduce deferred_split_huge_page() Currently we don't split huge page on partial unmap. It's not an ideal situation. It can lead to memory overhead. Furtunately, we can detect partial unmap on page_remove_rmap(). But we cannot call split_huge_page() from there due to locking context. It's also counterproductive to do directly from munmap() codepath: in many cases we will hit this from exit(2) and splitting the huge page just to free it up in small pages is not what we really want. The patch introduce deferred_split_huge_page() which put the huge page into queue for splitting. The splitting itself will happen when we get memory pressure via shrinker interface. The page will be dropped from list on freeing through compound page destructor. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:17 +08:00
if (!list_empty(page_deferred_list(page))) {
pgdata->split_queue_len--;
thp: introduce deferred_split_huge_page() Currently we don't split huge page on partial unmap. It's not an ideal situation. It can lead to memory overhead. Furtunately, we can detect partial unmap on page_remove_rmap(). But we cannot call split_huge_page() from there due to locking context. It's also counterproductive to do directly from munmap() codepath: in many cases we will hit this from exit(2) and splitting the huge page just to free it up in small pages is not what we really want. The patch introduce deferred_split_huge_page() which put the huge page into queue for splitting. The splitting itself will happen when we get memory pressure via shrinker interface. The page will be dropped from list on freeing through compound page destructor. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:17 +08:00
list_del(page_deferred_list(page));
}
spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
thp: introduce deferred_split_huge_page() Currently we don't split huge page on partial unmap. It's not an ideal situation. It can lead to memory overhead. Furtunately, we can detect partial unmap on page_remove_rmap(). But we cannot call split_huge_page() from there due to locking context. It's also counterproductive to do directly from munmap() codepath: in many cases we will hit this from exit(2) and splitting the huge page just to free it up in small pages is not what we really want. The patch introduce deferred_split_huge_page() which put the huge page into queue for splitting. The splitting itself will happen when we get memory pressure via shrinker interface. The page will be dropped from list on freeing through compound page destructor. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:17 +08:00
free_compound_page(page);
}
void deferred_split_huge_page(struct page *page)
{
struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
thp: introduce deferred_split_huge_page() Currently we don't split huge page on partial unmap. It's not an ideal situation. It can lead to memory overhead. Furtunately, we can detect partial unmap on page_remove_rmap(). But we cannot call split_huge_page() from there due to locking context. It's also counterproductive to do directly from munmap() codepath: in many cases we will hit this from exit(2) and splitting the huge page just to free it up in small pages is not what we really want. The patch introduce deferred_split_huge_page() which put the huge page into queue for splitting. The splitting itself will happen when we get memory pressure via shrinker interface. The page will be dropped from list on freeing through compound page destructor. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:17 +08:00
unsigned long flags;
VM_BUG_ON_PAGE(!PageTransHuge(page), page);
spin_lock_irqsave(&pgdata->split_queue_lock, flags);
thp: introduce deferred_split_huge_page() Currently we don't split huge page on partial unmap. It's not an ideal situation. It can lead to memory overhead. Furtunately, we can detect partial unmap on page_remove_rmap(). But we cannot call split_huge_page() from there due to locking context. It's also counterproductive to do directly from munmap() codepath: in many cases we will hit this from exit(2) and splitting the huge page just to free it up in small pages is not what we really want. The patch introduce deferred_split_huge_page() which put the huge page into queue for splitting. The splitting itself will happen when we get memory pressure via shrinker interface. The page will be dropped from list on freeing through compound page destructor. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:17 +08:00
if (list_empty(page_deferred_list(page))) {
count_vm_event(THP_DEFERRED_SPLIT_PAGE);
list_add_tail(page_deferred_list(page), &pgdata->split_queue);
pgdata->split_queue_len++;
thp: introduce deferred_split_huge_page() Currently we don't split huge page on partial unmap. It's not an ideal situation. It can lead to memory overhead. Furtunately, we can detect partial unmap on page_remove_rmap(). But we cannot call split_huge_page() from there due to locking context. It's also counterproductive to do directly from munmap() codepath: in many cases we will hit this from exit(2) and splitting the huge page just to free it up in small pages is not what we really want. The patch introduce deferred_split_huge_page() which put the huge page into queue for splitting. The splitting itself will happen when we get memory pressure via shrinker interface. The page will be dropped from list on freeing through compound page destructor. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:17 +08:00
}
spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
thp: introduce deferred_split_huge_page() Currently we don't split huge page on partial unmap. It's not an ideal situation. It can lead to memory overhead. Furtunately, we can detect partial unmap on page_remove_rmap(). But we cannot call split_huge_page() from there due to locking context. It's also counterproductive to do directly from munmap() codepath: in many cases we will hit this from exit(2) and splitting the huge page just to free it up in small pages is not what we really want. The patch introduce deferred_split_huge_page() which put the huge page into queue for splitting. The splitting itself will happen when we get memory pressure via shrinker interface. The page will be dropped from list on freeing through compound page destructor. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:17 +08:00
}
static unsigned long deferred_split_count(struct shrinker *shrink,
struct shrink_control *sc)
{
struct pglist_data *pgdata = NODE_DATA(sc->nid);
locking/atomics: COCCINELLE/treewide: Convert trivial ACCESS_ONCE() patterns to READ_ONCE()/WRITE_ONCE() Please do not apply this to mainline directly, instead please re-run the coccinelle script shown below and apply its output. For several reasons, it is desirable to use {READ,WRITE}_ONCE() in preference to ACCESS_ONCE(), and new code is expected to use one of the former. So far, there's been no reason to change most existing uses of ACCESS_ONCE(), as these aren't harmful, and changing them results in churn. However, for some features, the read/write distinction is critical to correct operation. To distinguish these cases, separate read/write accessors must be used. This patch migrates (most) remaining ACCESS_ONCE() instances to {READ,WRITE}_ONCE(), using the following coccinelle script: ---- // Convert trivial ACCESS_ONCE() uses to equivalent READ_ONCE() and // WRITE_ONCE() // $ make coccicheck COCCI=/home/mark/once.cocci SPFLAGS="--include-headers" MODE=patch virtual patch @ depends on patch @ expression E1, E2; @@ - ACCESS_ONCE(E1) = E2 + WRITE_ONCE(E1, E2) @ depends on patch @ expression E; @@ - ACCESS_ONCE(E) + READ_ONCE(E) ---- Signed-off-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: davem@davemloft.net Cc: linux-arch@vger.kernel.org Cc: mpe@ellerman.id.au Cc: shuah@kernel.org Cc: snitzer@redhat.com Cc: thor.thayer@linux.intel.com Cc: tj@kernel.org Cc: viro@zeniv.linux.org.uk Cc: will.deacon@arm.com Link: http://lkml.kernel.org/r/1508792849-3115-19-git-send-email-paulmck@linux.vnet.ibm.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-10-24 05:07:29 +08:00
return READ_ONCE(pgdata->split_queue_len);
thp: introduce deferred_split_huge_page() Currently we don't split huge page on partial unmap. It's not an ideal situation. It can lead to memory overhead. Furtunately, we can detect partial unmap on page_remove_rmap(). But we cannot call split_huge_page() from there due to locking context. It's also counterproductive to do directly from munmap() codepath: in many cases we will hit this from exit(2) and splitting the huge page just to free it up in small pages is not what we really want. The patch introduce deferred_split_huge_page() which put the huge page into queue for splitting. The splitting itself will happen when we get memory pressure via shrinker interface. The page will be dropped from list on freeing through compound page destructor. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:17 +08:00
}
static unsigned long deferred_split_scan(struct shrinker *shrink,
struct shrink_control *sc)
{
struct pglist_data *pgdata = NODE_DATA(sc->nid);
thp: introduce deferred_split_huge_page() Currently we don't split huge page on partial unmap. It's not an ideal situation. It can lead to memory overhead. Furtunately, we can detect partial unmap on page_remove_rmap(). But we cannot call split_huge_page() from there due to locking context. It's also counterproductive to do directly from munmap() codepath: in many cases we will hit this from exit(2) and splitting the huge page just to free it up in small pages is not what we really want. The patch introduce deferred_split_huge_page() which put the huge page into queue for splitting. The splitting itself will happen when we get memory pressure via shrinker interface. The page will be dropped from list on freeing through compound page destructor. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:17 +08:00
unsigned long flags;
LIST_HEAD(list), *pos, *next;
struct page *page;
int split = 0;
spin_lock_irqsave(&pgdata->split_queue_lock, flags);
thp: introduce deferred_split_huge_page() Currently we don't split huge page on partial unmap. It's not an ideal situation. It can lead to memory overhead. Furtunately, we can detect partial unmap on page_remove_rmap(). But we cannot call split_huge_page() from there due to locking context. It's also counterproductive to do directly from munmap() codepath: in many cases we will hit this from exit(2) and splitting the huge page just to free it up in small pages is not what we really want. The patch introduce deferred_split_huge_page() which put the huge page into queue for splitting. The splitting itself will happen when we get memory pressure via shrinker interface. The page will be dropped from list on freeing through compound page destructor. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:17 +08:00
/* Take pin on all head pages to avoid freeing them under us */
list_for_each_safe(pos, next, &pgdata->split_queue) {
thp: introduce deferred_split_huge_page() Currently we don't split huge page on partial unmap. It's not an ideal situation. It can lead to memory overhead. Furtunately, we can detect partial unmap on page_remove_rmap(). But we cannot call split_huge_page() from there due to locking context. It's also counterproductive to do directly from munmap() codepath: in many cases we will hit this from exit(2) and splitting the huge page just to free it up in small pages is not what we really want. The patch introduce deferred_split_huge_page() which put the huge page into queue for splitting. The splitting itself will happen when we get memory pressure via shrinker interface. The page will be dropped from list on freeing through compound page destructor. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:17 +08:00
page = list_entry((void *)pos, struct page, mapping);
page = compound_head(page);
if (get_page_unless_zero(page)) {
list_move(page_deferred_list(page), &list);
} else {
/* We lost race with put_compound_page() */
thp: introduce deferred_split_huge_page() Currently we don't split huge page on partial unmap. It's not an ideal situation. It can lead to memory overhead. Furtunately, we can detect partial unmap on page_remove_rmap(). But we cannot call split_huge_page() from there due to locking context. It's also counterproductive to do directly from munmap() codepath: in many cases we will hit this from exit(2) and splitting the huge page just to free it up in small pages is not what we really want. The patch introduce deferred_split_huge_page() which put the huge page into queue for splitting. The splitting itself will happen when we get memory pressure via shrinker interface. The page will be dropped from list on freeing through compound page destructor. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:17 +08:00
list_del_init(page_deferred_list(page));
pgdata->split_queue_len--;
thp: introduce deferred_split_huge_page() Currently we don't split huge page on partial unmap. It's not an ideal situation. It can lead to memory overhead. Furtunately, we can detect partial unmap on page_remove_rmap(). But we cannot call split_huge_page() from there due to locking context. It's also counterproductive to do directly from munmap() codepath: in many cases we will hit this from exit(2) and splitting the huge page just to free it up in small pages is not what we really want. The patch introduce deferred_split_huge_page() which put the huge page into queue for splitting. The splitting itself will happen when we get memory pressure via shrinker interface. The page will be dropped from list on freeing through compound page destructor. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:17 +08:00
}
if (!--sc->nr_to_scan)
break;
thp: introduce deferred_split_huge_page() Currently we don't split huge page on partial unmap. It's not an ideal situation. It can lead to memory overhead. Furtunately, we can detect partial unmap on page_remove_rmap(). But we cannot call split_huge_page() from there due to locking context. It's also counterproductive to do directly from munmap() codepath: in many cases we will hit this from exit(2) and splitting the huge page just to free it up in small pages is not what we really want. The patch introduce deferred_split_huge_page() which put the huge page into queue for splitting. The splitting itself will happen when we get memory pressure via shrinker interface. The page will be dropped from list on freeing through compound page destructor. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:17 +08:00
}
spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
thp: introduce deferred_split_huge_page() Currently we don't split huge page on partial unmap. It's not an ideal situation. It can lead to memory overhead. Furtunately, we can detect partial unmap on page_remove_rmap(). But we cannot call split_huge_page() from there due to locking context. It's also counterproductive to do directly from munmap() codepath: in many cases we will hit this from exit(2) and splitting the huge page just to free it up in small pages is not what we really want. The patch introduce deferred_split_huge_page() which put the huge page into queue for splitting. The splitting itself will happen when we get memory pressure via shrinker interface. The page will be dropped from list on freeing through compound page destructor. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:17 +08:00
list_for_each_safe(pos, next, &list) {
page = list_entry((void *)pos, struct page, mapping);
lock_page(page);
/* split_huge_page() removes page from list on success */
if (!split_huge_page(page))
split++;
unlock_page(page);
put_page(page);
}
spin_lock_irqsave(&pgdata->split_queue_lock, flags);
list_splice_tail(&list, &pgdata->split_queue);
spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
thp: introduce deferred_split_huge_page() Currently we don't split huge page on partial unmap. It's not an ideal situation. It can lead to memory overhead. Furtunately, we can detect partial unmap on page_remove_rmap(). But we cannot call split_huge_page() from there due to locking context. It's also counterproductive to do directly from munmap() codepath: in many cases we will hit this from exit(2) and splitting the huge page just to free it up in small pages is not what we really want. The patch introduce deferred_split_huge_page() which put the huge page into queue for splitting. The splitting itself will happen when we get memory pressure via shrinker interface. The page will be dropped from list on freeing through compound page destructor. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:17 +08:00
/*
* Stop shrinker if we didn't split any page, but the queue is empty.
* This can happen if pages were freed under us.
*/
if (!split && list_empty(&pgdata->split_queue))
return SHRINK_STOP;
return split;
thp: introduce deferred_split_huge_page() Currently we don't split huge page on partial unmap. It's not an ideal situation. It can lead to memory overhead. Furtunately, we can detect partial unmap on page_remove_rmap(). But we cannot call split_huge_page() from there due to locking context. It's also counterproductive to do directly from munmap() codepath: in many cases we will hit this from exit(2) and splitting the huge page just to free it up in small pages is not what we really want. The patch introduce deferred_split_huge_page() which put the huge page into queue for splitting. The splitting itself will happen when we get memory pressure via shrinker interface. The page will be dropped from list on freeing through compound page destructor. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:17 +08:00
}
static struct shrinker deferred_split_shrinker = {
.count_objects = deferred_split_count,
.scan_objects = deferred_split_scan,
.seeks = DEFAULT_SEEKS,
.flags = SHRINKER_NUMA_AWARE,
thp: introduce deferred_split_huge_page() Currently we don't split huge page on partial unmap. It's not an ideal situation. It can lead to memory overhead. Furtunately, we can detect partial unmap on page_remove_rmap(). But we cannot call split_huge_page() from there due to locking context. It's also counterproductive to do directly from munmap() codepath: in many cases we will hit this from exit(2) and splitting the huge page just to free it up in small pages is not what we really want. The patch introduce deferred_split_huge_page() which put the huge page into queue for splitting. The splitting itself will happen when we get memory pressure via shrinker interface. The page will be dropped from list on freeing through compound page destructor. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:17 +08:00
};
#ifdef CONFIG_DEBUG_FS
static int split_huge_pages_set(void *data, u64 val)
{
struct zone *zone;
struct page *page;
unsigned long pfn, max_zone_pfn;
unsigned long total = 0, split = 0;
if (val != 1)
return -EINVAL;
for_each_populated_zone(zone) {
max_zone_pfn = zone_end_pfn(zone);
for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
if (!pfn_valid(pfn))
continue;
page = pfn_to_page(pfn);
if (!get_page_unless_zero(page))
continue;
if (zone != page_zone(page))
goto next;
if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
goto next;
total++;
lock_page(page);
if (!split_huge_page(page))
split++;
unlock_page(page);
next:
put_page(page);
}
}
pr_info("%lu of %lu THP split\n", split, total);
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
"%llu\n");
static int __init split_huge_pages_debugfs(void)
{
void *ret;
ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
&split_huge_pages_fops);
if (!ret)
pr_warn("Failed to create split_huge_pages in debugfs");
return 0;
}
late_initcall(split_huge_pages_debugfs);
#endif
mm: thp: enable thp migration in generic path Add thp migration's core code, including conversions between a PMD entry and a swap entry, setting PMD migration entry, removing PMD migration entry, and waiting on PMD migration entries. This patch makes it possible to support thp migration. If you fail to allocate a destination page as a thp, you just split the source thp as we do now, and then enter the normal page migration. If you succeed to allocate destination thp, you enter thp migration. Subsequent patches actually enable thp migration for each caller of page migration by allowing its get_new_page() callback to allocate thps. [zi.yan@cs.rutgers.edu: fix gcc-4.9.0 -Wmissing-braces warning] Link: http://lkml.kernel.org/r/A0ABA698-7486-46C3-B209-E95A9048B22C@cs.rutgers.edu [akpm@linux-foundation.org: fix x86_64 allnoconfig warning] Signed-off-by: Zi Yan <zi.yan@cs.rutgers.edu> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: David Nellans <dnellans@nvidia.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-09 07:10:57 +08:00
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
struct page *page)
{
struct vm_area_struct *vma = pvmw->vma;
struct mm_struct *mm = vma->vm_mm;
unsigned long address = pvmw->address;
pmd_t pmdval;
swp_entry_t entry;
pmd_t pmdswp;
mm: thp: enable thp migration in generic path Add thp migration's core code, including conversions between a PMD entry and a swap entry, setting PMD migration entry, removing PMD migration entry, and waiting on PMD migration entries. This patch makes it possible to support thp migration. If you fail to allocate a destination page as a thp, you just split the source thp as we do now, and then enter the normal page migration. If you succeed to allocate destination thp, you enter thp migration. Subsequent patches actually enable thp migration for each caller of page migration by allowing its get_new_page() callback to allocate thps. [zi.yan@cs.rutgers.edu: fix gcc-4.9.0 -Wmissing-braces warning] Link: http://lkml.kernel.org/r/A0ABA698-7486-46C3-B209-E95A9048B22C@cs.rutgers.edu [akpm@linux-foundation.org: fix x86_64 allnoconfig warning] Signed-off-by: Zi Yan <zi.yan@cs.rutgers.edu> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: David Nellans <dnellans@nvidia.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-09 07:10:57 +08:00
if (!(pvmw->pmd && !pvmw->pte))
return;
mmu_notifier_invalidate_range_start(mm, address,
address + HPAGE_PMD_SIZE);
flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
pmdval = *pvmw->pmd;
pmdp_invalidate(vma, address, pvmw->pmd);
if (pmd_dirty(pmdval))
set_page_dirty(page);
entry = make_migration_entry(page, pmd_write(pmdval));
pmdswp = swp_entry_to_pmd(entry);
if (pmd_soft_dirty(pmdval))
pmdswp = pmd_swp_mksoft_dirty(pmdswp);
set_pmd_at(mm, address, pvmw->pmd, pmdswp);
mm: thp: enable thp migration in generic path Add thp migration's core code, including conversions between a PMD entry and a swap entry, setting PMD migration entry, removing PMD migration entry, and waiting on PMD migration entries. This patch makes it possible to support thp migration. If you fail to allocate a destination page as a thp, you just split the source thp as we do now, and then enter the normal page migration. If you succeed to allocate destination thp, you enter thp migration. Subsequent patches actually enable thp migration for each caller of page migration by allowing its get_new_page() callback to allocate thps. [zi.yan@cs.rutgers.edu: fix gcc-4.9.0 -Wmissing-braces warning] Link: http://lkml.kernel.org/r/A0ABA698-7486-46C3-B209-E95A9048B22C@cs.rutgers.edu [akpm@linux-foundation.org: fix x86_64 allnoconfig warning] Signed-off-by: Zi Yan <zi.yan@cs.rutgers.edu> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: David Nellans <dnellans@nvidia.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-09 07:10:57 +08:00
page_remove_rmap(page, true);
put_page(page);
mmu_notifier_invalidate_range_end(mm, address,
address + HPAGE_PMD_SIZE);
}
void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
{
struct vm_area_struct *vma = pvmw->vma;
struct mm_struct *mm = vma->vm_mm;
unsigned long address = pvmw->address;
unsigned long mmun_start = address & HPAGE_PMD_MASK;
pmd_t pmde;
swp_entry_t entry;
if (!(pvmw->pmd && !pvmw->pte))
return;
entry = pmd_to_swp_entry(*pvmw->pmd);
get_page(new);
pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
if (pmd_swp_soft_dirty(*pvmw->pmd))
pmde = pmd_mksoft_dirty(pmde);
mm: thp: enable thp migration in generic path Add thp migration's core code, including conversions between a PMD entry and a swap entry, setting PMD migration entry, removing PMD migration entry, and waiting on PMD migration entries. This patch makes it possible to support thp migration. If you fail to allocate a destination page as a thp, you just split the source thp as we do now, and then enter the normal page migration. If you succeed to allocate destination thp, you enter thp migration. Subsequent patches actually enable thp migration for each caller of page migration by allowing its get_new_page() callback to allocate thps. [zi.yan@cs.rutgers.edu: fix gcc-4.9.0 -Wmissing-braces warning] Link: http://lkml.kernel.org/r/A0ABA698-7486-46C3-B209-E95A9048B22C@cs.rutgers.edu [akpm@linux-foundation.org: fix x86_64 allnoconfig warning] Signed-off-by: Zi Yan <zi.yan@cs.rutgers.edu> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: David Nellans <dnellans@nvidia.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-09 07:10:57 +08:00
if (is_write_migration_entry(entry))
pmde = maybe_pmd_mkwrite(pmde, vma);
flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
page_add_anon_rmap(new, vma, mmun_start, true);
set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
if (vma->vm_flags & VM_LOCKED)
mlock_vma_page(new);
update_mmu_cache_pmd(vma, address, pvmw->pmd);
}
#endif